
On the parallel implementation and performance study of

high-order Rosenbrock-type implicit Runge-Kutta methods

for the FR/CPR solutions of the Navier-Stokes equations

Lai Wang∗, Meilin Yu†

Department of Mechanical Engineering,
University of Maryland, Baltimore County, Baltimore, MD 21250

Abstract

The Rosenbrock-type implicit Runge-Kutta (ROIRK) methods only require one Jaco-
bian matrix evaluation per time step rather than per stage as other types of implicit
Runge-Kutta (IRK) methods need. This feature makes ROIRK attractive for numer-
ical simulations using implicit methods. We present the parallel implementation of
several matrix-based ROIRK methods with flux reconstruction/correction procedure re-
construction (FR/CPR) formulations for solving the 3D Navier-Stokes equations. In
this study, METIS has been utilized to partition the mesh in the preprocessing. The
complex-step derivative approximation is employed to evaluate the Jacobi matrix, ac-
curate to machine zero. The GMRES solver in the PETSc library is used to iteratively
solve the linear system. The ROIRK methods have demonstrated high order of ac-
curacy in numerical simulations. The scalability study reveals that the matrix-based
ROIRK methods have good parallel efficiency. With the block Jacobi preconditioner,
it is observed that the linear systems resulting from ROIRK3-3 are stiffer than those
from ROIRK2-2 and ROIRK4-6. This makes the scalability of ROIRK3-3 worse than
ROIRK2-2 and ROIRK4-6 taking the number of stages into account.

Key Words

Rosenbrock-type implicit Runge-Kutta methods; Flux reconstruction/correction proce-
dure via reconstruction; Parallel implementation; Scalability.

∗Graduate student, AIAA Student Member, email: bx58858@umbc.edu
†Assistant professor, AIAA Senior Member, email: mlyu@umbc.edu

1

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

 2018 AIAA Aerospace Sciences Meeting

 8–12 January 2018, Kissimmee, Florida

 10.2514/6.2018-1095

 Copyright © 2018 by Lai Wang and Meilin Yu.

 Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA SciTech Forum

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2018-1095&domain=pdf&date_stamp=2018-01-07

1 Introduction

Simulating fluid flows that have a large disparity in spatial and temporal scales requires
that both the spatial discretization and time integration are of high accuracy and high
resolution. The FR/CPR method developed by Huynh [1, 2] uses correction functions to
reconstruct the local flux polynomials to achieve high order of accuracy. In the FR/CPR
approach, the flexibility of different correction functions allows it to recover several
high order methods, such as the discontinuous Galerkin (DG) method, the spectral
difference/volume (SD/SV) methods, and also allows researchers to develop new methods
under this framework. It was then extended by Wang and Gao in 2009 [3] to simplex
elements. Vincent et al. developed a family of energy stable FR/CPR methods in
2011 [4]. A simplified FR approach, i.e. the direct flux reconstruction method (DFR),
was then developed by Romero et al. [5] in 2016. Wang and Yu employed the compact
finite approach to directly reconstruct the spatial derivatives within an element, and
demonstrated the identity of this approach (named CDFR) with the nodal FR-DG and
DFR methods [6]. Overall, the FR/CPR-family methods are accurate, robust, and easy
to implement. And the compact nature makes the FR/CPR method well-suited for the
high performance parallel computing.

Among IRK methods, the diagonally IRK methods are arguably the most widely
used to solve practical stiff problems since they are relatively easy to implement. They
are characterized by a lower triangular A-matrix with at least one nonzero diagonal entry
and are sometimes referred to as semi-implicit or semi-explicit Runge-Kutta methods [7].
A comprehensive review about IRK methods can be found in Ref. [7]. Research has been
conducted to apply IRK methods to solve the unsteady Navier-Stokes equations [8, 9,
10, 11] with high-order spatial discretization methods. Through comparison with the
popular backward differentiation formulas (BDFs), especially BDF1 and BDF2, it is
recommended that IRK methods are more preferable for stiff problems [8, 10]. Even
though BDFs are efficient and easy to implement, they suffer from not being self-starting
and not A-stable beyond second-order accuracy.

Linearly implicit Rosenbrock methods avoid solving nonlinear systems every stage in
some IRK methods, such as singly diagonally implicit Runge-Kutta methods (SDIRK) [12],
and solve only one linear system at each stage [13]. Different variations of Rosenbrock-
type IRK methods can be found in Refs. [14, 15, 16, 17, 18]. For traditional Rosenbrock-
type IRK methods, the accuracy of the methods depend on the availability of the exact
Jacobi. Rosenbrock-Wanner methods have been developed to preserve the order of ac-
curacy with an approximation of the exact Jacobi. For the Rosenbrock-Wanner method,
a better approximation will ensure better stability. The Rosenbrock-Krylov method [18]
is developed based on a Krylov space solution of the linear systems and has substan-
tially fewer order conditions than Rosenbrock-Wannder methods. A practical obstacle
of applying the ROIRK methods for solving large CFD problems is that the Jacobi
matrix and the preconditioner matrix require a significant mount of memory. To over-
come this trouble, the matrix-free approach can be employed. Conventionally, the finite
difference approach is used for the matrix-vector approximation. This approximation

2

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

will degenerate the accuracy of traditional Rosenbrock-type methods. However, the
Rosenbrock-Wanner method and Rosenbrock-Krylov method can avoid this problem. A
more profound discussion on the matrix-free implementation of Rosenbrock-type IRK
methods can be found in Ref. [19].

The applications of ROIRK with high-order spatial discretization methods have been
popular in recent years. Bassi et al. have systematically investigated the performance
of ROIRK methods up to sixth order on solving both compressible and incompressible
Navier-Stokes equations with DG spatial discretizations [20, 21] and applied them for
the DNS and ILES simulations. A comparative study of ROIRK and ESDIRK methods
for the Navier-Stokes equations has been conducted by Liu et al. in the context of
reconstructed Discontinuous Galerkin (rDG) methods [22].

In this work, we present the parallel implementation details for ROIRK methods up
to fourth order with high-order FR/CPR methods on solving the 3D unsteady Navier-
Stokes equations. Currently, the implementation is matrix-based under the circumstance
that ‘exact’ Jacobi will be supplied. We focus on the scalability study of different
ROIRK methods. An open-source software-package, METIS [23], is employed for mesh
partitioning. The complex-step derivative approach [24] is adopted for the Jacobian
matrix evalutation. This approach can provide more accurate(to machine zero) Jacobi
evaluation when compared to the finite difference approach and is easier to implement
or debug when compared to the analytical differentiation approach or the automatic
differentiation approach. The GMRES solver in the PETSc library [25] serves as the
iterative linear solver. The intention of this study is to provide a concise guide to
researchers who are interested in applying FR/CPR methods and ROIRK methods with
parallelism for solving the Navier-Stokes equations.

The remainder of this paper is organized as follows: Section 2 gives a brief intro-
duction of the governing equations. The spatial discretization and time integration are
presented in Section 3 and Section 4, respectively. Section 5 explains the parallel im-
plementation in detail. Numerical results are demonstrated in Section 6. The work is
briefly summarized in Section 7.

2 Governing equations

The compressible 3D unsteady Navier-Stokes equations can be written as

∂q

∂t
+∇ · f = 0, (1)

where q = (ρ, ρuj , E)T , j = 1, 2, 3 are the conservative variables, p = ρRT , E =
p

γ−1 + 1
2ρ(ukuk), R is the ideal gas constant, and γ is the specific heat ratio defined as

γ = Cp/Cv. In this study, γ is set as 1.4. The flux f consists of the inviscid part and
viscous part, which can be expressed as f = f inv(q) − fvis(q,∇q). The component

3

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

forms of f inv(q) and fvis(q,∇q) are formulated as

f inv(q) =

 ρuj
ρuiuj + δijp
uj(E + p)

 , and fvis(q,∇q) =

 0
τij

uiτij +Kj

 , (2)

where

τij =

(
ui
xj

+
uj
xi

)
− 2

3

∂uk
∂xk

δij , and Kj = k
∂T

∂xj
. (3)

In this study, k = µCp/Pr. The viscosity µ is treated as a constant and Pr = 0.72.

3 Spatial discretization

If we transfer the Navier-Stokes equations from the physical domain (x, y, z) to the
computational domain (ξ, η, ζ), Eq. (1) can be expressed as

∂Q

∂t
+
∂F

∂ξ
+
∂G

∂η
+
∂H

∂ζ
= 0, (4)

where
Q = |J |q,
F = |J |(fξx + gξy + hξz),

G = |J |(fηx + gηy + hηz),

H = |J |(fζx + gζy + hζz),

(5)

and

J =
∂(x, y, z)

∂(ξ, η, ζ)
, and |J | = det(J). (6)

The flux polynomial reconstructed from the FR/CPR method consists of two parts,
one of which is the local flux polynomial and the other is the correction polynomial. On
solving Eq. (4), the reconstructed polynomials F̃ , G̃ and H̃ of F , G and H can be
expressed as

F̃ = F l + F c,

G̃ = Gl + Gc,

H̃ = H l + Hc,

(7)

where the subscript ‘l’ stands for the local flux and ‘c’ stands for the correction flux.
Consequently, Eq. (1) can be written as

∂q

∂t
+
∂f l

∂x
+
∂gl

∂y
+
∂hl

∂z
+

1

|J |

(
∂F c

∂ξ
+
∂Gc

∂η
+
∂Hc

∂ζ

)
= 0 (8)

For hexahedral elements, F c , Gc and Hc can be explicitly expressed as
F c(ξ, η, ζ) = (F̃ (−1, η, ζ)− F l(−1, η, ζ))gL(ξ) + (F̃ (1, η, ζ)− F l(1, η, ζ))gR(ξ),

Gc(ξ, η, ζ) = (G̃(ξ,−1, ζ)−Gl(ξ,−1, ζ))gL(η) + (G̃(ξ, 1, ζ)−Gl(ξ, 1, ζ))gR(η),

Hc(ξ, η, ζ) = (H̃(ξ, η,−1)−H l(ξ, η,−1))gL(ζ) + (H̃(ξ, η, 1)−H l(ξ, η, 1))gR(ζ),

(9)

4

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

where gL/R are the correction polynomials. In this study, we employ the Radau poly-

nomials to recover the nodal FR-DG method. F̃ , G̃ and H̃ at element interfaces are
referred as numerical fluxes F num, Gnum and Hnum. The inviscid common fluxes can
be obtained from approximate Riemann solvers. In this study,the Rusanov solver is used
to calculate the common fluxes at the cell interfaces as

f comn,inv =
f+
n,inv + f−n,inv

2
− |λ|max

q− − q+

2
, (10)

where superscripts ‘+’ and ‘-’ denote the left of right side of the current interface and n
is the normal direction. Numerical common fluxes can be obtained as

F num = |J ||∇ξ|f comn sign(n · ∇ξ),
Gnum = |J ||∇η|f comn sign(n · ∇η),

Hnum = |J ||∇ζ|f comn sign(n · ∇ζ).

(11)

The common viscous fluxes at the cell interfaces are f comn,vis = fvis(q
+,∇q+, q−,∇q−),

which means we need to define common qcom and common ∇qcom at the cell interface.
By simply taking average of the primitive variables, we get

qcom =
q+ + q−

2
. (12)

The common gradient is computed as

∇qcom =
∇q+ + r+ +∇q− + r−

2
, (13)

where r+ and r− are the corrections to the gradients on the interface. For the hexahedral
element, the correction terms are defined as [26]

r = γ(qcom − q)n, and γ = |∇$|g′($) sign(n · ∇$), (14)

where $ ∈ {ξ, η, ζ} and $ is −1 or 1 depending on the positions of the current interface
in the left and right side elements. In this study, g(±1) = ±(p+ 1)(p+ 2)/2 to stabilize
the method.

The configuration procedure of the FR/CPR method reveals that the spatial dis-
cretization is compact and only needs information from all the neighbor elements for the
spatial derivative approximations. This compact reconstruction procedure is well-suited
for high performance computing.

4 Time integration

If we simplify Eq. (8) as
∂q

∂t
= R(q), (15)

5

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

the general form of ROIRK methods from time step n to n+ 1 can be written as{
qn+1 = qn +

∑s
j=1mjYj ,(

I
ω∆t −

∂R
∂q

)n
Yi = R

(
qn +

∑i−1
j=1 aijYj

)
+
∑i−1

j=1
cij
∆tYj , i = 1, 2, . . . , s,

(16)

where s is the number of stages. Details about the coefficients of a series of ROIRK
methods can be found in Ref. [20]. The Jacobian matrix ∂R

∂q only needs to be updated
at the beginning of each time step.

In this study, we use the complex-step derivative approximation [24] to calculate the
Jacobi matrix. There are multiple options to calculate the Jacobi matrix, among which
are the analytical derivation, automatic differentiation and finite difference approach.
The finite difference approach is quite popular due to its easy implementation. However,
the lack of accuracy definitely will degenerate the accuracy property of the Rosenbrock-
type Runge-Kutta methods. And it will make the linear solver hard to converge. Though
the analytical approach can guarantee the accuracy, when applied to the Navier-Stokes
equations, the derivation can be cumbersome. Many automatic differentiation tools are
available to automatically generate the code for Jacobi evaluation when the source code
of the R(q) is supplied, such as TAPENADE [27] or TAMC [28]. However, the output
code could be lengthy and hard for debugging and maintenance. The complex-step
derivative approximation follows the following Taylor expansion,

f(x+ ih) = f(x) + ihf ′(x)− h2 f
′′(x)

2!
− ih3 f

′′′(x)

3!
+ · · · , (17)

where i2 = −1. Taking the imaginary parts of both sides of the Taylor series and dividing
them by h gives

f ′(x) =
Im(f(x+ ih))

h
+O(h2). (18)

This approximation is accurate to O(h2). In double-precision simulations, when h =
10−8, the complex-step derivative approximation will be accurate to machine zero. This
approximation offers an easy implementation that one can substitute all the variables
in the CFD code related to the flow with corresponding complex numbers. And a small
disturbance can be simply added to the imaginary part of the conservative variables
when calculating the Jacobi matrix.

Bassi et al. have investigated the accuracy performance of ROIRK methods up to
sixth order with DG methods on solving both compressible and incompressible flows in
Ref. [20]. In this study, we focus on the parallel implementation and scalability study of
the ROIRK methods. In this study, the two-stage, second-order ROIRK method(RO2-
2) [14] method, the three-stage, third-order ROIRK (ROS3P) [15] and the six-stage,
fourth-order ROIRK method (RODASP [16]) are investigated. A notation ROIRKm-n,
where ‘m’ stands for the order of accuracy and ‘n’ stands for the number of stages, is
used in this study to avoid confusions.

6

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

Figure 1: Illustration of the connectivities of different parts of the 2D unstructured mesh.

5 Details on the Parallel Implementation

In this section, the parallel implementation is discussed in detail. For the pre-processing,
specifically, the METIS_PartMeshDual function in METIS [23], is used to partiton the
mesh based on the partitioning of the dual graph of the mesh. In the present study, we
partition the mesh of N elements into M parts and distribute each part to one process.
Each part has Nm cells. qi,m and Ri,m are employed to denote the conservative variable
vector and r.h.s. vector of the i-th cell on partition m. Herein, i = 1, 2, . . . , Nm and
m = 1, 2, . . . ,M .

After partitioning the mesh, connectivities need to be built up among different par-
titions. The element faces shared by different parts can be regarded as special types
of boundary conditions. Note that a pair of periodic faces can also be shared by two
parts. A simple 2D illustration of the connectivities has been presented in Figure 1. In
Figure 1, Part 1 is geometrically connected to Part 2 and Part 3. Two different types of
shared-faces are involved, i.e., two faces are shared by Part 1 and Part 2, and three faces
are shared by Part 1 and Part 3. Taking the Element 2 in Part 1 as an example, the
first face (from node 1 to 2) is the same face as the fourth face (from node 4 to node 1)
in Element 3 in Part 2 except that the orientation is different. For FR/CPR methods,
it is critical that the orientations of theses faces must match when calculating common
fluxes on the flux points.

The PETSc library is employed for storing the sparse Jacobian matrix. In PETSc
library, the Jacobian matrix Jm is distributed into different processes by splitting the
rows of the full matrix J [25]. The distributed Jacobian matrix on the m-th process can

7

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

be explicitly written as

Jm =

∂R1,m

∂q1

∂R1,m

∂q2
. . .

∂R1,m

∂qj
. . .

∂R1,m

∂qN
∂R2,m

∂q1

∂R2,m

∂q2
. . .

∂R2,m

∂qj
. . .

∂R2,m

∂qN

...
...

. . .
...

...
...

∂RNm,m

∂q1

∂RNm,m

∂q2
. . .

∂RNm,m

∂qj
. . .

∂RNm,m

∂qN

 (19)

Recall Eqs. (10), (12) and (13), in order to calculate the common inviscid and viscous
fluxes, information from neighbor elements will be needed. Therefore, in the procedure of
calculating Ri,m and

∂Ri,m

∂qj
, communications among different processes are needed when

qj is not on the current processm. Note that when the element of global index j is neither

the current local element i nor the neighbor of this element,
∂Ri,m

∂qj
= 0. If a p degree

polynomial reconstruction is used in the FR/CPR method, for a hexahedral element,
the number of degrees of freedom is ndof = nv(p + 1)3, where nv = 5 is the number of

conservative variables. And the dimensions of a non-zero
∂Ri,m

∂qj
block are ndof × ndof .

Therefore, to evaluate
∂Ri,m

∂qj
with the complex-step derivative approximation, adding a

disturbance to the corresponding entry in qj will be done ndof times. The most efficient

way in terms of communication is to send all the qj
’s of those elements that share faces

with the local mesh from other processes to the local process. And MPI_Isend and
MPI_Irecv are employed for massage passing.

The GMRES solver in PETSc library has been parallelized as well as the block Jacobi
preconditioner and additive Schwarz preconditioner. Many literatures have discusses the
scalability of GMRES solver with different parallel preconditioners [29]. In this study, we
simply employ block Jacobi preconditioner, which is equivalent to the additive Schwarz
preconditioner with non-overlapping, as the preconditioner. Each process possesses only
one block and ILU(0) is adopted as the local preconditioner on each block. For this study,
the full Jacobi matrix is stored in memory as well as the corresponding preconditioner
matrix. The current implementation has a significant memory usage when the problem
size is big. The Rosenbrock-Krylov methods [18] and Rosenbrock-Wanner methods can
be good alternatives since they have the advantage that the Jacobi can be non-exactly
approximated. This will be considered in future work. Tips about efficiently using
PETSc can also be found in Ref. [29].

6 Numerical Results

All simulations are carried out on the HPCF2013 portion of the maya cluster, the UMBC
High Performance Computing Facility (HPCF). HPCF2013 has 72 nodes. Every node
has two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) processors with eight cores
apiece, i.e., 16 cores per node. The speedup Snp is defined as

Snp = Tnpref /Tnp, (20)

8

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

where Tnpref is the CPU time when npref processes are used and Tnp is the CPU time
when np processes are used. The observed efficiency Enp is defined as

Enp =
Snp

np/npref
. (21)

Normally, the scalability study will be conducted with npref = 1. However, the current
implementation is matrix-based. Thus, for bigger problems, the memory on one node
will not be enough to carry out the simulation. In order to investigate the scalability
performance of the ROIRK methods on solving relative bigger problems, npref > 1 will
be employed.

A notice is that the memory allocation for a big matrix, even though it is a sparse
matrix, takes a long time. Since the non-zero pattern of the Jacobi matrix and the
preconditioner matrix will not change, no allocation will be executed once the matrices
are assigned to certain memory addresses. In order to avoid its effect on timing for the
parallel performance study, the code will first march one step with ∆t = 0.

6.1 Isentropic Vortex Propagation

The isentropic vortex propagation case depicts the superposition of an inviscid uniform
flow and an irrotational vortex. The vortex can be regarded as a perturbation added
into the uniform flow. The free stream flow is of (ρ, u, v, w,Ma) = (1, 1, 1, 0, 0.5) and
R = 1.0 for this case. The perturbation is defined as [20]

δu = − α
2π (y − y0)eφ(1−r2),

δv = α
2π (x− y0)eφ(1−r2),

δw = 0,

δT = −α2(γ−1)
16φγπ2 (y − y0)e2φ(1−r2),

dS = 0,

(22)

where φ = 1
2 and α = 5 are parameters that define the vortex strength. r = (x −

x0)2 + (y − y0)2 is the distance to the center of the vortex (x0, y0) = (0, 0) at t = 0.
The periodic domain is defined in [−10, 10] × [−10, 10]. Periodic boundary conditions
are used for all four boundaries. For this case, the convergence criteria of the GMRES
solver is tolres = 10−10 and nrestart = 60.

We use the P 4 FR/CPR scheme on a 50×50×1 uniform mesh to guarantee that the
error is dominated by the time integration. The simulation stops at t = T , where T = 20
is the period. The density contour at t = T of the ROIRK4-6 method is illustrated in
Figure 2. The convergence study of the time integrations are presented in Table 1.
Numerical results have shown that the convergence orders of ROIRK2-2 and ROIRK4-6
agree well with theoretical values in general. However, a slight order reduction of the
ROIRK3-3 is observed.

Scalability studies have been conducted for all three types of ROIRK methods. The
CPU time of npref = 1 is used as the reference value. A 64 × 64 × 1 mesh and the

9

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

Table 1: The convergence study for ROIRK methods.
∆t EL2(ρ) order EL2(u) order optimal

ROIRK2-2

T/100 1.2754× 10−3 1.6299× 10−2 2
T/200 3.2468× 10−4 1.97 4.1619× 10−3 1.97 2
T/400 8.1380× 10−5 2.00 1.0452× 10−3 1.99 2

ROIRK3-3

T/100 1.2009× 10−3 1.2723× 10−2 3
T/200 2.0399× 10−4 2.56 2.3046× 10−3 2.46 3
T/400 2.9528× 10−5 2.79 3.2167× 10−4 2.84 3

ROIRK4-6

T/100 1.1154× 10−5 1.0505× 10−4 4
T/200 7.0437× 10−7 3.99 6.6557× 10−6 3.98 4
T/400 5.1761× 10−8 3.77 4.5476× 10−7 3.87 4

1.00

0.99

0.99

0.98

0.98

0.97

0.97

0.96

0.96

0.95

0.95

0.94

0.94

0.93

0.93

0.92

0.92

0.91

0.91

0.90

0.90

Figure 2: The density contour at t = T using ROIRK4-6 with the P 4 FR/CPR method
for the vortex propagation case.

10

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

np

S
n

p

32 64 96 128 160 192 224 256

50

100

150

200

250

ROIRK22

ROIRK33

ROIRK46

Optimal

np

E
n

p

32 64 96 128 160 192 224 256

0.4

0.6

0.8

1

ROIRK22

ROIRK33

ROIRK46

Optimal

(a) (b)

Figure 3: (a) The speedup Sp and (b) observed efficiency Ep results of ROIRK2-2,
ROIRK3-3 and ROIRK4-6 with the P 2 FR/CPR method on solving the vortex propa-
gation on the 50× 50× 1 mesh.

P 2 FR/CPR method is employed for these studies. For this case, ∆t = T/100 and we
only time one step due to the fact the simulation is slow with only one process. The
speedup and observed efficiency of different ROIRK methods are illustrated in Figure 3.
The average number of GMRES iterations per stage is illustrated in Figure 4. As the
number of partitions increase, more iterations will be needed for the linear solver to
converge. This is due to the block Jacobi preconditioner. For the ROIRK2-2 method,
the observed efficiency is above 0.6. Generally speaking, as the number of stage of
the ROIRK methods increases, since linear solver itself is not perfectly scalable, the
scalability of the ROIRK methods will decrease according to the stage number ratio
compared to ROIRK2-2. However, the unexpected poor scalability of ROIRK3-3 is due
to the factor that ROIRK3-3 needs significantly more iterations for the GMRES solver
to converge.

6.2 Laminar Flow Past a Cylinder

In this section, the laminar flow of Ma = 0.2 and Re = 100 past a circular cylinder is
tested to study the parallel performance of different ROIRK methods. The computa-
tional domain is [x, y, z] ∈ [−16, 100] × [−16, 16] × [0, 1]. An illustration of the domain
and mesh is presented in Figure 5. The mesh employed in this study has a 11000 el-
ements in total. Specifically, there are 200 elements in the circumferential direction of
the cylinder and 50 elements in the normal direction and only on element along the
span-wise direction. The P 2 elements are employed to represent the curvature of the
wall boundaries. The P 3 FR/CPR scheme is used as the spatial discretization. The
front and back side of the domain are treated as periodic boundaries. The top and bot-

11

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

 np

A
v
er

a
g
e

n
u

m
b

er
 o

f
G

M
R

E
S

 i
te

ra
ti

o
n

s
p

er
 s

ta
g
e

10
0

10
1

10
2

15

20

25

30

35

40

45

50

55

60

ROIRK22

ROIRK33

ROIRK46

Figure 4: The average number of GMRES iterations per stage of ROIRK2-2, ROIRK3-3
and ROIRK4-6 on solving the vortex propagation on the 64× 64× 1 mesh with the P 2

FR/CPR method.

Figure 5: An illustration of the domain and mesh of the laminar flow past a cylinder.

tom of the domain are symmetric boundaries. The left and right boundary are loosely
enforce as (ρ∞, u∞, 0, 0, p∞) with Riemann solvers. The adiabatic wall boundary con-
dition is applied to the wall surface. The converging tolerance of the GMRES sover is
tolres = 10−5 and nrestart = 60. A simulation of t = 200 is conducted as a validation of
the code using the ROIRK2-2 method. The time step is set as ∆t = 0.05. An instance
of the vorticity field of the vortex shedding is presented in Figure 6. The histories of Cl
and Cd are illustrated in Figure 7. The average drag coefficient Cd = 1.377, root mean
square (RMS) of the lift coefficient Cl,rms = 0.235 and Strouhal number St = 0.166,
which are slightly bigger than those in Ref. [30] for the 2D problem. This difference
is due to the insufficient spatial resolution in span-wise direction. However, it will not
substantially change the scalability study.

The scalability study for this case starts with npref = 64. And we time 10 time steps.
The Snp and Enp are illustrated in Figure 8. The average numbers of GMRES iterations

12

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

x

y

0 5 10 15 20

4

2

0

2

4 z

0.8

0.5

0.2

0.1

0.4

0.7

1.0

Figure 6: An instance of the vortex shedding of the laminar flow of Ma = 0.2 and
Re = 100 past a cylinder.

t

C
d
 &

 C
l

50 100 150 200

0

0.5

1

1.5

C
d

C
l

Figure 7: The histories of Cd and Cl of the laminar flow of Ma = 0.2 and Re = 100 past
a cylinder.

13

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

np

S
n

p

64 128 192 256 320 384 448 512
1

2

3

4

5

6

7

8

ROIRK22

ROIRK33

ROIRK46

’Optimal’

np

E
n

p

64 128 192 256 320 384 448 512
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ROIRK22

ROIRK33

ROIRK46

’Optimal’

(a) (b)

Figure 8: (a) The speedup Sp and (b) observed efficiency Ep results of ROIRK2-2,
ROIRK3-3 and ROIRK4-6 on solving laminar flow past the cylinder.

per stage of all three ROIRK methods are presented in Figure 9. For a larger problem,
the scalability of ROIRK methods is better compared to the vortex propagation problem.
And the ROIRK3-3 method on solving the viscous problem also requires more iterations
per stage than ROIRK2-2 and ROIRK4-6. The parallel efficiency of ROIRK3-3 is even
worse than ROIRK4-6 when np = 512.

7 Conclusions and Future Work

High-order ROIRK methods have been implemented for the parallel simulation of the
3D Navier-Stokes equations spatially discretized with the FR/CPR formulation. In this
study, ROIRK methods have demonstrated high order of accuracy in terms of temporal
integration. A small size inviscid problem (the vortex propagation) and a relative large
size viscous (the laminar flow past a cylinder) problem have been tested to investigate
the scalability performance of the ROIRK methods. Generally speaking, ROIRK2-2
has better scalability than ROIRK3-3 and ROIRK4-6. The linear system results from
the ROIRK3-3 method with FR/CPR method is stiffer than those from ROIRK2-2 and
ROIRK4-6. As a consequence, more iterations are needed for the GMRES to solve the
linear systems per stage. Hence, worse scalability of ROIRK3-3 is observed when con-
sidering the number of stages. A matrix-based parallel implementation of the ROIRK
methods has been employed in this study. However, the significant requirement on the
memory hinders the application of this approach for solving realistic engineering prob-
lems involving turbulence. Thus, a matrix-free implementation of Rosenbrock-Wanner or
Rosenbrock-Krylov methods will be more preferable rather than traditional Rosenbrock-
type methods for future research. Also, the Jacobi preconditioner will suffer from lower
convergence speed when the number of blocks increases. The additive Schwartz method

14

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

np

A
v
er

a
g
e

n
u

m
b

er
 o

f
G

M
R

E
S

 i
te

ra
ti

o
n

s
p

er
 s

ta
g
e

64 128 192 256 320 384 448 512
0

10

20

30

40

50

60

ROIRK22

ROIRK33

ROIRK46

Figure 9: The average number of GMRES iterations per stage of ROIRK2-2, ROIRK3-3
and ROIRK4-6 on solving laminar flow past the cylinder on a 11000-element mesh with
the 4th order FR/CPR method.

with overlapping can be an alternative.

Acknowledgment

The authors gratefully acknowledge the support of the Office of Naval Research through
the award N00014-16-1-2735, and the National Science Foundation through the award
OAC-1726023.

15

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

References

[1] H. T. Huynh, “A flux reconstruction approach to high-order schemes including
discontinuous Galerkin methods,” in the 18th AIAA Computational Fluid Dynamics
Conference, (Miami, FL), 2007. AIAA-2007-4079.

[2] H. T. Huynh, “A reconstruction approach to high-order schemes including dis-
continuous Galerkin methods for diffusion,” in the 47th AIAA Aerospace Sciences
Meeting including The New Horizons Forum and Aerospace, (Orlando, FL), 2009.
AIAA-2009-403.

[3] Z. J. Wang and H. Y. Gao, “A unifying lifting collocation penalty formulation in-
cluding the discontinuous Galerkin, spectral volume/difference methods for conser-
vation laws on mixed grids,” Journal of Computational Physics, vol. 228, pp. 8161–
8186, 2009.

[4] P. E. Vincent, P. Castonguay and A. Jameson, “A new class of high-order en-
ergy stable flux reconstruction schemes,” Journal of Scientific Computing, vol. 47,
pp. 50–72, 2011.

[5] J. Romero, K. Asthana and A. Jameson, “A simplified formulation of the flux
reconstruction method,” Journal of Scientific Computing, vol. 67, pp. 351–372,
2016.

[6] L. Wang and M. Yu, “Compact direct flux reconstruction for conservation laws,”
Journal of Scientific Computing, pp. 1–23, 2017.

[7] C. A. Kennedy and M. H. Carpenter, “Diagonally implicit runge-kutta methods
for ordinary differential equations. a review,” Tech. Rep. NASA/TM–2016–219173,
NASA.

[8] H. Bijl, M. H. Carpenter, V. N. Vatsa, and C. A. Kennedy, “Implicit time integra-
tion schemes for the unsteady compressible navier–stokes equations: laminar flow,”
Journal of Computational Physics.

[9] F. Bassi, A. Crivellini, Stefano Rebay, and M. Savini, “Discontinuous Galerkin solu-
tion of the Reynolds-averaged Navier–Stokes and k–ω turbulence model equations,”
Computer & Fluids, vol. 34, pp. 507–540, 2005.

[10] L. Wang and D. J. Mavriplis, “Implicit solution of the unsteady euler equations
for high-order accurate discontinuous galerkin discretizations,” Journal of Compu-
tational Physics, vol. 225, no. 2, pp. 1994–2015, 2007.

[11] A. Uranga, P.-O. Persson, M. Drela, and J. Peraire, “Implicit large eddy simulation
of transition to turbulence at low reynolds numbers using a discontinuous galerkin
method,” International Journal for Numerical Methods in Engineering, vol. 87,
no. 1-5, pp. 232–261, 2011.

16

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

[12] G. Wanner and E. Hairer, “Solving ordinary differential equations ii,” Stiff and
Differential-Algebraic Problems, 1991.

[13] A. Sarshar, P. Tranquilli, B. Pickering, A. McCall, A. Sandu, and C. J. Roy, “A
numerical investigation of matrix-free implicit time-stepping methods for large cfd
simulations,” Computers & Fluids, vol. 159, pp. 53–63, 2017.

[14] A. J. Baker and G. S. Iannelli, “A stiffly-stable implicit Runge-Kutta algorithm for
CFD applications,” in 26th AIAA Aerospace Sciences Meeting, 1988. AIAA Paper
88-0416.

[15] J. Lang and J. Verwer, “Ros3p—an accurate third-order rosenbrock solver designed
for parabolic problems,” BIT Numerical Mathematics, vol. 41, no. 4, pp. 731–738,
2001.

[16] G. Steinebach, “Order-reduction of row-methods for daes and method of lines ap-
plications,” 1995.

[17] J. Rang and L. Angermann, “New rosenbrock w-methods of order 3 for partial
differential algebraic equations of index 1,” BIT Numerical Mathematics, vol. 45,
no. 4, pp. 761–787, 2005.

[18] P. Tranquilli and A. Sandu, “Rosenbrock–krylov methods for large systems of differ-
ential equations,” SIAM Journal on Scientific Computing, vol. 36, no. 3, pp. A1313–
A1338, 2014.

[19] P. Tranquilli, S. R. Glandon, A. Sarshar, and A. Sandu, “Analytical jacobian-
vector products for the matrix-free time integration of partial differential equations,”
Journal of Computational and Applied Mathematics, vol. 310, pp. 213–223, 2017.

[20] F. Bassi, L. Botti, A. Colombo, A Ghidoni and F. Massa, “Linearly implicit
Rosenbrock-type Runge–Kutta schemes applied to the Discontinuous Galerkin so-
lution of compressible and incompressible unsteady flows,” Computers & Fluids,
vol. 118, pp. 305–320, 2015.

[21] F. Bassi, L. Botti, A. Colombo, A. Crivellini, A. Ghidoni, and F. Massa, “On the
development of an implicit high-order discontinuous galerkin method for dns and
implicit les of turbulent flows,” European Journal of Mechanics-B/Fluids, vol. 55,
pp. 367–379, 2016.

[22] X. D. Liu, Y. D. Xia, H. Luo, and L. J. Xuan, “A comparative study of rosenbrock-
type and implicit runge-kutta time integration for discontinuous galerkin method
for unsteady 3d compressible navier-stokes equations,” Communications in Com-
putational Physics, vol. 20, pp. 1016–1044, 2016.

[23] G. Karypis and V. Kumar, “A Fast and Highly Quality Multilevel Scheme for
Partitioning Irregular Graphs,” SIAM Journal on Scientific Computing, vol. 20,
pp. 359–392, 1999.

17

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

[24] J. R. Martins, P. Sturdza, and J. J. Alonso, “The complex-step derivative approx-
imation,” ACM Transactions on Mathematical Software (TOMS), vol. 29, no. 3,
pp. 245–262, 2003.

[25] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dal-
cin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp,
B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc users manual,” Tech.
Rep. ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016.

[26] H. Gao, Z. Wang, and H. Huynh, “Differential formulation of discontinuous galerkin
and related methods for the navier-stokes equations,” Communications in Compu-
tational Physics, vol. 13, no. 4, pp. 1013–1044, 2013.

[27] L. Hascoët and V. Pascual, “The Tapenade automatic differentiation tool: Prin-
ciples, model, and specification,” ACM Transactions on Mathematical Software,
vol. 39, no. 3, pp. 20:1–20:43, 2013.

[28] R. Giering and T. Kaminski, “Recipes for adjoint code construction,” ACM Trans-
actions on Mathematical Software, vol. 24, no. 4, pp. 437–474, 1998.

[29] W. Gropp, D. Keyes, L. C. Mcinnes, and M. D. Tidriri, “Globalized newton-krylov-
schwarz algorithms and software for parallel implicit cfd,” The International Journal
of High Performance Computing Applications, vol. 14, no. 2, pp. 102–136, 2000.

[30] L. Wang and M. Yu, “Compact direct flux reconstruction for the navier-stokes equa-
tions on dynamic meshes,” in 23rd AIAA Computational Fluid Dynamics Confer-
ence, p. 3098, 2017.

18

D
ow

nl
oa

de
d

by
 M

ei
lin

 Y
u

on
 J

an
ua

ry
 2

2,
 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
01

8-
10

95

