
APPROVAL SHEET

Title of Thesis: The Lightweight Virtual File System

Name of Candidate: Navid Golpayegani

Ph.D. in Computer Science,

2017

Thesis and Abstract Approved:
Dr. Milton Halem

Research Professor

Department of Computer Science and

Electrical Engineering

Date Approved:

The Lightweight Virtual File System

by
Navid Golpayegani

Thesis submitted to the Faculty of the Graduate School

of the University of Maryland in partial fulfillment

of the requirements for the degree of

Ph.D. in Computer Science

2017

c© Copyright Navid Golpayegani 2017

ACKNOWLEDGMENTS

I would like to thank Dr. Milton Halem, Dr. Yelena Yesha, and Dr. John Dorband

from University of Maryland Baltimore County for their help and support in my graduate

career. I’d also like to thank Dr. Curt Tilmes, and Edward Masuoka from NASA Goddard

Space Flight Center for their advice throughout my graduate school years and the flexibility

they provided me to work on my graduate school research. Additionally, I’d like to thank

Bryan Wyatt, Robert Warmka, Jon Trantham, and Chris Markey from Seagate for providing

me with hardware and software support. I’d like to thank Damon Earp and Jihad Ashkar

from SSAI for their help with this project. I would also like to thank NASA Goddard Space

Flight Center and the Center for Hybrid Multicore Productivity Research for providing me

with the necessary infrastructure to perform my work. Finally, I’d like to thank my family

for their encouragement to help me get to this point.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . viii

CODE LISTINGS . ix

Chapter 1 INTRODUCTION . 1

1.1 Background . 1

1.2 Motivation . 3

Chapter 2 THESIS STATEMENT . 9

2.1 Problem Definition . 9

2.2 Contribution . 10

Chapter 3 RELATED WORK . 18

3.1 Hadoop Distributed File System . 18

3.2 Lustre . 19

3.3 Parallel Virtual File System . 20

3.4 High Performance Storage System . 20

3.5 SMART-IO . 21

3.6 Amazon S3 . 21

3.7 Cassandra . 21

3.8 Spyglass . 21

iii

3.9 Pantheon . 22

3.10 iRods . 22

3.11 Recon . 23

3.12 SmartStore . 23

3.13 On-Drive Chromosomal Microarray Analysis 23

3.14 Dynamic Non-Hierarchical File Systems for Exascale Storage 24

Chapter 4 THE LIGHTWEIGHT VIRTUAL FILE SYSTEM APPROACH 26

4.1 LVFS Overview . 27

4.2 LVFS Plugins . 30

4.2.1 Logging . 31

4.2.2 Database . 32

4.2.3 Cache . 32

4.2.4 Directory . 32

4.2.5 Content . 33

4.2.6 Background . 33

4.2.7 Filter . 33

4.3 LVFS Configuration . 33

Chapter 5 THE LIGHTWEIGHT VIRTUAL FILE SYSTEM IMPLEMEN-
TATION . 36

5.1 LVFS Core . 36

5.1.1 Plugin Management . 37

5.1.2 Access Control Lists . 39

5.1.3 Backtracing . 39

5.1.4 File/Directory Management . 40

5.1.5 Content Management . 44

5.1.6 String Management . 47

5.1.7 Condition Evaluation . 49

5.1.8 Configuration Parsing . 50

5.1.9 Cache Management . 51

5.2 LVFS Plugin Implementation . 54

iv

5.2.1 Plugin schemas . 56

5.2.2 Common plugins . 57

5.2.3 Logging Plugins . 59

5.2.4 Directory Plugins . 59

5.2.5 Database Plugins . 60

5.2.6 Cache Plugins . 60

5.2.7 Content Plugins . 63

5.2.8 Background Plugins . 63

5.2.9 Filter Plugins . 64

Chapter 6 CASE STUDY: MODAPS DATA DISTRIBUTION TREE . . . 65

6.1 Problem Description . 65

6.2 LVFS Implementation . 66

6.3 Performance . 69

6.4 Conclusion . 72

Chapter 7 CASE STUDY: WRITE SUPPORT 75

7.1 Problem Description . 76

7.2 LVFS Implementation . 77

7.3 Performance . 81

7.4 Conclusion . 82

Chapter 8 CASE STUDY: ON-DRIVE MAPREDUCE 85

8.1 Design . 86

8.2 Algorithms . 87

8.3 Performance . 88

8.4 Conclusion . 92

Chapter 9 CONCLUSIONS . 93

9.1 Future Work . 94

REFERENCES . 96

v

LIST OF FIGURES

1.1 IDC Digital Universe study showing a 50 fold growth of data from 2010 to

2020 (Gantz & Reinsel 2012) . 2

1.2 NEXRAD Archive Size showing non-linear data growth for the National

Climatic Data Center at National Oceanographic and Atmospheric Admin-

istration. Retrieved from (National Oceanographic and Atmospheric Ad-

ministration 2014) on June 24th, 2017 . 3

1.3 Common layout of a data center showing compute, processing, and storage

nodes . 4

3.1 An SPU consisting of a Disk, FPGA, and general purpose processor

(Delmerico et al. 2009) . 24

4.1 The Linux Virtual File System (VFS) layer used to access different under-

lying storage systems (Jones 2009) . 27

4.2 The Filesystem in Userspace (FUSE) software stack used by LVFS (Wikipedia

2017) . 28

4.3 The LVFS software stack and plugin categories 29

4.4 LVFS Software Stack . 31

5.1 Sample data to used with the dynamic query in Listing 5.9 48

5.2 Sample scenario for opening a file . 52

5.3 Sample scenario involving write operations 54

6.1 Read time comparison between LVFS and NFS with read blocks between

512 and 1024 bytes and between 1 – 8 simultaneous readers 71

6.2 Monthly FTP download volume in 2011, 2012, and 2013 71

6.3 Resource usage by LVFS for a one day period on the LAADS FTP Server . 72

6.4 Combined data transmission rate of three load balanced web servers for

LAADS . 73

6.5 CPU usage of three load balanced web servers distributing LAADS data . . 73

7.1 Terrestrial Information Systems Lab infrastructure after addition of S3 storage 78

7.2 Network, CPU, Memory, Cache, and Backlog metrics during transfer of

files from block storage to S3 . 83

8.1 Upload times to Hadoop (HDFS) and Active Drives 90

vi

8.2 Subsetting times for Hadoop and Active Drives for different number of nodes 91

8.3 Gridding times for Hadoop and Active Drives for different number of nodes 91

vii

LIST OF TABLES

5.1 List of LVFS plugin categories and their instance types 37

6.1 Hardware Specifications of the testbed system for LVFS read benchmark . . 70

8.1 Upload and Compute times for Hadoop and Active Drives in seconds. . . . 89

viii

CODE LISTINGS

1.1 Real World fstab file mounting local and remote disks 5

1.2 Sample Directory from one of the mountpoints in listing 1.1 6

4.1 Sample LVFS Configuration file . 35

4.2 LVFS Configuration defining a simple directory and file 35

5.1 LVFS configuration loading same plugin twice 38

5.2 Sample LVFS ACL . 39

5.3 Simple File listing . 41

5.4 Simple File listing . 43

5.5 Example telling directory manager to query locator for stat information . . 43

5.6 Sample LVFS Locators and Locations . 46

5.7 Shorthand Locators . 46

5.8 Deferred Locators . 47

5.9 LVFS Configuration showing dynamic string modification 48

5.10 LVFS Configuration showing Lua function use 49

5.11 Sample Condition Variable . 50

5.12 LVFS include directives . 51

5.13 Plugin Schema definition . 56

5.14 Plugin with alternate schema . 57

5.15 Basic plugin API . 58

5.16 Basic plugin API . 58

5.17 Logging plugin API . 59

5.18 Directory plugin API . 59

5.19 Database plugin API . 60

5.20 Cache manager plugin API . 61

5.21 Cache item plugin API . 61

5.22 Content plugin API . 63

5.23 Filter plugin API . 64

6.1 LVFS Configuration for LAADS distribution 67

7.1 LVFS Configuration storing MERIS and Sentinel data 79

7.2 LVFS Configuration retrieving MERIS and Sentinel data 80

ix

1

Chapter 1

INTRODUCTION

1.1 Background

Data storage, retrieval, and organization is the backbone of any compute system rang-

ing from the most powerful supercomputers to the latest cloud computing providers. As

new and more complex data mining and analytic systems are developed, there is a grow-

ing need for storing larger amounts of data and maintaining historical data for longer time

periods. This creates a unique problem to create a consistent data structure for users while

adding newer storage hardware to existing ones. Most existing file systems are not devel-

oped in a platform agnostic way such that they can run on new storage architectures as well

as decades old storage architectures.

In a recent study by the International Data Corporation (IDC), it is estimated that gen-

erated data volumes will double every two years between 2012 and 2020 (Gantz & Reinsel

2012). his includes data in all sectors like telecommunication, entertainment, science, etc.

This growth can be seen in Figure 1.1.

In the academic sector, the growth of data from the science disciplines is fueled by

better sensors that take measurements with more spatial and temporal resolution and with

finer spectral resolution. For example, the Large Hadron Collider (LCH), a particle collider

in Europe, produces 19 gigabytes of data per minute. In 2010 alone, the LHC created 13

petabytes of data (Brumfiel 2011). Similarly, the Sloan Digital Sky Survey (SDSS), stores

more than 140 terabytes of data since 2000 at a rate of about 200 gigabytes per night.

However, the successor to SDDS, the Large Synoptic Survey Telescope, expected to be-

come operational in 2016, will produce that amount of data in five days (The Economist

2014). Figure 1.2 shows the the National Oceanographic and Atmospheric Administra-

2

Figure 1.1: IDC Digital Universe study showing a 50 fold growth of data from 2010 to
2020 (Gantz & Reinsel 2012)

tion’s (NOAA) NEXRAD archive size since 1991. We can see that until approximately

2008 the archive size was growing at a linear rate. Since 2008, however, the NEXRAD

archive size has been increasing at a higher rate.

In addition to better sensors contributing to the growth of data, there’s a increasing de-

mand for long-term data archives. These long-term archives help support decadal studies in

many scientific fields. For example in (Jeger & Pautasso 2008) show a survey of research

papers which uncovered links between global change and plant disease which were impos-

sible to do without long-term datasets. Similarly, in (Tommasi et al. 2017) they show the

importance of seasonal and decadal climate forecasts in how they relate to marine biology.

The primary resource for managing the data are the data center’s file systems. The

primary role of a file system is to perform two main tasks: metadata management and data

management. Metadata management involves the organization of data which is usually

represented as a directory structure. It also includes other information such as the permis-

sions of files and directories and other similar metadata information. The data management

task is responsible for the actual storage of the content.

3

1989 1995 2000 2006 2011 2017

0

100

200

300

Year

Si
ze

(T
B

)

Level2 Archive
Level3 Archive

Figure 1.2: NEXRAD Archive Size showing non-linear data growth for the National Cli-
matic Data Center at National Oceanographic and Atmospheric Administration. Retrieved
from (National Oceanographic and Atmospheric Administration 2014) on June 24th, 2017

1.2 Motivation

Storing such high volumes of data and managing these datasets over decades creates

unique challenges for data centers and the file systems they use. High volumes of data

require a large number of physical drives which, in turn, requires managing multiple file

system instances or file systems capable of spanning multiple physical drives. Support-

ing projects needing to use datasets over decades creates additional challenges to maintain

diverse hardware and software technologies. Over time the storage industry has diversi-

fied to include solid state disks and object based storage in addition to block based disks.

Similarly, software to support a storage cluster have evolved to encompass systems such as

Network File System (NFS) (Shepler et al. 2003), Simple Storage System (S3) (Amazon

Web Services, Inc. 2013), and Kinetic Storage (Seagate Technology LLC 2017).

Figure 1.3 shows a common layout currently used in data centers. A common ap-

proach in data centers is to assign different nodes to different tasks such as public servers,

responsible for interacting over the internet, compute nodes, responsible for producing new

data, a file system, responsible for storing all the generated data from the compute nodes,

and a project specific metadata server, responsible for storing very detailed metadata infor-

mation about the generated data.

4

Internet	

Public	
 Servers	

Compute	
 Nodes	

Storage	
 Nodes	

	

Project	

Metadata	

Server	

File	
 system	

Metadata	

Figure 1.3: Common layout of a data center showing compute, processing, and storage
nodes

The combination of large data volumes, long-term dataset support, and data center

design create scalability and long term issues. Listing 1.1 shows a real world example of

a computer in a data center having access to small number of disks. Lines 1–5 show five

local disks being mounted on the computer. Lines 7–23 show several remote disks from two

computers mounted on the computer. Finally, lines 25–29 shows existing paths being bind

mounted as other paths. A bind mount is copying the directory structure of one location to

another location. In addition to the mounting structure, listing 1.2 shows the contents of a

single directory under /MODAPSint on the same computer. Paths in that directory consist

of symbolic links to other paths pointing to mount points on other remote computers.

This example illustrates how the storage architecture of a data center can become

more complex over time. This complexity stems from several factors: (1) the desire to

create a uniform layout to data consumers while (2) continuing to support data growth over

several decades, (3) addition of new projects while maintaining older projects and (4) the

introduction of new hardware and software technologies.

A data center might use the most modern and stable storage architecture at the start

5

1 LABEL=f0 /archive xfs defaults 0 0
2 LABEL=f1 /archive/f1 xfs defaults 0 0
3 LABEL=f2 /archive/f2 xfs defaults 0 0
4 LABEL=f3 /archive/f3 xfs defaults 0 0
5 LABEL=f4 /archive/f4 xfs defaults 0 0
6
7 fs4:/cm /cm nfs tcp,rw 0 0
8 fs4:/modular_sstg/newstig /newstig nfs tcp,rw 0 0
9 fs4:/modular_sstg/sstg1 /sstg1 nfs tcp,rw 0 0

10 fs4:/modular_sstg/stigdev3 /stigdev3 nfs tcp,rw 0 0
11 fs4:/modular_misc/data1 /data1 nfs tcp,rw 0 0
12 fs4:/modular_misc/geocp /geocp nfs tcp,rw 0 0
13 fs4:/modular_misc/modisnfs1 /modisnfs1 nfs tcp,rw 0 0
14 fs4:/modular_misc/cmgroup /cmgroup nfs tcp,rw,bg,intr 0 0
15 fs4:/modular_home /home nfs tcp,rw 0 0
16 dev1:/MODAPSint /MODAPSint nfs tcp,ro,bg,intr 0 0
17
18 fs4:/mnt/SSTG2 /SSTG2 nfs tcp,rw,bg,intr 0 0
19 fs4:/SSTG/SSTG3 /SSTG3 nfs intr,bg,rw,tcp 0 0
20
21 fs4:/mnt/modular_test /test nfs tcp,rw,bg,intr 0 0
22 fs4:/mnt/raid1 /raid1 nfs tcp,rw,bg,intr 0 0
23 fs4:/mnt/raid3 /raid3 nfs tcp,rw,bg,intr 0 0
24
25 /raid1/test2 /test2 none bind
26 /raid1/L1A /L1A none bind
27 /cm/cc /cc none bind
28 /ftp/cmgroup /cmgroup/ftp none bind
29 /ftp/mtvs /mtvsraid1 none bind

Listing 1.1: Real World fstab file mounting local and remote disks

6

1 2007142062150.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007142062150.hdf
2 2007141165711.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007141165711.hdf
3 2007141141920.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007141141920.hdf
4 2007142175119.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007142175119.hdf
5 2007143103256.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007143103256.hdf
6 2007142093542.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007142093542.hdf
7 2007142105359.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007142105359.hdf
8 2007140232854.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007140232854.hdf
9 2007143032329.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007143032329.hdf

10 2007143092747.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007143092747.hdf
11 2007142102318.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007142102318.hdf
12 2007143011024.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007143011024.hdf
13 2007141165657.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007141165657.hdf
14 2007143074815.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007143074815.hdf
15 2007143034708.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007143034708.hdf
16 2007143031546.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007143031546.hdf
17 2007142110656.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007142110656.hdf
18 2007142015350.hdf -> /SSTG/UTdata/LAND/MCD43B1/2007142015350.hdf

Listing 1.2: Sample Directory from one of the mountpoints in listing 1.1

of a project. The most up to date technology used original for the above example was to

use individual disks with NFS mounts. Due to slow network access at the time some, more

commonly used data, was stored on local drives. While adding more local and remote

disks might be a convenient way for the data center to grow the storage architecture this

creates a major inconvenience for the projects. Data producers for the project would have

to continually maintain a table to identify the mapping of individual files to local/remote

disks. In the above example this was accomplished via symbolic links and bind mounts.

Changing requirements, adding features, and supporting new projects exacerbate such

problems. Different projects or new features might require datasets to be organized in a

different layout than the physical one provided by the data center or the virtual one created

by the symbolic links and bind mounts for the original project. To accommodate the new

layout more symbolic links and bind mounts might be added.

Finally, adding new hardware or software technologies might be difficult to do to

existing projects. While not visible in the above example, the addition of new storage

technologies such as HGST’s Active Archive System (AAS) (Western Digital Corpora-

tion 2017), DDN’s WOS (DataDirect Networks 2017), or Seagate’s Kinetic Drives creates

complex problems. These storage architectures do not support standard the POSIX file

7

standard (The Open Group 2017) so are not able to be integrated with legacy system and

require custom software for interaction. To support such systems the projects using the

data center’s resources require custom code and detailed knowledge of each storage system

to support. This creates a heavy burden on the project developers to learn and understand

each non-POSIX system.

A common approach to addressing some of these issues is through the use of a meta-

data server such as a database system. A project can store rich metadata information in a

metadata server along with the location of the data store. When a computation needs to be

performed on the data, the metadata server is queried for the location of the file and then

retrieved. This alleviates some of the problems by reducing the number of symbolic links

or bind mounts. However, this does not completely eliminate their need. While custom

applications developed by the project can be programmed with knowledge of the metadata

server, most third party applications would not work out of the box. An example would be

simple data distribution such as via FTP or HTTP.

In addition to not entirely eliminating the symbolic link problems this setup creates a

synchronization problem between the metadata server and the storage architecture. With

large data centers hardware failures are unavoidable. Most data centers will have redun-

dancy and will regularly move files two new drives. Additionally, projects rarely generate

data only once. Mistakes in algorithms or improvements in algorithms usually result in

data being replaced. These constant changes create a synchronization problem when trying

to ensure the information in the metadata server is consistent with the information on the

drives.

Our approach is to develop a new kind of storage architecture tailored for such data

centers. This new storage system will be capable of supporting petabyte and exabyte scale

data sets while allowing for new file system features such as completely separating data

center file allocation from project file organization. Additionally, we ensure that our ap-

proach is lightweight enough to run on commodity hardware without the need of high

amounts of memory or local disk storage. We address the above described shortcomings in

current file systems with LVFS.

We use the MODIS Adaptive Processing System (MODAPS) as a use case for our

approach. MODAPS is part of NASA’s Earth Observing System Data and Information

System (EOSDIS). MODAPS produces approximate 760 gigabytes of data per day ranging

from data directly received from the satellite to gridded data for several instruments in

8

operations since 1999. Since then, MODAPS has produced over 30 petabytes of data in

over 2 billion files. These files are distributed to the public via FTP, HTTP, OPeNDAP, and

other protocols. The distribution of data via FTP accounts for 90 Terabytes per month and

averages approximately 300 users per day with a peak of 600 users per day.

Chapter 2

THESIS STATEMENT

Developed, implemented, and tested a Lightweight Virtual File System (LVFS) and a

framework consisting of a variable set of functional plugins, which enable the capabili-

ties to dynamically rearrange directory tree structures, streaming format conversions, and

merging of incompatible storage architectures to form an integrated system applicable to

current and future storage technologies

LVFS separates standard file system functions, such as data storage, data location, and

data organization into loosely coupled components, which are chained together to create a

dynamic, flexible, platform agnostic, lightweight virtual file system. LVFS is a full featured

self contained file storage system.

LVFS is easy to use, deploy, and is open source.

2.1 Problem Definition

A file system has two major components: storage and metadata. The storage compo-

nent is responsible for determining how to store the data on the physical hardware including

any allocation or necessary redundancy computations to be made. The metadata component

is responsible for storing the organization of the data and any access control information.

The data organization is usually displayed as a directory structure. These components are

usually developed as a software package that is tightly coupled and inaccessible to anybody

except to the file system developers.

The storage component of a file system is responsible for the distribution of the data

9

10

stored in the file system. The storage component needs to tackle several problems including

the distribution of data among storage nodes and the maintenance of high throughput of

data to/from the storage nodes. This component has been a well studied subject and many

algorithms exist to attempt to solve this problem (Honicky & Miller 2004; Shreedhar &

Varghese 1995; Azar et al. 1999). For example, a round robin distribution of data results

in an easy and fast algorithm. However, if storage nodes have varying capacities, this

algorithm will result in the uneven distribution of data across all storage nodes thereby

exhausting the available space on the smaller storage nodes first. Additionally, due to

the predictable nature of the round robin algorithm, patterns can develop in the way data

is distributed which could create bottlenecks. A random distribution of data would help

with the bottleneck issues of the round robin method, however, such an algorithm requires

additional information to maintain the location of data. While the additional information

could be small, when dealing with large number of files, even such small amounts add up

to significant amount of additional information to be maintained and stored.

The metadata component of a file system faces unique challenges in number of op-

erations it can support, the abilities it provides to search and locate data stored in the file

system. Frequently file systems will create a monolithic system which contains both the

data and metadata components. However, such a design can result in the metadata compo-

nent becoming a bottleneck. This is due to every file system operation needing to contact

the metadata component first. To address this possible bottleneck some file systems sepa-

rate the metadata and data components into two tightly coupled independent systems. With

this design after initially contacting the metadata component for the necessary information,

all file operations only need to communicate with the data component. This separations

improves metadata performance as file reads and writes no longer need to access the meta-

data component. Even with such improvements however, the metadata components face

the challenge of providing a fast way for data to be discovered in Big Data systems where

billions of files are stored.

2.2 Contribution

Plugin Framework
LVFS consists of a unique storage framework concept based on variable plugins

which interact with each other through the LVFS core code. With this framework

11

design, each plugin is assigned a single, well defined function. When chained to-

gether by LVFS, these plugins create full featured file system capable of handling

current and future storage architectures.

LVFS’ plugin framework is divided into several categories:

• Cache

• Content

• Database

• Directory

• Filter

Each plugin category defines the tasks. For example, Directory plugins are respon-

sible for generating file or directory listings and provide basic information such as

file type, file size, etc. Content plugins are responsible for retrieving or storing file

content.

We ensure that this plugin framework design can handle any standard file system task

by creating a 1:1 mapping of required POSIX file system functionality to a function

in one of the above plugin categories.

Replacement of File System Metadata Component
LVFS removes the file system metadata component entirely from its software stack.

This unique approach increases scalability, simplifies the code, reduces synchroniza-

tion issues between the file system and the project’s metadata server, and removes

duplication of information. This contribution may be the first such approach to file

system design.

Dynamic Views
LVFS is capable of dynamically reorganizing the directory structure to ensure a con-

venient design for both data center designers and project users. Since LVFS relies on

the rich metadata information provided by the project’s metadata server, it is capable

of dynamically re-arranging the same data into different layouts. This unique fea-

ture of LVFS creates a powerful ability for projects. For example, a remote sensing

project would be capable of making the same file available organized by different

attributes such as measurement time or measurement location.

12

Traditional file systems would accomplish such a task by creating a directory struc-

ture to store files organized by measurement time. To make the same file available

by measurement location using a traditional file system, the project could create an-

other directory structure for location based searches and then provide symbolic links

to the same files in the directory structured by measurement time. While possible for

small projects such a solution would not be scalable. For example, our case study,

MODAPS, which maintains 2.5 billion files would require to maintain an additional

2.5 billion symbolic links to maintain a directory structure for searching by each new

attribute.

With LVFS no symbolic links are necessary. The addition of a few lines in the LVFS

configuration file for each new directory structure would allow LVFS to dynamically

create each new structure on demand.

Flexible file content
Metadata is not the only aspect of LVFS that is controlled via plugins. File content

in LVFS is another. This unique way of managing file content gives LVFS the level

of flexibility to deal with any kind of hardware or software architecture. Over the

decades as storage architecture changes, a data center can continue to support the old

architecture and the new one simply by loading appropriate plugins into LVFS for

both architectures. Examples of plugins already provided by LVFS include plugins

which retrieve file content from standard block based disks, to plugins for object

based storage, and from database systems such as PostgreSQL (The PostgreSQL

Global Development Group 2017).

LVFS takes this concept one step further by allowing concatenation of content for

varying sources. With a configuration setting in LVFS, it can be configured to ob-

tain the file content via multiple sources. While the use cases for such a feature are

numerous, a common one could be for space saving purposes. A data center provid-

ing billions of files all with a common header could save significant storage space

by only having the common header stored in a single location. With the appropriate

configuration, LVFS can append this common header to all other files provided by

LVFS. This creates the illusion that all files contain this header.

Redundant file content

13

Similar to the flexible file content, LVFS is capable of utilizing redundant file content.

With this feature alternate locations can be specified in case the primary location is

unavailable. While such a feature is available in many other file system architectures,

LVFS provides a unique twist to this feature. LVFS is capable of using different stor-

age architectures for the redundant location. For example, with LVFS, the primary

location of a file could be on a standard block based disk while a secondary instance

of the file is located on an object based storage system like the Seagate Kinetic drive.

LVFS will provide the file to users from either location.

Streaming content verification
When dealing with petabytes of data in billions of files most files being accessed

will be retrieved from remote sources. This means that usually some sort of IP pro-

tocol will be employed, such as TCP or UDP. As discussed in (Stone & Partridge

2000) somewhere between 1 in 16 million to 1 in 10 billion packet checksums fail

to detect data corruption. Assuming the best case scenario of 1 in 10 billion failure

and assuming all TCP packets are sent using the theoretical maximum of 64 Kilo-

bytes this means there will be an undiscovered file corruption every 640 Terabytes.

For example, the MODAPS system distributes 1.3 Petabytes of data between storage

and compute nodes every month. This means that every month at least 2 files have

corruption which go undetected.

To combat this problem, LVFS incorporates what we call streaming content verifi-

cation, when files are stored in LVFS, an checksum is computed for each file. This

checksum is stored along with the file and is used for verification to ensure no cor-

ruption has happened during transmission or while the file was at rest on the storage

node.

On-Drive MapReduce computation
The flexibility of LVFS extends to supporting computations on-drive. LVFS can be

configured with a plugin which supports the MapReduce programming model (Dean

& Ghemawat 2004; Zhao & Pjesivac-Grbovic 2009). With this plugin and the nec-

essary hardware, such as Seagate’s Active Drives, LVFS is capable or performing

on-drive computation. This significantly reduces the amount of data that leaves the

drives. Using this plugin, users are capable of submitting a Map function to be reg-

istered with each supported drive. An accompanying Reduce application is made

14

available on the local computer. The Reduce application executes on the host com-

puter with a list of files. Those files are passed to LVFS which determines the Active

drives on which they reside. The Map function is executed on those drives and the

results from the Map function are returned to the Reduce application for final pro-

cessing.

Streaming Format Conversions
Another unique contribution of LVFS is streaming file format conversions. This

feature addresses a common problem of long running projects. During the initial

inception of the project decisions are made to store data in a file format suitable at

the time. For long running projects, the file format choice made decades ago are

likely no longer good choices now. A project will have several hard choices to make

in terms of changing file formats:

1. Continue with old file format

2. Update file format for newly generated files only

3. Update file format for new files and convert old files

All options have undesirable consequences. Option 1 could result in the commu-

nity not using the project’s data anymore. As file formats change, tools capable of

handling old file formats become harder to find and users might abandon using the

datasets. Option 2 would create difficulties when comparing long term records due

to format changes. Option 3 would create difficulties for the data center since they

would require additional processing power to convert old formats to new ones and

extra storage to temporarily store both formats while transitioning. Option 3 would

also have scalability issues due to the increasing storage and processing requirements

as projects run for longer times.

LVFS provides the unique ability to perform on the fly data conversions. The plu-

gin architecture of LVFS allows a data center or project to specify a plugin which

performs the format conversion. To the end users it appears as if the same dataset is

available in multiple formats but in reality, LVFS will convert from one format to an-

other as files are accessed. This feature allows a project or data center to maintain the

old file formats while using a plugin to convert them to the latest file format. No ad-

15

ditional disk space is required and the only CPU power needed is for the on-demand

conversion.

Hybrid Decentralization
Since LVFS does not have an internal metadata component, it can’t make any as-

sumption about the stability of the project’s metadata server. LVFS is built with the

assumption that the project metadata server can be unavailable for prolonged periods.

In addition to being built with extensive error checking to ensure proper functionality

under many different error conditions, LVFS is capable of continuing execution with-

out the availability of a metadata server. LVFS is capable of running in decentralized

mode as both a primary or backup mode of operation.

Decentralized mode in LVFS has several advantages and some disadvantages. The

primary advantage is the removal of the only single point of failure in LVFS, the

project’s metadata server. In addition to being the single point of failure, the meta-

data server is frequently also the bottleneck in many file systems. LVFS generates

directory structure from information retrieved via the project’s metadata server. An

outage of that server will result in LVFS not displaying a directory structure. How-

ever, under certain configuration choices, LVFS will be able to continue functioning

even without a directory structure. For most data centers and projects the directory

layout and file naming conventions are known very well internally. If a user knows

which file they wish to access they will know the path under which the file is avail-

able and what the naming convention should be. Providing the full path to the file,

LVFS will be able to return the file without having access to the metadata server.

Lightweight
LVFS is built on top of existing and stable software stack. As a result, LVFS’ code

base is small and concise. It is written mostly in C++ with a little bit of C and python

code where necessary. LVFS is able to run on computers as powerful as the latest

models with hundreds of gigabytes of memory and terabytes of local disk storage to

computers with only a few hundred megabytes of memory and nearly no disk space

availability.

LVFS plugin architecture helps with the lightweight design by allowing new fea-

tures to be added into LVFS with minimal amount of code. A typical LVFS plugin

16

performs a single task and is combined with other plugins to create the whole file

system experience. Each plugin, therefore, is lightweight consisting, on average, of

only 130 lines of C++ code. Even though LVFS is both multi-threaded and event

based most plugins are sufficiently protected such that they do not have to manage

any concurrency problems that arise from being multi-threaded.

Benchmarking
LVFS provides extensive benchmarking support for Ganglia (Massie, Chun, & Culler

2004) and collectd (Forster 2017). Once again, the plugin nature of LVFS allows it

to be expanded to other benchmarking tools. Not only is the core LVFS code capable

of providing benchmark statistics so are any plugins either as part of LVFS or third

party provided ones. With this design data centers and projects can easily monitor

the performance of LVFS and identify any bottlenecks for either code improvements

in LVFS or configuration changes at the data center. While LVFS only provides the

raw benchmarking numbers, the plugins will feed those numbers to systems which

provide easy to view graphs. Ganglia has built in visualization while colletd users

will likely use systems such as Grafana (Grafana Labs 2017).

The core LVFS code provides statistics such as how many POSIX requests it has han-

dled at any given time. This is convenient for calculating how many I/O operations

per second LVFS is capable of performing. Each plugin can provide any arbitrary

amount of benchmarking statistics. For example, a metadata plugin, which might

use PostgreSQL (The PostgreSQL Global Development Group 2017), could provide

information on how many database connections it keeps open, how much memory

it uses, and how many database queries it performs. This information will help the

project and the data center determine if their database schema or the queries they use

to provide LVFS with the necessary metadata information needs improving.

Configuration
Unlike standard file systems, LVFS behavior and directory structure is controlled via

a human readable and modifiable configuration file. This configuration file performs

similar functionality to other file system’s superblock and inode structure. With most

file systems the superblock and inode structure is controlled via file system utili-

ties. Some changes, especially to the superblock, sometimes can only be performed

destructively by reformatting a drive.

17

LVFS, on the other hand, encourages the file system and directory tree structure to

be changed dynamically. With this design LVFS can be reconfigured dynamically

without the need to migrate data to make changes to the file system. It also creates

a storage system designed to adjust to meet the user’s needs rather than forcing the

user to adjust to the storage system.

LVFS Community
While a lot of functionality is provided by LVFS directly it is nearly impossible to

provide plugins for every foreseeable technology. The plugin capability of LVFS

allows it to create a community of developers which can contribute new plugins to

LVFS and extend it to new technologies existing now and in the future. The goal of

LVFS is create a community repository of plugins which users can use to obtain new

plugins or add their own plugins to share with the rest of the community.

Chapter 3

RELATED WORK

Implementing file systems for large scale use in data centers poses challenges includ-

ing those of reliability, availability, expandability, speed, and organization. File systems

commonly only address a subset of these challenges. Throughput is a common problem

solved by most file system. The solutions to the problems of reliability and availability tend

to have common roots and are frequently addressed together. The problems of expandabil-

ity and data organization are rarely addressed in file system development. Expandability

problems are those dealing with the long term storage issues such as the changing file

formats or introduction of new storage technologies we discussed in section 2.2. Data

organizations are the issues we discussed in the same section pertaining to the differing

requirements for directory layout for the same dataset. In this section we look at how

different file systems attempt to solve some of these issues.

3.1 Hadoop Distributed File System

The Hadoop Distributed File System’s (HDFS) (Borthakur 2008) was developed by

the Apache group to primarily to be used with Apache Hadoop (White 2009). HDFS makes

several assumptions including:

• Hardware failures are the norm

• Stored datasets are gigabyte or terabyte sized

• It is cheaper to move computation to data

HDFS is designed as a block based file system. Files stored in HDFS are split into

fixed sized blocks and stored on storage nodes, called DataNodes. The metadata server,

18

19

called the NameNode, is responsible for managing the mapping of files to data blocks. To

access a file, a client first contacts the NameNode to determine which DataNodes store the

blocks for the desired file. Once a list has been compiled, the client contacts DataNodes

directly for access to the blocks. Each file is assigned a replication factor which determines

how many copies of the file are stored on the DataNodes. The direct communication of

clients to DataNodes allows for high throughput and the data replication insulates HDFS

against node failures. However, the use of a central authority for mapping files to blocks

creates a bottleneck and single point of failure among other scalability problems (Shvachko

2010).

Compared to HDFS, LVFS makes several different choices. A primary difference

between LVFS and HDFS is that LVFS removes the assumption that the system will store

few large files. Therefore, LVFS does not take a block based approach to storage. With

LVFS, files are stored in their entirety as a single object similar to other object based storage

systems. Additionally, LVFS does not have its own internal metadata server. Instead, LVFS

relies on a project’s specific metadata server to obtain its information for directory listing

and, optionally, for file location. The advantage to this design is that, unlike HDFS, LVFS is

capable of not having a central point of failure and bottleneck similar to HDFS’ NameNode.

3.2 Lustre

The Lustre file system (Schwan 2003) consists of three major components: the Meta-

data Server (MDS), the Object Storage Server (OSS), and the clients. The MDS consists

of one or more Metadata Targets (MDT). Each MDT stores metadata information such as

directory structure, file name, permissions, etc. The OSS consists of one or more Object

Storage Targets (OST). Each OST represents a physical disc used for storage. Similar to

HDFS, once files are located in the MDS, all file I/O operations do not involve the MDS.

While Lustre addresses the scalability problems of the MDS by distributing the con-

tents among multiple MDTs, Lustre still requires a strictly controlled metadata server. The

information stored in the MDS is pre-defined by Lustre. Due to this tight control, Lus-

tre only follows the standard static directory layout like most other POSIX compliant file

systems. LVFS, however, does not rely on an internal metadata server. With information

provided in the LVFS configuration, it is capable of creating dynamic views of the same

data sets without the need of any duplication or unnecessary information. To achieve a sim-

20

ilar kind of functionality in Lustre, symbolic links will have to be added creating additional

data which needs to be stored and managed.

3.3 Parallel Virtual File System

Just like the file systems described above, the Parallel Virtual File System (PVFS)

(Ross & Thakur 2000) consists of several components including a metadata component

and an I/O component. Similarly, PVFS avoids the use of the metadata component dur-

ing the I/O stage to avoid performance problems. PVFS primarily attempts to deal with

the scalability problem of I/O throughput but does not deal with the scalability issues of

managing large number of files with a few small exceptions (Vilayannur et al. 2002).

Similar to the file systems above, PVFS has an internal metadata server that is tightly

controlled by the file system. As a result, only information allowed by PVFS is stored in

the metadata server. As mentioned above, this design results in the drawback that symbolic

links have to be used to create multiple views of the same data set which LVFS addresses

by removing the metadata server and relying on the project metadata server.

3.4 High Performance Storage System

The High Performance Storage System (HPSS) was developed by IBM (Watson &

Coyne 1995) for mainly dealing with parallel I/O operations. HPSS relies on the Dis-

tributed Computing Environment (Group 2014) to achieve parallelism. Unlike storage sys-

tems mentioned above, HPSS relies on a DB2 (Karlsson et al. 2001) database for metadata

storage. This design is similar to LVFS’ design. However, unlike LVFS the schema used by

HPSS in the database is controlled by the file system. This means that metadata informa-

tion stored in the database is duplicated between the file system metadata and the project’s

metadata systems creating a synchronization problem. Additionally, even though the file

system relies on a database for metadata information, it is not capable of providing dynamic

views by retrieving the information from the database differently. This results in the use of

symbolic links for the simulation of the dynamic views feature provided by LVFS. Similar

to the file systems above, HPSS does not have the flexibility provided by LVFS with its

plugin architecture.

21

3.5 SMART-IO

Unlike the above mentioned file systems, the SMART-IO file system (Tian et al. 2012)

attempts to specialize for scientific datasets only. SMART-IO uses dynamic organization

of multidimensional datasets to speed up read throughput. Like most other file systems

described above, SMART-IO’s goal is improved I/O throughput. Problems related to data

discovery when dealing with large scale file systems are not addressed by SMART-IO.

3.6 Amazon S3

Amazon’s Simple Storage System (S3) (Amazon Web Services, Inc. 2013) is ad-

vertised as a decentralized storage system. S3 is an implementation of an Object-Based

storage system (Mesnier, Ganger, & Riedel 2003). While it is fully decentralized, and

therefore does not suffer from any single point of failure, it is limited to a very strict flat

structure. All S3 based objects are stored organized by a unique user assigned key. While

this design allows for fast access to existing file it makes data discovery nearly impossible.

Additionally, S3 is not POSIX compliant so any tools not specifically programmed for S3

are not capable of accessing data stored there without the use of third party software to act

as a translation layer for the POSIX API to the S3 API.

3.7 Cassandra

Apache’s Cassandra (Lakshman & Malik 2010) is another fully decentralized storage

system. It is based on Amazon’s Dynamo (DeCandia et al. 2007) storage system concept.

Cassandra is usually considered a database rather than a file system while Dynamo is usu-

ally considered a key-value storage system. As a result these implementations are usually

geared towards replacing database systems with little support for use as a file system.

3.8 Spyglass

Spyglass (Leung et al. 2009) attempts to exclusively improve the problem of data

discovery for large scale file systems. Spyglass’ approach is based on adding additional

indexes on top of a file system. This extra index allows for faster querying of the existing

metadata. Spyglass attempts to speed up queries such as finding all files with access time

22

larger than a value and a file size greater than some other value. Spyglass, however, only

utilizes the existing metadata of a file system. Using only the existing metadata of the

file system limits queries to only those based on the limited metadata server provided by

the file system. Additionally, since Spyglass still requires the file system’s metadata, an

installation utilizing Spyglass will still suffer from synchronization problems resulting from

duplicating metadata between the file system’s metadata server and the project’s metadata

server.

3.9 Pantheon

Pantheon (Naps, Mokbel, & Du 2011) is a research project attempting to solve some

of the same problems as LVFS using a different approach. Pantheon’s approach is to adapt

database concepts, such as query optimizations and B+ Trees, to create an additional layer

on top of an existing file system directory structure. This extra layer can then be queried to

search for files of interest. This approach is limited in that it can only rely on information

stored in the file system. The very rich metadata information stored in the project’s meta-

data server is never used. By relying on the rich metadata information from the project’s

metadata server and by relying on the projects database server storing the metadata, LVFS

utilizes the same advantages as Pantheon but also has access to all the rich metadata infor-

mation unavailable to Pantheon. In addition to the metadata access, LVFS having the ability

to load custom plugins for most aspects of a file system creates flexibility not provided by

Pantheon or other file systems described above

3.10 iRods

iRODS (Rajasekar et al. 2010) is another file system mainly concentrating on the

challenges of data discovery in large scale file system. iRODS addresses these problems

by utilizing a database server for metadata storage. Similar to LVFS, the file system layout

is generated by querying the iRODS database. Unlike LVFS, however, the database and

schema used for storing the metadata comprising the file system is dictated by iRODS.

This means that project specific information can not be stored in iRODS which results in

having to maintain a separate database for iRODS and one for the project resulting in the

synchronization issues described earlier. iRODS also does not have the plugin capabilities

23

of LVFS so it is not capable of being expanded as hardware and software technologies

change.

3.11 Recon

Similar to LVFS, the Recon system (Fryer et al. 2012) is an attempt at addressing

some of the problems in the metadata component of storage systems. Specifically, Recon

addresses the corruptions that can happen in the storage system’s metadata component.

Fryer et al. claim the increasing complexity of the metadata component is one of the

causes of corruption. To address this, Recon uses additional information, called consistency

invariants, that are checked at file system commit time to reduce the likelihood of errors.

They provide a proof of concept implementation for the ext3 linux file system. While both

Recon and LVFS focus on the metadata of a storage system, the LVFS approach is to reduce

the complexity of the metadata component and, therefore, reduce the chance of metadata

corruption.

3.12 SmartStore

SmartStore (Hua et al. 2009) attempts to deal with the unique big data challenges

of data discovery by restructuring the internal metadata system of the file system. With

SmartStore files are grouped and stored according to their metadata rather than the direc-

tory layout. Files are organized in a decentralized semantic fashion allowing for semantic

analysis tools, such as Latent Semantic Indexing (LSI) (Papadimitriou et al. 2000). By

combining physical data distribution with the logical semantic correlation SmartStore is

scalable to exabyte systems. SmartStore relies on it’s own internal methods for metadata

distribution and, therefore, suffers from the same synchronization and metadata duplica-

tion problems as other systems described in this section as well as lacking the flexibility

provided by LVFS’ plugin architecture.

3.13 On-Drive Chromosomal Microarray Analysis

In bioinformatics similar technologies have been used by biostatisticians to perform

Chromosomal Microarray Analysis (Delmerico et al. 2009) for cancer research. While

technically not a file system, this experiment was to evaluate the viability of extracting

24

Figure 3.1: An SPU consisting of a Disk, FPGA, and general purpose processor (Delmerico
et al. 2009)

highly correlated values from a dataset consisting of hundreds of gigabytes or more of

double precision matrices. This experiment is similar to the LVFS contribution of per-

forming on-drive computation. In this experiment the authors performed the correla-

tion analysis using an active drive architecture (Acharya, Uysal, & Saltz 1998; Riedel,

Gibson, & Faloutsos 1998; Keeton, Patterson, & Hellerstein 1998; Riedel et al. 2001;

Riedel 1999). The active drive architecture developed consisted of a Snippet Processing

Unit (SPU). Figure 3.1 shows the components of an SPU; a Disk, an FPGA, and a gen-

eral purpose processor. The SPU cluster was developed as a database cluster in which the

FPGAs where custom programmed to perform preliminary computations in order to re-

duce the data leaving a disk to the computer. The conclusions of the study were that both

Hadoop and Active Drive systems scaled well for increasing data sizes. The disadvantage

of Hadoop clusters was that they required a dedicated system for the distributed file system

which could not easily be used for any other task involved in a datacenter.

LVFS on-drive computation method is similar to this study. The main differences

are that their methodology required custom programmed FPGAs to perform computation

whereas LVFS is capable of performing general purpose computation. LVFS also utilized

a commonly used distributed computing programming model, MapReduce.

3.14 Dynamic Non-Hierarchical File Systems for Exascale Storage

In this report, the authors propose to abandon the POSIX directory hierarchy in favor

of a Non-Hierarchical file system (Long & Miller 2015). The authors state that because the

POSIX method of managing and naming files was developed 40 years ago, many modern

systems have to augment the file system design with external layers, such as databases or

”semantic extensions on top of existing file systems”.

25

The authors propose to develop a abandon current file system structures and develop a

radically different structure which incorporates provenance and rich semantic metadata in

addition to storing file content. The proposed file system would primarily rely on searching

methods to locate files rather than traditional hierarchical directory tree. The authors argue

that this way users would be able to find the data of interest in a more efficient way by

searching for both content of files as well as the history of the files. The authors propose

to completely eliminate the hierarchical tree structure of a file system and replace it with

a search interface. To achieve this they argue they need both accurate indexing as well

as scalable indexing. Additionally, the authors propose to develop a metadata clustering

concept to manage the metadata on a disk. They propose to store metadata information

close to the data to leverage faster sequential read performance from disks instead of the

random access currently required to access metadata for a file.

Chapter 4

THE LIGHTWEIGHT VIRTUAL FILE SYSTEM
APPROACH

At it’s core the Lightweight Virtual File System (LVFS) consists of a combination of

different plugins which, when chained together, provide the POSIX file system interface.

The LVFS core code is responsible for loading the desired plugins and directing POSIX

requests to the appropriate chain of plugins for execution. To achieve quick development

and greater flexibility than most other file systems, LVFS is developed on top of Filesystem

in Userspace (FUSE) (libfuse 2014).

Figure 4.1 shows the traditional Linux Virtual File System (VFS) software stack. With

the standard VFS software stack file systems are developed as kernel modules and loaded

into the kernel at boot time. Communication between user applications and the file system

is accomplished by having an application perform POSIX file system calls via the GNU

C-Library (glibc) which passes the requests to the kernel and then to the file system kernel

module via the VFS. Figure 4.2 shows the FUSE software stack. FUSE implements a

kernel module similar to other file systems. However, unlike other file systems, the FUSE

kernel module redirects requests from the kernel back to a user program. This program

is responsible for responding to the original file system requests. With standard linux file

system modules a user application communicates with a kernel module. With FUSE a user

application communicates with another user application.

The usage of FUSE in LVFS adds another layer of indirection which results in ad-

ditional overhead. The design decision to use LVFS included the acceptance of this per-

formance penalty. The goal of LVFS is to have fast aggregate bandwidth. Performance

results shown in later sections show that this performance result are not significant for read

operations. The benefits of having a flexible and easily upgraded file system as a result of

26

27

Figure 4.1: The Linux Virtual File System (VFS) layer used to access different underlying
storage systems (Jones 2009)

FUSE outweigh the performance penalties incurred by its usage. However, the design of

LVFS is not reliant on FUSE. LVFS can be modified to be a standard file system module

inside the linux kernel.

The following sections we discuss various aspects of LVFS. In section 4.1 we give

a brief overview of the LVFS architecture. Next in section 4.2 we discuss the various

plugin categories along with existing plugins. Finally, in section 4.3 we discuss how LVFS

configuration is used to achieve a flexible file system with all the features described in

section 2.2.

4.1 LVFS Overview

As explained in section 4, LVFS is currently implemented as user space application

utilizing FUSE to communicate with the Linux Kernel’s VFS. Figure 4.3 shows the soft-

ware stack in relation to FUSE and the different categories of plugins that LVFS manages.

POSIX file system calls are transferred from a user space program to the VFS and via FUSE

to the LVFS user space program. LVFS receives these POSIX calls and depending on the

action identified in the calls passes the requests to one or more plugins as configured in the

LVFS configuration file. The responses from the LVFS plugins are returned back to FUSE

28

Figure 4.2: The Filesystem in Userspace (FUSE) software stack used by LVFS (Wikipedia
2017)

which returns them to the original calling program. The plugins, which we will discuss in

detail in section 4.2, fall into six categories:

• Logging

• Database

• Cache

• Content

• Background

• Directory

In addition to the plugin architecture of LVFS which allows functionality to be ex-

panded, LVFS also has a few internal capabilities available to all plugins. These capabilities

include the ability to evaluate strings dynamically using the Lua programming language

(Ierusalimschy, De Figueiredo, & Celes Filho 1996), the ability to evaluate conditional

true/false statements. We will discuss these features along with the configuration capabili-

ties of LVFS in section 4.3.

29

Figure 4.3: The LVFS software stack and plugin categories

30

To improve performance LVFS is implemented to be both multi-threaded and event

based. By default FUSE uses multiple threads to process requests. Each POSIX request

is handled by a different thread, up to a maximum number of threads. FUSE can be con-

figured to run single threaded but because performance suffers, multi-threading is enabled

by default. In addition to the FUSE threads, LVFS handles many threads internally to im-

prove performance further. Generally these threads perform tasks which are usually slow,

such as communicating with a metadata server. LVFS uses a thread pool worker model for

threading. The pool of workers is dynamically grown and shrunk based on demand with

configurable minimums and maximums.

Certain aspects of LVFS use event based programming model to improve efficiency

(Dabek et al. 2002). An example of when LVFS uses event based programming is when

retrieving data from a remote location using the HTTP protocol. Using event based pro-

gramming LVFS is capable to handle multiple downloads in a single thread and use con-

nection pooling when possible to reduce the number of network sockets it uses as well as

avoid the amount of time it would take to establish a new network connection.

Figure 4.4 shows a more detailed view of the LVFS stack. The core LVFS code in-

terprets POSIX requests and processes them based on the requests. If the results necessary

to answer the request are available in short term or long term caches, LVFS will use those

results. Otherwise the requests are sent to the appropriate plugin which populate the cache.

The results are then sent from the cache to the FUSE library. Logging modules are used by

all other modules for logging information. Similarly, background modules have access to

all other modules to retrieve any desired information.

4.2 LVFS Plugins

As mentioned in section 4.1, LVFS has 6 categories plugins can belong to. In this

section we will discuss the purpose of each of the plugin categories and give examples of

plugins which are already implemented. Since plugins are dynamically loaded at startup

based on information from the LVFS configuration, the goal of LVFS is to encourage third

parties to develop their own plugins which address their specific needs or the needs of the

community in general.

31

LVFS Core

Short Term Cache Long Term Cache

FilterFilter

ContentDirectory

Logging Background

Database

Figure 4.4: LVFS Software Stack

4.2.1 Logging

As the name suggests, logging plugins are responsible for writing log information.

Most other file systems are very quiet regarding their internal functionality. LVFS on the

other hand can be extremely verbose. Both the LVFS core code and any LVFS plugins

with the exception of logging plugins can use the log API to report messages to be logged.

Different plugins determine where the information is logged. By default LVFS has been

developed with three types of logging plugins. The stdout plugin logs information to the

standard output of the terminal. The file plugin logs the output to a file. Finally, the syslog

plugin sends the log stream to the system logger.

Log modules can be configured with three different log levels ranging from debug

statements to critical errors. Additionally, another unique aspect to LVFS is the flexibility

of logging. LVFS is capable of logging to multiple sources at different log levels.

32

4.2.2 Database

Database plugins allow LVFS to establish connection with different metadata sources.

By default LVFS comes with plugins to support PostgreSQL, SQLite (Owens & Allen

2010), and CURL. Plugins in this category are used as data sources for other plugins. They

abstract the details of the communication between metadata sources and other LVFS plu-

gins. These plugins ensure LVFS can use any future metadata sources such as NoSQL

(Leavitt 2010) databases like redis (Labs 2017), MongoDB (Inc. 2017), etc. (Han et al.

2011). Plugins such as those responsible for generating directory layouts or those responsi-

ble for determining file content can use these plugins to retrieve the necessary information

for their output.

4.2.3 Cache

Cache plugins are a very important part of LVFS. POSIX file systems assume gener-

ating directory structures are a fast task. However, since LVFS does not maintain its own

internal metadata structure, it can’t guarantee the speed at which metadata is retrieved. To

ensure a fast response time, LVFS utilizes cache modules to temporarily store results re-

trieved from other sources. Cache modules are the most complex plugins in LVFS since

they need to execute as fast as possible. LVFS supports two types of cache categories and

all plugins can be assigned to either category as desired by the data center or the project.

Long term cache is used to cache the contents of files for quicker local access. Short term

cache is used by LVFS to cache retrieved metadata information. Typically files will be sig-

nificantly larger than metadata information so most of the time a disk based cache plugin

will be used for long term cache while a memory based cache will be used for short term

to improve performance.

4.2.4 Directory

Directory plugins are responsible for generating file and directory listings. Directory

plugins utilize database plugins to retrieve information for this task. These plugins utilize

an API that is a simplified version of the POSIX file system calls. LVFS comes with plugins

for generating file and directory structures based on SQL queries, HTTP or FTP listings,

Object based APIs such as S3, and any future plugins developed for such tasks.

33

4.2.5 Content

Content plugins retrieve data from storage nodes when files are accessed for reading

or writing. By using a plugin system for file content, LVFS is capable of storing and

retrieving files from a wide variety of storage systems and future systems. LVFS comes

with plugins capable of retrieving file content from block based disks, object based drives

such as Amazon S3, DDN WOS, or HGST AAS. LVFS also has plugins for generating file

content from more unusual sources such as from a database.

4.2.6 Background

Background plugins are generic plugins that fit in none of the other categories. LVFS

does not directly interact with these plugins beyond loading them and initializing them to

execute in the background. These plugins can perform any task that is not directly related

to handling POSIX requests. An example plugin is the GMetric plugin which collects

statistics information from all other LVFS plugins and the core LVFS code and sends the

collected statistics to a Ganglia system for graphing. This allows LVFS to be monitored by

an operator.

4.2.7 Filter

Filter plugins are used to for features such as streaming format conversions. These

plugins intercept the output produced from Directory, Content, or other filter plugins and

alter their responses. An example plugin is a plugin capable of converting HDF (Folk et

al. 2011) to GeoTIFF (Ritter et al. 2000). The plugin intercepts the response from the

Directory module which created the file listing containing the original HDF files adding

the GeoTIFF files to the listing. When GeoTIFF files are opened for reading the module

intercepts the read calls and performs a read of the original HDF file and converts the data

GeoTIFF passing the GeoTIFF data to the user.

4.3 LVFS Configuration

The flexibility of LVFS not only stems from the use of the above described plugins

but also from the configuration file which directs LVFS on how to chain the various plugins

together to create the desired directory layout. In most linux file systems most of the

34

information provided here is stored in inodes and superblocks (Jones 2009). Because LVFS

stores the information in a human readable format it gives the data center and the project a

great amount of flexibility on how they structure files and directories and how they retrieve

the files for those files. LVFS configuration is stored in YAML format (Ben-Kiki, Evans,

& Ingerson 2005).

On startup, LVFS loads the YAML configuration file. This configuration file lists all

plugins which should be loaded into memory and how each module should be configured.

The LVFS configuration file, as shown in listing 4.1, is divided into two sections. The first

section, called the Modules section, is the LVFS equivalent of a standard block based file

system’s superblock. The second section, called the root section, has similarities to the

inode structure.

The Modules section tells LVFS, as the name describes, what modules to load, what

to call them, and what global options should be passed to the modules. For example, line 2

in listing 4.1 tells LVFS to load a plugin named Syslog and assign an alias name of default.

The plugin is loaded with the log level of info. In the root section, line 17 tells LVFS where

to mount the file system. Lines 18 and 19 tell LVFS which modules to use for long term

and short term caching. The names used are the names of plugins loaded on line 6 and 7.

Because LVFS configurations can get quite large, LVFS utilizes the YAML tag feature to

add the ability split the configuration file into multiple files. Line 20 shows this ability by

including the remainder of the LVFS configuration in a separate file, root.yaml.

Listing 4.1 only shows how modules are loaded. Listing 4.2 shows a sample config-

uration which creates a static file and a directory. The file as described on lines 1–6 is

named README and the content is the string provided on lines 5 and 6. Lines 7–9 define

a directory named myDir. Inside this directory, when a listing is requested via a POSIX

call, LVFS will query the database using the query provided on line 12. We will discuss

the details of this and other queries in chapter 5.

35

1 modules:
2 - { name: Syslog, alias: default, level: info }
3 - { name: CURLConnectionPool, alias: curlPool }
4 - { name: PostgresDB, connectString: service = laads-lvfs }
5 - { name: SQLiteDB }
6 - { name: MemorySwap, cacheTime: 600 }
7 - { name: DiskSwap, path: /MODcache }
8 - { name: S3Access, accessKey: modis, accessID: modis }
9 - { name: SQLContent }

10 - { name: GMetric, reportInterval: 5 }
11 - { name: Dir }
12 - { name: File }
13 - { name: SQLFile, database: PostgresDB }
14 - { name: SQLDir, database: PostgresDB }
15 - { name: JPGFilter }
16 root:
17 mountPoint: /mnt
18 longTerm: DiskSwap
19 shortTerm: MemorySwap
20 children: !lvfs:include root.yaml

Listing 4.1: Sample LVFS Configuration file

1 - type: File
2 name: README
3 locator:
4 string: >
5 Congratulations! Your LVFS setup works.
6 To configure LVFS please take a look at /etc/lvfs/lvfs.conf
7 - type: Dir
8 name: myDir
9 children:

10 - type: SQLFile
11 query:
12 statement: select name, size, time from file where dir = $1
13 bindings: ["${-1}"]

Listing 4.2: LVFS Configuration defining a simple directory and file

Chapter 5

THE LIGHTWEIGHT VIRTUAL FILE SYSTEM
IMPLEMENTATION

The LVFS implementation is mainly C++ with some C code where necessary and

some python utilities for maintenance. The code is split into two components; (1) the core

LVFS code and (2) the plugin API. The core LVFS code interprets the POSIX requests

and calls various plugins to collect the necessary information as a response to the original

POSIX request. The core code is written using C++ object-oriented approach and uses

C++11 standards including threading, regular expressions, exception handling, move se-

mantics, and data structures. The plugin API is provided as a mostly C++ class API. Some

functionality lacking in C++ is implemented as C calls. The LVFS core code provides base

classes for all the different categories of plugins. LVFS plugins extend these base classes

and implement the necessary functions to perform their tasks.

5.1 LVFS Core

The LVFS core implements the low level callbacks used by the FUSE library to exe-

cute POSIX file system requests. LVFS core code is mainly responsible for parsing these

requests and calling necessary plugin functions for the information necessary to honor the

requests. Additionally, the core LVFS code provides some commonly used functionality as

both a convenience to plugin developers as well as a common communication API between

plugins and LVFS. The components in the LVFS core are Plugin Management, Access Con-

trol Lists (ACL), Backtracing, Content Management, File/Directory Management, String

Management, Condition Evaluation, and Configuration Parsing.

36

37

Category Type
Log Global

Background Global
Cache Global

Content Global
Database Global
Directory Instance

Filter Instance

Table 5.1: List of LVFS plugin categories and their instance types

5.1.1 Plugin Management

One of the core aspects of LVFS is the management of plugins. LVFS utilizes two

types of plugins; global and instance. As the names suggest, global plugins are plugins

which exist globally. LVFS will only initialize a single global instance of these plugin

types. Instance plugins, on the other hand, do not exist globally but have multiple instances

initialized based on the LVFS configuration. The plugin type is determined by the plugin

category. Table 5.1 shows a list of plugin categories and their instance types.

Global plugins are configured once globally and used throughout the LVFS code. The

core LVFS code or plugins can request access to any global plugin. Global plugins are

configured during the module section as described in section 4.3. Instance plugins are

loaded into memory by the module manager at startup similar to global plugins. However,

unlike global plugins, these plugins are not initialized until the root section. In the root

section, instance plugins are provided with additional options which can be additions to

or replacements of global options. A new instance of the plugin is initialized each time a

plugin is mentioned in the root section.

When the plugin manager parses the module section, it will use the name attribute to

locate the plugin file in the directory configured into LVFS at compile time. Additionally,

a plugin can be referenced in other sections by using the same name attribute. The plugin

manager allows for loading of the same plugin multiple times with different options. The

alias attribute can be used to differentiate between plugins with the same name. Listing

5.1 shows an example where the same plugin is loaded twice. The plugin manager will

locate the PostgresDB.so file in the LVFS directory specified at compile time. Each time

38

1 modules:
2 - { name: PostgresDB, alias: db1, host: projDB1 }
3 - { name: PostgresDB, alias: db2, host: projDB2 }
4
5 - { name: SQLFile, database: db1 }
6 root:
7 children:
8 - type: SQLFile
9 query: select name, size, time from file

10 - type: SQLFile
11 database: db2
12 query: select name, size, time from file

Listing 5.1: LVFS configuration loading same plugin twice

the plugin is loaded the remaining attributes are provided as arguments to the plugin. In

this case the plugin is loaded twice. The 1st instance is configured to connect to the host

projDB1 and the 2nd instance is configured with host projDB2. In order to differentiate the

two instances, the alias attribute provides an different name for each. In the root section

we can see an example of how the two instances could be used. We have initialized two

modules to populate the top level directory with files retrieved from two different databases

which happen to have the same schema.

Continuing with the example in listing 5.1, the plugin manager will load a Directory

plugin called SQLFile. Table 5.1 tells us that Directory plugins are instance plugins. This

means that at startup the plugin manager will load the plugin into memory and remember

the global options specified. However, the plugin manager will not initialize the plugin.

When parsing the root section. The Directory Manager, described in more detail in section

5.1.4, will request an instance of this plugin to be initialized. In this case, the directory

manager will request an instance of the SQLFile plugin to be instantiated. In the 1st in-

stance, the global configuration is used and an SQL query is added to the configuration.

For the 2nd instance, the same query is also added to the configuration. The database at-

tribute, however, is overridden from the global one. This way the same plugin can be used

to connect to two different databases for creating a single directory listing.

39

1 - type: File
2 name: myFile
3 acls:
4 - user::rx
5 - group::r
6 - user:user1:rx
7 - group:group1:rx
8 - user:user2:rwx

Listing 5.2: Sample LVFS ACL

5.1.2 Access Control Lists

LVFS Access Control Lists (ACL) are defined similar to the way they are defined by

the POSIX 1e. acl specs (The Open Group 2017; Grünbacher 2003). The Access Control

List class in LVFS is a combination of the standard unix permission system and the ACL

system supported by many other file systems. The Access Control List class is part of

the base class providing the directory plugin APIs. With this implementation all plugin

implementation automatically have the ability to support permission based access to files

and directories.

The ACL component can be triggered for any directory module by including the acls

attribute. The value of the attribute is a list of ACL definitions. If no ACLs are defined the

default values are to set ownership to the administrator user and give read only permissions

to everyone. Additional permissions can be specified using the same format as Linux ACLs.

Listing 5.2 shows some possible ACL values. Lines 3–8 define the ACL values for the

defined file instance. Lines 4 and 5 override the default permissions of the file specifying

that the default user, which is the administrator account, will have read and execute permis-

sions and the default group will have read permissions. Additionally, the user user1 and

the group group1 are given read and execution permission on the file. Finally, user user2 is

given read, write, and execute permissions.

5.1.3 Backtracing

The LVFS core code contains backtracing capabilities. On startup the LVFS code

registers signal handlers which are triggered during critical events, such as segmentation

faults. When such an event is triggered, the backtrace code performs a stack trace of the

40

current state of LVFS and writes the state out as critical events on the registered log mod-

ule. This provides developers valuable information for debugging live systems to improve

reliability of LVFS and its plugins.

5.1.4 File/Directory Management

The directory management code in LVFS is responsible for generating file and direc-

tory listings from the provided configuration file. This is done by providing a combination

directory plugins, described in the section 5.2.4, in a tree like structure which simulate

the directory tree listing. A single node in the directory tree consists of the mandatory

option type and the optional option children. The type option specifies which directory

plugin should be used for the current location. Subdirectories are specified recursively by

using the children option. The root section as described in section 4.3 always contains the

children option under which file and directory plugins are listed.

Additional options are specified depending on the plugin used at any given directory

level. These options are defined by each plugin. Failure to provide required options for a

particular plugin results in error conditions at startup. Options, which are not used by the

plugin, are silently ignored.

The directory manager will receive POSIX requests and the paths for the requests. We

call these the input paths. Input paths are provided relative to the mount point under which

LVFS is mounted as explained in 4.1. For example, assuming LVFS is mounted under

/mnt, and a POSIX request for a directory listing of /mnt/some/path/to/list is sent to LVFS

then the input path is /some/path/to/list and the POSIX request is a directory listing.

Similarly, if a request comes in to open /mnt/some/path/to/a/file then the POSIX request to

the directory manager is open and the input path is /some/path/to/a/file.

Listing 5.3 shows a sample configuration which continues the example provided in

listing 4.1. The root section on line 1 has to contain the children keyword, line 5, to indicate

where the file/directory layout begins. Lines 6–9, define the layout. The layout consists of

two plugins at the same level, starting at level 1. The first plugin is of type Dir and the

second one is of type File. The remaining attributes in each section are specific to each

plugin. In this case both the File and Dir plugin require an attribute called name. When

a directory listing is requested of the directory /mnt, the directory manager will receive

a listing POSIX request with input path of /. Each / in the input path determines

41

1 root:
2 mountPoint: /mnt
3 longTerm: DiskSwap
4 shortTerm: MemorySwap
5 children:
6 - type: File
7 name: myFile
8 - type: Dir
9 name: myDir

Listing 5.3: Simple File listing

the number of levels in the input path. The directory manager will traverse the directory

layout tree up to the level of the input path. In this example the input path is level 1 and

the layout starts at level 1 so the directory manager will immediately stop traversal. All

plugins available at the level at which traversal is stopped are queried for input for listings.

The results of the queries are concatenated and are used as the final answer for the original

POSIX request. In this case the directory manager will stop at the top level and query the

File and Dir plugins for listing resulting in a directory listing with a file named myFile and

a directory named myDir

Algorithm 1 shows the pseudo code used by the directory module to traverse the layout

tree for matching an input path. At each level of the layout tree, the directory manager

queries the plugins at that level in the order they were defined in the configuration file. The

first plugin to accept the path element from the input path at that plugin’s level is used as

the owner of that path element. The directory manager recursively continues to traverse

the tree until the input path is exhausted or no plugin is found to be responsible for a given

path.

Listing 5.4 shows a three level layout configuration example. If a POSIX directory

listing request is received with an input path of /myDir/myDir2 then the directory manager

will query the plugins at the first level. The directory manager will query each plugin at

the same level in the order provided in the configuration. The first defined plugin at level

1 is the File plugin When queried for ownership of myDir it will return false. The second

plugin is the Dir plugin which will return true for the same query. Therefore, the directory

manager will recursively traverse down the children of the 2nd plugin. It will query the 1st

child of the 2nd plugin for ownership of myDir2 which will return true as well. Since the

42

Algorithm 1 Directory Layout traversal to find plugin responsible for input path
1: function TRAVERSE-LAYOUT(currentLevel, currentP lugin, inputPath)
2: if EVALUATECONDITION then
3: if inputPath[currentLevel] ∈ currentP lugin.listing then
4: if currentLevel = inputPath.levels then
5: return currentP lugin
6: else
7: for child ∈ currentP lugins.children do
8: return TRAVERSE-LAYOUT(curentLevel + 1, child, inputPath)
9: end for

10: end if
11: end if
12: end if
13: return Not Found
14: end function

directory manager has exhausted all paths in the input path it will terminate at this point

and return the 1st child of the 2nd plugin as the result of the traversal.

The directory manager performs several other tasks as well such as ACL and condition

evaluations. We will briefly discuss these tasks and how the directory management utilizes

them. Details of these components is provided in sections 5.1.2, and 5.1.7.

ACL settings are evaluated partially by LVFS and partially by the FUSE library. Since

FUSE evaluates each input path individually, the directory manager only needs to evaluate

the last element of the input path for ACL permissions. Therefore, the directory manager

will evaluate the ACL permissions after the layer traversal has finished and found the cor-

rect plugin.

Condition evaluations are different from ACL as they are not a POSIX concept. As

shown in algorithm 1 conditions are evaluated by the directory manager first. If a condition

string is evaluated to false the directory manager aborts traversal and no further children

are traversed.

The core directory manager interprets POSIX attribute requests for input paths and,

after locating the proper plugin, queries the plugin for the POSIX stat information. Stan-

dard POSIX structure includes information such as the size of the file, the permissions of

the file, the type of file, etc. Most of these are usually not filled out by the directory plugins

and LVFS provides reasonable default values for them. The two important fields that are

43

1 root:
2 mountPoint: /mnt
3 longTerm: DiskSwap
4 shortTerm: MemorySwap
5 children:
6 - type: File
7 name: myFile
8 - type: Dir
9 name: myDir

10 children:
11 - type: Dir
12 name: myDir2
13 - type: File
14 name: myFile2

Listing 5.4: Simple File listing

1 - type: File
2 name: myFile
3 statByContent: true
4 locator:
5 deferred: false
6 location: https://google.com/index.html

Listing 5.5: Example telling directory manager to query locator for stat information

filled out by plugins are the size of the file and the type. The type determines if an object

is a file or directory. In the case of a directory, the size is ignored so it is usually not set

by those plugins. Under some circumstances the directory plugins are not able to provide

all POSIX stat information. In those cases, a flag in the LVFS configuration specifies

that the directory manager should query both the directory plugin as well as its locator in-

formation, described in more detail in section 5.1.5, for stat information. The directory

manager will first query the directory plugins and then let the content manager, described

in section 5.1.5, override the information set by the directory plugin. Listing 5.5 shows

a sample LVFS configuration notifying the directory manager to query both the directory

plugin as well as the content manager for stat information. Line 3 is the setting which

enables this behavior. The lines following line 3 define the location information for the

content manager to use to retrieve the file content. We will discuss this in detail in section

5.1.5.

44

5.1.5 Content Management

Section 5.1.4 describes how to create file and directory listings but it does not mention

how LVFS obtains or generates the contents of files. The content management code in

LVFS is responsible for the task of building the content of any file opened for access. LVFS

uses the concept of Locators and Locations to evaluate the content of a file. A Locator is a

set of one or more Locations which combined determine the content of a file. A Location is

the definition of a data storage. This definition can be the location of a file on a local disk,

a remote disk, the result of an SQL query, or any other resource represented in URI style

(Berners-Lee, Fielding, & Masinter 1998; Berners-Lee, Fielding, & Masinter 2005).

Locators use multiple locations for two purposes; (1) backup locations of the same

data or (2) concatenation of different data into a single view. Locators can also provide a

level of indirection by allowing a location to point to another location where the desired

content is. These are called deferred locations. An example would be an SQL query used

as a deferred location whose result represents an URL where the file content is actually

located.

Plugin developers write simple content module plugins, defined below, which are ca-

pable of retrieving content from one or more locations. For example, an HTTP content

plugin would perform HTTP downloads of data while an S3 content plugin would imple-

ment the ability to remotely download from an S3 based object storage device. The content

manager queries each content plugin for the schemes supported by that plugin. The content

manager, knowing the schemes supported by each plugin, can pass locations to the proper

module for retrieval.

All of this information is encoded in the LVFS configuration file in YAML. Each

locator is provided with the necessary attributes to let the content manager know how to

resolve the locations. These attributes are deferred, any, concat, and location.

The deferred attribute is a boolean with a default value of false. If set to true, it informs

the content manager that the following location will contain the location of the file content

after evaluating the original location. If left as false, the location represents the location of

the content of the file.

The any, concat, and location are mutually exclusive attributes. The any attribute con-

tains a list of locations which tell the content manager that any of the locations can be used

for content retrieval. LVFS’ content manager will randomly chose a location from the given

45

list and retrieve the content from there. Should the chosen location be unavailable, LVFS

will continue to randomly pick another location until all locations have been exhausted or

the content is retrieved successfully. The concat option tells LVFS that the content from

the list of locations should be combined to form the final content of the file.

Listing 5.6 shows several examples of locators and locations. Lines 4–6 define a

locator with a single location which is not deferred. The location will use the content

plugin which supports the HTTPS scheme. Therefore, on file access, LVFS will retrieve

the index.html page from google.com and provide it as content for the file. Lines

10–15 define another non-deferred locator. This time, the any attribute tells LVFS that

the two provided locations will serve as alternate locations. In this example, LVFS is

instructed to randomly pick between the content of the two web pages and provide the

first successful one as the content of the file. Finally, the example on lines 20–25 instructs

LVFS to concatenate the content of three locations and provide that as the content of the

file. In this example a plugin responsible for HTTPS, one responsible for FTP, and one

responsible for S3 downloads all provide the final content.

In most situations all the flexibility of the content manager is not needed. In order to

reduce verbosity of the LVFS configuration there are shorthand versions that can be used.

Listing 5.7 shows the shorthand versions of the lines 4–6 and 10–15 from listing 5.6.

The examples of locators so far assume that the location of the files are known at

configuration time. Frequently, however, the location for the content of files need to be

determined at run time. An example of such a scenario is when the location of a file is

stored in a database. For those cases, the content manager provides deferred locations.

Deferred locations are locations to locations. Listing 5.8 shows an example of such a

locator. In this example LVFS’ content manager will first contact the database plugin

named as postgresql01, perform the given query. The result of that query is then used as

the location which the content manager will utilize similar to the above examples.

So far we have only discussed reading file content from a remote source. Storing

content back to a remote source follows the same logic with limited support. Any locators

specified which use concat are not allowed to have write support. Locators using any

will instruct LVFS to only store the file content to the first location. LVFS makes the

assumption that the remote storage node is responsible to distribute the file to the other

alternate locations. Similar to concat locators, deferred locators also do not have write

support with current LVFS implementations. The reason for this design decision is that

46

1 # Single location
2 - type: File
3 name: myFile
4 locator:
5 deferred: false
6 location: https://google.com/index.html
7
8 # Content can be retrieved at one of these locations
9 - type: File

10 name: myFile
11 locator:
12 deferred: false
13 any:
14 - "http://www.rfc-editor.org/"
15 - "https://www.rfc-editor.org/"
16
17 # Content is the concatenation of multiple sources
18 - type: File
19 name: myFile
20 locator:
21 deferred: false
22 concat:
23 - https://google.com/index.html
24 - ftp://ftp.debian.org/README
25 - s3://cluster00/BUCKET/README

Listing 5.6: Sample LVFS Locators and Locations

1 - type: File
2 name: myFile
3 locator: "https://google.com/index.html"
4
5 - type: File
6 name: myFile
7 locator:
8 - "http://www.rfc-editor.org/"
9 - "https://www.rfc-editor.org/"

Listing 5.7: Shorthand Locators

47

1 - type: File
2 name: myFileName
3 locator:
4 deferred: true
5 location:
6 db: postgresql01
7 query: select location from files where name=’myFileName’

Listing 5.8: Deferred Locators

both concat and deferred locators are generally used with database information. Projects

usually have robust pipelines to ensure their metadata databases have proper information

and generally would dislike a system not directly under their control, like LVFS, to write

into their metadata database.

Beyond those limitations to write support plugins also can either be read only plugins

or have write support. Content plugins are described in more detail in section 5.2.7.

5.1.6 String Management

In section 5.1.5 we described deferred locations as a way to dynamically define lo-

cations at runtime. While that option can be used for some circumstances there are other

circumstances where other methods are necessary. For those scenarios, LVFS offers a

feature rich string class. LVFS supports keyword replacements which are performed dy-

namically at runtime. These keywords can be used to modify the strings prior to evaluation.

LVFS string sections are marked as needing evaluation by encapsulating the string section

in ${}. LVFS strings are evaluated using the Lua language (Ierusalimschy, De Figueiredo,

& Celes Filho 1996) with some extensions to reduce the verbosity of the strings and reduce

complexity.

Dynamic string manipulation is the primary method by which LVFS is capable of

providing dynamic directory layouts. LVFS strings replaces patterns such as ${1} or ${2}
with the corresponding levels from the input paths. This way LVFS strings can dynami-

cally change based on paths being queried. Listing 5.9 shows an example where the di-

rectory listing dynamically changes based on the input path. Table 5.1 is the sample data

used for the LVFS configuration. A request for a directory listing which results in input

path of / would return three directories consisting of Washington, Baltimore, and

48

1 - type: SQLDir
2 query: select Name from locations
3 children:
4 - type: SQLFile
5 query: select name, size, time from file where location="${1}"

Listing 5.9: LVFS Configuration showing dynamic string modification

Name
Washington
Baltimore
Annapolis

(a) Locations Table

Name Size Time Location
File1 10 1234 Washington
File2 10 1234 Baltimore
File3 10 1234 Annapolis

(b) File Table

Figure 5.1: Sample data to used with the dynamic query in Listing 5.9

Annapolis. This is generated by the first plugin instance. When a user requests a listing

of any of the directories, say Washington, then the first child of the first plugin instance

will be invoked. Prior to passing the string to the database for querying, LVFS will perform

dynamic string transformations. In this case, LVFS will detect the ${1} string and replace

it with the first path element of the input path. In our example, the input path is /Wash-

ington, therefore, ${1} is replaced with the string Washington. The resulting query is

select name, size, time from file where location=”Washington”. The listing of /Washington

will be File1. Similarly a listing of /Baltimore results in the query select name, size, time

from file where location=”Baltimore” and the directory listing of File2.

LVFS dynamic strings are not limited to positive integers. Negative values and a value

of zero are supported as well. LVFS treats the input path as an array of path elements with

each element separated by / and array values starting at 1. LVFS uses the value 0 as a spe-

cial value which always represents the path element assigned to the current plugin. Using

the LVFS configuration from listing 5.9 and an input path of /Washington/File1. Had the

value of ${0} been used in the query on line 2 then LVFS would have replaced it with the

string Washington. At the same time if the path further evaluates to the next plugin on

line 5 then the same ${0} would evaluate to File1. Negative numbers evaluate backwards

starting one path element above from ${0}. Using the same input path as before if line 5

contained the value ${-1} then it would have evaluated to the value of Washington.

49

1 - type: File
2 name: myFile
3 locator:
4 - http://192.168.0.100/myFile
5 - http://192.168.0.101/myFile
6 - http://192.168.0.102/myFile
7 - http://192.168.0.103/myFile
8 - type: File
9 name: myFile2

10 locator: http://192.168.0.${tostring(math.random(100,103))}/myFile
11 - type: File
12 name: myFile3
13 locator: http://192.168.0.${random(100,103)}/myFile

Listing 5.10: LVFS Configuration showing Lua function use

In addition to allowing placeholders for input path replacement, LVFS also supports

execution of Lua code. To reduce the chances of an exploit being used as an attack vec-

tor into the operating system, LVFS limits Lua access to math and string libraries in Lua.

Other functions, like operating system access functions are disabled. To simplify config-

uration, some commonly used operation have LVFS defined versions. Listing 5.10 shows

how Lua functions can be used to simplify configuration. Lines 1–7 show a file whose con-

tents exist on four different servers accessed. LVFS will randomly pick between the four

alternate locations of the file and download it. Lines 8–10 similarly pick from the same

four hosts randomly but using Lua in a less verbose manner. Lines 11–13 use Lua with

some LVFS provided convenience functions which combine the tostring(math.random())

function sequence into a single Lua function call.

5.1.7 Condition Evaluation

Condition evaluations, are briefly described in section 5.1.4. Condition evaluations

have no POSIX file system equivalent. The purpose of condition evaluation is to make

certain parts of the directory structure be only visible under certain circumstances. Similar

to ACLs and LVFS Strings, condition evaluation is available to all directory plugins and is

evaluated for all plugins automatically since it is part of the core LVFS code.

Listing 5.11 shows a common way condition variables are used. This example uses

the same data as shown in table 5.1. In this example, the data center or project wishes

50

1 - type: SQLDir
2 query: select Name from locations
3 children:
4 - type: SQLFile
5 query: select name, size, time from file where location="${1}"
6 - type: File
7 name: Readme
8 condition: "${1}" == "Baltimore"
9 content:

10 - string: This warning is only for ’Baltimore’ directory

Listing 5.11: Sample Condition Variable

to display a README file with some hard coded content but only for the Baltimore

directory. Without the condition variables the LVFS configuration from lines 1–5 would

be repeated twice. Once using a database queries excluding the directories for which there

should be no README file and then another similar query for which there should be the

README file. To reduce verbosity, condition variables allow LVFS to evaluate if it should

allow file/directory visibility. Condition variables use the same LVFS string functionality

as described in section 5.1.6. In this example the ${1} input path is replaced by the LVFS

string evaluation. After that replacement, LVFS performs a Lua evaluation which, if true,

allows the layout tree rooted at that node to be visible for the remainder of the LVFS

evaluations.

5.1.8 Configuration Parsing

The LVFS configuration is written in YAML and LVFS uses most YAML features

such as objects, arrays, and strings. Because LVFS configurations can be large and to

encourage configuration reuse, LVFS use YAML tag directive feature to add the ability

to split configuration files into multiple files. Listing 5.12 shows an example of how a

configuration can be split. On line 1 LVFS will read the modules.yaml and insert its content

in place of the !lvfs:include modules.yaml tag. Similarly, for line 2, LVFS will read the

root.yaml file and replace it at the include location. The inclusion of other configurations

can be arbitrarily deep.

The combination of complex LVFS configuration and the ability for third party plugin

developers to add their own configuration options for their plugins means that errors can

51

1 modules: !lvfs:include modules.yaml
2 root: !lvfs:include root.yaml

Listing 5.12: LVFS include directives

exist in the configuration. On startup, LVFS will parse and validate the configuration for

valid syntax and valid schema. During startup LVFS will perform syntax validation. If the

YAML configuration does not pass syntax validation, LVFS will exit with an error message

to indicate where the syntax error occurred.

The YAML specification does not have schema validation built into the language.

LVFS, therefore, implements its own schema validation. LVFS configuration options which

are part of the core LVFS code are hard coded into LVFS for validation. Plugins, however,

need to define their own schemas. The LVFS plugin API provides functions for plugins

to use to define their schemas. For each option, LVFS plugins can define if the options

are mandatory or optional, whether there are any default values for the option and a brief

description about what setting the option controls. For the option values, plugins can also

specify the value type. The type can be strings, integers, or complex YAML types like

arrays or objects. This API is described in more detail in section 5.2

In addition to verifying syntax and schema at startup, LVFS has a python toolkit which

performs the same validations independent of the executable. This allows for the verifica-

tion of configuration changes prior to reloading LVFS.

5.1.9 Cache Management

A core component of LVFS is the caching system. Because LVFS relies mostly on

remote information, without a robust caching system most requests would be too slow.

LVFS uses caching to store both metadata information for directory listings and to store

file content. LVFS uses two cache instances which are named short term cache and long

term cache. Short term cache is used for storing metadata information while long term

cache is for storing file content. Since metadata information will generally be significantly

smaller than file content LVFS recommends a cache plugin which is backed by memory

for the short term cache while recommending a disk backed cache plugin for the long term

cache.

LVFS caching is divided into two components. The contents of a file or the listing

52

open
ok

read
ok

read
ok

User LVFS Source

(a) File already in cache

open
ok get

chunk
chunk
chunk
chunk
chunk

read

ok

read
ok

User LVFS Source

(b) File does not exist in cache

Figure 5.2: Sample scenario for opening a file

of directory is stored in cache object which we call a cache item. When a plugin or the

LVFS core request access to an item they are given access via an object we call a cache in-

stance. A particular object stored in cache is only represented by a single item but multiple

instances can refer to an item. This is similar to the weak references concept used in many

programming languages. With this model a cache plugin can manage its own cache items

and has a reference count of how many instances are referencing an item. The reference

counts help the cache plugin make decisions on which items can be timed out and removed

from the cache.

A cache item can have several modes of operation it can be in persistent or non-

persistent mode. If persistent, a cache item can also be in reader or writer mode. To

understand these different modes we will show two different scenarios.

Scenario—POSIX Read: Consider a scenario where a process performs a POSIX

open request on a file managed by LVFS. There are two possible outcomes in this scenario;

(1) the file exists in long term cache or (2) the file does not exist in long term cache. Figure

5.2 shows these two outcomes.

Figure 5.2a shows the outcome where a file already exists in cache. The user requests

to open the file, LVFS determines it exists in cache and creates a cache instance to the ex-

53

isting item in cache and associates the file descriptor with this instance. The cache instance

and item are, in this case, put into non-persistent mode.

Figure 5.2b shows the outcome where a file does not exist in cache or the cache entry

is stale and needs to be refreshed. From the user’s point of view the two outcomes need

to be identical in order to be POSIX compliant. In this outcome, upon receiving the open

request, LVFS will return success to the user and simultaneously request the content man-

ager to download the file content from the source. To accomplish this LVFS creates two

cache instances to the cache item. One instance is associated with the file descriptor of

the user and the other instance is given to the content manager. The content manager will

put its instance into persistent mode. Since the cache item is in persistent mode the user’s

read requests will block until the file segments requested have been written by the content

manager. This is shown in 5.2b as a delayed response to the first read request. The read

results are only returned after the first three chunks are retrieved from the source. The next

read request already has all needed segments in cache and, therefore, receives an immediate

response.

Scenario – POSIX Writes: To understand the difference between persistent reader

and persistent writer we need to consider a different scenario involving writing. Figure 5.3

shows a scenario where the user opens a file and writes some data. Again, due to a cache

miss a persistent instance is created for downloading. Unlike last time, however, the user

is performing write operations. These write operations from the user should overwrite the

write operations from the content manager no matter which order they are received. This is

achieved by ensuring that a write operation from a persistent instance can never overwrite

a write operation from a non-persistent instance. A similar write operation is performed

by the user immediately following the first write operation. In this scenario, the content

manager has not finished the store operation from the first write operation.

To ensure files are always uploaded in a consistent state LVFS will store the new

writes in a different place until the first upload has completed. When the content manager

is performing retrieve operations from the source it will put the cache instance in persistent

write mode since it will be writing to the cache instance. When performing store opera-

tions, the cache instance is put into persistent read mode since it will be reading from the

cache to send to remote location. When a cache item has a cache instance attached to it in

persistent read mode then all write operations from a non-persistent instance will trigger a

54

open
ok

write
ok

close
ok

open
ok

write
ok

close
ok

get

chunk
chunk

put

chunk

chunk

chunk

chunk

put
chunk
chunk
chunk
chunk

User LVFS Source

Figure 5.3: Sample scenario involving write operations

copy on write and all future reads/writes will be performed on this copy. Upon completion

of the first upload, the copied data is merged back into the cache item and another upload is

triggered. Using this method, LVFS can guarantee POSIX behavior on the local machine

and guarantee uploads of consistent state only if supported by the remote end. Algorithm

2 shows how LVFS core code for cache items perform read/write operations.

5.2 LVFS Plugin Implementation

The LVFS plugin API is implemented as a series of base classes. These base classes

are overloaded by plugin developers to implement their functionality. Some functions are

required to be overloaded while others are optional. Some necessary functionality is not

possible to be performed via C++ function overloading which requires the implementation

55

Algorithm 2 Algorithm for Cache Item reads and writes
1: function READ(offset, count, isPersistent)
2: if not isPersistent then
3: wait until (offset, offset+count) ∈ valid ∨ there is no persist instance
4: if offset ∈ valid then
5: return buffer[offset] – bufer[MIN(offset+count, buffer size)]
6: end if
7: end if
8: end function
9: function WRITE(offset, count, isPersistent)

10: if not isPersistent then
11: if no persistent writer instance then
12: write to buffer
13: valid = valid ∪ (offset, offset+count)
14: else
15: perform copy-on-write
16: write to buffer copy
17: validCopy = validCopy ∪ (offset, offset+count)
18: end if
19: else
20: if (offset, offset+count) /∈ valid then
21: write to buffer
22: valid = valid ∪ (offset, offset+count)
23: end if
24: end if
25: end function

56

std::vector<LVFS::conf::Schema> buildSchema(){
LVFS::conf::Schema s("Syslog", "Log");
LVFS::LogModule::buildSchema(s);
using attr = LVFS::conf::Attribute;
s.addGlobal(attr::make_req("level", "string", "log level")

);
s.addGlobal(attr::make_opt("syslogLevel", "string", "Level

to report to syslog", "info"));
return { s };

}

Listing 5.13: Plugin Schema definition

of C functions. As mentioned in previous sections, LVFS plugins categories are Logging,

Directory, Database, Cache, Content, Background, and Filters. We will discuss how each

API for each category needs to be implemented.

5.2.1 Plugin schemas

As briefly mentioned in in section 5.1.8 LVFS will perform schema validation for

plugins developed as part of LVFS core code and third party plugins. Plugins need to let

the LVFS validator know what options they have, if those options are mandatory, what the

value types are, etc.

Listing 5.13 shows the function which has to be implemented by the plugin. In this

example, on lines 2 and 3, the Syslog plugin first creates a schema object and initializes

it with options from the base Logging class. Lines 5 and 6 create a required option and

an optional one. The arguments to the functions are the name of the attribute, the attribute

type, and a description. Optional arguments also take an argument to define the default

value.

A plugins schema can consist of multiple schemas which act as alternate versions.

Listing 5.14 shows a stripped down example of a database plugin which has an optional

attribute, maxConnections, and two alternate ways to establish a connection; (1) using

username/password (2) using a raw connection string passed directly to the database API.

First on line 2 we create a basic schema and add the optional option for maxConnections.

Next we make a copy of this schema on line 3. Line 4 we define a required attribute to

57

std::vector<LVFS::conf::Schema> buildSchema(){
LVFS::conf::Schema individual("PostgresDB", "Database");
individual.addGlobal(attr::make_opt("maxConnections", "int

", "Maximum number of connections to keep open", "5"));
LVFS::conf::Schema connectString(individual);
connectString.addGlobal(attr::make_req("connectString", "

string", "Raw connect string to pass to postgres module
"));

individual.addGlobal(attr::make_req("username", "string",
"user used to connect to server"));

individual.addGlobal(attr::make_req("password", "string",
"password used to connect to server"));

return { individual, connectString };
}

Listing 5.14: Plugin with alternate schema

specify the raw connection string to the new copy of the schema. On lines 5 and 6 we

add the required attributes for username/password to the original schema. We then return

both schemas. LVFS and the schema validator will ensure that the options specified in the

configuration file will match at least one of the two schemas.

5.2.2 Common plugins

While each plugin has a specific set of API calls they need to implement, there are

some common API calls for all plugins. Some plugin calls are optional and others are

mandatory.

Since LVFS is primarily written in C++ we use inheritance and virtual functions to

implement LVFS plugins. All plugins are derived from the LVFS Module class. Listing

5.15 shows the basic API common to all LVFS plugins.

All plugins can implement statistics reporting data as shown in Listing 5.15. In order

to do so, plugins need to implement four API calls. If they chose not to, default calls will

be used instead. The first of the four functions is for the plugin to return the names of all the

different statistics it collects as a C++ vector of strings. For example, the database plugin

could keep track of how many queries it has executed. One possible name it could give this

statistic is num queries. The next call is to specify what the units for each statistic name

58

class Module {
virtual const std::vector<std::string>& statNames();
virtual const std::vector<std::string>& statUnits();
virtual const std::vector<std::string>& statValues();
virtual const std::vector<int>& statSlopes();

};

Listing 5.15: Basic plugin API

Module* createInstance(const conf::Module& conf);
Module* createInstance(const conf::Module& global, const

conf::Module& local);

Listing 5.16: Basic plugin API

is. The third call returns the actual values for each statistic. If necessary, the plugin can

reset the values after each call. The last call lets the statistics collecting system know if the

values being returned are always increasing, decreasing, mixed, or unknown.

Besides the statistics collection functions there is a function that all modules need to

implement. This function is used to create an instance of the plugin. In order to load plugins

dynamically at runtime, LVFS utilizes the dlopen and dlclose POSIX function calls (The

Open Group 2016b; The Open Group 2016a). Since these functions are C definitions, they

are not able to load C++ classes. Each plugin, therefore implements a C based function for

creating and destroying the C++ instances of the plugins. Listing 5.16 shows the function

calls that should be implemented. The first implementation is for plugins which only exist

globally and, therefore, only have global configuration settings. They are passed only a

single argument which represents the global configuration options for that plugin. The

second version is for plugins which have local instances. These plugins are provided with

both global and instance configuration information. More information about instances is

described in section 5.1.1. LVFS assumes all plugins are created using C++ based memory

allocation and will take care of the destruction of those plugins using C++ based memory

de-allocation on shutdown.

59

class LogModule : public Module{
virtual void operator<<(logItem& output);

};

Listing 5.17: Logging plugin API

class DirectoryModule : public Module{
int level;
bool statByContent;
virtual bool pathAccepted (const Path& path);
virtual bool pathAttribute(const Path& path, struct stat*

stbuf);
virtual void pathListing (const Path& path, DirEntry&

entries);
};

Listing 5.18: Directory plugin API

5.2.3 Logging Plugins

Listing 5.17 shows the only function a plugin for logging needs to implement. The

function takes a logItem object as argument. This object contains the string which needs

to be logged. LVFS has already ensured that the log level of the message is of sufficient

priority that it should be printed. The plugin simply needs to output the message to the

plugin’s log destination.

5.2.4 Directory Plugins

Listing 5.18 shows all the function calls a Directory plugin would implement to pro-

vide directory listings. The pathAccepted call provides an LVFS Path class. If the path at

the same level as the level of the current plugin instance matches then the function returns

true. This function is called by the tree traversal algorithm described in section 5.1.4 to de-

termine which plugin a path belongs to. The pathAttribute function fills the POSIX stat

attributes into the provided stat structure for the given path. This function will only be

called if pathAccepted() would return true. The pathListing function provides a listing of

files/directories for the plugin. The path is provided as a convenience if the plugin changes

behavior based on the requested path. The resulting list of files/directories is stored in the

60

class DatabaseModule : public Module{
virtual void dirQuery (const std::size_t statementId,

const std::vector<std::string>& args, const std::vector
<type>& types, DirEntry* entries, bool directories,
const Path& path) = 0;

virtual void stringQuery(const std::size_t statementId,
const std::vector<std::string>& args, const std::vector
<type>& types, CacheInstance& cache, bool newLine,
const Path& path) = 0;

};

Listing 5.19: Database plugin API

DirEntry class provided by LVFS.

5.2.5 Database Plugins

Database plugins are required to implement the two functions listed in listing 5.19.

The first function definition performs a query, as defined by the statementId, and returns the

result as a list of directory entries stored in the LVFS DirEntry class. If the query has place

holders for arguments, these are passed to the functions as args and the argument types as

type. The directories boolean specifies if the results of the query should be considered to

be files (false) or directories (true). Finally, the input path is passed as the path argument

in case the plugin changes behavior based on the input path.

The second function is similar to the first. The second function definition returns a the

query results as a string with the columns and rows concatenated together. The results are

stored into a cache instance. The newline argument specifies if a new line character should

be added between each row in the query result.

5.2.6 Cache Plugins

A cache plugin consists of two components; (1) the cache manager class and (2) the

cache items. We discuss in detail how cache items and instances work together in section

5.1.9. The cache manager is the class that manages when cache items expire and keeps

track of all items managed by this cache. Listing 5.20 shows the function calls that need to

be implemented as part of the cache manager component of the plugin.

61

class CacheModule : public Module{
virtual CacheInstance get(const std::string& key);
virtual CacheInstance add(const std::string& key);
virtual void del(const std::string& key);
virtual std::vector<std::string> getOrphans();

};

Listing 5.20: Cache manager plugin API

class CacheModule : public Module{
class CacheItem{

virtual ssize_t readInterface(char* buf, size_t count,
off_t offset, bool persistent) const;

virtual void writeModeChangedInteface();
virtual void incrementWritersInterface();
virtual ssize_t writeInterface(const char* buf, size_t

count, off_t offset);
virtual void truncateInterface(off_t length);
virtual size_t availableInterface(bool persistent) const;
virtual void releaseInterface();
virtual void acquireInterface();
virtual void attributeInterface(const std::string& name,

const std::string& value);
virtual std::string attributeInterface(const std::string&

name) const;
virtual void delAttributeInterface(const std::string& name

);
virtual void modifiedInterface();

};

Listing 5.21: Cache item plugin API

62

The get function call returns a cache instance to an existing item with the given key.

If the cache contains no such key an uninitialized cache instance is returned. The add

function will create a new cache item if it did not exist and return an instance to the item.

If the item with the given key already existed, then the cache would return an instance

to that item. With this design the add function will always return a valid cache instance.

A cache plugin differentiates between existing items in cache and new items by setting

the cache instance mode to persistent as described in section 5.1.9. A newly created cache

instance is returned by the add function in persistent mode. Depending on the cache plugin

implementation, a third mode could be an item which exists in the cache but has expired.

In those circumstances, the cache can return an instance to the existing item with persistent

mode set. The del function deletes the given key from the cache if it exists. The optional

function getOrphans is called on LVFS startup to provide a list of existing cache items.

This is only useful for cache plugins which persist information across runs of LVFS.

Listing 5.21 shows the API that a cache plugin needs to implemented to support cache

items. The readInterface, writeInterface, and truncateInterface are the functions to read,

write, and truncate data in the cache respectively. The writeModeChangedInterface is a

convenience function which tells the plugin that the cache item has changed between di-

rect and copy mode. As explained in more detail in section 5.1.9, cache items can enter

copy-on-write mode. This function notifies plugins of the change and allows plugins to

merge copies back when exiting copy mode. The incrementWritersInterface is a conve-

nience function notifying the plugin when a cache instance to this cache item has switched

to write mode. The availableInterface function returns the number of bytes currently stored

in this cache item. The releaseInterface and acquireInterface are used to notify the plugin

that currently there are no instances referencing this item or that at least one instance has

re-acquired this item. The purpose of these functions is to allow the cache plugin to re-

lease any resources, such as file descriptors, when not necessary and re-acquire them when

needed. The attribute interfaces are used for setting, reading, and deleting attributes. Fi-

nally, the modifiedInterface is a convenience function that tells the cache plugin when an

item changes state between having local modifications and being up to date with the remote

source.

63

class ContentModule : public Module{
virtual std::vector<std::string> schemes() = 0;
virtual bool writable() const;
virtual void retrieve(const Path& path, std::shared_ptr<

Location> location, CacheInstance& inst) = 0;
virtual void stat(const Path& path, std::shared_ptr<

Location> location, struct stat* stbuf) = 0;
virtual void store(const Path& path, std::shared_ptr<

Location> location, CacheInstance& item);
};

Listing 5.22: Content plugin API

5.2.7 Content Plugins

Content plugins, as described in section 5.1.5, are used for retrieving content from

remote sources or storing them. The functions needed to implemented a content plugin

are shown in listing 5.22. A content plugin is required to implement the retrieve, stat,

and schemes functions while the others are optional. The retrieve plugin is for retrieving

the contents of a file from the provided location. The plugin should store the content in

the provided cache instance. The stat function retrieves POSIX stat information about

the file from the remote source and populates the information in the POSIX stat struct

provided. If a plugin has write support it will implement the writable function and return

true. The plugin will also implement the store function. This function stores the contents

of the file from the local cache instance back to the remote location.

5.2.8 Background Plugins

Background plugins are generic plugins that perform unknown tasks. Therefore, back-

ground plugins have no specific API needed. Any plugin which uses the Module class,

described in section 5.2.2, as their base class is considered a background plugin. While

a background plugin may implement the statistics function calls defined in the base class,

they will never be called for background module.

64

class FilterModule : public Module{
virtual Path getSourcePath(const Path& path) = 0;
virtual bool pathAccepted(const Path& path, const DirEntry

& entries) = 0;
virtual bool pathAttribute(const Path& path, const

DirEntry& entries, struct stat* stbuf) = 0;
virtual void pathListing(const Path& path, const DirEntry&

entries, DirEntry& newEntries) = 0;
virtual void pathOpen(const Path& path, CacheInstance

inputContent, CacheInstance& outputContent);
};

Listing 5.23: Filter plugin API

5.2.9 Filter Plugins

Filter plugins are responsible for dynamic content conversion. They work nearly iden-

tical to directory plugins and content plugins together. Listing 5.23 shows the function calls

a filter plugin needs to implement. The functions pathAccepted, pathAttribute, pathListing

behave the same way as their directory module counterparts described in section 5.18. The

main difference is that each function is provided with an additional argument, entries. This

argument represents the file/directory entries generated by the directory plugin which this

plugin is filtering. For example, the pathListing function returns new file/directory entries

as the newEntries argument generated from the file/directory listing specified in entries.

The getSourcePath function lets the plugin tell the caller what the original path is for a

path passed in as the argument. A JPG to PNG filter plugin, for example, would return

the original JPG file for the provided PNG path. The pathOpen plugin generates a new

cache instance which contains the filtered output from the cache instance passed which

represents the original source content.

65

Chapter 6

CASE STUDY: MODAPS DATA DISTRIBUTION TREE

Below we describe how LVFS is being used by MODAPS to distribute data via

the Level-1 and Atmospheres Archive & Distribution System (LAADS). MODAPS and

LAADS are two projects that run at the Terrestrial Information System Lab’s data center

at NASA Goddard Space Flight Center. MODAPS is a data processing system responsible

for receiving raw satellite data, called level 0 data, and process the information into higher

level products more convenient for scientific research. The data produced is distributed by

LAADS and other places. In addition to data produced by MODAPS, LAADS distributes

data by other processing systems. In this chapter we will look at the unique problems asso-

ciated with producing and distributing data with MODAPS/LAADS and how LVFS helps

overcome those problems.

6.1 Problem Description

Scientific data sets, such as the Large Hadron Collider, Sloan Digital Sky Survey,

and Brain fMRIs, are growing constantly and producing petabytes of data with some data

records doubling every year (Szalay & Gray 2006). Managing petabytes of data in billions

of files present complex problems. MODAPS contains approximately 40 petabytes of data

in over 2.2 billion files. In order to ensure quick processing MODAPS stores data on drives

in a layout which is convenient for the processing system. This ensures that any processing

can be performed as quickly as possible.

LAADS distributes data using many different protocols including HTTP and FTP. In

order to distribute the data, LAADS would NFS mount all remote disks on the HTTP and

FTP servers. It would then generate a directory tree consisting of symbolic links to the files

66

stored on the NFS mounts. This directory tree structure was maintained by a script which

would compare the information in the LAADS metadata database against the symbolic

links on the local server. Whenever new files were ready for distribution MODAPS would

insert entries in the LAADS metadata server and this script would generate the necessary

new links to the NFS mounted disks. Additionally, this script would re-check existing links

and ensure they matched information in the metadata server.

The problem with this design is the lack of scalability and flexibility. As the amount

of data and the number of files was increasing, the amount of time required to maintain

the symbolic links would increase linearly taking over a week for the script to perform one

iteration. This meant that at times it would take nearly a week for LAADS to make files

available. Additionally, with this design, if LAADS wished to distribute data in an alternate

directory layout it would mean running a second script to generate the new symbolic links

which would also grow linearly with respect to the file count in the metadata server.

6.2 LVFS Implementation

To switch LAADS to LVFS we need to identify the directory layout and how to obtain

the information necessary to create the directory layout. Since LAADS only distributes

data, this case study involves a read only configuration of LVFS. The data tree distributed

by LAADS is structured at the top level to be a list of all supported versions of the data,

followed by the different data products available for a given version, followed by the years

and day of the year (doy) there is data available for the given product. An example path

would be /6/MOD04 L2/2017/012/. The top level directory is specifying that we are look-

ing for version 6 data. The product’s name is MOD04 L2 and we are interested in data

from day 12 of 2017.

To generate this directory structure in LVFS we need 6 levels and, therefore, 6 queries.

These would be:

• List of all available versions

• List of all products given version

• List of all years given a product and a version

• List of all days given a year, product, and version

67

• List of all files given a day, year, product and version

• Location of a file given a file name

1 - type: SQLDir

2 query:

3 statement: select "ArchiveSet" as name, 1 as size, extract(epoch

from current_timestamp) as time from "ArchiveSet_Def" where "

IsPublic" = true

4 children:

5 - type: SQLDir

6 query:

7 statement: select "ESDT" as name, 1 as size, extract(epoch from

current_timestamp) as time from "ArchiveSet_ESDT_Def" where

"IsPublic" = true and "ArchiveSet" = $1

8 bindings: ["${-1}"]

9 children:

10 - type: SQLDir

11 query:

12 statement: select distinct(to_char("DataDate", ’YYYY’)) as

name, 1 as size, extract(epoch from current_timestamp)

as time from "DataAvailability" where "ArchiveSet"=$1

and "ESDT"=$2

13 bindings: ["${-2}", "${-1}"]

14 children:

15 - type: SQLDir

16 query:

17 statement: select distinct(to_char("DataDate", ’DDD’))

as name, "DataCount" as size, extract(epoch from

current_timestamp) as time from "DataAvailability"

where "ArchiveSet"=$1 and "ESDT"=$2 and "DataDate"

>= $3::date and "DataDate" < $4::date + interval ’1

year’

18 bindings: ["${-3}", "${-2}", "${-1}-01-01", "$

{-1}-01-01"]

19 children:

20 - type: SQLFile

21 query:

22 statement: select "FileName" as name, "FileSizeBytes

" as size, extract(epoch from "OnDiskTime") as

68

time from "getFM_ArchiveDir"($1, $2, $3::

timestamp + $4::interval - ’1 day’::interval, $5

::timestamp + $6::interval)

23 bindings: ["${-3}", "${-4}", "${-2}-01-01", "${-1}

day", "${-2}-01-01", "${-1} day"]

24 locator:

25 deferred: true

26 location:

27 db: PostgresDB

28 statement: select ’http://’ || "Host" || ’:8080/f’

|| "Disks"."DiskId" || ’/lads/archive/’ || $1

|| ’/’ || $2 from "Disks", "FilesOnDisk", "

File" where "File"."FileName"=$3 and "

FilesOnDisk"."FileId"="File"."FileId" and "

Disks"."DiskId"="FilesOnDisk"."DiskId"

29 bindings: ["${-3}", "${0}", "${0}"]

Listing 6.1: LVFS Configuration for LAADS distribution

Listing 6.1 shows the YAML configuration file which generates the directory tree for

LAADS. Each level consists of an SQLDir plugin which generates a directory listing based

on an SQL query. The last level is an SQLFile plugin which generates the file listings.

Line 3 defines the query to be executed to find all supported versions of data sets. When a

directory listing for / is requested, LVFS will perform this query, if not already cached, and

return the results as a list of directories. Assuming the directory listing contains an entry

named 6 and a directory listing of /6/ is requested then LVFS will traverse directory tree,

as described in section 5.1.4, to arrive at the second level show on lines 5–9. LVFS, via the

SQLDir plugin, will perform the query defined on line 7 to obtain a new listing. This time,

however, the query depends on the parent directory as can be seen from the inclusion of

query bindings on line 8. This binding tells the SQLDir plugin to use proper escaping and

replace the $1 variable in the query with the value of $-1. As described in section 5.1.4, this

value represents the parent directory that led to the current directory which, in this case is

the string 6. This way LVFS has now performed a query to find all version 6 products. This

continues all the way to the last level where LVFS uses the SQLFile plugin to generate a

list of files.

Lines 24–29 are used when a file is opened. The exact behavior is described in section

5.1.5. In this example, the LAADS database maintains all the necessary information to

69

locate a file including the host, the disk on that host, and the path on that disk. Using this

information we create a deferred locator. As described in section 5.1.5, a deferred locator

means that LVFS should use the result of the provided information as the location. In our

case the provided information is a database query whose result is an http location to the file

content.

The part not shown in listing 6.1 is all the caching mechanisms. In this use case,

LVFS was setup with a memory based cache plugin for short term caching, and a disk

based plugin for long term caching. Because of this caching, the steps above will only be

taken on some occasions. Each time the a query is performed LVFS will store the results

in either long term cache or short term cache so that subsequent accesses will skip all the

database queries and provide the answers immediately.

6.3 Performance

We tested the performance of LVFS against the original NFS system in both a simu-

lated and production environment. Since LAADS is only providing read access both the

NFS mounts and LVFS were configured with read-only access. We will first look at the

simulated environment and then the production environment.

For the simulated environment we used a test setup consisting of two computers. Ta-

ble 6.1 shows the hardware specifications of the two computers. The server was used to

serve the files once configured for NFS and then configured for LVFS. The files served out

consisted of eight 128MB files totalling 1GB of data read by the client. When using LVFS,

the server was setup with the Nginx HTTP server for CentOS 7. We timed the amount of

time it takes to read all eight files. Each round used a different block size for reading and

different number of threads. After each round all caches were emptied to ensure no local

access was skewing the results.

Figure 6.1 shows the results of the runs for one, two, four, or eight threads reading

between 512 and 8192 bytes at a time. We can see that at 512 and 1024 bytes LVFS is

slower than NFS. This is due to the overhead of LVFS running in user space. All POSIX

request for LVFS enter kernel space and exit into another user space application while with

NFS the requests are processed in kernel space. As the block size is increased, the number

of POSIX calls is reduced and, therefore, the amount of overhead for each request becomes

less prominent. At 2048 byte block sizes the overhead for running in user space is no longer

70

Server Client
Network 1Gb/s 1Gb/s

RAM 128GB 48GB
OS CentOS7 CentOS 7

CPU Xeon 3.4GHz Xeon 2.8GHz

Table 6.1: Hardware Specifications of the testbed system for LVFS read benchmark

measurable. Similarly, we can see that LVFS is capable of handling simultaneous requests

just as well as NFS but with the addition of new features such as content verification.

We also ran experiments in a production environment to test out LVFS’ performance

in real world conditions. Figure 6.2 shows the monthly data volume for the LAADS FTP

server. Between July and August LVFS replaces the NFS based system. We can see the

data download volume of LAADS nearly double from 90TB a month to approximately

180TB a month.

The use of a script to generate the organized directory structure, as described in section

6.1 was the main result of increase in performance. Because the symbolic generation and

verification took over one week to execute one full iteration, the LAADS team could not

load balance the FTP server. Running two FTP servers meant having a script on each

computer. This could result in the directory structure of each server being up to a week

off. For a project which generates new datasets every few minutes this would result in an

inconsistent FTP directory structure with files appearing and disappearing based on which

server a user’s connection happens to hit. Since LVFS generates the directory structure on

demand from the LAADS metadata server, the LAADS project can now install LVFS on as

many FTP servers as needed to support user demand.

Figure 6.3 shows the resource requirements of LVFS during various levels of load. For

the same time period we can see in Figure 6.3a that LVFS at its peak maintains 220 actively

open files while Figure 6.3b shows it utilizing approximately 20 Gigabytes of swap space

for those files. During the entire period Figure 6.3c shows that the CPU is nearly fully idle.

Finally, we measured detailed CPU statistics of the LAADS three load balanced HTTP

servers distributing over 20 Petabytes of data in over 2 billion files. Figure6.4 shows the

combined data rate of the three servers for a one week period from April 27th, 2017 to

July 4th, 2017. On average, LAADS was distributing data at approximately 3 Gigabits/sec.

71

512 1024 2048 4096 8192

10

15

20

25

Block Size (bytes)

Ti
m

e
(s

ec
on

ds
) NFS

LVFS

(a) One Thread

512 1024 2048 4096 8192

10

12

14

16

Block Size (bytes)

Ti
m

e
(s

ec
on

ds
) NFS

LVFS

(b) Two Threads

512 1024 2048 4096 8192

10

12

14

16

Block Size (bytes)

Ti
m

e
(s

ec
on

ds
) NFS

LVFS

(c) Four Threads

512 1024 2048 4096 8192

10

12

14

16

Block Size (bytes)

Ti
m

e
(s

ec
on

ds
) NFS

LVFS

(d) Eight Threads

Figure 6.1: Read time comparison between LVFS and NFS with read blocks between 512
and 1024 bytes and between 1 – 8 simultaneous readers

0"

50"

100"

150"

200"

250"

Jun
)11
"

Au
g)1
1"

Oc
t)1
1"

De
c)1
1"

Fe
b)1
2"

Ap
r)1
2"

Jun
)12
"

Au
g)1
2"

Oc
t)1
2"

De
c)1
2"

Fe
b)1
3"

Ap
r)1
3"

Jun
)13
"

Au
g)1
3"

Do
w
nl
oa

d(
Si
ze
((T

B)
(

Monthly(Download(Volume(

Figure 6.2: Monthly FTP download volume in 2011, 2012, and 2013

72

(a) Number of open files (b) LVFS used Swap Space

(c) CPU Load

Figure 6.3: Resource usage by LVFS for a one day period on the LAADS FTP Server

Figure 6.5 show detailed CPU usage of the three load balanced servers. We can see that

the computers are nearly idle just like the previous example. Additionally, we can see that

the I/O wait is at 0% meaning that LVFS was capable of processing POSIX requests fast

enough so that the CPU was never waiting on I/O.

6.4 Conclusion

LVFS has proven to be an invaluable tool for distributing data for LAADS in a flexible

manner. Being able to restructure entire dataset on the fly with no downtime or the ability

to stand up new hosts that appear to have all of the data available locally in minutes is

very beneficial. Not only has LVFS been proven to be beneficial due to its flexibility but

benchmark results have shown that it is capable of making Petabyte scale datasets available

on a single node while allowing hundreds of processes to access the datasets simultane-

ously with minimal load on the system. Benchmarks have shown that we can double data

throughput from LAADS’ public FTP server due to the ability to easily create load bal-

anced server. We believe LVFS can scale to exabyte sizes without modification due to the

fact that it currently manages Petabyte scales with minimal load. LVFS is only limited by

the scalability of the metadata server which can be replaced with better performing systems

without any modification to LVFS.

Additionally, since LVFS makes use of the highly detailed existing metadata informa-

73

Figure 6.4: Combined data transmission rate of three load balanced web servers for
LAADS

(a) First web server (b) Second web server

(c) Third web server

Figure 6.5: CPU usage of three load balanced web servers distributing LAADS data

74

tion present in most scientific processing system, LVFS has the unique ability to describe

the same dataset in multiple views without requiring extra information or duplicating in-

formation. This gives LVFS the ability to organize the same dataset in a directory structure

by measurement date, measurement region, or any other aspect relevant to the scientific

dataset.

75

Chapter 7

CASE STUDY: WRITE SUPPORT

The first case study concentrated on read-only support for distributing processed data

via LAADS to the public. While that setup is good enough if there are no plans to change

the underlying storage architecture, it will become insufficient if the project or the data

center decides to transition to new storage architectures. With existing file system designs,

when new storage concepts are introduced it requires modification of the project code and

re-training of developers to learn the new storage concepts. For this case study we will

look at how a project can add new storage architectures to the system without requiring a

complete redesign of their code.

We will use the same real world example of LAADS for this study. Since MODAP-

S/LAADS has been running for decades the code primarily uses concepts of block based

storage. It is written to work with files and directories and uses POSIX calls However, now

that object based storage systems have matured and provide new features, such as handling

hundreds of billions of files and providing better redundancy, it is would be desirable to add

such storage architecture to the project. In this case study we will look at the problem of

incorporating a new storage architecture and how the MODAPS/LAADS project addressed

it via LVFS.

Switching architectures after supporting an older one for decades is a complicated

task. Over time a project’s code tends to grow to add new features, handle extreme cases,

and requires changes to handle the growth of the project. As a result switching or adding

new architectures to a long running project can be very time consuming or even impossible.

In the case of MODAPS/LAADS this complication comes from decades of using block

based storage and transitioning to more modern storage architectures. Rewriting decades

of code to support a new storage architecture would require months of code rewrite and

76

months of testing to support.

While some projects might decide spending many months to add support for a new

storage protocol acceptable, this becomes more complicated due to the fact that the object

store environment is still in its infancy. As a result, there are many competing protocols in

the wild. The HGST systems utilize Amazon’s S3 protocol but DDN’s WOS and Seagate’s

Kinetic drives utilize their own protocols. Clearly supporting all of these protocols would

be very costly in terms of time and cost spent to add support for each protocol.

As an alternative solution, a project could decide to not support all protocols but only

utilize one. Depending on the size of the project, this could be a viable solution. If the

project is only a small project in the data center they are not likely to have much influence

on the data center’s architecture decision. Even for a large project this would not be an easy

decision. As the object store environment matures the decisions made early on might end

up being the wrong ones and the competing protocols might win over the protocol selected.

Finally, as was the case with the Terrestrial Information Systems Lab, the purchase

of HGST object store drives was part of a bigger plan to create a hybrid storage architec-

ture to try out different architectures and evaluate which are better and to create a hybrid

storage architecture to better insulate against vendor lock in. Using a hybrid storage ar-

chitecture would have been impossible to implement if it would have required all projects

within the Terrestrial Information Systems Lab to implement the code changes for each

new architecture.

7.1 Problem Description

In this scenario, the Terrestrial Information Systems Lab has approximately 3

Petabytes of new storage space in the form of HGST’s Active Archive System. This stor-

age utilizes Amazon’s S3 protocol to expose the storage as an object store. The goal is to

take advantage of this new storage architecture and the new features it offers such as object

based access, erasure encoding, and high bandwidth for simultaneous access.

With standard storage methods utilizing this new storage architecture would require

one of three possible options. The projects wishing to utilize this storage would have

to develop their own implementation of the S3 protocol, incorporate third party libraries

which implement the S3 protocol into their code, or utilize third party applications outside

of their coding environment.

77

The first two options are not desirable because they require significant code changes to

projects. For decades projects running at the Terrestrial Information Systems Lab have used

block based systems as their underlying storage. Therefore, all code has been developed

relying on standard POSIX calls and directory structures. The addition of a new concept,

such as object based storage, would require major changes to code to support. Additionally,

since object based storage is not fully replacing the vast block based architecture in play,

the old POSIX based code could not be abandoned either. Implementing the first option

would require a lot of code development and maintenance. Implementing option two would

only be feasible if libraries for all languages used were available and stable.

The third option would address the language compatibility problems but would still

suffer from increasing code complexity to use different code execution paths depending on

where data was being read from or written to. Further, the use of third party executables

would add additional overhead since the executables would not be running in the same

process environment as the project code. This would complicate issues in that the project

code would have to spawn a new process to copy the files from the remote S3 storage

to local storage, process the input, produce new output or modify the existing input, and

finally transfer the new output and potentially the input back to S3 storage or other storage.

In addition to code complexity for the project comes the transition strategy for the data.

Once a dataset has been identified to be moved to the new storage all new data belonging

to that dataset needs to be stored on the new storage. However, the old data will continue to

reside on the old storage architecture and be slowly moved to the new storage. The project

would require to maintain some sort of table to identify where each file resides.

In section 7.2 we will discuss how such a transition was done using LVFS and how us-

ing LVFS avoided all the problems described above. We will then look at the performance

of transitioning to the processing system and processing new files to the new architecture

in section 7.3. We will describe our conclusions in section 7.4.

7.2 LVFS Implementation

Figure 7.1 shows the desired infrastructure layout at the Terrestrial Information Sys-

tems Lab after adding S3 storage. Multiple block based storage systems exist and contain

the existing products. The new S3 storage has been added and all new files of certain prod-

ucts should be stored in the S3 storage system. The distribution systems should retrieve

78

S3 Storage Block Storage Block Storage

Distribution
LVFS

Production
LVFS

. . .

Figure 7.1: Terrestrial Information Systems Lab infrastructure after addition of S3 storage

files from the block based or S3 storage. The products identified for moving to the S3 stor-

age were all products based on the MERIS and Sentinel instruments. In addition to moving

new files from those instruments to the S3, existing files already stored on the block based

storage should be moved to the S3 storage as well.

The implementation of the S3 storage architecture was done in two stages. The first

stage was to develop a content plugin for LVFS which communicated over the S3 proto-

col. The next was to create an LVFS configuration which allowed for a slow transition of

products in LAADS to the S3 storage without any downtime or any changes to existing

MODAPS/LAADS code.

As described in section 5.2.7, a content plugin needs to implement between three

and five functions in order to function correctly. If the content plugin only provides read

support it only needs to create the three functions schemes, retrieve, and stat. However,

since MODAPS will be both writing and reading from S3 storage seamlessly we will need

to additionally implement the writable and store functions.

The schemes plugin specifies which string, called a scheme, at the beginning of the

URI will be assigned to this plugin. In this case we chose the string s3 so that any URI

beginning with s3:// will be handled by this content plugin. We utilized the libs3 (bji 2017)

open source library to provide the S3 communication protocol. The implementation of the

remaining of the S3 plugin consisted of translating the LVFS calls into libs3 calls and vice

versa. Overall the plugin took approximately one week to write and debug and consisted

of 266 lines of code including formatting and comments.

We used two different configurations for LVFS. One configuration was used for the

production system with write support and the other was used for the distribution system

with read only support for additional security. Listing 7.1 shows a partial configuration

79

file for LVFS on the production machines which will be storing new Sentinel and MERIS

products. Lines 1–3 and 9–11 create a total of 6 directories at the top level. These directo-

ries are the names of the different MERIS and Sentinel products like MER FRS 1P. Lines

2 and 10 setup the ACL permissions which specify that the unix group prodGroup will be

allowed to write to these directories and everyone else will only be allowed to read. Lines

5–8 and 13–16 define the LVFS settings to let LVFS know where to retrieve and store files.

Since we wish to store files on the S3 storage the locator is defined with the s3 scheme on

line 8 and 16. The format of the URI is s3://<host>/<bucket>/<file>. In our case the

bucket is a unique number which represents a versioning information used by LAADS for

distribution followed by the product name. Because the product names used by MODAPS

for production are not compatible with S3 bucket names we use LVFS’ Lua functionality to

transform the product name into an S3 bucket with valid characters. In this case we replace

the character with - and we convert all upper case characters to lower case. With this con-

figuration the production system can store Sentinel and MERIS products into LVFS simply

by using the unix cp utility to copy the files into the LVFS path or by directly creating the

files inside the LVFS path.

1 - type: Dir

2 acls: [’g:prodGroup:rwx’]

3 name: [MER_FRS_1P, MER_FRS_BP, MER_RR__1P, MER_RR__2P]

4 children:

5 - type: File

6 allowAll: true

7 acls: [’g:prodGroup:rwx’]

8 locator: ’s3://10.0.0.${random(0,2)}/491-${to_lower(replace(path

[1], "_", "-"))}/${0}’

9 - type: Dir

10 acls: [’g:prodGroup:rwx’]

11 name: [S3A_OL_1_EFR, S3A_OL_1_ERR, S3A_SL_1_RBT]

12 children:

13 - type: File

14 allowAll: true

15 acls: [’g:prodGroup:rwx’]

16 locator: ’s3://10.0.0.${random(0,2)}/450-${to_lower(replace(path

[1], "_", "-"))}/${0}’

Listing 7.1: LVFS Configuration storing MERIS and Sentinel data

80

Listing 7.2 shows the partial configuration for LVFS to read Sentinel and MERIS data

from either block or S3 storage. This configuration is appended to the configuration in

Listing 6.1 after line 29. This new configuration change utilizes LVFS any functionality

described in section 5.1.5. The first change is to apply a condition to the original file list-

ings. This condition checks if the path includes a the number 450 or 491 which represent

products for MERIS or Sentinel. If the path includes any other value the original configura-

tion for LVFS is used. If, however, the path includes either of those values then LVFS will

skip the original configuration from lines 20–29 and use the configuration from lines 2 – 12

from Listing 7.2. This configuration is nearly identical as the original one. The exception

is that this configuration uses two locators with the any specifier. This configuration tells

LVFS to use two possible locations for MERIS and Sentinel products. The first location is

identical to the location pattern used for all other products. The second, alternate, location

is the URI for the S3 storage. LVFS will first attempt the default block based storage for

files and, if those fail, will fall back to S3. Once more than half of the products are located

on S3 storage there would be a small performance gain to swap the two locators so that

LVFS will attempt a download from S3 first. This method is not the only way to configure

LVFS. A less verbose but slightly less efficient way would be to use the original configura-

tion and always use the two locators with the any specifier. The results would be the same

but for MERIS and Sentinel products LVFS would always first attempt file retrieval from

block storage first before falling back to S3.

1 condition: ("${3}" ˜= "450" and "${3}" ˜= "491")

2 - type: SQLFile

3 query:

4 statement: select "FileName" as name, "FileSizeBytes" as size,

extract(epoch from "OnDiskTime") as time from "getFM_ArchiveDir

"($1, $2, $3::timestamp + $4::interval - ’1 day’::interval, $5::

timestamp + $6::interval)

5 bindings: ["${-3}", "${-4}", "${-2}-01-01", "${-1} day", "$

{-2}-01-01", "${-1} day"]

6 locator:

7 any:

8 - deferred: true

9 db: PostgresDB

10 statement: select ’http://’ || "Host" || ’:8080/f’ || "Disks"."

DiskId" || ’/lads/archive/’ || $1 || ’/’ || $2 from "Disks",

81

"FilesOnDisk", "File" where "File"."FileName"=$3 and "

FilesOnDisk"."FileId"="File"."FileId" and "Disks"."DiskId"="

FilesOnDisk"."DiskId"

11 bindings: ["${-3}", "${0}", "${0}"]

12 - s3://10.0.0.${random(0,2)}/${-4}-${to_lower(replace(path[3], "_

", "-"))}/${0}

Listing 7.2: LVFS Configuration retrieving MERIS and Sentinel data

The above configurations setup LVFS for the long term solutions of putting new prod-

ucts into S3 and retrieving products from S3 and block storage. Once all products have

been transferred to block storage the LVFS configuration can be simplified by removing

the block storage locator (lines 7–11 from Listing 7.2) definition. The final aspect is to

write a script to transfer existing products from block storage to S3. A simple way would

be to write a script which reads the files from LVFS and write back to LVFS. A temporary

host was setup with an LVFS configuration similar to Listing 6.1. The configuration in

Listing 7.1 was prepended to that configuration. A simple recursive copy can now transfer

existing products into S3.

7.3 Performance

We tested LVFS performance by measuring the network throughput, memory usage,

CPU usage, and the LVFS backlog while transferring files from block storage to S3. The

hardware used was the same as the one for the use case example in section 6 and is de-

scribed in Table 6.1.

Figure 7.2a shows the network data rate for incoming and outgoing data on the host

performing the reads and writes. The graph covers a 24 hour period while files were being

copied from block storage to S3. From the graph we can see LVFS was able to hold a

consistent average receive rate of approximately 750 Mbps. Simultaneously, LVFS was

holding an average transmit rate of 750 Mbps. We can see that there was a greater variance

in transmission rates than read rates. This is due to the fact that LVFS will transmit data

only in consistent objects to the S3 storage. Because the block storage system is slower

than the new S3 storage, LVFS would read at a consistent rate from block storage but then

would send the data in faster bursts to S3 followed by periods of less activity while it waited

for more data from the block storage. Additionally, we can see that transmission rate would

82

achieve and briefly exceed the advertised transmission rate of the network card.

Figure 7.2b shows the CPU load for the same 24 hour time period. The average

1, 5, and 15 minute loads of the system are around 0.3%. Similarly, Figure 7.2c shows

that LVFS is utilizing nearly 100% of the 128GB of RAM available. However, LVFS is

utilizing it only as cached memory. Should any other process require memory the Linux

kernel would re-allocate the desired memory to other processes. In other words, LVFS is

utilizing as much unused memory as possible without affecting the memory requirements

of other processes. Finally, Figure 7.2d shows the on-disk cache used by LVFS to store

copies of the files being transitioned from block to S3 storage for the 24 hour period. LVFS

was configured to use up to 80% of the disk space assigned as cache. We can see that LVFS

was utilizing as much cache as possible and when exceeding the 80% barrier LVFS would

reduce its usage to 70%.

Figure 7.2e shows what we call the LVFS backlog. These are files that have been

flagged as having local modifications which either are in the process of being transferred to

the remote storage or will be transferred once there are no local clients making modifica-

tions to the file. The figure shows that, on average, five files had local modifications. Since

there were four threads reading files from the block storage that means on average LVFS

was only transferring a single file to S3 and waiting for four files to finish being read from

block storage. This confirms as well that the S3 storage is faster than the block storage.

The graph also shows occasionally the backlog increasing to nine or ten files. This is due

to all threads sometimes finishing reading files from block storage simultaneously while

LVFS is busy with uploading another set of files. We can see from the quick drops that

LVFS quickly catches up with the backlog and the numbers return to four or five files.

7.4 Conclusion

From the performance results we can see that LVFS write support is more than capable

of keeping up with the read support. The previous use case showed that LVFS is capable

of performing reads as fast as NFS as long as reasonable block sizes are used to avoid the

overhead of running in user space. While LVFS is just as fast as other storage systems

it performs automatic checksumming to ensure no data corruption has happened during

network transfer.

While no loss in performance is nice in addition to better protection against data cor-

83

(a) Network Throughput

(b) CPU Usage (c) Memory Usage

(d) Cache Usage

(e) Backlog

Figure 7.2: Network, CPU, Memory, Cache, and Backlog metrics during transfer of files
from block storage to S3

84

ruption, the real strength of LVFS is the ability to provide the necessary flexibility to add

storage system with brand new concepts designed decades after a project’s inception with-

out requiring any changes in the project’s code. We showed a use case where S3 storage

was added to an existing project without making any changes to the project’s code. In ad-

dition, existing files were transferred to the S3 storage from the block storage with minimal

effort and no outage time. All of this was achieved without the loss of performance.

85

Chapter 8

CASE STUDY: ON-DRIVE MAPREDUCE

The increase in processor performance, the decrease in processor size and power re-

quirement combined with the increase in data intensive computing has created a push to

move computation as close to data as possible. This push was predicted by many re-

searchers as early as the 1990’s (Acharya, Uysal, & Saltz 1998; Riedel, Gibson, & Falout-

sos 1998). While CPU technology needed to catch up, methods such as the MapReduce

programming model were developed to move computation to computers closer to the data

(Dean & Ghemawat 2004; Zhao & Pjesivac-Grbovic 2009). On top of this, data centers

have been running into internal network bottlenecks and network congestion. The com-

putation power within data centers is often sufficient for the tasks at hand, but these com-

putation resources can’t be fed with data fast enough because of the network congestion

bottleneck. Thus, the logical step to this problem is to either increase network speeds or

reduce the amount of data communicated over the network. Increasing network speeds is

often associated directly with an increase in total storage system costs, as storage servers

need to either upgrade to new, faster, and more expensive hardware, or they have to build

their storage systems with those more expensive networks in the first place. For the purpose

of helping to reduce storage system costs for clients, and to help to alleviate the network

speed bottleneck, Active Drive focuses on the latter of the two solutions, via reduction

or filtering of the data before it is sent out on the network. In this paper we explore the

next logical step in this evolution in computing; moving computation directly to storage.

We will show how to utilize Seagate’s Active Drives to perform general purpose parallel

computing using the same MapReduce programming model developed by Google.

The MapReduce programming model facilitates parallel programming and compu-

tation close to data by borrowing two concepts from functional programming: the Map

86

function, which processes input data and produces key/value pairs as output, and the Re-

duce function, which processes the key/value pairs from the Map output and produces final

key/value results as output. With this design many algorithms can be adapted to be run

in the MapReduce programming model (Chu et al. 2006). Such parallelization achieves

quicker computation than other methods by attempting to reduce the amount of data that is

moved between computers.

In this case study we will expand LVFS to utilize the Seagate Active Drives for storage

as well as enable the MapReduce programming model to perform general-purpose comput-

ing directly on a drive. We will show our MapReduce implementation on Seagate Active

Drives, and we will show our results: a significant reduction in the amount of data leaving

the drive to perform several common algorithms used in the Earth Science field of research.

The rest of the paper is outlined as follows. In section 8.1 we describe the design

of the Active Drives and our software interface to them. Section 8.2 we briefly describe

two common Earth Science algorithms that we implemented using MapReduce model on

Active Drives. Section 8.3 we show the performance results from our experimental runs.

Finally, we will provide a summary and conclusion in section 8.4.

8.1 Design

We used Seagate Kinetic Drives with modified software and firmware to allow for on

drive computation. The Kinetic Drives are Ethernet-enabled object-store drives which use

the open source Kinetic Protocol to execute drive operations.

Each Kinetic Drive has an extra ARM processor and an extra RAM chip on the PCBA

which is connected to the outward facing Ethernet interface. This chip also runs a small

Linux kernel which is capable of executing a full fledged application. The Kinetic Protocol

was modified to allow for arbitrary program execution.

To integrate the Kinetic Drives with LVFS we implemented a new content module for

LVFS capable of communicating with the drives using the Kinetic protocol. This module

consisted of approximately 100 lines of code. We additionally developed a library to en-

able the MapReduce programming paradigm to be utilized on the drives. This library is

responsible for distributing the map function to each drive, triggering its execution, and

performing the tasks done by the MapReduce paradigm, such as sorting the output from

the map function, grouping values together and passing the results to the reduce function.

87

8.2 Algorithms

To test the viability, we used several common real world algorithms used in the field

of Earth Science. Our input data source was the Orbiting Carbon Observatory-2 (OCO-

2), a NASA mission launched in 2014. The instrument measures column average CO2 as it

orbits the earth (Pollock et al. 2010; Crisp et al. 2004). Each input measurement consists of

the Latitude, Longitude, measurement time, and CO2 radiance value in addition to a quality

flag indicating the quality of the measurement. The algorithms we ported to MapReduce

on Active Drives are subsetting and gridding.

Subsetting is a reduction in data which involves only returning measurements that

are of interest. Common ways to subset a dataset include spatial and temporal. As the

name implies, spatial subsetting involves pruning the input to only include data within

the bounding box of interest. Similarly, temporal subsetting involves pruning data for time

periods of interests. Gridding involves converting measurements from an irregularly spaced

input data to an output that consists of regularly spaced grid.

Subsetting is implemented as a straightforward scanning of the data. The pseudo code

for subsetting is shown in Algorithm 3. Each measurement point is read in as input, the

Lat/Lon coordinates are checked to ensure they fall within the bounding box, the measure-

ment time is checked as the time range of interest, and finally the quality flag is checked to

ensure the measurement is of good enough quality for use. If all checks pass, the input is

written out as output repeating for the next line.

The gridding algorithm, shown as pseudo code in Algorithm 4, is implemented by

computing a grid cell ID based on the Lat/Lon coordinates obtained for each measurement

point of the input. For each grid cell we maintain two values; the first which is a summation

of all measurements for this grid cell and a count of measurements which fell into this grid

cell. Once all input has been processed, the summation and count values for each grid cell

for which we computed values are returned as output. The output key is the grid cell ID

and the output value is a concatenation of the summation and count values. The reduce

algorithm receives all these key/value pairs from all map functions grouped by the key.

For each grid cell ID, the summation and the counts are added up and the total summation

value is divided by the total count. A more detailed look at this algorithm and comparisons

non-Hadoop based ways of performing a simple gridding is explored in (Golpayegani &

Halem 2009).

88

The MapReduce algorithm is converted to work with Active Drives by linking the

reduce function into an executable to be run on the host compute node. In addition to

the reduce function, the host compute node’s executable consists of two managerial tasks.

First, it is responsible for triggering the execution of map function on each Active Drive,

second it is responsible for gathering the output of all map functions, sorting and grouping

them by key and feeding the result to the reduce function.

The map function is compiled as an applet for the Active Drive and stored on each

Active Drive ahead of the computation. The MapReduce task is triggered by the execution

of the reduce executable on the host compute node. The first managerial task part of the

reduce executable will identify all Active Drives which will be involved in the MapReduce

computation and will trigger the startup of the Map applets on each drive. It will then

monitor the applets for completion. After completion, the second managerial code will

gather the output of all Map applets and feed them as input to the Reduce function. The

output of the Reduce function is then written as the final result.

Algorithm 3 Spatial and Temporal subsetting
while INPUT do

if Lat > LatLowerBound && Lat < LatUpperBound then
if Lon > LonLowerBound && Lon < LonUpperBound then

if time > StartT ime && time < EndTime then
if quality > AcceptableQualityV alue then

print OUTPUT
end if

end if
end if

end if
end while

8.3 Performance

We measured two performance aspects of Hadoop and the Active drives; (1) the time it

took to store data into HDFS or the Active drives and (2) the time to perform the subsetting

and gridding operations. We used the Linux time utility to measure the real (wall clock)

time for each of those aspects. On the Active drives we split the 2GB CSV file into 1MB

89

Algorithm 4 Gridding
while INPUT do

if quality > AcceptableQualityV alue then
Compute grid cell from Lat/Lon;
grid[grid cell] += measurement;
gridCount[grid cell]++;

end if
end while
for all gridcell ∈ grid do

output grid[grid cell] / gridCount[grid cell];
end for

of Nodes
Upload Time Subsetting Time Gridding Time

Hadoop Active Drive Hadoop Active Drive Hadoop Active Drive
2 191 41 56 294 93 644
4 220 24 53 153 92 332
8 224 21 36 74 72 178

16 233 22 39 44 71 90
24 245 21 37 27 73 64

Table 8.1: Upload and Compute times for Hadoop and Active Drives in seconds.

blocks before uploading to the drives. On Hadoop, the entire 2GB CSV file was uploaded to

HDFS and it was left to HDFS to perform the chunking and distribution to each DataNode.

Time measurements were taken using the Linux time utility and the real (wall clock)

time was used for performance measurements. The maximum object size on the Active

Drives is 1MB. The 2GB CSV file was split into 1MB blocks and uploaded to an Active

Drive. For Hadoop, the 2GB CSV file was uploaded as a single file and it was left to

Hadoop to perform the round robin chunking to each DataNode.

The runtimes are tabulated for easy reference in Table 8.1. For the subsetting experi-

ment, the Active Drives performed computations on 2.4GB of data but only 3.1MB of data

was communicated from the drives to the host. For Hadoop, all 2.4GB had to be read from

each local drive to the host for computation and the same 3.1MB were then communicated

from Hadoop back for retrieval.

Figure 8.1 shows the upload times between Hadoop and Active Drives between 2

and 24 nodes. We can see that the Active Drives are significantly faster than HDFS. It

90

2 4 8 16 24
0

100

200

300

191

220 224
233

245

41

24 21 22 21

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

Hadoop
Active Drive

Figure 8.1: Upload times to Hadoop (HDFS) and Active Drives

takes approximately 41 seconds to upload 2GB of data to two Active Drives. This time

reduces to approximately 21 seconds when using 24 drives. For HDFS the upload times

are 191 seconds and 245 seconds for two and 24 HDFS nodes. We believe the increase in

upload time in the Hadoop case is due to the additional network communication necessary

between the DataNodes and the NameNode. As more nodes are added to the Hadoop, the

NameNode becomes a bottleneck needing to coordinate with more DataNodes.

Figure 8.2 shows the time it took Hadoop and the Active Drives to perform subsetting

using code described in algorithm 3. Hadoop’s computation show slight improvements as

the number of nodes is increased. The Active Drives, however, show significant improve-

ments as their numbers are increased. As the number of drives are doubled the compute

time is halved. At 24 nodes Hadoop performed the subsetting in 37 seconds while the

Active Drives performed the same computation in 27 seconds.

Figure 8.3 shows the gridding times for the algorithm described in 4. Once again we

can see some improvements from Hadoop between two and eight nodes. After eight nodes,

however, there is no significant changes in the Hadoop performance for gridding. For the

Active Drives, the compute time continues to halve between two and 24 nodes. At 24 nodes

the Hadoop runtime is 73 seconds compared to the Active Drive’s runtime of 64 seconds.

91

2 4 8 16 24
0

100

200

300

56 53

36 39 37

294

153

74

44

27

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

Hadoop
Active Drive

Figure 8.2: Subsetting times for Hadoop and Active Drives for different number of nodes

2 4 8 16 24
0

200

400

600

93 92
72 71 73

644

332

178

90
64

Number of Nodes

Ti
m

e
(s

ec
on

ds
)

Hadoop
Active Drive

Figure 8.3: Gridding times for Hadoop and Active Drives for different number of nodes

92

8.4 Conclusion

Based on the results for this specific case study, we conclude that the Active Drive

BlueSky chassis uploaded the data at 10 times the speed of Hadoop when comparing the

best case numbers for each. For the same number of Hadoop and Active Drive nodes, the

Active Drives were nearly 12 times faster for 24 nodes and 5 times faster for 2 nodes. The

computation times for Active Drives and Hadoop were nearly identical for 24 nodes.

An additional benefit of the Active Drives is the reduction in the amount of data com-

municated out of the drives. In the case of the Hadoop, the entire 2GB of data was trans-

ferred to HDFS. During computation all 2GB of data were read back from HDFS, and

hence the drives. With the Active Drives, after storing the 2GB, most of the data never

left the drives. Only a few MB of data was transferred out of the drives after the on-drive

map functions significantly reduced the data of interest. Additionally, more investigation is

needed in explaining Hadoop’s strange behavior in requiring more time to store data as the

number of Hadoop nodes are increased.

We conclude based on these results that Active Drives are likely to be a good com-

pliment to a compute system when there is significant subsetting/filtering to be achieved

via simple computations. The low cost and low compute power on each drive would not

be a complete replacement of a traditional compute system but rather an augmentation of

it. The standard compute systems can perform the more complex and compute intensive

tasks while offloading the easy to distribute and relatively easy compute tasks to the Active

Drives.

Adopting a MapReduce environment appears to be a good methodology for achieving

such a design with the Map functions performing the filtering and the reduce function

performing the more complex tasks. Further research is needed to determine at what level

of computational complexity the transition from Active Drive to regular computer is most

beneficial.

93

Chapter 9

CONCLUSIONS

In this thesis, we developed the Lightweight Virtual File System, a reference imple-

mentation for a new file system concept in which a plugin framework controls the behavior

and capabilities of the file system. We showed the ease with which such an implementation

enables LVFS to merge older storage technologies with new ones. We tested LVFS with 3

use cases to show

which is flexible in dealing with evolving technologies and competing requirements

between data centers and projects running in those data centers. We developed a plugin

based file system which allowed for easy expansion of the file system capabilities and

functionality. This plugin architecture enables LVFS to merge older storage technologies

with newer ones without altering code accessing files on either storage technologies for

the purpose of using both technologies or for smoothly transitioning to the new technol-

ogy. We developed a YAML based configuration architecture designed for the flexibility

to represent nearly any scenario of file system layout. We showed that even with the addi-

tional flexibility and overhead associated with this design, LVFS fully utilize the network

hardware it runs on. LVFS was tested in 3 scenarios; (1) Data Distribution, (2) Data Mi-

gration, and (3) On-Drive MapReduce. With these case studies we validated our thesis

statement showing our plugin framework combined with the configuration design of LVFS

we are capable of creating a flexible and fully functional file system with contributions

which include: (1) A plugin framework, (2) Metadata Replacement, (3) Dynamic views,

(4) On-Drive MapReduce, (5) Platform agnostic file content, and (6) Configuration.

Plugin Framework
We designed a plugin framework capable a full featured file system. LVFS assigned

all required POSIX functions for a full featured file system to different plugin cat-

94

egories. LVFS core code acted as the layer coordinating communication between

these plugins to create a file system.

Metadata Replacement
We successfully removed the metadata component of a file system and relied entirely

on metadata provided by the user. Using the plugin framework we successfully de-

signed a metadata plugin category, which can obtain all necessary information from

any metadata source, provided a plugin has been developed for it.

Dynamic views
We successfully showed the ability to dynamically create directory structures from

the metadata plugins. We were able to easily change directory structures by changing

the LVFS configuration file.

On-Drive MapReduce
We successfully developed a framework for performing On-Drive MapReduce. We

developed a plugin which was capable of storing on state of the art active drives and

were able to design a generic MapReduce framework for the drives without requiring

users to write drive specific code.

Platform agnostic file content
We showed LVFS capabilities to retrieve and store files from incompatible sources

in a unified layout. New content plugins create the ability for LVFS to handle new

sources and treat all sources equally for the file system users.

Configuration
We showed LVFS’ ability to change capabilities with its configuration design. With

changes in configuration, LVFS can add new plugins which add new functionality to

LVFS.

9.1 Future Work

For quick development LVFS utilized the Fuse library. The use of Fuse allowed for

fast code deployment since no kernel modifications were necessary. This, however, puts

LVFS at a performance handicap compared to other file systems. To remove this handicap

95

we plan on moving LVFS into the Linux kernel once most LVFS features have matured. We

believe this change will have significant performance improvements in LVFS particularly

when small block sizes are used.

LVFS caching strategies is based on a flat caching structure. Files are stored in a single

cache module and retrieved out of it. We plan on exploring a hierarchical caching strategy

in which multiple layers of cache are utilized for better performance. LVFS could use small

but very fast Solid State Disks for more frequently used files while using bigger but slower

hard drives for less frequent files.

LVFS needs to develop better features for on-drive computation. We have shown the

viability of performing on-drive computation using MapReduce. However, vanilla MapRe-

duce computation is not suitable for all types of computations. For example, algorithms that

require iteration are not suitable for standard MapReduce algorithms. Expanding LVFS to

better support on-drive computation and support other distributed compute modules for

on-drive computation will expand the class of algorithms capable of using LVFS.

In addition to having a hierarchical cache structure, LVFS needs to support a tier

based storage architecture. With such a system LVFS could move less frequently used files

to slower but more abundant storage and keep more frequently used files on faster but more

expensive files. With such a system LVFS could utilize a tier based system ranging from

tape storage to Non-volatile random access memory for very fast access and high amount

of storage capacity.

We showed the ease with which LVFS is capable of transitioning between storage

architectures. However, some of the necessary steps for transitioning require manual in-

terventions, such as when copying files from old storage architecture to new. A good

contribution would be to develop a configuration design inside LVFS’ existing configura-

tion structure such that this copying can be performed automatically with proper failure

detection.

REFERENCES

[Acharya, Uysal, & Saltz 1998] Acharya, A.; Uysal, M.; and Saltz, J. 1998. Active disks:

Programming model, algorithms and evaluation. ACM SIGPLAN Notices 33(11):81–91.

[Amazon Web Services, Inc. 2013] Amazon Web Services, Inc. 2013. Amazon S3, Cloud

Computing Storage for Files, Images, Videos. [Online; accessed 09-Oct-2013].

[Azar et al. 1999] Azar, Y.; Broder, A. Z.; Karlin, A. R.; and Upfal, E. 1999. Balanced

allocations. SIAM journal on computing 29(1):180–200.

[Ben-Kiki, Evans, & Ingerson 2005] Ben-Kiki, O.; Evans, C.; and Ingerson, B. 2005.

Yaml ain’t markup language (yaml) version 1.1. yaml. org, Tech. Rep.

[Berners-Lee, Fielding, & Masinter 1998] Berners-Lee, T.; Fielding, R.; and Masinter, L.

1998. Uniform Resource Identifiers (URI): Generic Syntax. RFC 2396, RFC Editor.

[Berners-Lee, Fielding, & Masinter 2005] Berners-Lee, T.; Fielding, R.; and Masinter, L.

2005. Uniform Resource Identifiers (URI): Generic Syntax. RFC 3986, RFC Editor.

[bji 2017] bji. 2017. libs3. [Online; accessed 1-Jun-2017].

[Borthakur 2008] Borthakur, D. 2008. HDFS architecture guide. [Online; accessed 14-

Jul-2015].

[Brumfiel 2011] Brumfiel, G. 2011. Down The Petabyte Highway. Nature 469(20):282–

283.

[Chu et al. 2006] Chu, C.-T.; Kim, S. K.; Lin, Y.-A.; Yu, Y.; Bradski, G.; Ng, A. Y.; and

Olukotun, K. 2006. Map-reduce for machine learning on multicore. In NIPS, volume 6,

281–288. Vancouver, BC.

[Crisp et al. 2004] Crisp, D.; Atlas, R.; Breon, F.-M.; Brown, L.; Burrows, J.; Ciais, P.;

Connor, B.; Doney, S.; Fung, I.; Jacob, D.; et al. 2004. The orbiting carbon observatory

(oco) mission. Advances in Space Research 34(4):700–709.

96

97

[Dabek et al. 2002] Dabek, F.; Zeldovich, N.; Kaashoek, F.; Mazières, D.; and Morris,

R. 2002. Event-driven programming for robust software. In Proceedings of the 10th

workshop on ACM SIGOPS European workshop, 186–189. ACM.

[DataDirect Networks 2017] DataDirect Networks. 2017. WOS OBJECT STORAGE.

http://www.ddn.com/download/resource_library/brochures/

object_storage/ddn-wos-objectstorage-brochure_2.pdf.

[Dean & Ghemawat 2004] Dean, J., and Ghemawat, S. 2004. Mapreduce: Simplified data

processing on large clusters. In Proceedings of the 6th Conference on Symposium on

Opearting Systems Design & Implementation - Volume 6, OSDI’04, 10–10. Berkeley,

CA, USA: USENIX Association.

[DeCandia et al. 2007] DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Laksh-

man, A.; Pilchin, A.; Sivasubramanian, S.; Vosshall, P.; and Vogels, W. 2007. Dynamo:

Amazon’s highly available key-value store. In SOSP, volume 7, 205–220.

[Delmerico et al. 2009] Delmerico, J. A.; Byrnes, N. A.; Bruno, A. E.; Jones, M. D.;

Gallo, S. M.; and Chaudhary, V. 2009. Comparing the performance of clusters, Hadoop,

and Active Disks on microarray correlation computations. In High Performance Com-

puting (HiPC), 2009 International Conference on, 378–387. IEEE.

[Folk et al. 2011] Folk, M.; Heber, G.; Koziol, Q.; Pourmal, E.; and Robinson, D. 2011.

An overview of the hdf5 technology suite and its applications. In Proceedings of the

EDBT/ICDT 2011 Workshop on Array Databases, 36–47. ACM.

[Forster 2017] Forster, F. 2017. collectd The system statistics collection daemon.

https://collectd.org/.

[Fryer et al. 2012] Fryer, D.; Sun, K.; Mahmood, R.; Cheng, T.; Benjamin, S.; Goel, A.;

and Brown, A. D. 2012. Recon: Verifying File System Consistency At Runtime. In

Proceedings of the 10th USENIX conference on File and Storage Technologies, 7–7.

USENIX Association.

[Gantz & Reinsel 2012] Gantz, J., and Reinsel, D. 2012. The digital universe in 2020:

Big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC

Analyze the Future.

http://www.ddn.com/download/resource_library/brochures/object_storage/ddn-wos-objectstorage-brochure_2.pdf
http://www.ddn.com/download/resource_library/brochures/object_storage/ddn-wos-objectstorage-brochure_2.pdf
https://collectd.org/

98

[Golpayegani & Halem 2009] Golpayegani, N., and Halem, M. 2009. Cloud computing

for satellite data processing on high end compute clusters. In Cloud Computing, 2009.

CLOUD’09. IEEE International Conference on, 88–92. IEEE.

[Grafana Labs 2017] Grafana Labs. 2017. The open platform for beautiful analytics and

monitoring. https://grafana.com/.

[Group 2014] Group, T. O. 2014. DCE – OpenDCE – Portal. http://www.

opengroup.org/dce/.

[Grünbacher 2003] Grünbacher, A. 2003. POSIX Access Control Lists on Linux. In

USENIX Annual Technical Conference, FREENIX Track, 259–272.

[Han et al. 2011] Han, J.; Haihong, E.; Le, G.; and Du, J. 2011. Survey on nosql database.

In Pervasive computing and applications (ICPCA), 2011 6th international conference

on, 363–366. IEEE.

[Honicky & Miller 2004] Honicky, R., and Miller, E. L. 2004. Replication under scalable

hashing: A family of algorithms for scalable decentralized data distribution. In Paral-

lel and Distributed Processing Symposium, 2004. Proceedings. 18th International, 96.

IEEE.

[Hua et al. 2009] Hua, Y.; Jiang, H.; Zhu, Y.; Feng, D.; and Tian, L. 2009. SmartStore: A

New Metadata Organization Paradigm with Semantic-Awareness for Next-Generation

File Systems. In High Performance Computing Networking, Storage and Analysis, Pro-

ceedings of the Conference on, 1–12. IEEE.

[Ierusalimschy, De Figueiredo, & Celes Filho 1996] Ierusalimschy, R.; De Figueiredo,

L. H.; and Celes Filho, W. 1996. Lua-an extensible extension language. Softw., Pract.

Exper. 26(6):635–652.

[Inc. 2017] Inc., M. 2017. Mongodb for giant ideas. [Online; accessed 9-May-2017].

[Jeger & Pautasso 2008] Jeger, M. J., and Pautasso, M. 2008. Plant disease and global

change–the importance of long-term data sets. New Phytologist 177(1):8–11.

https://grafana.com/
http://www.opengroup.org/dce/
http://www.opengroup.org/dce/

99

[Jones 2009] Jones, M. 2009. Anatomy of the Linux virtual file sys-

tem switch. https://www.ibm.com/developerworks/library/

l-virtual-filesystem-switch/. [Online; Accessed 5-May-2017].

[Karlsson et al. 2001] Karlsson, J. S.; Pham, T.; Lal, A.; and Leung, C. 2001. Ibm db2 ev-

eryplace: A small footprint relational database system. In 2013 IEEE 29th International

Conference on Data Engineering (ICDE), 0230–0230. IEEE Computer Society.

[Keeton, Patterson, & Hellerstein 1998] Keeton, K.; Patterson, D.; and Hellerstein, J.

1998. The case for intelligent disks (idisks). In Sigmod Record, 27(3):42–52.

[Labs 2017] Labs, R. 2017. Redis. [Online; accessed 9-May-2017].

[Lakshman & Malik 2010] Lakshman, A., and Malik, P. 2010. Cassandra: A Decentral-

ized Structured Storage System. ACM SIGOPS Operating Systems Review 44(2):35–40.

[Leavitt 2010] Leavitt, N. 2010. Will nosql databases live up to their promise? Computer

43(2).

[Leung et al. 2009] Leung, A. W.; Shao, M.; Bisson, T.; Pasupathy, S.; and Miller, E. L.

2009. Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage Systems. In

Proccedings of the 7th conference on File and storage technologies, 153–166. USENIX

Association.

[libfuse 2014] libfuse. 2014. FUSE: Filesystem in Userspace. [Online; Accessed 5-May-

2017].

[Long & Miller 2015] Long, D. E., and Miller, E. L. 2015. Dynamic Non-Hierarchical

File Systems for Exascale Storage. Technical report, Univ. of California, Santa Cruz,

CA (United States).

[Massie, Chun, & Culler 2004] Massie, M. L.; Chun, B. N.; and Culler, D. E. 2004. The

ganglia distributed monitoring system: design, implementation, and experience. Parallel

Computing 30(7):817–840.

[Mesnier, Ganger, & Riedel 2003] Mesnier, M.; Ganger, G. R.; and Riedel, E. 2003.

Object-Based Storage. Communications Magazine, IEEE 41(8):84–90.

https://www.ibm.com/developerworks/library/l-virtual-filesystem-switch/
https://www.ibm.com/developerworks/library/l-virtual-filesystem-switch/

100

[Naps, Mokbel, & Du 2011] Naps, J. L.; Mokbel, M. F.; and Du, D. H. 2011. Pantheon:

Exascale File System Search for Scientific Computing. In Scientific and Statistical

Database Management, 461–469. Springer.

[National Oceanographic and Atmospheric Administration 2014] National Oceano-

graphic and Atmospheric Administration. 2014. NEXRAD Data Inventory Search —

National Climatic Data Center . [Online; accessed 06-Oct-2014].

[Owens & Allen 2010] Owens, M., and Allen, G. 2010. SQLite. Springer.

[Papadimitriou et al. 2000] Papadimitriou, C. H.; Tamaki, H.; Raghavan, P.; and Vempala,

S. 2000. Latent Semantic Indexing: A Probabilistic Analysis. Journal of Computer and

System Sciences 61(2):217–235.

[Pollock et al. 2010] Pollock, R.; Haring, R. E.; Holden, J. R.; Johnson, D. L.; Kapitanoff,

A.; Mohlman, D.; Phillips, C.; Randall, D.; Rechsteiner, D.; Rivera, J.; et al. 2010. The

orbiting carbon observatory nstrument: performance of the oco instrument and plans for

the oco-2 instrument. In Remote Sensing, 78260W–78260W. International Society for

Optics and Photonics.

[Rajasekar et al. 2010] Rajasekar, A.; Moore, R.; Hou, C.-y.; Lee, C. A.; Marciano, R.;

de Torcy, A.; Wan, M.; Schroeder, W.; Chen, S.-Y.; Gilbert, L.; et al. 2010. iRODS

Primer: Integrated Rule-Oriented Data System. Synthesis Lectures on Information Con-

cepts, Retrieval, and Services 2(1):1–143.

[Riedel et al. 2001] Riedel, E.; Faloutsos, C.; Gibson, G. A.; and Nagle, D. 2001. Active

disks for large-scale data processing. Computer 34(6):68–74.

[Riedel, Gibson, & Faloutsos 1998] Riedel, E.; Gibson, G. A.; and Faloutsos, C. 1998.

Active storage for large-scale data mining and multimedia. In Proceedings of the 24rd

International Conference on Very Large Data Bases, 62–73. Morgan Kaufmann Pub-

lishers Inc.

[Riedel 1999] Riedel, E. 1999. Active Disks Remote Execution for Network-Attached

Storage. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA.

101

[Ritter et al. 2000] Ritter, N.; Ruth, M.; Grissom, B. B.; Galang, G.; Haller, J.; Stephen-

son, G.; Covington, S.; Nagy, T.; Moyers, J.; Stickley, J.; et al. 2000. Geotiff format

specification geotiff revision 1.0. SPOT Image Corp.

[Ross & Thakur 2000] Ross, R. B., and Thakur, R. 2000. PVFS: A Parallel File System for

Linux Clusters. In in Proceedings of the 4th Annual Linux Showcase and Conference,

391–430.

[Schwan 2003] Schwan, P. 2003. Lustre: Building a file system for 1000-node clusters.

In Proceedings of the 2003 Linux Symposium, volume 2003.

[Seagate Technology LLC 2017] Seagate Technology LLC. 2017. The Seagate Kinetic

Open Storage Vision. [Online; accessed 27-Apr-2017].

[Shepler et al. 2003] Shepler, S.; Eisler, M.; Robinson, D.; Callaghan, B.; Thurlow, R.;

Noveck, D.; and Beame, C. 2003. Network file system (NFS) version 4 protocol.

Network.

[Shreedhar & Varghese 1995] Shreedhar, M., and Varghese, G. 1995. Efficient fair queue-

ing using deficit round robin. ACM SIGCOMM Computer Communication Review

25(4):231–242.

[Shvachko 2010] Shvachko, K. V. 2010. HDFS Scalability: The limits to growth. ;login

35(2):6–16.

[Stone & Partridge 2000] Stone, J., and Partridge, C. 2000. When the CRC and TCP

Checksum Disagree. In Proceedings of the Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, SIGCOMM ’00, 309–319.

New York, NY, USA: ACM.

[Szalay & Gray 2006] Szalay, A., and Gray, J. 2006. 2020 computing: Science in an

exponential world. Nature 440(7083):413–414.

[The Economist 2014] The Economist. 2014. Data, data everywhere. [Online; accessed

14-Jul-2014].

[The Open Group 2016a] The Open Group. 2016a. dlclose. [Online; accessed 17-May-

2017].

102

[The Open Group 2016b] The Open Group. 2016b. dlopen. [Online; accessed 17-May-

2017].

[The Open Group 2017] The Open Group. 2017. The Open Group Base Specifications

Issue 7. http://pubs.opengroup.org/onlinepubs/9699919799/toc.

htm.

[The PostgreSQL Global Development Group 2017] The PostgreSQL Global Develop-

ment Group. 2017. What is PostgreSQL? https://www.postgresql.org/

docs/current/static/intro-whatis.html.

[Tian et al. 2012] Tian, Y.; Klasky, S.; Yu, W.; Abbasi, H.; Wang, B.; Podhorszki, N.;

Grout, R.; and Wolf, M. 2012. SMART-IO: SysteM-AwaRe Two-Level Data Organiza-

tion for Efficient Scientific Analytics. In Modeling, Analysis & Simulation of Computer

and Telecommunication Systems (MASCOTS), 2012 IEEE 20th International Sympo-

sium on, 181–188. IEEE.

[Tommasi et al. 2017] Tommasi, D.; Stock, C. A.; Hobday, A. J.; Methot, R.; Kaplan,

I. C.; Eveson, J. P.; Holsman, K.; Miller, T. J.; Gaichas, S.; Gehlen, M.; et al. 2017.

Managing living marine resources in a dynamic environment: the role of seasonal to

decadal climate forecasts. Progress in Oceanography.

[Vilayannur et al. 2002] Vilayannur, M.; Ross, R. B.; Carns, P. H.; Thakur, R.; Sivasub-

ramaniam, A.; and Kandemir, M. 2002. Improving the performance of the posix i/o

interface to pvfs.

[Watson & Coyne 1995] Watson, R. W., and Coyne, R. A. 1995. The parallel I/O ar-

chitecture of the high-performance storage system (HPSS). In Mass Storage Systems,

1995.’Storage-At the Forefront of Information Infrastructures’, Proceedings of the Four-

teenth IEEE Symposium on, 27–44. IEEE.

[Western Digital Corporation 2017] Western Digital Corporation. 2017. HGST Ac-

tive Archive System. https://www.hgst.com/sites/default/files/

resources/ActiveArchive-OSS-DS.pdf.

[White 2009] White, T. 2009. Hadoop: The Definitive Guide. ”O’Reilly Media, Inc.”.

http://pubs.opengroup.org/onlinepubs/9699919799/toc.htm
http://pubs.opengroup.org/onlinepubs/9699919799/toc.htm
https://www.postgresql.org/docs/current/static/intro-whatis.html
https://www.postgresql.org/docs/current/static/intro-whatis.html
https://www.hgst.com/sites/default/files/resources/ActiveArchive-OSS-DS.pdf
https://www.hgst.com/sites/default/files/resources/ActiveArchive-OSS-DS.pdf

103

[Wikipedia 2017] Wikipedia. 2017. Filesystem in userspace. [Online; accessed 5-May-

2017].

[Zhao & Pjesivac-Grbovic 2009] Zhao, J., and Pjesivac-Grbovic, J. 2009. Mapreduce:

The programming model and practice.

	ACKNOWLEDGMENTS
	List of Figures
	List of Tables
	Code Listings
	Introduction
	Background
	Motivation

	Thesis Statement
	Problem Definition
	Contribution

	Related Work
	Hadoop Distributed File System
	Lustre
	Parallel Virtual File System
	High Performance Storage System
	SMART-IO
	Amazon S3
	Cassandra
	Spyglass
	Pantheon
	iRods
	Recon
	SmartStore
	On-Drive Chromosomal Microarray Analysis
	Dynamic Non-Hierarchical File Systems for Exascale Storage

	The Lightweight Virtual File System Approach
	LVFS Overview
	LVFS Plugins
	Logging
	Database
	Cache
	Directory
	Content
	Background
	Filter

	LVFS Configuration

	The Lightweight Virtual File System Implementation
	LVFS Core
	Plugin Management
	Access Control Lists
	Backtracing
	File/Directory Management
	Content Management
	String Management
	Condition Evaluation
	Configuration Parsing
	Cache Management

	LVFS Plugin Implementation
	Plugin schemas
	Common plugins
	Logging Plugins
	Directory Plugins
	Database Plugins
	Cache Plugins
	Content Plugins
	Background Plugins
	Filter Plugins

	Case Study: MODAPS Data Distribution Tree
	Problem Description
	LVFS Implementation
	Performance
	Conclusion

	Case Study: Write Support
	Problem Description
	LVFS Implementation
	Performance
	Conclusion

	Case Study: On-Drive MapReduce
	Design
	Algorithms
	Performance
	Conclusion

	Conclusions
	Future Work

	References

