

This work is on a Creative Commons Attribution 4.0 International (CC BY 4.0) license,
https://creativecommons.org/licenses/by/4.0/. Access to this work was provided by the University
of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the
Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

https://creativecommons.org/licenses/by/4.0/
mailto:scholarworks-group@umbc.edu

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019) 101

PyLZJD: An Easy to Use Tool for Machine Learning

Edward Raff§‡∗, Joe Aurelio‡§, Charles Nicholas‡

F

Abstract—As Machine Learning (ML) becomes more widely known and popu-
lar, so too does the desire for new users from other backgrounds to apply ML
techniques to their own domains. A difficult prerequisite that often confounds
new users is the feature creation and engineering process. This is especially true
when users attempt to apply ML to domains that have not historically received
attention from the ML community (e.g., outside of text, images, and audio).
The Lempel Ziv Jaccard Distance (LZJD) is a compression based technique
that can be used for many machine learning tasks. Because of its compression
background, users do not need to specify any feature extraction, making it easy
to apply to new domains. We introduce PyLZJD, a library that implements LZJD
in a manner meant to be easy to use and apply for novice practitioners. We
will discuss the intuition and high-level mechanics behind LZJD, followed by
examples of how to use it on problems of disparate data types.

Index Terms—compression, complex data, machine learning

Introduction

Machine Learning (ML) has become an increasingly popular tool,
with libraries like Scikit-Learn [PVG+11] and others [CG16],
[Raf17], [MBY+16], [HFH+09] making ML algorithms available
to a wide audience of potential users. However, ML can be
daunting for new and amateur users to pick up and use. Before
even considering what algorithm should be used for a given
problem, feature creation and engineering is a prerequisite step
that is not easy to perform, nor is it easy to automate.

In normal use, we as ML practitioners would describe our data
as a matrix XXX that has n rows and d columns. Each of the n rows
corresponds to one of our data points (i.e., an example), and each
of the d columns corresponds to one of our features. Using cars
as an example, we may want to know what color a car is, how
old it is, or its odometer mileage, as features. We want to have
these features in every row n of our matrix so that we have the
information for every car. Once done, we might train a model
m(·) to perform a classification problem (e.g., is the car an SUV
or sedan?), or use some distance measure d(·, ·) to help us find
similar or related examples (e.g., which used car that has been
sold is most like my own?).

The question becomes, how do we determine what to use as
our features? One could begin enumerating every property a car
might have, but that would be time consuming, and not all of
the features would be relevant to all tasks. If we had an image

* Corresponding author: raff_edward@bah.com
§ Booz Allen Hamilton
‡ University of Maryland, Baltimore County

Copyright © 2019 Edward Raff et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

of a car, we might use a Neural Network to help us extract
information or find similar looking images. But if one does not
have prior experience with machine learning, these tasks can be
daunting. For some types of complex data, feature engineering can
be challenging even for experts.

To help new users avoid this difficult task, we have developed
the PyLZJD library. PyLZJD makes it easy to get started with ML
algorithms and retrieval tasks without needing any kind of feature
specification, selection, or engineering from the user. Instead, a
user represents their data as a file (i.e., one file for every data
point, for n total files). PyLZJD will automatically process the
file and can be used with Scikit-Learn to tackle many common
tasks. While PyLZJD will likely not be the best method to use for
most problems, it provides an avenue for new users to begin using
machine learning with minimal effort and time.

The Lempel Ziv Jaccard Distance

LZJD stands for "Lempel Ziv Jaccard Distance" [RN17a] and
is the algorithm implemented in PyLZJD. LZJD takes a byte or
character sequence x (i.e., a "string"), converts it to a set of sub-
strings, and then converts the set into a digest. This digest is a
fixed-length summary of the input sequence, which requires a total
of k integers to represent. We can then measure the similarity of
digests using a distance function, and we can trade accuracy for
speed and compactness by decreasing k. We can optionally convert
this digest into a vector in Euclidean space, allowing greater
flexibility to use LZJD with other machine learning algorithms.

The inspiration and high-level understanding of LZJD comes
from compression algorithms. Let C(·) represent your favorite
compression algorithm (e.g., zip or bz2), which takes an input
x and produces a compressed version C(x). Using a decompressor,
you can recover the original object or file x from C(x). The purpose
of this compression is to reduce the size of the file stored on disk.
So if |x| represents how many bytes it takes to represent the file x,
the goal is that |C(x)|< |x|.

What if we wanted to compare the similarity of two files, x
and y? We can use compression to help us do that. Consider two
files x and y, with absolutely no shared content. Then we would
expect that if we concatenated x and y together to make one larger
file, x‖y, then compressing the concatenated version of the files
should be about the same size as the files compressed separately,
|C(x‖y)|= |C(x)|+ |C(y)|. But what if |C(x‖y)|< |C(x)|+ |C(y)|?
For that to be true, there must be some overlapping content
between x and y that our compressor C(·) was able to reuse in order
to achieve a smaller output. The more similarity between x and y,
the greater difference in file size we should see. In which case, we
could use the ratio of compressed file lengths to tell us how similar

mailto:raff\protect _edward@bah.com

102 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

the files are. We could call this a "Compression Distance Metric"
[KLR04] as shown in Equation 1, where CDM(x,y) returns a
smaller value the more similar x and y are, and a larger value
if they are different.

CDM(x,y) =
C(x‖y)

|C(x)|+ |C(y)|
(1)

The CDM distance we just described gives the intuition behind
LZJD. That we can use compression algorithms to measure the
similarity between arbitrary files. CDM has been used to perform
time series clustering and classification [KLR04]. A large number
of compression based distance measures have been proposed
[SB06] and used for tasks such as DNA clustering [LCL+04],
image retrieval [Tra07], and malware classification [Bor15].

Mechanics of LZJD

While the above strategy has seen much success, it also suffers
from drawbacks. Using a compression algorithm for every simi-
larity comparison makes prior methods slow, and the mechanics
of standard compression algorithms are not optimized for machine
learning tasks. Equation 1 also does not have the properties of a
true distance metric1, which can lead to confusing behavior and
prevents using tools that rely on these properties. LZJD rectifies
these issues by converting a specific compression algorithm,
LZMA, into a dedicated distance metric [RN17a]. LZJD is fast
enough to use for larger datasets and maintains the properties of a
true distance metric. LZJD works by first creating the compression
dictionary of the Lempel Ziv algorithm [LZ76].

def lzset(b): #code for string case only
s = set()
start = 0
end = 1
while end <= len(b):

b_s = b[start:end]
if b_s not in s:

s.add(b_s)
start = end

end += 1
return s

def sim(A, B): # A & B should be set objects
return len(A & B) / len(A | B)

The lzset method shows the Lempel compression dictionary
creation process. Since LZJD cares about similarity as a direct
goal, we do not put in the extra work or code normally required to
make an effective compressor. Instead, we simply create a Python
set of many different sub-strings of the input sequence b. Because
the lzset method gives us a set of objects, we use the well-
known Jaccard similarity to measure how close the two sets are.
This is defined in the sim method above, and mathematically in
Equation 2.

J(A,B) =
|A∩B|
|A∪B|

=
|A∩B|

|A|+ |B|− |A∩B|
(2)

The distance d(A,B) = 1− J(A,B) is a valid metric, and thus
provides all the tools necessary to measure the similarity be-
tween arbitrary sequences or files. If a and b represent different
sequences, their LZJD is computed as:

dist = 1.0-sim(lzset(a),lzset(b))

1. The properties of a true distance metric are symmetry, indiscernibility,
and the triangle inequality.

While the procedure above will implement the LZJD algorithm,
it does not include the speedups that have been incorporated into
PyLZJD. Following [RN17a] we use Min-Hashing [BCFM98] to
convert a set A into a more compact representation A′, which is of a
fixed size k (i.e., |A′|= k) but guarantees that J(A,B)≈ J(A′,B′)2.
[RN18] reduced computational time and memory use further by
mapping every sub-sequence to a hash and performing lzset
construction using a rolling hash function to ensure every byte
of input was only processed once. To handle class imbalance
scenarios, a stochastic variant of LZJD allows over-sampling
to improve accuracy [RN17b]. All of these optimizations were
implemented with Cython [BBC+11] in order to make PyLZJD as
fast as possible.

Vectorizing Inputs

The LZJD algorithm as discussed so far provides only a distance
metric. This is valuable for search and information retrieval prob-
lems, many clustering algorithms, and k-nearest-neighbor style
classification, but it does not avail ourselves to all the algorithms
that would be available in Scikit-Learn. Prior work proposed one
method of vectorizing LZSets [RN17b] based on feature hashing
[WDL+09], where every item in the set is mapped to a random
position in a large and high dimensional input (they used d = 220).
For new users, we want to avoid such high dimensional spaces
to avoid the curse of dimensionality [Bel57], a phenomena that
makes obtaining meaningful results in higher dimensions difficult.

Working in such high dimensional spaces often requires
greater consideration and expertise. To make PyLZJD easier for
novices to use, we have developed a different vectorization strat-
egy. To make this possible, we use a new version of Min-Hashing
called "SuperMinHash", [Ert17]. The new SuperMinHash is up to
40% slower compared to the prior method, but enables us to use
what is known as b-bit minwise hashing to convert sets to a more
compact vectorized representation [LK11]. Since k≤ 1024 in most
cases, and b ≤ 8, we arrive at a more modest d = k · b ≤ 8,192.
By keeping the dimension smaller, we make PyLZJD easier to
use and a wider selection of algorithms from Scikit-Learn should
produce reasonable results.

Over-Sampling Data

Another feature introduced in [RN17b] is the ability to stochasti-
cally over-sample data to create artificially larger datasets. This is
particularly useful when working with imbalanced datasets. Given
a value false_seen_prob, their approach modifies the inner
if statement of lzset to falsely "see" a sub-string that it has not
seen before. This is a one line change that looks like the following:
if b_s not in s

and random.uniform() > false_seen_prob:

By doing so, the set of sub-strings returned is altered. However,
the altered set is still true to the data in that every string in the set
is a real and valid sub-string from the corpus. This works because
the Lempel Ziv dictionary creation is sensitive to small changes
in the input, so a few small alterations can propagate forward and
cause a number of differences in the entire process. By making
the condition random, we can repeat the process several times and
get different results each time. This provides additional example
diversity that can help train a model. When false_seen_prob

2. The bottom-k approach is used by default, where one hash h(·) is applied
to every item in the set, and the bottom-k values according to h(·) are selected.

PYLZJD: AN EASY TO USE TOOL FOR MACHINE LEARNING 103

= 0, we get the standard LZJD output. To perform oversampling,
we recommend using small values like false_seen_prob ≤
0.05.

Using PyLZJD

Now that we have given the intuition and described how LZJD
works, we show three examples of how PyLZJD performs machine
learning, without having to specify a feature processing pipeline.
PyLZJD, along with complete versions of these examples, can be
found at https://github.com/EdwardRaff/pyLZJD.

To use PyLZJD, at most three functions need to be imported,
as shown below.
from pyLZJD import digest, sim, vectorize

These three functions work as follows:

• digest(b, hash_size=1024, mode=None,
processes=-1, false_seen_prob=0.0): takes
in (1) a string as data to convert to a digest or (2) a path
to a file and converts the file’s content to an LZJD digest.
If a list is given as input, each element of the list will be
processed to return a list of digests.3

• vectorize(b, hash_size=1024, k=8,
processes=-1, false_seen_prob=0.0):
works the same as digest, but instead of returning a list,
returns a numpy array representing a feature vector.

• sim(A, B): takes two LZJD digests, and returns the
similarity score between two files. 1.0 indicating they are
exactly similar, and 0.0 indicating no similarity.

The above is all that is needed for practitioners to use PyLZJD
in their code. Below we will go through three examples of how
to use these functions in conjunction with Scikit-Learn to get
decent results on these problems. For new users, we recommend
considering LZJD as a first-pass easy-to-use algorithm so long as
the length of the input data is 200 bytes/characters or more. This
recommendation comes from the fact that LZJD is compression
based, and it is difficult to compress very short sequences. A quick
test of LZJD’s appropriateness, is to manually compress your data
points (as files) with your favorite compression algorithm. If the
files compress well, LZJD may work. If the files do not compress
well, LZJD is less likely to work.

T5 Corpus Example

The first example we use is a dataset called T5, which has
historically been used for computer forensics [Rou11]. It contains
4,457 files that are of one of 8 different file types: html, pdf, text,
doc, ppt, jpg, xls, or gif. As a simple first step to using PyLZJD,
we will attempt to classify a file as one of these 8 file types. Our
code starts by collecting the paths to each file into a list X_paths.
Creating a LZJD digest for each of these files is simple; call the
digest function as shown below:
X_hashes = digest(X_paths, processes=-1)

The processes argument is optional. By setting it to -1, as many
processor cores as are available are used. If set to any positive
value n, then n cores will be used. A list of digests will be returned
with the same corresponding order as the input. The digest

3. mode controls which version of min-hashing is used. None for the
standard hash, or "SuperHash" to use the approach that is compatible with
vectorization.

function will automatically load every file path from disk, and
perform the LZJD process outlined above.

For this first example, we will stick to using LZJD as a
similarity tool and distance metric. When you want to use distance
based algorithms, you want to use the digest and sim functions
instead of vectorize. vectorize is less accurate and slower
when computing distances.

To use LZJD’s digest with Scikit-Learn, we need to massage
the files into a form that it expects. Scikit-Learn needs a distance
function between data stored as a list of vectors (i.e., a matrix
X). However, our digests are not vectors in the way that Scikit-
Learn understands them, so Scikit-Learn needs to be told how to
properly measure distances when using LZJD. An easy way to
do this4, which is compatible with other specialized distance a
user may want to leverage, is to create a 1-D list of vectors. Each
vector will store the index of its digest in the created X_hashes
list. Then we create a distance function which uses the index and
returns the correct value. While wordy to explain, it takes only a
few lines of code:

#This will be the vetor given to Scikit-Learn
X = [[i] for i in range(len(X_hashes))]

#sklearn will give us two vectors a and b from 'X'
def lzjd_dist(a, b):

#Each has len(a) = 1, so only one value to grab
#The stored value tells us which index
#has 'our' digest
digest_a = X_hashes[int(a[0])]
digest_b = X_hashes[int(b[0])]
#Now that we have the digests, compute a
#distance measure.
return 1.0-sim(digest_a, digest_b)

This is all we need to use the tools built into Scikit-learn. For
example, we can perform k-nearest-neighbor classification with
cross-validation to see how accurately we predict a file’s type.

knn_model = KNeighborsClassifier(n_neighbors=5,
algorithm='brute', metric=lzjd_dist)

scores = cross_val_score(knn_model, X, Y)
print("Accuracy: %0.2f (+/- %0.2f)"

% (scores.mean(), scores.std() * 2))

The above code returns a value of 91% accuracy, where a majority-
vote baseline returns 25%. This was all done without us having to
specify anything about the associated file formats, how to parse
them, or any feature engineering work. We can also leverage
other distance metric based tools that Scikit-Learn provides. For
example, we can use the t-SNE [MH08] algorithm to create a
2D embedding of our data that we can visualize with matplotlib.
Using Scikit-Learn, this is only one line of code:

X_embedded = TSNE(n_components=2, perplexity=5,
metric=lzjd_dist).fit_transform(X)

The resulting plot is shown in Figure 1. We see that the groups
are mostly clustered into separate regions, but that there is a
significant collection of points that were difficult to organize
with their respective groups. While a tutorial on effective t-SNE
use is beyond our scope, LZJD allows us to leverage t-SNE for
immediate visual feedback and exploration.

4. This approach is how the Scikit-learn developers recomend using other
non-standard distance metrics. For example, the Scikit-learn FAQ shows how
to use this approach for doing edit-distance over strings.

https://github.com/EdwardRaff/pyLZJD
https://scikit-learn.org/stable/faq.html#how-do-i-deal-with-string-data-or-trees-graphs

104 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

100 50 0 50 100

100

50

0

50

100

TSNE Visualization
jpg
html
pdf
ppt
text
doc
gif
xls

Fig. 1: Example of t-SNE visualization created using LZJD. Best
viewed digitally and in color.

Spam Image Classification

The prior example used files of varying types, which is similar to
the problem domain that LZJD was developed for. In this example,
we change the type of data and how we approach the problem.
Here, our goal is to predict if an email image attachment is a
spam image (i.e., undesirable) or a ham image (i.e., desirable - or
at least, more desirable than spam). This dataset was collected in
2007 [DGEB07], with 3298 spam and 2021 ham images.

Fig. 2: Example of ham (left) and spam (right) images from the
dataset’s website.

We use the vectorize function to create feature vectors for
each data point. Using vectorize instead of digest allows
us to build models that avoid the nearest neighbor search, which
can be slow and cumbersome to deploy. The trade off is we spend
more time during the training phase of the algorithm. Doing this
with PyLZJD is simple, and the below code snippet handles the
work of creating the labels, loading the files, and creating feature
vectors, again, without us having to specify anything about the
input.
spam_paths = glob.glob("personal_image_spam/*")
ham_paths = glob.glob("personal_image_ham/*")

all_paths = spam_paths + ham_paths
yBad = [1 for i in range(len(spam_paths))]
yGood = [0 for i in range(len(ham_paths))]
y = yBad + yGood
X = vectorize(all_paths)

Now that we have feature vectors, we can train a Logistic Regres-
sion model to predict if a new image is a spam or not. The code
to train and evaluate it (by several metrics) is:

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2,

random_state=42)

lgs = LogisticRegression(class_weight='balanced')
lgs.fit(X_train, y_train) #training our model

predicted = lgs.predict(X_test)

fpr, tpr, _ = metrics.roc_curve(y_test,
(lgs.predict_proba(X_test)[:, 1]))

auc = metrics.auc(fpr, tpr)
print("Accuracy: %f" %

lgs.score(X_test, y_test))
print("Precision: %f" %

metrics.precision_score(y_test, predicted))
print("Recall: %f" %

metrics.recall_score(y_test, predicted))
print("F1-Score: %f" %

metrics.f1_score(y_test, predicted))
print("AUC: %f" % auc)

This produces an accuracy of about 94.6%, and an AUC of 98.7%.
In the above code snippet, we included the class_weight
parameter to address class imbalance in the data. There are more
examples of spam images, which can bias a model toward calling
most inputs "spam" by default. Using a ’balanced’ class weight re-
weights the data as if there was an equal number of examples of
each class. With PyLZJD, you can perform a special type of over-
sampling to help further reduce this impact and improve accuracy.
Here is a simple version of this ability:

paths_train, paths_test, y_train, y_test =
train_test_split(all_paths, y,

test_size=0.2, random_state=42)

X_train_clean = vectorize(paths_train)
X_train_aug = vectorize(paths_train*10,
false_seen_prob=0.05)

X_test = vectorize(paths_test)

In this code, X_train_clean constructs the training data in the
normal manner. Alternatively, X_train_aug has over-sampled
both the spam and ham training data 10 times. Normally, this
would create 10 copies of the same vectors and have no impact
on the solution learned. But, we added the false_seen_prob
flag, which alters how the lzset is constructed: this flag turns
on the stochastic component and you get a different result every
call. We get a variety of different (but realistic) examples for each
datapoint. If we train a new logistic regression model on this data,
we get improved results (Table 1).

TABLE 1: Results on training a Logistic Regression model for
spam image detection. Over-sampled scores show results when
’false_seen_prob’ is used.

Metric Score Over-sampled Score
Accuracy 0.946 0.957
Precision 0.950 0.954
Recall 0.966 0.979
F1-Score 0.958 0.966
AUC 0.987 0.992

LZJD won’t always be effective for images, and convolutional
neural networks (CNNs) are a better approach if you need the
best possible accuracy. However, this example demonstrates that
LZJD can still be useful, and has been used successfully to find
slightly altered images [Fj]. This example also shows how to
build a more deployable classifier with PyLZJD and tackle class-
imbalance situations.

https://www.cs.jhu.edu/~mdredze/datasets/image_spam/

PYLZJD: AN EASY TO USE TOOL FOR MACHINE LEARNING 105

Text Classification

As our last example, we will use a text-classification problem.
While other methods will work better, the purpose is to show that
LZJD can be used in a wide array of potential applications. For
this, we will use the well-known 20 Newsgroups dataset, which is
available in Scikit-Learn. We use this dataset because LZJD works
best with longer input sequences. For simplicity we will stick with
distinguishing between the newsgroup categories of ’alt.atheism’
and ’comp.graphics’. An example of an email from the later group
is shown below.

By ’8 grey level images’ you mean 8 items of 1bit
images? It does work(!), but it doesn’t work if you have
more than 1bit in your screen and if the screen intensity
is non-linear.

With 2 bit per pixel; there could be 1*c_1 + 4*c_2
timing, this gives 16 levels, but they are linear if screen
intensity is linear. With 1*c_1 + 2*c_2 it works, but
we have to find the best compinations -- there’s 10
levels, but 16 choises; best 10 must be chosen. Different
compinations for the same level, varies a bit, but the
levels keeps their order.

Readers should verify what I wrote... :-)
When a string is not a valid path to a file, PyLZJD will

processes the string itself to create a digest. This simplifies
working with strings, and getting results is as easy as:

X_train = vectorize(newsgroups_train.data)
X_test = vectorize(newsgroups_test.data)

clf = LogisticRegression()
clf.fit(X_train, newsgroups_train.target)

pred = clf.predict(X_test)
metrics.f1_score(newsgroups_test.target,

pred, average='macro')

With the above code, we get an F1 score of 83%. Using Scikit-
Learn’s TfidfVectorizer achieves an F1 of 89%. The point here
is that with pyLZJD we can get decent results without having to
think about what kind of vectorization is being performed, and any
string encoded data can be feed directly into the vectorize or
digest functions to get immediate results.

Conclusion

We have shown, by example, how to use PyLZJD on a number
of different datasets composed of raw binary files, images, and
regular ASCII text. In all cases, we did not have to do any feature
engineering or extraction to use PyLZJD, making application
simpler and easier. This shortcut is particularly useful when feature
specification is hard, such as raw file types, but can also make it
easier for people to get into applying Machine Learning.

REFERENCES

[BBC+11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn,
and K. Smith. Cython: The best of both worlds. Computing
in Science Engineering, 13(2):31 –39, 2011. doi:10.1109/
MCSE.2010.118.

[BCFM98] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael
Mitzenmacher. Min-wise Independent Permutations (Extended
Abstract). In Proceedings of the Thirtieth Annual ACM Sympo-
sium on Theory of Computing, STOC ’98, pages 327–336, New
York, NY, USA, 1998. ACM. URL: http://doi.acm.org/10.1145/
276698.276781, doi:10.1145/276698.276781.

[Bel57] Richard Bellman. Dynamic Programming. Princeton University
Press, Princeton, NJ, 1957.

[Bor15] Rebecca Schuller Borbely. On normalized compression distance
and large malware. Journal of Computer Virology and Hacking
Techniques, pages 1–8, 2015. doi:10.1007/s11416-015-
0260-0.

[CG16] Tianqi Chen and Carlos Guestrin. XGBoost: Reliable Large-
scale Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016. arXiv:1603.02754.

[DGEB07] Mark Dredze, Reuven Gevaryahu, and Ari Elias-Bachrach. Learn-
ing fast classifiers for image spam. In Proceedings of the
Conference on Email and Anti-Spam (CEAS), 2007.

[Ert17] Otmar Ertl. SuperMinHash – A New Minwise Hashing Algorithm
for Jaccard Similarity Estimation. arXiv, 2017. arXiv:arXiv:
1706.05698v1.

[Fj] João Felipe Pontes Faria-joao. Detecção de Imagens
Similares: Aplicabilidade de Ferramentas Software
Livre de Hash de Similaridade de Uso Geral. URL:
https://www.ipog.edu.br/revista-especialize-online/edicao-
16-2018-dez/deteccao-de-imagens-similares-aplicabilidade-de-
ferramentas-software-livre-de-hash-de-similaridade-de-uso-
geral/.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann, and Ian H Witten. The WEKA Data Min-
ing Software: An Update Mark. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, nov 2009. doi:10.1145/1656274.
1656278.

[KLR04] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanama-
hatana. Towards Parameter-free Data Mining. In Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’04, pages 206–215, New
York, NY, USA, 2004. ACM. URL: http://doi.acm.org/10.1145/
1014052.1014077, doi:10.1145/1014052.1014077.

[LCL+04] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M.B. Vitanyi. The
Similarity Metric. IEEE Transactions on Information Theory,
50(12):3250–3264, 2004. arXiv:0111054, doi:10.1109/
TIT.2004.838101.

[LK11] Ping Li and Arnd Christian König. Theory and Applications
of B-bit Minwise Hashing. Commun. ACM, 54(8):101–109,
aug 2011. URL: http://doi.acm.org/10.1145/1978542.1978566,
doi:10.1145/1978542.1978566.

[LZ76] A. Lempel and J. Ziv. On the Complexity of Finite Se-
quences. IEEE Transactions on Information Theory, 22(1):75–81,
jan 1976. URL: http://ieeexplore.ieee.org/document/1055501/,
arXiv:0009084, doi:10.1109/TIT.1976.1055501.

[MBY+16] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks,
Shivaram Venkataraman, Davies Liu, Jeremy Freeman, D B
Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin,
Michael J Franklin, Reza Zadeh, Matei Zaharia, and Ameet
Talwalkar. MLlib: Machine Learning in Apache Spark. Jour-
nal of Machine Learning Research, 17(34):1–7, 2016. URL:
http://jmlr.org/papers/v17/15-237.html.

[MH08] Laurens Van Der Maaten and Geoffrey Hinton. Visualizing Data
using t-SNE. Journal of Machine Learning Research, 9:2579–
2605, 2008.

[PVG+11] F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion,
O Grisel, M Blondel, P Prettenhofer, R Weiss, V Dubourg,
J Vanderplas, A Passos, D Cournapeau, M Brucher, M Perrot,
and E Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.
URL: http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html.

[Raf17] Edward Raff. JSAT: Java Statistical Analysis Tool, a Library
for Machine Learning. Journal of Machine Learning Research,
18(23):1–5, 2017. URL: http://jmlr.org/papers/v18/16-131.html.

[RN17a] Edward Raff and Charles Nicholas. An Alternative to NCD for
Large Sequences, Lempel-Ziv Jaccard Distance. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining - KDD ’17, pages 1007–1015,
New York, New York, USA, 2017. ACM Press. URL: http://dl.
acm.org/citation.cfm?doid=3097983.3098111, doi:10.1145/
3097983.3098111.

[RN17b] Edward Raff and Charles Nicholas. Malware Classification
and Class Imbalance via Stochastic Hashed LZJD. In Pro-
ceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, AISec ’17, pages 111–120, New York, NY, USA,

http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1109/MCSE.2010.118
http://doi.acm.org/10.1145/276698.276781
http://doi.acm.org/10.1145/276698.276781
http://dx.doi.org/10.1145/276698.276781
http://dx.doi.org/10.1007/s11416-015-0260-0
http://dx.doi.org/10.1007/s11416-015-0260-0
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/arXiv:1706.05698v1
http://arxiv.org/abs/arXiv:1706.05698v1
https://www.ipog.edu.br/revista-especialize-online/edicao-16-2018-dez/deteccao-de-imagens-similares-aplicabilidade-de-ferramentas-software-livre-de-hash-de-similaridade-de-uso-geral/
https://www.ipog.edu.br/revista-especialize-online/edicao-16-2018-dez/deteccao-de-imagens-similares-aplicabilidade-de-ferramentas-software-livre-de-hash-de-similaridade-de-uso-geral/
https://www.ipog.edu.br/revista-especialize-online/edicao-16-2018-dez/deteccao-de-imagens-similares-aplicabilidade-de-ferramentas-software-livre-de-hash-de-similaridade-de-uso-geral/
https://www.ipog.edu.br/revista-especialize-online/edicao-16-2018-dez/deteccao-de-imagens-similares-aplicabilidade-de-ferramentas-software-livre-de-hash-de-similaridade-de-uso-geral/
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1014052.1014077
http://doi.acm.org/10.1145/1014052.1014077
http://dx.doi.org/10.1145/1014052.1014077
http://arxiv.org/abs/0111054
http://dx.doi.org/10.1109/TIT.2004.838101
http://dx.doi.org/10.1109/TIT.2004.838101
http://doi.acm.org/10.1145/1978542.1978566
http://dx.doi.org/10.1145/1978542.1978566
http://ieeexplore.ieee.org/document/1055501/
http://arxiv.org/abs/0009084
http://dx.doi.org/10.1109/TIT.1976.1055501
http://jmlr.org/papers/v17/15-237.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v18/16-131.html
http://dl.acm.org/citation.cfm?doid=3097983.3098111
http://dl.acm.org/citation.cfm?doid=3097983.3098111
http://dx.doi.org/10.1145/3097983.3098111
http://dx.doi.org/10.1145/3097983.3098111

106 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

2017. ACM. URL: http://doi.acm.org/10.1145/3128572.3140446,
doi:10.1145/3128572.3140446.

[RN18] Edward Raff and Charles K. Nicholas. Lempel-Ziv Jaccard
Distance, an effective alternative to ssdeep and sdhash. Dig-
ital Investigation, feb 2018. URL: https://doi.org/10.1016/j.
diin.2017.12.004, arXiv:1708.03346, doi:10.1016/j.
diin.2017.12.004.

[Rou11] Vassil Roussev. An evaluation of forensic similarity hashes.
Digital Investigation, 8:S34–S41, 2011. doi:10.1016/j.
diin.2011.05.005.

[SB06] D Sculley and Carla E Brodley. Compression and Machine
Learning: A New Perspective on Feature Space Vectors. In
Proceedings of the Data Compression Conference, DCC ’06,
page 332, Washington, DC, USA, 2006. IEEE Computer Society.
URL: http://dx.doi.org/10.1109/DCC.2006.13, doi:10.1109/
DCC.2006.13.

[Tra07] Nicholas Tran. The normalized compression distance and im-
age distinguishability. In Bernice E. Rogowitz, Thrasyvou-
los N. Pappas, and Scott J. Daly, editors, Proc. SPIE 6492,
Human Vision and Electronic Imaging XII, volume 64921D,
feb 2007. URL: http://dx.doi.org/10.1117/12.704334, doi:10.
1117/12.704334.

[WDL+09] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex
Smola, and Josh Attenberg. Feature hashing for large scale
multitask learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning - ICML ’09, pages
1113–1120, New York, New York, USA, 2009. ACM Press.
URL: http://portal.acm.org/citation.cfm?doid=1553374.1553516,
doi:10.1145/1553374.1553516.

http://doi.acm.org/10.1145/3128572.3140446
http://dx.doi.org/10.1145/3128572.3140446
https://doi.org/10.1016/j.diin.2017.12.004
https://doi.org/10.1016/j.diin.2017.12.004
http://arxiv.org/abs/1708.03346
http://dx.doi.org/10.1016/j.diin.2017.12.004
http://dx.doi.org/10.1016/j.diin.2017.12.004
http://dx.doi.org/10.1016/j.diin.2011.05.005
http://dx.doi.org/10.1016/j.diin.2011.05.005
http://dx.doi.org/10.1109/DCC.2006.13
http://dx.doi.org/10.1109/DCC.2006.13
http://dx.doi.org/10.1109/DCC.2006.13
http://dx.doi.org/10.1117/12.704334
http://dx.doi.org/10.1117/12.704334
http://dx.doi.org/10.1117/12.704334
http://portal.acm.org/citation.cfm?doid=1553374.1553516
http://dx.doi.org/10.1145/1553374.1553516

	Coversheet1
	pylzjd
	Introduction
	The Lempel Ziv Jaccard Distance
	Mechanics of LZJD
	Vectorizing Inputs
	Over-Sampling Data
	Using PyLZJD
	T5 Corpus Example
	Spam Image Classification
	Text Classification
	Conclusion
	References

