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ABSTRACT

The Fermi Gamma-ray Space Telescope (Fermi) is producing the most detailed inven-
tory of the gamma-ray sky to date. Despite tremendous achievements approximately
25% of all Fermi extragalactic sources in the Second Fermi LAT Catalogue (2FGL) are
listed as active galactic nuclei (AGN) of uncertain type. Typically, these are suspected
blazar candidates without a conclusive optical spectrum or lacking spectroscopic ob-
servations. Here, we explore the use of machine-learning algorithms — Random Forests
and Support Vector Machines — to predict specific AGN subclass based on observed
gamma-ray spectral properties. After training and testing on identified/associated
AGN from the 2FGL we find that 235 out of 269 AGN of uncertain type have properties
compatible with gamma-ray BL Lacs and flat-spectrum radio quasars with accuracy
rates of 85%. Additionally, direct comparison of our results with class predictions made
after following the infrared colour-colour space of Massaro et al. (2012) shows that the
agreement rate is over four-fifths for 54 overlapping sources, providing independent
cross validation. These results can help tailor follow-up spectroscopic programmes and

inform future pointed surveys with ground-based Cherenkov telescopes.

Key words: gamma-rays: observations — galaxies: active

1 INTRODUCTION

The Fermi mission has revolutionised our knowledge of high-
energy gamma ray sources in the 100 MeV to 100 GeV en-
ergy range. Instrumentally, the Large Area Telescope (LAT)
increased sensitivity and sky coverage represents a giant leap
forward compared to EGRET (Hartman et al] M), allow-
ing access to the gamma-ray sky with unprecedented detail.
With over two years of collected data, the Second Fermi LAT
Catalogue (2FGL) lists a total of 1873 point-like sources, in-
cluding 1092 objects connected with known AGN at other
wavelengths (Abdo et al“M; Ackermann et al M)
Out of the 1092 sources designated as AGN, 436 are
BL Lacertae objects (BL Lacs), 370 are flat-spectrum radio
quasar (FSRQs), 12 are radio galaxies, 6 are Seyferts and
11 are other AGN. Despite this important level of achieved
sophistication, the remaining 257 sources are designated as
active galaxies of uncertain type (AGU) that total 25% of
all AGN. Generally, AGU are positionally coincident with
flat-spectrum radio sources showing distinctive broad-band
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blazar characteristics, but lacking reliable optical measure-
ments (Ackermann et all [2011).

In order to understand all the intricacies of the AGN
population, it is important to take further steps to assess
the nature and redshift of the sources classified as AGU.
In the past, this has been accomplished via a two-step
approach. The initial classification of an AGN relies on
painstakingly dedicated optical spectroscopy to help identify
unique emission or absorption features ).
If no significant features are found, the second step con-
sists of multi-band photometry to help estimate the redshift

of suspected BL Lacs (Sbarufatti, Treves & Falomo | 2003;
Meisner & Romani 2010; [Rau et all[2019).

Without optical spectroscopy, one generally does not
have sufficient information to determine directly whether an
individual source is a BL Lac or a FSRQ. Unfortunately, op-
tical spectral observations are taxing and can take years to
complete. Ideally, one would like to find a discriminator for
distinct source subclasses that relies solely on readily avail-
able observational characteristics. Recently,
(@) introduced a method that helps recognise gamma-
ray blazar subclass based on infrared colours from the Wide-
Field Infrared Survey Explorer (WISE). Here, we explore the
possibility of determining AGN subclass for Fermi sources
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directly from gamma-ray spectral features extracted from
the 2FGL.

In particular, we present results from supervised ma-
chine learning algorithms, Random Forests and Support
Vector Machines, that are initially trained on identi-
fied/associated AGN and subsequently used to infer spe-
cific blazar subclass of AGN of uncertain type. This is a
natural extension of previous machine-learning strategies
introduced to predict source class in unassociated Fermi
point sources (Ackermann et al!|20124; Mirabal et all2012;
Lee et alll2012). In Section 2l we describe the machine learn-
ing algorithms. The procedure used to train and test the
algorithms is summarised in Section [3] including feature se-
lection and creation of datasets. Individual predictions for
AGU as well as an extension to unassociated Fermi sources
are presented in Section [l Finally, we compare our predic-
tions with [Massaro et all (2012) and provide conclusions in
Section Bl

2 CLASSIFICATION ALGORITHMS

The improvement and application of supervised learning al-
gorithms has become a central part of the exploration of
astrophysical data in a variety of contexts, ranging from
object characterisation (Ball et al! 2006; |Ackermann et al.
20124; [Mirabal et all 2012) to variability (Richards et al.
2012). In this paper, we employ Support Vector Machines
(SVMs) and Random Forests (RF) that embody two of the
most robust supervised learning algorithms available today
(Bloom & Richards [2011). Brief descriptions of both algo-
rithms are given in this section. Both RF and SVMs have
been extensively described in the literature (Vapnik||1995;
Breiman [2001)).

2.1 Support Vector Machines

Support Vector Machines (SVMs) have proven to be one
of the most effective supervised learning algorithms for pat-
tern recognition (Vapnik [11995;[Cortes & Vapnik|1995). The
underlying rationale behind the algorithm seeks to find the
optimal margin classifier by constructing a separating hyper-
plane that divides the training set and maximises the sep-
aration between different classes, which can then be used
either in classification or regression analysis.

The points lying closer to the boundaries of a certain
hyperplane are called support vectors. The latter determine
the minimum distances between the hyperplane and their
respective classes, the so called margin. The maximisation
of the optimal margin is computed by taking into account
only these vectors, the most representative points to con-
struct the classifier. Complex separating surfaces can be in-
troduced through the use of kernel functions, which trans-
form the problem into a linear one in a higher-dimensional
space. Polynomial, gaussian or radial plane kernel functions
are often used. SVMs excel in performance handling high-
dimensional data that can also incorporate the trade off be-
tween training errors and overall margins parametrized by
a scaling factor v and error penalty C.

The analysis presented in this work was performed
under the R programming language. Specifically, we
adopted the el071 package as the interface to libsum

(Chih-Chung & Chih-Jen |12011)). This offers a very fast and
efficient SVM application with the option for automatically
tuning parameters to the data and the use of different kernel
functions.

2.2 Random Forests

Random Forests is an ensemble classifier that grows a large
forest of classification trees that independently make class
estimation (Breiman [2001). Each decision tree selects a num-
ber of random input features and creates the best split based
on a out-of-bag (0ob) random selected set of the whole train-
ing data sample. Once the decision forest is built, decision
thresholds are computed by counting the votes after running
the oob datasets through every tree.

A RF classifier is ideal for data mining and variable se-
lection as it incorporates efficient ways of calculating feature
importance in the training set. This is achieved by replac-
ing features across classification trees with random values
and quantifying the effect of the changes. If the result of the
decisions does not change significantly after these changes,
the feature has a relatively low importance. On the other
hand, if the accuracy rates change dramatically, a partic-
ular feature is deemed as important. There is no need for
cross-validation with a separate testing set as the process
itself computes accuracy rate internally.

In this work we used the randomForest package
(Liaw & Wieney [2002), which adapts the original Random
Forests (Breiman |12001) for classification and regression to
the R language. randomForest provides excellent macros for
plotting and tuning. Recently, [Mirabal et all (2012) intro-
duced Sibyl a successful classifier that uses Random Forests
to predict source class for unassociated Fermi sources based
on 2FGL features and it serves as the principal formulation
for our analysis.

3 PROCEDURE

Before delving into a formal application of the algorithms,
datasets must be carefully extracted from the 2FGL and
both SVMs and RF must be tuned to achieve their best
performance.

3.1 Construction of the datasets

For a proper use of supervised learning algorithms, we need
to explore the feature space in order to find out the variables
that best capture each class we want to determine. In this
case, we are interested in building classifiers that can dis-
tinguish between two AGN classes: BL Lacs and FSRQs. In
the 2FGL, there are a total set of 1074 identified /associated
AGN objects with the following labels: “bzb” (BL Lacs),
“bzq” (FSRQs), “agn”(other non-blazar AGN) and “agu”
(active galaxies of uncertain type). From this global set, we
group the identified /associated blazars (“bzb” and “bzq” la-
bels) as the training/testing set of our algorithms. We end
up with a set of 806 sources, divided in a fairly balanced
manner that includes 370 FSRQs and 436 BL Lacs. In ad-
dition, we place all the undetermined sources (“agu” labels)
in a separate dataset consisting of the 257 objects. Once
the algorithms are trained and tested, we will apply the
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Figure 1. Distributions of Powerlaw Index (left) and Pivot Energy (right) for identified/associated BL Lacs (black) and FSRQs (grey).
The filled areas show results for AGU: Predicted BL Lacs (filled dark area) and predicted FSRQs (filled light area).

classifiers to the latter. Note that we will initially approach
our study as a simple binary classification problem that at-
tempts to distinguish whether an individual AGU is a BL
Lac or a FSRQ. It is possible that other subclasses are rep-
resented within the AGU dataset. However, additional AGN
subclasses only account for 3% of the whole AGN sample.
Nevertheless, we will discuss the effects of additional com-
plexity later on.

3.2 Feature selection

The next step involves choosing from the different gamma-
ray spectral features available for each source. Although
the algorithms are not strongly affected by noise, it is rel-
evant to limit misleading features that might affect the
characterisation. Initially, we select all basic features re-
ported in the 2FGL (Abdo et all[2011). lirabal et al

), we supplement these with Hardness Ratios (HR; =
Fluz; — Fluz;/Fluz; + Fluz;) and Flux Ratios (FR;; =
Flux;/Fluzj), ending up with a set of 20 distinct features.
Armed with this set of variables, we compute feature im-
portance to find those most representative with a robust
method already implemented in the randomForest pack-
age (Liaw & Wieneﬂ m; Mirabal et al] M) This pro-
cess outputs two measures of importance: MeanDecreaseAc-
curacy and MeanDecreaseGini. Both are excellent indicators
of feature relevance )

Once feature importance measures are computed, we
create new sets of data with different number of features
by iteratively removing the variables with lower MeanDe-
creaseAccuracy, and comparing accuracy rates attained by
RF and SVM algorithms on these sets. Although RF does
not require a tailored training/testing analysis to estimate
accuracy rates, it is useful to compare both algorithms di-
rectly with identical training/testing sets. Through feature

selection, we downsize the initial 20 features to a final set
of 9. The final set of variables includes (ordered by de-
creasing MeanDecreaseGini) Powerlaw Index (76.6), Pivot
Energy (59.2), Flux Density (27.1), Variability Index
(20.1), F1ux1000 (12.6), and four Hardness Ratios: HR»
(19.4), HRy (17.5), HR3 (14.4) & HR4 (10.6). Features con-
sidered but later discarded include Spectral Index, Energy
Flux, Curvature Index, Flux in five different energy ranges,
and Flux Ratios.

The top two most representative features for AGN sub-
class determination are Powerlaw Index and Pivot Energy.
The clean separation between blazars is obvious in Fig. [l
and it intuitively stands on observational arguments. As ex-
plained in |[Ackermann et all (2011), there is a well estab-
lished spectral difference in the LAT energy range between
FSRQs and BL Lacs. In general, the AGN inverse Comp-
ton (IC) peak is located at lower energies for FSRQs and
at higher energies for BL Lac objects. Typical values are 1
MeV — 1 GeV for FSRQ and 100 MeV — 100 GeV for BL
Lacs respectively (Abdo et al] M)

The overall effect is that FSRQs show softer spectra
than BL Lacs, and therefore, higher values of Powerlaw
Index. Pivot Energy is defined as the energy at which
the relative uncertainty on the differential flux is mini-
mal. It is also an estimate of the point where the covari-
ance of Powerlaw Index and Flux Density is minimised
). The relative dominance of lower energy
events for FSRQs places the general location of the Pivot
energy at lower energies compared to BL Lac spectra. As a
result, the difference found in Pivot Energy between both
populations can be understood as the overall effect of the
spectral characteristics of FSRQs and BL Lacs produced by
the difference on the position of IC peak in the spectral en-
ergy distribution for both populations.
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3.3 Tuning, training and testing

Both SVM and RF algorithms require parameter tuning to
achieve their best performance. In the case of SVMs, there is
an automatic tuning process best.tune that returns the ap-
propriate values of C' and ~y for a particular kernel function
and training set. In order to make a selection, we scanned the
classification accuracies for different kernel functions and
used the tuned parameters to discriminate amongst them.
Linear, polynomial, sigmoid, and radial kernels were tested.
For the final training set, we settled on a C-classification
linear kernel with C = 1 and v = 0.11. For RF, tuneRF()
performs an automatic search for the most efficient number
of features used per classification tree for a chosen training
set (Liaw & Wienen 2002). Ultimately, we employ 9 spectral
features, four variables randomly sampled at each split, and
a total of 5000 trees.

After culling our datasets with the chosen features and
tuning the algorithms for best performance, testing is per-
formed to estimate the error of the resulting classification.
As training set, we use a random selection of 2/3 of all iden-
tified/associated AGN and the remaining 1/3 is used as a
testing set. To estimate the accuracy rates, we compare the
actual source class with the class predicted by each classi-
fier. For 500 of these training and testing sets, we obtain
average accuracy rates of 85%, adopting a decision thresh-
old of P > 0.5 for both RF and SVMs. Note that with such
threshold there are few ambiguous events since we require
both Psyay and Prrp must be greater than 0.5. If we con-
sider a more conservative condition, for instance P > 0.8,
the accuracy rates improve to 94%. In this case, there is a
bigger fraction of the sample that remains untagged.

For further verification, we also computed rates by leav-
ing one object out from the training set and using that single
object as the testing set. The leave-one-out cross validation
rate is 85% for common decision threshold of P > 0.5 and
95% with P > 0.8 showing that larger training sets do not
produce significant increases in accuracy rates.

4 RESULTS

Once the classifiers have been trained and tested, we ap-
ply both algorithms to the set of AGN of uncertain type.
For each of the 257 AGU, the classifiers returns a decision
threshold that an individual object is a BL Lac (Py.p) or a
FSRQ (Pyzq), where Py,q = 1 — Pyp. A fraction of the re-
sulting predictions is listed in Table [Il Decision thresholds
Py.p calculated with both RF and SVMs are shown, as well
as a class prediction satisfying the condition P(RF') and
P(SVM) > 0.8. In Fig. Rl we plot P(RF) and P(SV M) ob-
tained with each classifier for the 257 sources. Overall, there
is an agreement rate of 91% between the algorithms. Though
there are some discrepancies (for instance RF show higher
BL Lac classification rates than SVMs), the results are out-
standing considering the distinct underlying assumptions of
the algorithms.

Table [2] shows overall numbers sorted according to dif-
ferent criteria imposed for both RF and SVM. In particular
we list the predicted number of occurrences in terms of dif-
ferent decision thresholds (P > 0.5, 0.8, and 0.95). We in-
clude individual algorithms and coincidences, satisfying said
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Figure 2. Decision threshold Py, obtained with RF versus Py
estimated by SVM for 257 AGU in the 2FGL. Dashed squares
contain sources with common decision threshold over 0.8, classi-
fied with accuracy rates over 94%.

Table 1. Predictions for Fermi AGN of uncertain type in the
2FGL, ordered by RA. Threshold values Pp.; < 0.2 (in the case
of FSRQs) and Py, > 0.8 (in the case of BL Lacs) must be met

in both methods.

Source Py.p (RF)  Py.p (SVM)  Prediction
2FGL J0001.7-4159 0.84 0.80 bzb
2FGL J0009.14+-5030 0.97 0.95 bzb
2FGL J0009.9-3206 0.53 0.57 -
2FGL J0010.54+6556¢ 0.14 0.07 bzq
2FGL J0018.8-8154 0.69 0.80 -
2FGL J0019.4-5645 0.16 0.04 bzq
2FGL J0022.2-1853 0.99 1.00 bzb
2FGL J0022.3-5141 0.46 0.50 -
2FGL J0038.7-2215 0.99 1.00 bzb
2FGL J0044.7-3702 0.06 0.04 bzq
2FGL J0045.54+1218 0.91 0.85 bzb
2FGL J0051.4-6241 1.00 1.00 bzb
2FGL J0055.0-2454 1.00 0.99 bzb
2FGL J0056.8-2111 0.97 0.99 bzb
2FGL J0059.2-0151 0.95 0.99 bzb
2FGL J0059.7-5700 0.03 0.02 bzq
2FGL J0103.54-5336 0.93 0.94 bzb
2FGL J0110.34-6805 0.86 0.68 -
2FGL J0118.6-4631 0.96 0.98 bzb
2FGL J0127.24-0324 0.98 0.99 bzb
2FGL J0131.14+6121 0.93 0.97 bzb
2FGL J0134.44-2636 0.99 0.97 bzb
2FGL J0137.74+5811 0.44 0.38 -
2FGL J0146.6-5206 0.95 0.92 bzb
Note: The complete list of predictions is available at

http://www.gae.ucm.es/~thassan/agus.html!
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Table 2. Number of predicted AGU sources as a function of
decision threshold.

RF SVMs Both
bzb bzq bzb bzq bzb bzq

P>05 173 84 161 96 156 79

P>08 129 46 112 63 106 39

P >0.95 64 12 64 19 47 5

conditions. Combining results from both classifiers and re-
quiring P > 0.5, 235 (156 BL Lacs and 79 FSRQs) out of 257
objects are consistent with the properties of known gamma-
ray blazars. In order to place these results in context with
identified /associated Fermi AGN, Fig. B shows the photon
spectral index versus the flux (E > 100 MeV) of identi-
fied /associated BL Lacs and FSRQs overlaid with the AGU
predictions from this work.

4.1 Outlier detection and potential biases

Throughout, we have assumed that the classification of
gamma-ray AGN subclass falls along the two main blazar
categories i.e. BL Lacs and FSRQs. Without final spec-
troscopy it is impossible to rule that other AGN subclasses
are present in the AGU sample. As commented before, there
is a minority of other subclasses in the 2FGL including
Seyferts, radio galaxies and other AGN that have not been
considered thus far. The main justification for ignoring fur-
ther atomisation into subclasses is that blazars account for
97% of the identified/associated AGN sample. However, it
is important to consider that a more complex mixture of
AGN subclasses is possible. Fortunately, machine-learning
algorithms excel at separating rare and unique objects from
the dataset.

Adopting the method introduced in [Mirabal et al.
(2012), we performed a search for AGU outliers that could
potentially belong to other minority AGN subclasses. For
this purpose, we computed the outlying measure of each ob-
ject defined as the reciprocal sum of the squared proximities
to all objects within its class. Outliers are defined as objects
having small proximities to the rest of objects. Practically,
RF returns proximities prox(n,k) that represent the frac-
tion of trees in which elements n and k fall in the same
terminal node (Breiman 2001; [Liaw & Wienerx 2002). Gen-
erally, anomalies are identified with outlier measures larger
than 10. No source was found with such values, as a result
we conclude that there is no clear evidence of outliers in
the AGU dataset. For completeness, we note that the high-
est values in the dataset correspond to 2FGL J1825.1-5231,
2FGL J1816.7-4942, and 2FGL J0022.3-5141 respectively.

We constrained this possibility further by retraining and
testing the SVMs and RF algorithms with the full range of
associated AGN subclasses present in the 2FGL. Given the
size of the minority subclasses, care was taken to weight
the classes appropriately to compensate the differences in
the training sets (Mirabal et all|2012). Taking into account
additional AGN subclasses, we find that at most 11 objects
might belong to other AGN subclasses (P < 0.6). Therefore,
there is no strong indication of contamination from addi-
tional subclasses. Taken together, both approaches limit the
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Table 3. Predictions for unassociated Fermi objects tagged as
AGN by IMirabal et all (2012), ordered by RA.

Source Py.p (RF) Py (SVM)  Prediction
2FGL J0004.2+2208 0.15 0.11 bzq
2FGL J0014.3-0509 0.37 0.19 -
2FGL J0031.0+0724 0.97 0.94 bzb
2FGL J0032.7-5521 0.41 0.28 -
2FGL J0039.1+4331 0.87 0.99 bzb
2FGL J0048.8-6347 0.91 0.76 -
2FGL J0102.2+0943 0.90 0.89 bzb
2FGL J0103.8+1324 0.94 0.95 bzb
2FGL J0116.6-6153 0.97 0.99 bzb
2FGL J0124.6-2322 0.49 0.66 -
2FGL J0129.4+2618 0.19 0.05 bzq
2FGL J0133.4-4408 0.63 0.73 -
2FGL J0143.6-5844 1.00 0.99 bzb
2FGL J0158.4+0107 0.36 0.26 -
2FGL J0158.6+8558 0.06 0.07 bzq
2FGL J0200.4-4105 0.98 0.99 bzb
2FGL J0221.2+2516 0.99 0.99 bzb
2FGL J0226.1+0943 0.66 0.76 -
2FGL J0227.7+2249 0.89 0.95 bzb
2FGL J0239.5+1324 0.99 0.95 bzb
2FGL J0251.0+2557 0.37 0.19 -
2FGL J0305.0-1602 0.99 1.00 bzb
2FGL J0312.5-0914 0.93 0.69 -
2FGL J0312.8+2013 0.91 0.97 bzb

Note: The complete list of predictions is available at
http://www.gae.ucm.es/~thassan/agus.html.

presence of other AGN subclasses in the AGU dataset. It
is possible that the result simply reflects the small number
statistics of additional AGN subclasses. A full characteriza-
tion might improve in the future as Fermi expands its source
catalogue.

4.2 Application to unassociated Fermi objects

In [Mirabal et all (2012), we introduced class predictions for
the sample of unassociated Fermi sources at |b| > 10°. In
that initial approach, we simply considered sorting sources
in broad AGN and pulsar categories. Given our success with
further AGN subclasses, it is interesting to extend the ap-
proach to all unassociated Fermi sources tagged as AGN. Us-
ing the same optimised models, we apply the algorithms to
the 216 sources predicted as AGN in [Mirabal et all (2012).
The resulting predictions are shown in Table [J with the
same conditions adopted earlier. In this case, only 30% of
the sources reach decision thresholds larger than P > 0.8 in
both RF and SVM.

5 DISCUSSION AND CONCLUSIONS

We have used RF and SVM classifiers to predict specific
source subclasses for gamma-ray AGN of uncertain type, by
learning from features extracted from associated AGN in
the 2FGL. Both algorithms are extremely successful in cap-
turing the properties of gamma-ray AGN reaching accuracy
rates of 85%. This effort allows us to show that 235 out of
269 AGN of uncertain type have properties consistent with
gamma-ray BL Lacs and FSRQs, with decision thresholds
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Figure 3. Photon spectral index versus log flux above 100 MeV for identified/associated BL Lacs (dark contour) and FSQRs (light
contour). Predicted BL Lacs (filled circles) and predicted FSRQs (open circles) from the AGU dataset are shown over the contours.

over 0.8. Comparison of these predictions with the sample
of associated AGN verify that we are indeed tracing simi-
lar populations (Fig. [3). Nevertheless, without high-quality
spectral observations, final counterpart association will have
to wait for dedicated optical spectroscopy.

Apart from internal training and testing, we can cross-
match our results with a recent study showing that blazars
can be recognised and separated from other extragalactic
sources using infrared colours (Massaro et al] M) Class
characterisation has been done for Fermi AGN of uncertain
type taking advantage of this total strip parameter traced
by BL Lacs and FSRQs. The possibility of comparing our
results with the source classes inferred from IR colours is
ideal, as both methods are independent. For a subset of 54
overlapping sources listed in [Massaro et all GM), our pre-
dictions match in 85% of the objects with the P > 0.5 deci-
sion threshold, and the agreement rate improves to 93% for
the 33 objects satisfying the P > 0.8 condition. The excel-
lent agreement suggests that our method is viable and that
infrared colours can not only recognise generic blazars but
also provide information about specific blazar subclass i.e.
BL Lac or FSRQ. More importantly, this cross-validation
reinforces the power and possibilities of machine-learning
algorithms as source classifiers in gamma-ray astrophysics.

Even though the initial approach aimed to distinguish
between BL Lacs and FSRQs, we have also considered the
possibility that other subclasses are represented within the
AGU dataset. No clear outliers have been found within the
latter. Training and testing after taking into consideration
additional subclasses finds only 11 objects (P < 0.6) that
might have been missed with a binary classification. This

is consistent with findings indicating that additional AGN
subclasses (Seyferts, radio galaxies and other AGN) account
for a 3% of the whole AGN sample. There might be a small
bias introduced by the relative rarity of minority objects.
Nevertheless, AGN of unknown type are most likely domi-

I(I% by BL Lac or FSRQ, in agreement with Massaro et all
).

The clear intent of this effort is to characterise the en-
tire gamma-ray population. We expect that these results
can help observers in future spectral and photometric en-
deavours aimed at classifying the entire AGN counterpart
sample. Additionally, our work can help discriminate targets
for follow-up studies of AGN at even higher gamma-ray en-
ergies with ground-based imaging air Cherenkov telescopes
(MAGIC, H.E.S.S., VERITAS). Viewing forward, gamma-
ray spectral features will be nicely complemented with the
future Cherenkov Telescope Array (CTA), expected to in-
crease spectral coverage and sensitivity
M) The design of future survey pointing strategies for
CTA (Dubus et al] M) will also benefit from object lists
such as the one presented in this work by boosting the AGN
target pool available. In the shorter term, an obvious im-
provement that lies ahead is to incorporate multi-wavelength
(radio, optical, X-ray) entries to complement individual clas-
sifying features. This is an area that we are currently inves-
tigating.
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