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Abstract. We describe the results of principal component analysis (PCA) of up-the-ramp sampled infrared (IR)
array data from the Hubble Space Telescope wide field camera 3 (WFC3 IR), James Webb Space Telescope
NIRSpec, and prototype Wide Field Infrared Survey Telescope’s wide field instrument detectors. These systems
use, respectively, Teledyne H1R, H2RG, and H4RG-10 near-IR detector arrays with a variety of IR array con-
trollers. The PCA shows that the Legendre polynomials approximate the principal components of these systems
(i.e., they roughly diagonalize the covariance matrix). In contrast to the monomial basis that is widely used for
polynomial fitting and linearization today, the Legendre polynomials are an orthonormal basis. They provide a
quantifiable, compact, and (nearly) linearly uncorrelated representation of the information content of the data. By
fitting a few Legendre polynomials, nearly all of the meaningful information in representative WFC3 astronomical
datacubes can be condensed from 15 up-the-ramp samples down to 6 compressible Legendre coefficients per
pixel. The higher order coefficients contain time domain information that is lost when one projects up-the-ramp
sampled datacubes onto two-dimensional images by fitting a straight line, even if the data are linearized before
fitting the line. Going forward, we believe that this time domain information is potentially important for disentan-
gling the various nonlinearities that can affect IR array observations, i.e., inherent pixel nonlinearity, persistence,
burn in, brighter-fatter effect, (potentially) nonlinear interpixel capacitance, and perhaps others. © 2019 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.5.2.028001]
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1 Introduction

The Wide Field Infrared Survey Telescope’s (WFIRST)! cos-
mology and microlensing surveys require excellent control of
detector systematics. For example, the WFIRST High Galactic
Latitude Weak Lensing Survey requires knowledge of the size
and ellipticity of the point-spread function (PSF) to <0.1% to
avoid biasing measurements of dark energy properties and
other cosmological parameters.” However, the PSF’s shape is
measured using reference stars that are typically much brighter
than weakly lensed field galaxies, necessitating large linearity
corrections.

When large linearity corrections are required, nonideal
instrument signatures—including inherent pixel nonlinearity,
the brighter-fatter effect (caused by charge integrating in neigh-
boring pixels as pixels fill up),’ residual persistence from prior
exposures, (potentially) nonlinear interpixel capacitance,* and
telescope pointing jitter (this list is almost certainly incom-
plete)—have the potential to compromise PSF knowledge and
thereby WFIRST science. Within the WFIRST IR Detector
Working Group, understanding nonlinear pixel response is par-
ticularly a high priority. We therefore began our study by trying
to better understand modern linearity correction techniques and
the linearity properties of prototype WFIRST infrared (IR)
arrays.

Today’s IR calibration pipelines for missions—including the
Hubble Space Telescope’s (HST) wide field camera 3 IR

*Address all correspondence to Bernard J. Rauscher, E-mail: Bernard.J
.Rauscher@nasa.gov
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(WEC3)>® and the James Webb Space Telescope (JWST)’—lin-
earize the up-the-ramp sampled data from each pixel before fit-
ting a straight line to infer brightness from the fitted slope. (For a
description of up-the-ramp sampling, please see Sec. 9. The
WEFC3 IR calibration pipeline is described in Sec. 3.3 of The
WFC3 Data Handbook.!® A similar pipeline is in development
for JWST and is planned for WFIRST.) The planned pipeline
calibration sequence for JWST is typical. It includes: (1) bias
correction, (2) reference pixel correction, (3) linearization,
(4) dark subtraction, (5) cosmic ray detection, and (6) slope fit-
ting. Linearization is based on fitting a low degree polynomial to
the up-the-ramp samples in calibration flats. As described by
Vacca et al.'' and Hilbert,'? the resulting polynomial fit coeffi-
cients are used to linearize astronomical exposures before fitting
a straight line to each pixel to infer the flux. Typically, lineari-
zation assumes that the charge integration rate at the beginning
of the exposure is the “true” one and uses the calibration poly-
nomial fit coefficients to make multiplicative corrections to later
samples for which nonlinearity is significant.

Fitting a “deg” degree polynomial to n up-the-ramp samples
projects the data from the Cartesian n-space in which they were
acquired into a monomial space of deg+1 dimensions (the
monomial basis vectors are {z°,z!,z2,...,z%¢}, where z is
the time index for equally spaced samples). The co-ordinates
in monomial space, the polynomial fit coefficients, provide a
representation of a pixel’s response that is optimal in a least
squares sense to the specified fit degree. However, the
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monomials are not an orthogonal basis, and they do not offer
insight into how high the fit degree needs to be. Moreover,
as shown in Sec. 2.5, there often exist significant correlations
between the monomial fit coefficients. For these reasons and
others, we decided to use principal component analysis (PCA)
to see if there might exist a better basis for modeling up-the-
ramp sampled IR array data than the monomials.

The input data were provided by the NASA Goddard Space
Flight Center Detector Characterization Laboratory as part of
the WFIRST project. WFIRST’s wide field instrument (WFI)
uses 18 Teledyne H4RG-10 near-IR detector arrays. The 4K x
4K pixel H4RG-10" is the most recent member of Teledyne’s
HxRG family of HgCdTe near-IR detector arrays. The underly-
ing HXRG architecture is an outgrowth of the 2K x 2K pixel
H2RG'* that was introduced in about 2003 for JWST. The
“H” in HXRG stands for Hawaii, x € {1,2, 4} refers to the num-
ber of kilopixels in the vertical and horizontal directions, “R”
indicates the presence of reference pixels, and “G” indicates
the availability of guide mode. Compared to the earlier
1K x 1K pixel HIR detector that was used by WFC3, the
H2RG and H4RG include a built-in guide mode. Two versions
of the H4RG are available. The H4RG-10 has 10 um pixels and
is used by WFIRST because mass and volume are at a premium.
The physically larger H4RG-15' offers 15 um pixels. It may be
better matched to the optics of large, ground-based telescopes.

At first, we studied laboratory flatfield data from two differ-
ent WFIRST H4RG-10s controlled by third generation “Leach”
controllers from Astronomical Research Cameras, Inc., and both
gave identical results. The PCA immediately suggested a dra-
matically better basis than the monomials: the Legendre poly-
nomials. If z is an index that runs over frame number and s(z)
is integrated signal, then today’s monomial approach fits as
follows:

deg

s(z) =) a2, §))
i=0

where the a; terms are the fit coefficients. Typically, deg = 3 is
used for linearization while deg = 1 is used for slope fitting (see
Ref. 12 and references therein). When fitting Legendre polyno-
mials, z is uniformly mapped to the interval —1 < x < +1, and
signal integrates according to

deg

s(x) = > LPi(x). 2)
i=0

In this expression, 4; are the fit coefficients and the Legendre
basis vectors are as follows:

{Po(x), P1(x), P2(x), ..., Pacg}-

Unlike the monomials, the Legendre polynomials are an
orthonormal basis. Moreover, because the Legendre polyno-
mials approximately diagonalize the covariance matrix, they
provide a representation that is significantly less correlated
than the monomials. Finally, because the covariance matrix is
roughly diagonal in Legendre space, the Legendre fit coeffi-
cients provide a useful way to quantify how the information con-
tent falls off by fit degree.

Although we began the PCA using WFIRST H4RG-10 lab-
oratory flats, we have since shown that the results are general,
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applying equally to other systems including the JWST near-IR
spectrograph and HST WFC3. The findings do not depend on
the type of IR detector or the IR array controller (HIR+Ball
electronics; H2RG+SIDECAR ASIC; H4RG-10 + Gen. III
Leach controller). All systems have given similar results.
These are the findings.

1. The Legendre polynomials generally provide a good
basis for the time dimension of up-the-ramp sampled
IR array data. The monomial basis that is used in
today’s pipelines is a comparatively poor choice
because the basis vectors are not orthogonal and
monomial fit coefficients are correlated.

2. Up-the-ramp sampled IR array data contain time
domain information that is not utilized by fitting a
straight line to the linearized up-the-ramp samples.
As a corollary, for archival research, it is important
to save more information than is contained in only
the fitted bias and slope images.

3. Legendre fits are highly compressible. If it is not pos-
sible or practical to save all samples, then Legendre
fitting offers a simple way to significantly reduce the
data volume while retaining nearly all of the scientific
information.

Legendre fitting naturally produces datacubes rather than
two-dimensional (2-D) images. Two kinds of datacubes are
commonly encountered in near-IR astronomy today. Often,
the unprocessed up-the-ramp samples are saved in a three-
dimensional (3-D) array, with the axes being time (or equiva-
lently time index for equally space samples) and the two angular
dimensions on the sky, (¢, a,§). Another common astronomy
datacube has wavelength running along the zeroth dimension.
Here, we introduce the idea of a “Legendre cube.” A
Legendre cube differs from a time-ordered 3-D array in that
the zeroth dimension contains the fit coefficients, 4;, for the
Legendre polynomial P;(x). The axes of a Legendre cube
are (i,a,9).

This article is structured as follows. In Sec. 2, we explain the
PCA in the context of WFC3’s frontier field observations of the
Abell 370 strong lensing field. We selected Abell 370 because
the field is information rich, and it contains a wide range of
source brightness ranging from sky background to hard satura-
tion. This is followed by Sec. 4, where we explore how astro-
physical information manifests in Legendre cubes. The higher
Legendre orders are information poor, leading to Sec. 5, where
we discuss data compression in Legendre space. Finally, in
Sec. 6, we begin to describe how these findings can potentially
be applied to astrophysical observations. This section is neces-
sarily incomplete as we are only beginning to work with
Legendre cubes today. We close with a summary.

2 Principal Component Analysis

The purpose of this section is to describe the PCA in the context
of real WFC3 observations. We previously obtained similar
results with WFIRST and JWST lab data (including both flat
field images and unilluminated darks). We begin with a short
introduction to the WFC3 data. This is followed in Sec. 2.2
by a PCA refresher, and then by the PCA itself.
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2.1 Abell 370 Frontier Field

The Frontier fields were an HST Director’s Discretionary
Program that aimed to exploit the amplification of light by
strong gravitational lensing to image faint, high-z galaxy
populations.'® We selected one of the Frontier fields, Abell
370 (Fig. 1), to test the ideas that we had conceived earlier
using WFIRST lab data.

The data were acquired between August and September,
2016, as part of proposal ID 14038 (J. Lotz PI). We selected
all available 16 frame SPARS100 exposures taken with the
F160W filter (Ayex = 1.545 pm and FWHM = 0.29 um).
(We also looked at other filters. The choice of filter does not
affect the PCA results.) In SPARS100 mode, WFC3 acquires
a “reset frame” followed by 15 uniformly spaced nondestructive
samples at ~100 s intervals. Because the reset frame did not
follow the same approximately linear trend as later samples,
it was discarded (it is also not used for fitting in the WFC3 pipe-
line). All told, we were able to use 36 EXPTIME = 1403 s dith-
ered SPARS100 exposures, each with 15 up-the-ramp reads,
resulting in a total exposure time of about 14 h.

Our focus in this paper is the PCA. For more information
about WFC3 readout modes and data products, the interested
reader is referred to The WFC3 Instrument Handbook® and
The WFC3 Data Handbook.'°

2.2 PCA Refresher

Up-the-ramp sampled data are typically stored in datacubes or in
the case of WFC3 as FITS files with one extension per frame.
For these WFC3 data, the unprocessed files unpacked to 15 X
1024 x 1024 datacubes after discarding the reset frames.
Although time-ordered datacubes are an intuitively obvious
way to store data, they are neither the most compact nor the
most useful way to represent the information. PCA is a

118 629 3508
Instrumental DN, log scale

Fig. 1 This image is the median 1, parameter (slope) from stacking
the available WFC3 F160W data. The integrated exposure time is
about 14 h. Other than reference correction (Sec. 9) and fitting
Legendre polynomials, the image is uncalibrated. The yellow box
is the region of interest (Rol) shown in Fig. 5.
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mathematical tool for finding a more compact representation
that reduces the number of variables that are needed to represent
the dataset while retaining much of the information.”
Throughout this paper, we use lowercase boldface letters to re-
present vectors and uppercase boldface letters to represent
matrices.

PCA is built on the concept of the covariance matrix, €,
which is a generalization of the variance that allows for the pos-
sibility of correlations. Consider a univariate statistical process,
d. For present purposes, d is a vector containing 15 up-the-ramp
samples. If the expectation value of d is known to be (d), then
the residuals for any one realization can be represented by a
column vector:

§=d-(d). 3

If the experiment is run n times (or we have n pixels), we can
put all of the different realizations of 6 into a matrix, A. The
covariance matrix is then defined as follows:

1
Q= - AAT. 4

Q is by definition square, symmetric, and positive definite. If
there is any correlation in the data (there is with up-the-ramp
sampled detector data), then Q will have off-diagonal elements.
In PCA, we seek a basis in which the covariance matrix is
diagonal.

Since Q is square, by the Eigen decomposition theorem, it
can be factored as follows:

Q=VWV-1, 5)

In this expression, W is a diagonal matrix containing the pos-
itive eigenvalues of Q. V is a square matrix containing the cor-
responding eigenvectors (one eigenvector per column). Because
Q is symmetric, the eigenvectors form an orthogonal basis. In
the PCA lexicon, each orthogonal basis vector corresponds to a
“component.”

Because each column of V is a basis vector, applying VT to
the data, d’ = VTd, accomplishes a change of basis yielding, d’,
which contains the same information but with orthogonal devi-
ates (i.e., the covariance matrix is diagonal when computed in
this basis).

This is a more convenient representation because each com-
ponent can now be considered independently. It can save com-
putation (ignoring the computation to convert it into this form)
since weighting can be done component by component instead
of multiplying by a matrix. The data can also be stored more
compactly. This is because each component only needs to be
stored with enough precision to encompass the noise of that
component. Moreover, in many physical systems, most of the
information lies in the first few components.

2.3 PCA Method

We used nearly all of the pixels shown in Fig. 1 (about 98.5%)
for the PCA. The ~1.5% that were discarded were found by
doing a simple reference correction and preliminary fifth degree
Legendre fit. We then rejected high rms pixels based on a
histogram. In practice, this is very loose quality control.
Nevertheless, the PCA gave consistent results in spite of
there being cosmic ray hits and other artifacts in the data.
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After discarding the reset frame, reference correction, crop-
ping off reference pixels, let the data from the i’th of
n =~ 1014? pixels be represented by a column vector:

dy i

d; = (6)

d14 i

By flattening the two spatial dimensions on the sky, the data
can be represented by a matrix as follows:

dO 0 dO n—1

D= )

digo dign1

Each column in D contains the up-the-ramp samples from
one pixel.

Define the matrix, (D), to be a matrix that has the same shape
as D but with every column equal to a column vector that is the
expectation value of D averaged over all columns. All columns
of (D) are therefore identical. The covariance matrix is as
follows:

Q=10 - (D))(D- (D). ®)

n

To complete the PCA, following Sec. 2.2, we computed Q°s
eigensystem. Figure 2(a) shows the eigenvectors v. By inspec-
tion, the eigenvectors are similar to the Legendre polynomials
[Fig. 2(b)]. For clarity, we show only the first few here, although
the striking similarity continues as more are plotted. PCA of
WFIRST and JWST flats (Sec. 10) produced similar results.
However, we find this demonstration using real astronomical
data to be particularly compelling. Moreover, the result is not
particular to Abell 370. We did the same analysis for WFC3
observations of the 47 Tucanae globular cluster and got the
same results.

Figure 3 shows the eigenvalues, w;, plotted by PCA compo-
nent. They provide a quantitative measure of the variance in
each component. Throughout this paper, we equate variance
with “information.” Not all information is scientifically useful
because some is just noise. We define the “meaningful informa-
tion” to be the remaining variance after subtracting off the noise.

Basis Vector Amplitude

Up-the-ramp Frame Index

(@)

Pr(x)

7 J
10{ m
106 4
g 105 4
a
3
& 10%3
©
>
103 4
2 .
10°3 noise e
0 2 4 6 8 10 12 14

PCA Component

Fig. 3 This plot of eigenvalue versus PCA component (1 index) shows
that essentially all of the meaningful information is contained in
Ao — 45. The symbol for 1, is different because it is dominated by
the instrument signature (detector bias pattern and hot pixels etc.).
Excluding >3.5¢ statistical outliers, the noise is essentially Gauss-nor-
mal for Ag and higher (Sec. 11). For reference, WFC3’s conversion
gain is about g,~225e DN-'. According to the WFC3
Instrument Handbook, the read noise is between 20.2 —21.4 e~
per correlated double sample.® The read noise per sample is therefore
about 15 e, which corresponds to the variance of the blue noise line
that is overlaid on the plot.

Consistent with this plot, a variety of statistical tests (Sec. 11)
show that the noise is essentially Gauss-normal for A4 and higher
once >3.50 outliers are excluded. Later, in Sec. 4, we will dis-
cuss images (Fig. 5) of information content by PCA component.
For these observations, the evidence is consistent with nearly all
of the scientific information being contained in Ay — 4s.

2.4 Why Legendre Polynomials?

It is reasonable to ask, is there a physical explanation for why
the Legendre polynomials emerge so clearly? If one views the
problem of fitting the up-the-ramp samples as both a physics
problem and as a linear algebra problem, then one can plausibly
argue that the first few Legendre polynomials ought to be a good
basis for modeling a pixel’s response to light.

Whenever a pixel is reset, there is a statistical uncertainty in
the number of charges on the pixel’s capacitance equal to,

1.00 A

0.754

0.50 1

0.254

0.00 1

—0.25 A

—0.50 -

—0.75 A

—1.00 -

T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

X

(b)

Fig.2 Panel (a) shows the first five eigenvectors computed from the WFC3 Abell 370 data. They are very
similar to the (b) Legendre polynomials. For comparison purposes, we show the actual Legendre poly-
nomials in (b). If we were to change the normalization to match (a), then the two plots would look even

more similar.
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owre = ¢, '/kzTC.'* In up-the-ramp sampled data, this “kTC
noise” appears as a constant offset affecting all samples. In a
linear model parameterized by up-the-ramp frame index, z,
KTC noise appears as a constant time z°. After the pixel is
reset, by design, the ideal pixel starts to integrate the charge
in a highly linear manner. We therefore expect a term that
looks like a constant time z!. As the charge integrates, we
know from looking at data that most pixels gradually roll
over and lose response in a manner that can be roughly approxi-
mated with a quadratic, i.e., a constant times z2, before steep-
ening upon entering harder saturation as a constant times z> (and
so on). We can use these observations as the starting point for a
linear model of the pixel’s response that includes the basis
set, B = {7z, 7%, 2°}.

Without loss of generality, we can map z to the interval
—1 <x <+1, and furthermore, define an inner product for
this interval:

(a,b) = /_ " a)b(x)dx. ©)

1

If one uses Eq. (9) to orthogonalize B, the result is the
first four Legendre polynomials, B’ = {Py(t), P;(t), P,(),
P5(1)}." One can extend this argument to a higher degree,
although the justification for the higher order terms becomes
less physical the higher one goes.

Viewed in this way, the Legendre polynomials emerge as a
natural orthogonal basis for pixels that have kTC noise, respond
to light in a roughly linear matter at low signal levels, and for
which the response gradually rolls off before steepening upon
entering saturation. Empirically, it so happens that they also
approximately diagonalize the covariance matrix.

2.5 Advantages of Legendre Polynomials

One advantage of the Legendre polynomials compared to the
monomials is that they provide a less correlated representation
of the data. To quantify this, we looked at the Pearson correla-
tion matrix, P (also known as Pearson’s r; see Ref. 20,
Sec. 14.5). To compute P, define the matrix A’ that has the
same shape as D. The i’th column of A’ is equal to the column
vector:
doi—{do)

std d
8 = : , (10)

diai=(dia)
stddy

where std is the usual standard deviation. With these definitions,
the Pearson correlation matrix becomes

1
P:;A’A’T. (11)

To compare the two representations, we fitted D to fifth
degree using Legendre polynomials and the monomials. The
nearly diagonal correlation matrix of the Legendre polynomials
[Fig. 4(a)] is preferable to the checkerboard of the monomials
[Fig. 4(b)].

There are at least two advantages to a diagonal covariance
matrix. One advantage is that in order to do calculations, one
needs to only know and deal with six components (the diago-
nals) instead of 21 components (including the off diagonals) for
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Fig. 4 We fitted the same Abell 370 data to fifth degree (six free
parameters) using (a) Legendre polynomials and (b) monomials
and computed the Pearson correlation matrices. The Legendre rep-
resentation is strikingly less correlated than the monomials. As
described in the text, the nearly diagonal correlation matrix of the
Legendre polynomials is preferable to the checkerboard that the
monomials produced.

these observations. This reduces the number of parameters that
one needs to know a priori and saves computer space and com-
puter time. The other, arguably more important, advantage is
that inverting a large matrix with large off-diagonal components
leads to larger errors. For monomials, this leads to manifestly
wrong answers with single precision arithmetic at deg = 6
and even with double precision at deg = 11.

3 When Might One do Better?

The PCA shows that the Legendre polynomials are generally a
good choice for modeling the response of sampled up-the-ramp
pixels to astronomical scenes like Abell 370, the globular cluster
47 Tucanae (not discussed here), laboratory flats, and darks
(when sufficient data are available). As discussed in Sec. 2.4,
one would expect the Legendre polynomials to emerge as a
natural basis in many astronomical situations.

However, in some special cases, it might be possible to char-
acterize and measure the actual eigenvectors. For example, this
might be true for some transiting exoplanet observations. In
these cases, the Legendre polynomials would not be a bad
choice. However, one might expect to do even better by meas-
uring and using the actual eigenvectors when it is practical to
do so.

4 Information Content by Legendre A

For Abell 370, Fig. 3 shows that a fifth degree Legendre fit
extracts nearly all of the meaningful information. The only pix-
els that experience significant information loss are those that
strongly saturate, are hit by cosmic rays, or are statistical outliers
in some other way. For these rare events, techniques like PCA
that rely on ensemble averages are not effective.

Figure 5 provides a visual impression of how information
content falls off with increasing i in A;. This figure was made
by computing the median of all 36 Legendre cubes after offset-
ting them to account for dithering. The offsets were computed
by cross correlating the A; (slope) coefficients. The integrated
exposure time on the sky in each panel is about 14 h.

Ag is the mean value of the up-the-ramp samples. It contains
much of the instrument signature (bias pattern, hot pixels, bad
pixels, etc.), although there is also astrophysical information.

Apr—Jun 2019 « Vol. 5(2)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 03 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Rauscher et al.: Principal component analysis of up-the-ramp sampled infrared array data

Fig. 5 This figure shows the six Legendre 4 coefficients for the Rol of Fig. 1. The red box highlights the
information that is used by the WFC3 calibration pipeline. After linearization, the pipeline fits a straight line
(40 and 44), thereby not utilizing the information that is contained in A, — 15 to constrain model parameters.
Consistent with Fig. 2(b), 45 and higher contain very little astronomical information. For comparison, we
fitted the same data with a two-parameter straight line. The yellow box is a photometer aperture. For this
source, there is a 0.9% difference in brightness between the fifth degree Legendre fit and the straight line.
The images show detector edges from stacking (especially y). The bright-dark artifacts seen especially
in A, are more interesting. These may be caused by ~1.5 mas guiding errors (1% of WFC3’s pixel pitch)
during each exposure. This is discussed more fully in Sec. 12.

Where there is a bright source, the mean value of the ramp is
higher, so the sources are visible in 4.

A1 is proportional to the conventional slope image (the con-
version factor is given in Sec. 6). As expected, it is strongly
dominated by astronomical sources. As in conventional pipe-
lines, A; can be used directly for noncritical measurements.

A, is the first term to capture curvature [see Fig. 2(b)]. For
nominal pixels that slowly lose response as they fill until enter-
ing saturation, it should always be negative when it exceeds the
noise. 4, strongly reflects nonlinearity. We anticipate that it will
be extremely sensitive to anything that can impart curvature to
the ramp. Some examples include intrinsic nonlinearity for
bright sources, nonlinearity in the readout integrated circuit
(ROIC) when/if bright sources perturb the ROIC’s electrical
state, the brighter-fatter effect, and pointing jitter and drifts.

The brighter-fatter effect can make a “bull’s-eye” pattern
around each bright star, with a dark central hole surrounded
by a bright ring in the 1, image. The effect of drifting in/out
from pixels would appear like the bright-dark artifacts, as
shown in Fig. 5. Here, 1, seems to have been sensitive to 1.5
mas drifts (1% of pixel pitch). For more information on the
bright-dark pattern, please see Sec. 12.

The higher order As contain diminishing information. But, as
can be seen in Fig. 5, information is still present in these Abell
370 data until at least As. For disentangling time-dependent
instrument signatures, we believe that the time domain informa-
tion contained in all six terms may be important.

5 Information Compression

Legendre cubes are highly compressible. Looking at the Abell
370 data, consisting of the reset frame and 15 up-the-ramp
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samples, a complete data dump would be 16 X 2 = 32 bytes/
pixel. However, essentially all of the information can be retained
in six Legendre coefficients. If these are stored as 4 byte floats,
this is 24 bytes per pixel, a modest 25% compression.
Compressing a typical astronomical data file with “gzip —
best” results in 26.7 bytes/pixel, a 17% compression.

However, floating point numbers are unnecessary and diffi-
cult to compress. Keeping 8 digits of precision on a number that
has an uncertainty at the second digit is clearly excessive. The
ancient instruction of keeping a single digit into the uncertainty
is good advice. To update this to binary, one should keep 2 or
3 bits into the noise. One way to do that is to convert the
Legendre coefficients from floating point to integer (or calculate
them that way to begin with), and then multiply them with a
prearranged constant to make the 2 or 3 least significant bits
be in the band of uncertainty. For astronomical data dominated
by Poisson noise, the uncertainty is proportional to the square
root of the signal. Taking the square root halves the number of
bits required even before compression. If, as often the case, there
is additional readout uncertainty, the proper treatment is to add a
constant before taking the square root (see Ref. 21, Fig. 1).

Here, the first two coefficients, 4, and 4,, are offset to make
them positive and the square root results in data that can fit into
12 bits each per pixel, including three bits of noise. The 4, coef-
ficient fits into 10 bits and the remaining coefficients fit into
9 bits each including three bits of noise. Thus, a full ramp
can be packed into 60 bits or 7.5 bytes, a compression of
75%, or a factor of 4. This file can furthermore be gzipped,
resulting in a compression ratio of approximately 5 — 6X rela-
tive to the starting data while retaining nearly all of the scientific
information.
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Table 1 Compression trades.

Data in various forms

Data form ltem size  Number pe?}gael Compression
Original data 2 bytes 16 sample 32 —
Legendre Trans. 4 bytes 6 Coefs 24 25%
Compress to int 10 bits avg 6 7.5 77%
Zipped file 5.6 83%
Keep 2 bits of noise 4.6 87%

The final gzip compression of about 25% is the best that can
be expected since much of the “data” are the three bits of noise
in each coefficient. If only two bits of noise are kept, the data
compresses to 4.6 bytes/pixel, for a total compression ratio of
7. Higher compression ratios can be expected for longer ramps.
This is because even a 64 sample ramp on the WFIRST H4RG-
10 requires only ~8 Legendre coefficients, and these will require
only a few extra bits for the coefficients. Table 1 provides a sum-
mary of the compression that can be achieved after the different
steps described above.

6 Astrophysics in Legendre Space

For many years, the standard practice in IR astronomy has been
to linearize up-the-ramp sampled data and then fit straight lines
to make a slope image.'"'? Although the details of the
implementations differ, the focus has been on collapsing 3-D
datacubes to 2-D images. The 2-D image, or more commonly
averaged 2-D images, has almost always been the unit of data
that is used for science analysis.

The PCA clearly shows that this approach does not optimally
use the time domain information that is contained in the higher
order terms. Using calibration files to linearize the data before
fitting a straight line seeks to calibrate this information out,
rather than use it to constrain model parameters. To the extent
that the linearity correction is always imperfect, some time
domain information is always left behind. To utilize all of
the meaningful information (both astrophysical information
and instrument signatures), one must retain more than just
2-D slope images. In this regard, Legendre cubes are helpful
because they approximate the eigenvectors.

As of today, however, we are only just starting to learn how
to work with Legendre cubes. As place holders for proper algo-
rithms, we have found the following to be handy although
imperfect tools for collapsing 3-D Legendre cubes to familiar
2-D images for debugging and comparison with legacy data
products. Going forward, our aims include developing tech-
niques for performing common analysis algorithms directly
on Legendre cubes. We think that this will probably rely
more on forward modeling than is common today.

6.1 Slope Estimators: Two Handy but Imperfect
Tools

If a 2-D image is desired, then 4, is proportional to the conven-
tional slope image. If there are n up-the-ramp samples and the
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frame readout time is ¢ s, then the slope in units of data numbers
(DN) per second is as follows:

21
Slope = ——— 17!, (12)

(n—1)

If used as the only flux estimator, Eq. (12) has the undesir-
able attribute that it does not optimally use the time domain
information that is contained in the higher order terms.

Another handy way to get a 2-D image that captures more of
the information is to compute the integrated signal in DN using
the Legendre fit:

deg
integrated signal = ZA[(P,-(—H) - P;(-1)). (13)
i=0

Only the odd numbered terms contribute to the sum in
Eq. (13) because the even numbered Legendre polynomials
are even functions. As such, some information is not optimally
used. Compared to Eq. (12), Eq. (13) has the advantage that it
utilizes more of the available information and it is not much
more difficult to compute. Equation (13) can straightforwardly
be converted to the mean photocurrent during the exposure
(units: DN per second):

mean photocurrent =

f’li(Pi(+l)_Pi(_l)) l‘;l. (14)
i=0 (n=1)

These image estimators are far from perfect. The first prob-
lem is that they collapse the 3-D Legendre cube to a 2-D image
before performing any scientific analysis. In doing this, resolu-
tion on the time domain information is lost. However, the time
domain may hold the keys to disentangling source flux from
persistence, burn in, and other detector artifacts mediated by
charge trapping and release.

A second well-known problem is that the detectors are inher-
ently nonlinear. Nonlinearity must be accounted for when map-
ping instrumental brightness in DN to astronomical source
brightness. As has already been discussed, today’s pipelines
use calibration data to correct for nonlinearity before slope fit-
ting (or vice versa). These operations generally do not commute:
that is to say that if slope fitting is done before linearization, one
gets a slightly different result. Our eventual aim is to account for
nonlinearity simultaneously with measuring source brightness
as part of fitting (or forward modeling) a multiparameter model
to the pixel’s response as recorded in the Legendre cube.
However, this is work for the future.

6.2 Plans to Study Linearity

Given the lack of a satisfactory network of faint standard stars
spanning a range of brightness and color, we understand that we
must learn how to model nonlinearity in Legendre cubes. To
address this, we are pursuing two parallel tracks.

One track is purely experimental. We are upgrading a labo-
ratory test setup at Goddard so that we can apply light of known
wavelength and relative brightness over a wide, 10*~>x dynamic
range. The aim is to use this to study the linearity properties of
Legendre fitted pixels. If an opportunity were to come up to fly a
similarly calibrated detector in a very well understood telescope,
then that would be invaluable in establishing a network of faint
astronomical calibrators with known relative brightnesses.
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The second track combines theory and experiment. By exper-
imentally studying the properties of individual pixels and build-
ing physical models of them, we hope that it may be possible to
apply valid linearity corrections using less calibration data.
However, work is just beginning on the theoretical modeling.
The test setup described above is still under construction. We
look forward to saying more about these topics as things mature.

7 Future Work

Our hypothesis going forward is that for WFIRST’s most
demanding surveys, it may be beneficial to replace linearization
followed by line fitting with fitting (or forward modeling), a
multiparameter model to Legendre cubes. Linearization would
notionally be part of this process, as would measuring source
brightness, and accounting for artifacts such as persistence.

For space, we must also understand how to recognize cosmic
rays in Legendre cubes. Work on this is just beginning.
However, it may be that the Legendre cubes themselves contain
sufficient information to differentiate cosmic ray hits from nor-
mal pixel response. In other words, cosmic ray hits may leave a
distinct signature in Legendre space that differs from normal
pixel response. This is something that we can begin to explore
with existing laboratory data from JWST and WFIRST and
flight data from WFC3.

8 Summary

In this paper, we reported the results of PCA of laboratory flats
and real astronomical data from a variety of IR instruments. The
detectors included WFC3’s Teledyne HIR, JWST’s H2RGs,
and WFIRST H4RG-10s. The IR array controllers included
WEC3’s flight electronics, JWST SIDECAR ASICs, and
Gen-III Leach controllers from Astronomical Research
Cameras, Inc., for WFIRST. In all cases, the Legendre polyno-
mials emerged as a better basis (in the linear algebra sense) for
modeling up-the-ramp sampled pixels than the monomial basis
that is used for polynomial fitting and linearization in today’s
calibration pipelines. [Some colleagues have suggested that
the Fourier basis might be a good choice (after projecting out
the offset and slope terms). While preparing this manuscript,
we tried doing this. Compared to the Legendre polynomials,
the Fourier basis is also a poor choice.] The Legendre polyno-
mials are an orthogonal basis, whereas the monomials are not.
Moreover, the PCA shows that the Legendre polynomials are
often a reasonable proxy for the eigenvectors that diagonalize
the covariance matrix, whereas the monomials are not. As
such, the Legendre polynomials provide a less correlated repre-
sentation of the data than the conventional monomials.

Building on the PCA, in Sec. 5, we described how the infor-
mation content in astronomical scenes falls off with fit degree.
For the HST WFC3 Frontier Field observations of Abell 370, we
showed that nearly all of the meaningful information could be
compressed from 15 up-the-ramp samples down to 6 Legendre
coefficients per pixel. Moreover, Legendre coefficients are com-
pressible. In Sec. 5, we describe concepts for compressing data
like these down to 14% of the raw data volume while retaining
nearly all of the meaningful information.

Looking to the future, we believe that a change of basis from
the monomials to the Legendre polynomials should benefit not
only compression but also IR array calibration. The PCA shows
that up-the-ramp sampled data contain more information than is
contained in the conventional offset and slope images. The addi-
tional information exists in the time domain, and we believe that
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it may be important for disentangling time-dependent artifacts
like inherent nonlinearity, brighter-fatter effect, persistence, and
pointing drifts, etc. Linearizing the up-the-ramp samples before
fitting slopes, as is done today, does not use the time domain
information to constrain model parameters. Rather, it seeks to
remove it. Our hypothesis going forward is that it may be pos-
sible to do better by directly fitting, or forward modeling, multi-
parameter models to Legendre cubes.

9 Appendix A: WFC3 H1R Detector, Up-the-
Ramp Sampling, and Reference Correction

9.1 WFC3 H1R Detector

WFC3 IR uses a Teledyne HIR near-IR detector array
[Fig. 6(a)]. The HIR is a 1024 x 1024 pixel HgCdTe detector
array. Pixels are read out in four 512 x 512 pixel “quadrants.”
The HgCdTe is tuned to have a cutoff wavelength of about
1.7 ym. The “R” in its name denotes reference pixels.

The H1R was the first astronomical near-IR detector to pro-
vide engineered reference pixels embedded in the video outputs.
In the HIR, the reference pixels appear in a 5 pixel wide band
framing the 1014 X 1014 photosensitive pixel area [Fig. 6(b)].
Although the reference pixels are designed to electronically
mimic a regular pixel, they do not respond to light. During cal-
ibration, they are used to remove electronic drifts, as described
in Sec. 9.3.

9.2 IR Array Readout and Up-the-Ramp Sampling

Unlike in a CCD, it is possible to nondestructively sample the
pixels in HIR and HXRG (and similar IR array) detectors many
times without resetting them. At first, “multiple nondestructive
reads” were used to enable “Fowler sampling,” which quickly
samples the detector several times at the beginning and end of
each integration to “average down” the read noise. Fowler and
Gatley** still provide a good introduction to Fowler sampling
and other uses of multiple nondestructive reads.

Building on these ideas (and briefly mentioned in Fowler and
Gatley), it is possible to nondestructively sample a detector uni-
formly throughout an exposure. Today, this is known as up-the-
ramp sampling. Up-the-ramp sampling is widely used in space
because cosmic ray disturbance is easily recognized and can
sometimes be corrected for. Figure 7 shows an example of
up-the-ramp sampling as it is implemented in JWST NIRSpec.

In all IR array readout modes that use multiple nondestruc-
tive samples, there are correlations between the samples within
an exposure that affect the uncertainty in the measured flux.
Garnett and Forrest>* provide a good introduction to correlated
noise trades as a function of readout mode. Vacca et al.'' provide
an updated discussion that includes the effects of detector non-
linearity. Rauscher [Eq. (1)]*° and Rauscher et al.?® provide an
update to Vacca et al.’s noise model for the special case of JWST
readout.

9.3 Reference Correction

WEFC3’s H1R detector is read out in four “quadrants” [Fig. 6(a)].
The quadrants can (and do) have DC offsets with respect to each
other. The reference pixels are used to take these out in postpro-
cessing. The outermost 5 pixels on all sides are reference pixels.
Of these, the outmost rows/columns contain reference pixel
design variations. The inner four rows/columns of reference
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Fig. 6 (a) WFC3’s H1R detector is read out in quadrants. The full array has 1024 x 1024 pixels of which
1014 x 1014 are regular photosensitive pixels. These are surrounded on all sides by a 5 pixel wide border
of reference pixels. (b) The outermost row/column of reference pixels was not used because it contains
several different reference pixel designs. The inner four rows/columns were used because these refer-

ence pixels are all of the same design.

pixels all use the same design and these are the ones that we used
for this study.

We used a very simple reference correction scheme for this
study. The reference correction was applied to each frame indi-
vidually as the first processing step. We treated each quadrant
separately and computed the median of all reference pixels in
each quadrant excluding the outermost rows/columns. This
median was then subtracted from every pixel in that quadrant.
The end result was a DC reference correction that was applied
frame-by-frame and quadrant-by-quadrant. After making the
reference pixel correction, we cropped all reference pixels
from each frame.

10000 F M
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Fig. 7 This figure shows up-the-ramp sampling for one pixel as it is
implemented in the JWST NIRSpec. There are 65 nondestructive
samples per EXPTIME = 933s exposure. To maintain constant
power dissipation, the detector is clocked and pixels are digitized
at a constant cadence. For the NIRSpec mode that is shown here,
the cadence is about 14.6 s/frame. Charge integration begins
upon the completion of reset for the previous exposure (t =0 s).
Each vertical red line indicates a sample. Note that some signal
has integrated by the time the pixel is digitized for the first time.
The intent of this figure is to show the timing from the perspective
of one NIRSpec pixel. JWST observers should see the NIRSpec
information pages® for technical information about actual JWST
data products. Although the details differ slightly for WFC3 and
WFIRST, the underlying concept of acquiring multiple nondestructive
samples is the same.

More sophisticated reference correction is possible given the
right hardware, clocking patterns, and calibration software. For
example, some instruments treat the reference rows and columns
separately. With careful tuning, it is sometimes possible to use the
reference columns to remove noise within the outputs (not just
DC). For JWST NIRspec, we developed improved reference sam-
pling and subtraction (IRS2; pronounced “IRS-square”).?” IRS?
uses a specialized clocking pattern to interleave many more refer-
ence pixels into the data than is otherwise possible, resulting in
cosmetically cleaner images with less correlated noise.

In any case, the conclusions of this paper appear to be robust
against changes in how the reference pixels are used. In addition
to the very simple DC correction described above, we also did
PCA on IRS? sampled flats (Sec. 10). In both cases, PCA
showed that the Legendre polynomials were a good approxima-
tion to the eigensystem.

10 Appendix B: PCA of JWST and WFIRST
Flats

The Legendre polynomials are a good choice of basis for both
astronomical scenes and flats. Figure 8 shows the eigenvectors
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—0.1 A

Basis Vector Amplitude

—0.2 1

—0.3 A1

0 5 10 15 20 25 30
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Fig. 8 The eigenvectors, v, of a JWST NIRSpec channel 491 flatfield
exposure to nearly full well are very similar to the Legendre polyno-
mials. WFIRST flats show similar behavior.
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for a JWST NIRSpec flatfield image exposed to nearly full well
(6 x 10* e~). The procedure was as described in Sec. 2. By
inspection, the eigenvectors are similar to the Legendre polyno-
mials [Fig. 2(b)]. We have repeated this analysis for flats taken
with WFIRST H4RG-10s and gotten similar results.

11 Appendix C: Read Noise Distribution at
High ;

If all of the information were captured by 1y — A5, then the dis-
tribution in ¢ and higher would be Gauss-normal noise. To test
this hypothesis, we used three standard statistical tests: (1) the
Kolmogorov—Smirnov (KS) test, (2) O — Q plots, and (3) the
Anderson—Darling test. The KS test shows that by A4, the
noise is statistically indistinguishable from Gauss-normal.
The Q — Q plots also showed this to be true, except for statis-
tical outliers. The Anderson—Darling test weights statistical out-
liers heavily, so it shows that although the distribution is
trending toward Gauss-normal, there are nevertheless too
many statistical outliers to be well represented by an underlying
Gauss-normal distribution. However, if we clip statistical out-
liers, then the Anderson—Darlington test, like the Q — Q plots
and KS test, becomes consistent with an underlying Gauss-nor-
mal distribution. In a statistical sense, for these HST data, essen-
tially all of the meaningful information is captured by g — 15
once a very small sample of outliers has been eliminated.

111 KS Tests

As the information content (i.e., variance) decreases in the
higher order A; (Fig. 3), we also expect that the distributions
of A; values should become increasingly well represented by
a Gauss-normal distribution. Thus, a one-sided KS test (see
Ref. 20, Sec. 14.3) was applied to compare the A; values to a
Gaussian function for each of 111 ramps (36 at F160W, the
rest using other filters). The KS test calculates the maximum
deviation (D) between the cumulative distribution functions
for the data and for the Gaussian model. Then, one calculates
the probability for finding a value of >D under the assumption
that the data are drawn from a Gauss-normal distribution. Low
probabilities indicate that D is improbably large for data with a
truly Gauss-normal distribution. Over many repeated tests of
Gauss-normal data (with known mean and o values), the prob-
abilities should fall in a uniform distribution over the range
[0,1]. Because of the detector readout pattern and the reference
correction (Sec. 9), the four detector quadrants were tested
independently.

Figure 9 shows the KS probabilities for each of 111 4; values,
in cases where n = 7 Legendre components were fit. There is
zero chance that A, through 4, are Gauss-normal distributions.
However, the probability of Gauss-normal distributions
increases from A3 through As. For g and 15, the distributions
are indistinguishable from Gauss-normal. The apparent bias
toward high probabilities is a result of fitting the mean and o
for each of the tests, as these parameters are not known a priori.
In summary, for these Abell 370 data, the KS test suggests little
or no information is contained beyond As.

11.2 Q-Q Plots

A quantile—quantile (Q — Q) plot is a graphical diagnostic to test
whether two samples come from the same distribution. They
plot one sample’s quantiles against another sample’s quantiles.
If the samples come from the same distribution, the points lie
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Fig. 9 One-sided KS probabilities for testing the Gauss-normal dis-
tribution of 1;. The horizontal axis simply disperses the different 4;
and 111 ramps. The lowest 4; carry information and are strongly
non-Gaussian. 1g and 1; are consistent with Gauss-normal distribu-
tions, accounting for the bias produced by fitting the mean and ¢ of
each distribution rather than comparing to a priori fixed values.
Symbol colors distinguish the independently tested four quadrants
for each A;.

along a 1:1 line. Here, what is meant by a quantile is simply
a data point below which a certain proportion of the data
falls. To test whether the noise distributions in the higher 4;
terms are Gauss-normal, we can compare the sample quantiles
of the A; data by quadrant to the theoretical quantiles of a
Gaussian normal distribution.

Figure 10(a) shows the resulting Q — Q plots for A5 with each
quadrant represented by a different color of points. The 15 data
has had the mean value subtracted and been divided by its sam-
ple standard deviation. A 1:1 line is shown in red. In this plot, it
is clear that data in this higher 4; term are mostly aligned with
the 1:1 line suggesting that these data approach Gaussian nor-
mality at higher order. However, the data deviate from normality
at the extremes. These deviations are the results of heavy tails in
the distribution of the 4; values, which could be due to cosmic
rays or other uncorrected effects. Examining the higher order
As — A7 O — Q plots, we see the significant deviations from nor-
mality occur at about 3.5 standard deviations from the mean.
Dashed lines show this limit, and if we remove these data,
we see that the data at higher order become more consistent
with a Gauss-normal distribution as measured quantitatively
with the Anderson—Darling tests described in Sec. 11.3.

11.3 Anderson-Darling Test

The Anderson—Darling test tests the null hypothesis that the
given sample data is drawn from a specific distribution.”
The Anderson—Darling test returns the Anderson—Darling statis-
tic that can be compared to tabulated critical values (given a
chosen significance level) to assess the validity of the null
hypothesis.?> The Anderson—Darling test, like the KS test, com-
pares data distributions, however, the Anderson—Darling statis-
tic is calculated applying weights that make the Anderson—
Darling test sensitive to differences in the beginning and
ends of distributions, i.e., the tails. We select a significance
level of 1% corresponding to a 1 in 100 chance of rejecting
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Fig. 10 (a) Q — Q plot comparing 15 data with a Gauss-normal distribution with each quadrant repre-
sented by a different color of points. The A5 data have had the mean value subtracted and been divided
by the sample standard deviation. A 1:1 line is shown in red. Higher order terms tend to approach the 1:1
line implying increasing normality, but heavy tails do exist at the extrema. Dashed lines mark 3.5 standard
deviations from the mean where it seems the data start to deviate from normality in the higher order
terms. (b) Histogram of the Anderson-Darling statistic for A5 excluding the >3.5 standard deviation
wings (about 1% of pixels) with different quadrants represented by different colors. The mean and median
of the statistic for each quadrant are printed in the plot. All means are less than 1.092 suggesting the
clipped data are consistent with a Gauss-normal distribution.

Gaussian normality when the data are actually Gaussian normal.
The corresponding critical value for the Anderson—Darling sta-
tistic when comparing to the normal distribution for a large sam-
ple size is 1.092.

We calculate the Anderson—Darling statistic for the 4; data
for each quadrant across 111 images for data fit to six Legendre
polynomials. Without removing the outliers in the tails of the
data distribution marked by the dashed lines in Fig. 10(a),
the Anderson—-Darling statistics for all images are greater
than 1.092 suggesting a non-Gaussian normal distribution.
However, if we exclude the data in the wings of the distribution,
on average the Anderson—Darling statistics become less than
one suggesting the data is consistent with a Gauss-normal dis-
tribution. Figure 10(b) shows the histogram of the Anderson—
Darling statistic for 15 excluding the >3.5 standard deviation
wings with different quadrants represented by different colors.
The mean and median of the statistic for each quadrant are
printed in the plot. Accounting for the outliers in the tails of
the data distribution, the data suggest that at higher order, the
coefficients in the Legendre fit become Gauss-normal.

12 Appendix D: Bright-Dark Artifacts in A,

As P,(x) is the first nonlinear Legendre polynomial, we
expected that 4, would be strongly imprinted with the nonlinear
detector response found at very bright sources. As such, we
expected 4, to be negative and strongly biased toward the bright-
est sources. However, Fig. 5 reveals a bright-dark artifact such
that 1, has both negative and positive values on opposite sides of
bright sources.

We hypothesize that these artifacts may be caused by a drift
in the WFC3 pointing during the course of the observations.
Where a source is drifting into a pixel, the accumulating up-
the-ramp signal will steepen with time, requiring a positive
value of 4,. Conversely, as a source drifts away from a pixel,
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the ramp will flatten (as it would from a standard nonlinear
response), and 4, will be negative. For small shifts, the induced
values of 1, should be the product of the gradient of the bright-
ness and the amount of the drift.

To test this, we approximated the brightness gradient by dif-
ferencing images of the median A, shifted by (—6x, —5y) and by
(4+6x,+8y). To match the apparent direction of the shift in
the 1, image, the actual gradient image used here is the average
of gradient images made with (6x,8y) = (1,1) and
(6x,8y) = (1,0). This approximates a gradient image of 4, in
a direction that is 30 deg from the x axis (dA,/dz, where
z2=02x+y)/ V/3). Next, we performed a linear correlation
between 4, and dA,/dz for 6728 pixels with significant but
not saturated signals. The slope of this correlation provides a
measure of the fractional pixel shift. This shift translates to
1.54 mas given the 130 mas pixel size of for the WFC3 IR detec-
tor. The subtraction of the scaled 4, gradient leaves a 4, residual,
where the imprints of astronomical sources are almost entirely
negative, and are tightly (but not linearly) correlated with 4;, as
would be expected for standard nonlinear response.

The amount of drift during each of the 36 ramps was also
estimated from examination of the RA and DEC data in the
associated jitter files. The systematic drifts during each ramp
are quite small (comparable to the standard deviation) and aver-
aged across 36 ramps also had a value of 1.54 mas. The direc-
tions of the drifts were similar for all ramps, which was likely
essential to their systematic imprint in the median 4,. However,
the direction of the drift implied by the most straightforward
interpretation of the jitter files is nearly 90 deg different from
the apparent drift in the data. When asked, former members
of the WFC3 IR Development Team at Goddard told us that
the recorded jitter was not necessarily for the specific line-of-
sight to our field, and that known (or suspected) flexures and
offsets in the observatory could potentially explain the
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discrepancy. The status is therefore that the drift amplitude
implied by the bright-dark artifacts is consistent with the ampli-
tude recorded in the jitter files. However, we were not able to
reconcile the apparent drift directions with the jitter files.

If one accepts that the bright-dark artifacts are consistent with
pointing drifts, then a small drift as implied by 4, would nec-
essarily distort the shapes of sources measured in that data. Use
of the information in 4, to try to deconvolve the image to get the
true source shapes is likely to be unstable. A better use of this
information is to incorporate the drift into models that are com-
pared to the data so that both the data and model are drifted and
comparisons between the two will be unbiased by the effect.
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