
Towson University

Office of Graduate Studies

TOWARDS EFFICIENT THREAT DETECTION IN MOBILE

NETWORKS

by

Linqiang Ge

A Dissertation

Presented to the Faculty of the Graduate School

of Towson University

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF SCIENCE

Department of Computer and Information Sciences

TOWSON UNIVERSITY

Towson, Maryland, 21252

May 2016

Dedicated

To

My Parents

iv

Table of Contents

Page

Abstract . vii

Acknowledgement . ix

List of Tables . x

List of Figures . xi

Chapter 1 Introduction . 1

1.1 Motivation . 1
1.2 Significance of Proposed Research . 4
1.3 Organization of Dissertation Research 7

Chapter 2 Background and Related Work 8

2.1 Mobile Network Security . 8
2.2 Scalability Issue in Network Security 10
2.3 Cloud Computing and MapReduce Techniques 13

Chapter 3 Behavior-based Malware Detection Approach on Mobile Devices 16

3.1 Overview . 16
3.2 Artificial Neural Networks . 18

3.2.1 Feedforward Neural Networks (FNN) 18
3.2.2 Recurrent Neural Networks (RNN) 20

3.3 Permissions and System Calls . 20
3.3.1 Overview . 21
3.3.2 Permissions . 21
3.3.3 System Calls . 24

3.4 An ANN-Based Malware Detection System 25
3.4.1 Permission-Based Detection 25
3.4.2 System Call-Based Detection 31

3.5 Performance Evaluation . 33
3.5.1 Evaluation Methodology . 33
3.5.2 Evaluation Results . 35

3.6 Discussion . 38
3.7 Summary . 40

v

Chapter 4 Effective Sampling and Data Aggregation Techniques in Host-based
Intrusion Detection . 41

4.1 Overview . 41
4.2 A Host-based Intrusion Detection Architecture in MANET 44
4.3 Our Approaches . 48

4.3.1 Overview . 48
4.3.2 Sampling Techniques . 52

4.3.2.1 Simple Random Sampling 53
4.3.2.2 Stratified Sampling 53

4.3.3 Data Aggregation Techniques 56
4.3.4 Detection . 57

4.4 Analysis . 61
4.4.1 Anomaly-based Detection . 62
4.4.2 Simple Random Sampling . 64
4.4.3 Stratified Sampling . 67
4.4.4 Data Aggregation Techniques 71
4.4.5 Impact of Intrusion Detection on MANET 72

4.5 Performance Evaluation . 74
4.5.1 Methodology . 74
4.5.2 Evaluation Results . 80

4.6 Summary . 82

Chapter 5 MapReduce Based Machine Learning Techniques for Processing
Massive Network Threat Monitoring Data 84

5.1 Overview . 84
5.2 Our Approach . 86

5.2.1 Design Rationale . 87
5.2.2 Algorithms Design . 89
5.2.3 Implementation . 97

5.3 Performance Evaluation . 101
5.3.1 Evaluation Methodology . 101
5.3.2 Evaluation Results . 104

5.4 Summary . 106

Chapter 6 Final Remarks . 108

References . 109

Curriculum Vita . 120

vi

Abstract

Towards Efficient Threat Detection in Mobile Networks

Linqiang Ge

With the popularity of mobile networks, it has become a burgeoning target for

cyber-attacks. For example, malware has proven to be a serious problem for the

mobile platform because malicious applications can be distributed to mobile devices

through an application market. From the defender’s perspective, how to effectively

detect threats and enhance the cognitive performance of mobile networks becomes

a challenging issue. In addition, mobile networks have limited network resources

and mobile devices are characterized by limited storage capacity, constraint battery

life time, and limited computation resources so that developing a scalable, reliable

and robust cyber threat defense system is challenging.

To address those challenges, in this dissertation we develop effective schemes

to efficiently conduct threat detection in mobile networks. First, we develop an

Artificial Neural Network (ANN)-based malware detection scheme to detect unknown

malware on mobile devices. Second, to enable the effective detection and desirable

impact on the performance of mobile networks, we develop both sampling and

aggregation techniques to achieve desirable tradeoffs between the detection accuracy

vii

and the use for network resources. Third, we develop MapReduce-based Machine

Learning (MML) schemes with the goal of rapidly and accurately detecting and

processing of malicious traffic in a cloud environment.

viii

Acknowledgement

I would like to gratefully and sincerely express my sincere gratitude to Dr. Wei

Yu for his guidance, understanding and patience. His mentorship was paramount

in providing a well rounded experience consistent my long-term career goals. He

encouraged me to not only grow as a researcher but also as an instructor and an

independent thinker.

I would also like to thank Dr. Chao Lu for his help and guidance in getting my

graduate career started on the right foot and providing me with the foundation for

becoming a synthetic doctoral student.

I would also like to acknowledge Dr. Alexander Wijesinha and Dr. Michael

McGuire to provide guidance on my dissertation. In addition, I would like to thank

my colleagues and our research group members who collaborate with me and give

me many academic helps.

Towson, Maryland Linqiang Ge

January, 2016

ix

List of Tables

Page

Table 4.1 Notations . 64

Table 5.1 Description of Extracted Features. 99

Table 5.2 Detection Accuracy of the Naïve Bayes Machine Learning Scheme.104

Table 5.3 Detection Results of Logistic Regression Scheme. 105

x

List of Figures

Page

Figure 1.1 Technical Approaches . 4

Figure 2.1 The MapReduce Workflow . 14

Figure 3.1 A Typical Structure of FNN . 19

Figure 3.2 An Example of Mapped Permissions 22

Figure 3.3 Distribution of Permissions . 23

Figure 3.4 Workflow . 26

Figure 3.5 Dumping Permissions . 27

Figure 3.6 An Example of Permissions . 29

Figure 3.7 Detection Rate for Permission Based Detection vs. Training Set

Ratio (FNN with 10 Nodes) . 34

Figure 3.8 Detection Rate for Permission Based Detection vs. Training Set

Ratio (FNN with 20 Nodes) . 34

Figure 3.9 Detection Rate for Permission Based Detection vs. Training Set

Ratio (RNN with 10 Nodes) . 36

Figure 3.10 Detection Rate for System Call Based Detection vs. Training

Set Ratio (FNN with 10 Nodes) . 36

xi

Figure 3.11 Detection Rate for System Call Based Detection vs. Training

Set Ratio (FNN with 20 Nodes) . 37

Figure 3.12 Detection Rate for System Call Based Detection vs. Training

Set Ratio (RNN with 10 Nodes) . 37

Figure 3.13 Error Rate for Permission Based Detection vs. Training Set

Ratio (1-gram) . 38

Figure 3.14 Error Rate for System Call Based Detection vs. Training Set

Ratio (1-gram) . 38

Figure 4.1 System Architecture . 44

Figure 4.2 System Workflow . 48

Figure 4.3 An Example of System Logs 56

Figure 4.4 An Example of Original System-Logs 57

Figure 4.5 An Example of Aggregated System Logs 58

Figure 4.6 Detection Rate vs. Sampling Rate (Experiment) 76

Figure 4.7 Error Rate vs. Sampling Rate (Experiment) 77

Figure 4.8 Error Rate vs. Sampling Rate (Theory) 78

Figure 4.9 End-to-End Delay of Normal Mission Application without Intrusion

Detection Application . 78

Figure 4.10 Sampling Ratio vs. End-to-End Delay of Normal Mission Application 79

Figure 5.1 Machine Learning Based on MapReduce Framework. 92

xii

Figure 5.2 MapReduce Based Framework for Parallel Machine Learning. 93

Figure 5.3 Cost of Gradient Descent using MapReduce. 94

Figure 5.4 Detection Work flow . 97

Figure 5.5 Flow Extraction. 98

Figure 5.6 The Information of a Data Packet. 99

Figure 5.7 An Example of Data Selection Output. 99

Figure 5.8 Screenshot of Feature Values Computing for Logistic Regression.

100

Figure 5.9 Screenshot of Feature Values Computing for Bayes Machine

Learning. 100

Figure 5.10 A Cloud Computing Testbed. 102

Figure 5.11 Time Cost versus Number of Nodes for Naïve Bayes 106

Figure 5.12 Time Cost versus Number of Nodes for Logistic Regression . . 107

xiii

Chapter 1

Introduction

1.1 Motivation

With the development of modern mobile operating systems and computing and

communication technologies, smart mobile devices have been widely used to support

applications (voice, video, game, music, GPS navigation, etc.). To improve the

productivity for business operation, organizations are having the new wave of transition

to mobile enterprise, enabling employees using smart mobile devices for performing

mobile working and improving the productivity of the business operation. The

modern mobile computing techniques will dramatically improve the accessibility

and operational efficiency of enterprise business. Particularly, smart mobile devices

have been used to support numerous applications and integrated to enterprise

information infrastructure for organizations. As such, the mobile-enabled enterprises

focus on improving the flexibility and productivity by enabling their employees and

customers to access business applications easily.

With the popularity of smart mobile devices, it has become a burgeoning target

for cyber-attacks as well. On one hand, malware, as a malicious application that

can be installed on mobile devices, can gain access to these devices and collect user

sensitive information. Malware has proven to be a serious problem for the mobile

1

Ge, Linqiang

2

platform as malicious applications can be distributed to mobile devices through

an application market. On the other hand, some types of wireless networks (e.g.,

Mobile Ad Hoc Networks) demand a robust, diverse, and resilient communication

and computation infrastructure, which enables the network-centric operation with

a very low rate of downtime. Nonetheless, the nature of these networks also leads

to cyber security risks as mobile nodes are deployed in the open field that could

be hostile and the wireless communication makes the information accessible by

the adversary, who may actively intercept, disrupt, or manipulate the information.

The adversary may hack into hosts and network devices inside the network using

sophisticated attack techniques to prey on the vulnerabilities of system components

and disrupt the effectiveness of mobile devices and networks.

From the defender’s perspective, effectively detecting malware and enhancing

the cognitive performance of users and system administrators are critical. There

are several challenging issues in monitoring and detecting cyber attacks in wireless

networks. First, unlike wired networks, resources in wireless networks (i.e., communication

bandwidth and host storage and computation capability) are much limited. To

enable the monitoring and detection of cyber attacks, we shall transmit a large

amount of suspicious information over the wireless network in real time, which

has limited network bandwidth resources connected hosts to the operation center.

Nonetheless, transmitting a large amount of data associated with threat monitoring

3

and detection activities over wireless networks will pose a negative impact on other

mission related applications supported by networks themselves. Therefore, the

monitoring and detection of cyber attacks should be designed such that their impact

on the normal operation of the network should be controlled and limited. Second,

although a number of HIDS (Host-based Intrusion Detection Systems) [1–3] and

agent-based intrusion detection framework [4] have been developed, those systems

mainly aim at securing enterprise networks, which have defined structures. Because

wireless networks are mostly ad hoc in nature and have limited bandwidth and

computing resources, the existing HIDS cannot be directly used for MANET.

Developing a scalable cyber threat defense system is also a challenging task.

Cyber-threats are significantly more dangerous than what they have ever been

and are growing in number and sophistication. Due to the widespread nature of

cyber-threats (malware propagation, etc.), the traffic monitoring across a large-scale

network has become an essential part of effectively detecting and defending against

contemporary cyber-attacks. Nonetheless, threat monitoring over a large-scale network

also leads to massive data collected from monitored hosts and network equipment.

Collected massive data poses serious challenges for cyber operations because an

ever growing large and complex threat monitoring system collected from a large

computer network needs to capture, store, manage, and process big data. As

such, there is an urgent need to develop techniques to efficiently process the threat

4

monitoring data into manageable, useful, and exploitable information.

1.2 Significance of Proposed Research

In this dissertation, we consider a threat monitoring and detection framework for

enterprise networks, which consists of a number of mobile devices. The system

that we consider consists of the three main components: mobile devices, cloud

infrastructure, and an operation center listed below.

Figure 1.1: Technical Approaches

Due to the exponential increase in the use of smart mobile devices, malware

threats on those devices have been growing and posing security risks. As shown

in Figure 1.1, based on the framework, we have made several contributions in this

dissertation.

5

• First, we develop an Artificial Neural Network (ANN)-based malware detection

scheme to detect unknown malware. In our scheme, we consider both permissions

requested by applications and system calls associated with the execution of

applications to distinguish between benign applications and mal-ware. We

used ANN, a representative machine learning technique, to understand the

anomaly behavior of malware by learning the characteristic permissions and

system calls used by applications. After that, the trained ANN is used to detect

new malware.

• Second, we develop sampling and data aggregation techniques in MANET,

which is a typical wireless network, to enable effective attack monitoring

and detection. To be specific, we develop both simple random sampling and

the stratified sampling techniques to achieve desirable tradeoffs between the

detection accuracy and the consumption for network resources. The simple

random sampling technique uniformly samples the detection information and

the stratified sampling technique stratifies the detection information and samples

them with different priorities. We derive closed formulae to analyze the

impact of sampling techniques and key parameters on detection accuracy.

We also develop two types of data aggregation techniques: lossless and lossy

aggregation, in order to reduce the use of resources (e.g., energy consumption

and bandwidth) for transmitting threat detection information through MANET,

6

while preserving the desired detection accuracy for cyber security operation.

We conduct both real-world experiments and simulation studies to evaluate

the effectiveness of our proposed sampling and data aggregation techniques

in terms of energy consumption and detection accuracy.

• Third, we develop an efficient threat monitoring scheme to improve the scalability

of defense system. Our developed scheme can process the real-time data

streams generated by threat monitoring agents that collect the statuses of

hosts or networks and then detect suspicious activities. To ensure that the

threat detection methods are efficient, MapReduce-based machine learning

(MML) schemes are proposed to efficiently deal with threat monitoring data.

The main idea of the MML system is to speed up the machine learning (ML)

process using parallel computing techniques. To accurately and rapidly detect

traffic anomalies, two MapRduce-based ML schemes are developed to profile

the dynamic characteristics of traffic flows and then to detect anomalies based

on learned classifiers: Logistic Regression and Naïve Bayes. The experimental

results demonstrate that our proposed MML proposed monitoring schemes

can accurately and efficiently detect attack traffic flows over massive data

collected from networks.

7

1.3 Organization of Dissertation Research

This dissertation is structured as follows. In chapter 2, we introduce the background

and related work of mobile networks and security, scalability issue, and cloud

computing. In Chapter 3, we present the behavior-based malware detection scheme

on mobile devices. In chapter 4, we discuss effective sampling and data aggregation

techniques in MANET. We study the MapReduce-based machine learning techniques

for efficiently processing massive network threat monitoring data in Chapter 5.

Finally, we conclude the dissertation in chapter 6.

Chapter 2

Background and Related Work

In this chapter, we introduce the background of our research, including security in

mobile networks, scalability issue in network security, and cloud computing and

MapReduce techniques.

2.1 Mobile Network Security

The security issues have become a primary concern in mobile networks. MANET is

a typical mobile network. Generally speaking, MANET is a self-organizing network

without fixed infrastructure. Because of its dynamically changing topology, the

vulnerability of wireless communication links, the limited physical protection of

nodes, MANET is vulnerable to security threats [5–8]. There are a number of

research efforts on studying the security issues in MANET [9, 10] and a number of

research efforts to study the host-based IDS [1, 2, 11]. Nonetheless, these systems

are mainly aimed at securing wired networks with a defined structure and cannot

directly be used for the MANET, which is dynamic and has limited host and network

resources. The most of the existing IDS systems rely on a central correlation engine

to analyze the data produced from the individual IDS. The large amount of data

produced by the system can overwhelm the limited resources in MANET. In addition,

8

9

a number of the existing IDS systems are signature-based and cannot effectively

conduct cyber attack detection in MANET.

The detection of malware on a mobile platform can be categorized into static

analysis, dynamic analysis, and permission analysis. These techniques have been

investigated by [12–16]. For example, Bose et al. [12] proposed a malware behavioral-based

detection scheme on mobile handsets. Shamili et al. [13] presented a distributed

Support Vector Machine (SVM) scheme to conduct malware detection, along with

a statistical classification model. Deepak et al. [14] proposed a signature-based

malware detection scheme. Schmidt et al. [16] conducted the static analysis of

malware on the Android platform. To measure the effectiveness of different schemes

on malware detection, Shabtai et al. [15] evaluated several classification and anomaly

detection schemes and feature selection methods for mitigating malware on mobile

devices.

Through permission analysis, malware detection can be conducted through the

analysis of extracted security configurations and policy rules [17–20]. For example,

Aung et al. [18] developed a machine learning-based detection on the Android

platform by monitoring permission related features and events. Huang et al. [19]

conducted the permission-based detection for Android malware by using machine

learning schemes such as AdaBoost, Naive Bayes, Decision Tree (C4.5), and Support

Vector Machine. David et al. [20] presented a Self-Organizing Map (SOM) scheme

10

to identify the permission-based security model using 1,100 android applications.

Neural networks can be used to learn and classify anomaly activities based on

limited data sources [21]. There have been a number of research efforts on using

neural networks to carry out threat detection [21–24]. For example, Mukkamala et

al. [22] investigated schemes to conduct intrusion detection using neural networks

and SVMs. Linda et al. [23] proposed a neural network-based approach to conduct

intrusion detection for critical infrastructures. Golovko et al. [24] discussed the

use of neural networks and artificial immune systems for carrying out malware and

intrusion detection.

2.2 Scalability Issue in Network Security

To defend against cyber-attacks, the development of effective cyber threat monitoring

system is critical, and it should be able to characterize, track, and mitigate security

threats in networks in a timely manner. Developing a scalable cyber threat defense

system is also a challenging task. To detect those attacks, a large amount of threat

monitoring and detection tools, including the Advanced Intrusion Detection Environment

(AIDE) (http://aide.sourceforge.net/), OSSEC (http:// www.ossec.net/), and others,

have been developed with the intention to monitor behavioral changes on hosts and

network devices. By leveraging these tools, massive data (e.g., system logs, security

logs, application logs, and traffic logs) generated by hosts (e.g., computers, mobile

11

devices, and others) and network devices (e.g., routers, firewalls, and others) can

be collected for carrying out cyber-threat situational awareness. In addition to

passively logging the activities associated with attacks, Honeypots can directly and

actively interact with attacks and collect more insightful data from these attacks.

For a large network, the collected threat monitoring related data will be massive

and is featured by a high volume of data size, a high velocity of data transmission,

and a high variety of data types [25]. For example, about a gigabyte of data per

day needs to be gathered for further analysis [25]. In addition, data collected from

different monitoring systems have different data formats, which can be structured

or unstructured. Therefore, effectively processing and analyzing massive threat

monitoring related data is a challenging issue.

To solve the scalability problem in network security, many efficient techniques

have been developed and integrated for security purpose. Particularly, sampling

techniques have been mainly used for network traffic measurement and accounting

to obtain the vast quantities of traffic data continuously collected for network monitoring

and management [26–31]. For example, Mai et al. [29] studied the impact of

flow sampling techniques, including the random packet sampling, random flow

sampling, intelligent sampling, and sample-and-hold on volume-based anomaly

detection and port-scan detection. Ficara et al. [30] proposed sampling techniques

to accelerate pattern matching in those network intrusion detection. Their solution

12

consists of two matching stages with the Deterministic Finite Automata (DFAs).

One match is conducted on the traffic by a “sampled” DFA, and if necessary, a more

accurate processing is conducted through another DFA (reverse DFA) to confirm the

match.

Data aggregation, as another technique to improve the efficiency, has been

extensively studied in sensor networks [32–36]. For example, using a tree structure,

Dina et al. [33] proposed to maintain additional region leader information at sensor

nodes, enabling the determination of aggregated records based on a tree routing

model. LEACH [36] proposed a hierarchical protocol based on a cluster structure,

in which the network is divided into a number of clusters and some nodes are

randomly selected as the cluster header. Based on the recorded signal strength to

cluster headers, each node selects a cluster to join. Shrivastava et al. [34] proposed

a synopsis diffusion approach based on a ring topology for data aggregation. During

the subsequent query aggregation period, nodes are divided into a set of rings based

on the distance to the ring center. The aggregation starts from the outermost ring

to the center. In addition, the data aggregation can be operated in either a dense or

sparse network. Gao et al. [35] proposed a sparse data aggregation technique. By

forming a tree structure, the hot node receives data from other nodes and performs

data aggregation.

13

2.3 Cloud Computing and MapReduce Techniques

The acceleration of data generation requires new technologies to analyze massive

data. With a large data storage space, high computational capacity, and low infrastructure

investment, cloud computing can offer a platform for massive data analysis. Cloud

computing [37–51] is a technology that uses the Internet and central remote servers

to provide computation, software, data access, and storage services that do not

require knowledge of users’ physical location and the configuration of servers. Most

current clouds are built on the top of a modern data center [52]. Cloud incorporates

different service models [53] such as Infrastructure as a Service (IaaS), Platform as

a Service (PaaS), Software as a Service (SaaS) and so on. Cloud computing is

gaining popularity in both academia and industry and both have been active in

the research on cloud computing architectures. For example, Vecchiola et al. [54]

introduced a .NET-based Cloud Computing platform, which provides a set of APIs

that allow developers to build .NET applications that leverage their computation

using the cloud. Huang et al. [55] developed a low-cost, scalable, and secured

platform that enables web-delivery of application-based services with a set of common

business and operational services.

By leveraging cloud computing techniquee, a large number of distributed servers

can be used for data access, computation, and storage. MapReduce is a parallel

programming model primarily designed for batch processing big data in a distributed

14

computing environment [56]. MapReduce is designed using the concept of divide-and-conquer

and follows the master/slave computing paradigm, consisting of the map function

and the reduce function [57]. The purpose of the map function is to split and

distribute data sets to different servers for processing whereas the purpose of the

reduce function is to collect the results for data sets and generate the final result.

Figure 2.1: The MapReduce Workflow

As shown in Figure 2.1, the workflow of MapReduce is detailed as follows: Step

1. Functions definition: In this step, programmers need to define both the map

and the reduce functions, which will be used by MapReduce to implement data

analysis; Step 2. Data split and distribution: For a large data set, the master server

will the data them into several relatively small subsets and distribute the subsets to

15

map slave servers for computation; Step 3. Data computation: With the defined map

function, the map slave servers can concurrently process small subsets and generate

intermediate results; and Step 4. Data resolving: After collecting intermediate

results, based on the defined reduce function, the reduce slave servers will resolve

and aggregate the intermediate results to produce the final result. It is worth noting

that MapReduce has a built-in fault-tolerant feature, through which data can be

duplicated and assigned to different servers for processing. The working status of

slave nodes shall be periodically reported to the master node. If a slave node does

not reply to the request in a given time, it will be considered as a failure node. Then,

the task that the failure node was initially assigned to process will be reassigned to

other nodes.

Chapter 3

Behavior-based Malware Detection Approach
on Mobile Devices

3.1 Overview

The rapid growth of smart mobile devices has led to a renaissance for mobile

services. These devices can augment cognitive abilities with multi-function applications

related to web, education, travel, game, financial, and many others. For example,

face recognition applications can help identify or verify a person to enhance human

cognitive abilities. The Android platform is an open source operating system for

smart mobiles and provides services, including security configuration, process management,

and others [58]. With 48% of smartphone subscribers using Android mobiles,

Android leads the smartphone market in the U.S. [59].

Nonetheless, the popularity of Android mobile devices has led to enormous

security challenges. Malware, as a malicious application that can be installed on

mobile devices, can gain access to these devices and collect user sensitive information.

Malware has proven to be a serious problem for the Android platform because

malicious applications can be distributed to mobile devices through an application

market. From the defender’s perspective, how to effectively detect malware and

enhance the cognitive performance of users and system administrators becomes a

16

17

challenging issue. Traditional static analysis techniques heavily rely on capturing

malicious characteristics and bad code segments embedded in software. This makes

it infeasible to deal with a large population of unknown malware. Therefore, it is

critical to develop a machine learning based system that can dynamically learn

the behavior of malware and augment the human cognition process of defending

against malware attacks in the battle of mobile security.

In this chapter, we propose an Artificial Neural Network (ANN) based malware

detection system that uses both permissions and system calls to detect unknown

malware. In our system, we consider two types of ANNs: Feedforward Neural

Networks (FNN) to learn the patterns of permissions and Recurrent Neural Networks

(RNN) to understand the structure of system calls. Permission requests are collected

from applications to distinguish between benign applications and malware. We also

collected system calls associated with application execution to capture the runtime

behaviors of benign applications and malware. Through the training process, the

ANN can learn the anomaly behaviors of malware in terms of permission requests

and system calls. The resulting model can be further used to detect unknown

malware. To evaluate the effectiveness of our malware detection system, we used

real-world malware and benign applications to conduct experiments on Android

mobile devices. The resulting data shows that our system can effectively detect

malware.

18

Note that the materials in this chapter are adapted from my previous publication

[60,61]

3.2 Artificial Neural Networks

We consider ANN to conduct malware detection. Generally speaking, a neural

network refers to a network or circuit that mimics the structure and behavior of

biological neurons [62]. The parameters of a neural network are set through a

training process that uses known data sets as inputs. After that, the trained neural

network can be used as a classifier to conduct detection.

3.2.1 Feedforward Neural Networks (FNN)

FNNs are a well-known and widely used type of neural network [63–67]. An FNN

consists of a certain number of layers and a number of units called artificial neurons

or nodes that are organized in layers. In a typical setting, an FNN has an input

layer, an output layer, and one or more hidden layers between the input and the

output layer. In an FNN, all data and computation flows are in one direction: from

input to output data. Except for input units, each unit in a layer is connected to

all the units in the previous layer and receives inputs directly from the nodes in the

previous layer. Each connection may have a different strength or weight. During the

training process, the weight can be adjusted through learning algorithms such as

19

BackPropagation (BP). The typical structure of an FNN is illustrated in Figure 3.1.

Figure 3.1: A Typical Structure of FNN

Here, l represents the layer of the FNN, where l=1 is for the input layer, l=2

is for the hidden layer, and l=3 is for the output layer. In principle, the output

values are compared with the correct answer to compute the value of a predefined

error-function that is then sent back through the network. With the backward

propagation errors between real and estimated values from the output layer to the

hidden layer and from the hidden layer to the input layer, errors in each layer can

be estimated and the assigned weights wi j((l)) can be updated correspondingly.

After repeating this procedure many times, the neural network eventually reaches

a state where the computed error is small. At this moment, the training process is

complete.

20

3.2.2 Recurrent Neural Networks (RNN)

Unlike the FNN, the fundamental feature of an RNN is that the network contains

at least one feedback connection. This makes an RNN useful for handling temporal

classification problems or learning sequences. Similar to an FNN, an RNN consists

of a number of units and multiple layers: input layer, output layer, and one or more

hidden layers. When the data is fed to an RNN, a state activation is generated

in the hidden layers. In the next time slot, the previous state activation is fed

back to the hidden layer, combining with new input data. During the training

process, the weight of unit connections and feedback connections can be adjusted

through learning algorithms such as Back Propagation Through Time (BPTT). The

BP algorithm used in an FNN cannot be directly applied to an RNN because of the

inherent cycles present. Hence, BPTT unfolds the network over time, eliminating

cycles and allowing the neural network to be trained as if it consists of several

connected FNNs where the BP algorithm can be used.

3.3 Permissions and System Calls

In this section, we first review the typical malware detection techniques. Then we

examine in detail how permissions and system calls can be used as the fundamental

detection data source.

21

3.3.1 Overview

There are several types of detection techniques. Static analysis [13] has been

used to carry out malware detection through the process of decompiling executable

software, generating source code, and then using code analysis tools to inspect the

recovered source code. Static analysis is limited by the capability of code analyzers

and can only deal with applications that involve a small number of permissions and

system calls.

Permission and dynamic analysis schemes are promising techniques to defend

against a large class of unknown malware. To be specific, permission-based detection

sets security policy rules. When an application is installed, the permission-based

detection extracts security configurations and checks them against security policy

rules. Conversely, dynamic analysis-based detection [68] executes the mobile application

and monitors the applications dynamic behavior. Based on the runtime behavior,

the malware can be detected. As malicious behavior is always difficult to hide

and can be used as a feature to identify malware, we can use ANN techniques to

accurately characterize the behavior of applications.

3.3.2 Permissions

Android provides third-party applications that have the capability of accessing re-sources

such as phone hardware, settings, user data, and others through permissions. For

22

Figure 3.2: An Example of Mapped Permissions

example, the INTERNET permission allows applications to open network connections.

Each application must declare in advance what permissions it requires, and users

are notified during the installation about the permissions that it will obtain. Users

can cancel the installation process if they do not want to grant a permission to the

application, but they might not have the knowledge to determine which permissions

should be requested by and granted by a particular application. Usually, different

types of applications request reasonable permissions. Nonetheless, even an application

23

requesting a reasonable permission might conduct malicious behavior. For example,

a social network application that requests to only access the contact may additionally

copy contacts personal information to a remote server.

To show the potential of using permissions to detect malware, we investigated

the distribution of permissions requested by electronic books. We installed 96

benign applications from Google Play and used 92 digital book malware samples

from the Android Malware Genome Project [69]. For each Android application, we

extracted permissions from the corresponding application package (APK) file. The

details of the retrieving process will be presented in Section 3.4.1. We define each

captured permission as one feature and map it to an integer. Figure 3.2 shows an

example of mapped permissions.

Figure 3.3: Distribution of Permissions

24

After retrieving the permissions from all applications, the distribution of permissions

can be computed. One such example is shown in Figure 3.3. As we can see, most

malware samples heavily request permissions 1-20, which are WRITE SMS, SEND

SMS, READ CONTACT, etc. We can conclude that electronic book applications that

request permissions 1-20 are probably malware. Hence, the permissions requested

by an application can be used to recognize whether the application contain malware.

3.3.3 System Calls

A system call is the mechanism used by applications to request a service from the

operating system kernel. System calls provide the interface between the process and

operating systems. The operating system provides services, including the creation

and execution of new processes and access control of resources. The sequence

of system calls occurs consecutively over time and can capture actions performed

by applications during execution. In Android, there are 56 system calls in the

library and the main types of system calls consist of: Process Control for controlling

processes, File Management for managing files, Device Management for managing

devices, Information Maintenance for setting system data and obtaining process

information, and Communications for establishing connections. As system calls

provide an essential interface between the application and operating system, we

shall examine system calls to capture the runtime behavior of the interactions

25

between applications and the operating system.

3.4 An ANN-Based Malware Detection System

We now present the workflow of our proposed ANN-based malware detection system

as shown in Figure 3.4. We would like to emphasize that the workflow is general

and can be used for both permission-based detection and system call-based detection.

In the offline training phase, we first collected real-world benign and malicious

applications. Next, we executed the collected applications and dumped the data

sources. In order for machine learning algorithms to learn the feature pat-terns

of malware and benign applications, all data sources needed to be parsed and

mapped to the format required by the FNN and RNN algorithms described in Section

2. Using the mapped data as input, we then trained the neural network. In the

online detection phase, we dumped the data sources from new applications and the

trained neural network would be used to determine whether the new application

is malware or benign. As permissions and system calls contain different features

and have different formats, we first introduce permission-based detection and then

system call-based detection in the following subsections.

3.4.1 Permission-Based Detection

Offline Training We now discuss the steps used for the offline training process.

26

Figure 3.4: Workflow

Step 1: Data source collection and classification. The first step in the offline

training phase is to collect the data source from the executing applications. With

real-world benign applications and malware samples, we consider that applications

in the same category should exhibit similar activities and we use such activities

to learn the anomaly profile. Based on these learned profiles, we can categorize

applications as benign or malicious.

Step 2: Dumping Permissions of Data source. Using the benign application

and malware samples, we dump the permissions requested by each application.

In the Android system, all permissions are included in the Android-Manifest.xml

file. After collecting application apk files, we use a known reverse engineering tool

Android Asset Packaging Tool (aapt) to reconstruct the source code and obtain the

AndroidManifest.xml file for each application. An example is shown below:

27

<manifest xmlns: android="http://schemas.android.com/apk/res/android"

package="com.android.app.QQ_for_Pad_v_1.9.3" > A:

android:versionCode(0x0101021b)=(type 0x10)0x7 A:

android:versionName(0x0101021c)="2.1-update1" A:

package="com.android.spare_parts" <uses-permission

an-droid:name="android.permission.READ_PHONE_STATE"/> <us-es-permission

an-droid:name="android.permission.CAMERA"/> ... </manifest>

Figure 3.5: Dumping Permissions

We then use the command aapt dump permission to collect all permissions

requested by each application. Figure 3.5 shows an example of the dumping process

and the corresponding result.

Step 3: Feature extraction. Next, we collect a set of files where each file consists

of permissions requested by one application. For training, we process the data

and map them to the format required by the ANN. To this end, we developed

28

a mapping algorithm to convert the original permissions into usable input. As

described previously, we use Algorithm 1 to define each permission as one feature

and assign an integer to each feature.

Using the example shown in Figure 3.5, we now explain Algorithm 1. In this

algorithm, we care about the feature (i.e., permission name) and the feature value,

defined as whether it was requested by the application. Note that one permission

can be requested only once by an application. If a particular permission is requested,

its feature value is 1; otherwise its feature value is 0. After the first for loop of

Algorithm 1, we obtain the output shown in Figure 3.6.

Algorithm 1: Permission Mapping Algorithm
input : Original Android system calls stored in raw data folder
output : Permission Feature Vector A

1 n = gram number;

2 foreach file in raw data folder do

3 foreach line in file do
4 remove all information except the system call name;
5 end
6 store file in system call name data folder;
7 end

8 foreach file in system call name data folder do

9 foreach line in file do
10 map system call name to integers as feature names;
11 end
12 store file in mapped-integer data folder;
13 end
14 if n > 1 then
15 map to n-gram format;
16 end

17 foreach file in feature-value pair data folder do
18 add target to files;
19 combine files together;
20 end

29

Because the ANN only accepts integers as input, we map each permission name

to an integer number after processing the name sequence of permissions. After the

second for loop in Algorithm 1, the mapping produces output similar to “01,02,03,06,09,15,20”.

As examples, INTERNET is mapped to 11, READ PHONE STATE is mapped to 13,

and SEND SMS is mapped to 7. We can extend this idea to use 2-grams as a

detection feature by applying two contiguous permissions instead of one. As an

example, we combine every two contiguous integers

Figure 3.6: An Example of Permissions

and the mapping produces output similar to “0102,0203,0304,0405” where

“0102” represents the permissions ACCESS WIFI STATE and WRITE SMS requested

sequentially. After we have the input to the ANN mapped as an integer sequence,

30

the next step is to obtain the value for the each feature. Recall that we use the

appearance of a permission as the feature value. For each feature that appears, its

value is assigned as 1. For the features that do not appear, we assign their values

as 0. After the last two for loops in Algorithm 1, we obtain a feature vector for the

input of ANN as follows:

1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,

0,0,0,0,1,0,

0,1,0

Step 4: Classifier learning. In this step, we use the learning module established

in the neural network to learn the application behavior from training data. We input

the feature vectors to the Matlab Neural Network Toolbox built-in Matlab R2013a

(8.1.0.604) to implement permission-based detection. We set the number of nodes

in the hidden layer to 10 and then 20.

Online Detection The workflow of the online detection phase is similar to the

one described in the offline training phase. Similarly, to classify an application, the

first step is to dump permissions and map the permission sequence to the format

required by the ANN. We can then use the trained ANN to determine whether a new

application is either malware or benign. We use the established ANN and test data

as input from new applications. The test file has the same format as the training file,

which consists of the feature vector associated with each application. The online

31

detection process outputs the result file which contains the classification result.

In our implementation, the result is either +1 or -1. Here, when the number is

positive, the ANN classifies it as a benign application; when the number is negative,

the ANN classifies it as malware.

3.4.2 System Call-Based Detection

The workflow of the detection system based on system calls is similar to the detection

system based on permissions. The major difference is to use a different data source.

In the following, we briefly introduce the workflow of system call-based detection.

Offline Training As before, we now discuss the steps for offline training.

Step 1: Data set collection and classification. The first step is to collect the

da-ta set. After we collect real-world benign applications and malware samples, we

categorize them into different groups.

Step 2: System calls recording. We record the system calls used by our benign

applications and malware samples by applying a known tool Strace. In order to

install Strace, we use the Nexus Root Tookit v1.6.2 to obtain root permission on

Android devices. Next, we run Strace and capture the system calls used by the

benign applications and malware. To install malware on an Android device from a

remote computer, we use the Android Debug Bridge (ADB).

Step 3: Feature extraction. We then record a set of files where each file contains

32

the system calls generated by each executed application. To use the ANN, we need

to process the data and map them to the required format described previously.

Using Algorithm 1, we map each system call named to an integer. As an example,

clock-gettime is mapped to 1, recvfrom is mapped to 5, and ioctl is mapped to 7.

Again, we can extend this idea to use 2-grams as a detection feature by applying

two contiguous system calls as a detection feature instead of one. To construct the

mapping for 2-grams, we combine each pair of contiguous integers and generate

output similar to “0101 0101 0105 0507 0701 0117 1717 1717 1717 1706” where

“0105” represents system calls clock-gettime and recvfrom executed sequentially.

We then capture the density of system calls by computing the ratio of the number

of instances of each system call to the total number of system calls generated by the

application. We can then express a feature and its value as feature:value such as

“1:0.2283 2:0.0369 3:0.0387 4:0.0267 5:0.0848” where feature 1 has a density of

0.2283, feature 2 has a density of 0.0369, etc.

Step 4: Classifier learning. This step is the same as Step 4 for permission- based

detection. Afterwards, we have completed the training process of the ANN and are

ready to use it to conduct online detection.

Online Detection The workflow of the online detection phase is similar to the

one in the offline training phase. Similarly, to classify an application, we execute it,

dump the system calls, and map the sequence of system calls to the format required

33

by the ANN. Using the ANN established through the offline training phase, we can

determine whether a new application is malware or benign.

3.5 Performance Evaluation

In the following, we present the performance evaluation.

3.5.1 Evaluation Methodology

Using real-world malware and benign applications collected on the Android platform,

we show the effectiveness of our developed detection system. We installed 96

benign software applications from Google Play and evaluated 92 digital book malware

samples from the Android Malware Genome Project (http: //www.malgenomeproject.org/).

We installed and executed applications on the Sumsang Galaxy Nexus and Google

Nexus 7 smartphones in our experiments. First, we collected and transmitted each

application’s permission requests and system calls to a remote computer which

conducted both the offline and online detection processes described in Section 4. A

Samsung Notebook NP700G equipped with Intel Core i7 2.40GHZ processor, 16GB

RAM, and 320GB hard drive served as our detection computer. Again, we used the

Matlab Neural Network Toolbox built-in Matlab R2013a (8.1.0.604) that contains

both of the FNN and RNN implementations used in our experiments. The number

of hidden nodes in the FNN and the RNN are set to 10 and then 20.

34

With a larger training set, more information can be used to train the ANN

classifier, leading to higher detection accuracy. To validate this hypothesis, we let

p 2 [0,1] which define the training set ratio as the ratio of the number of training

samples to the total number of samples. If n is the number of total applications

then np is the number of applications used for training and n(1� p) is the number

of applications used to validate the accuracy of the trained ANN. To measure the

effectiveness of our detection system, we define the detection rate as the probability

of correctly classifying the malware. That is, the ratio of the number of malware

correctly detected to the total number of malware samples. We also define the

error rate as the probability of falsely classifying applications. That is, the ratio of

the number of applications falsely classified to the total number of applications.

Figure 3.7: Detection Rate
for Permission Based

Detection vs. Training Set
Ratio (FNN with 10 Nodes)

Figure 3.8: Detection Rate
for Permission Based

Detection vs. Training Set
Ratio (FNN with 20 Nodes)

35

3.5.2 Evaluation Results

Permission-Based Detection: Figure 3.7 illustrates the relationship between the

detection rate and the training set ratio in terms of the length of grams when an

FNN with 10 hidden nodes is used. As we can see, in general, the detection rate rises

as the training set ratio increases. The permission-based detection with 2-gram data

as input can achieve a better detection rate than the permission-based detec-tion

with 1-gram data as input. For example, when the training set ratio is 60 %, the

detection rate reaches almost 90 % when 2-grams are used while the detection

rate is 85 % when 1-grams are used. As we expected, when using more training

data, more knowledge of malware can be obtained, leading to increased detection

accuracy.

Figure 3.8 shows the detection rate versus training set ratio when the number

of hidden nodes of the FNN is set to 20. Similar to Figure 3.7, as we increase the

size of the training set, the detection rate increases. Like before, detection using

2-gram data as input achieves better performance than detection using 1-gram data

as input. In the case of 2-gram data as input, when the training set ratio is higher

than 50%, the FNN with 20 hidden nodes performs better than the one with 10

hidden nodes. We also observed that, in the case of 1-gram data as input, the FNN

with 10 hidden nodes performs better than the FNN with 20 hidden nodes. One

reason may be caused by limited malware samples.

36

Figure 3.9: Detection Rate
for Permission Based

Detection vs. Training Set
Ratio (RNN with 10 Nodes)

Figure 3.10: Detection Rate
for System Call Based

Detection vs. Training Set
Ratio (FNN with 10 Nodes)

Figure 3.9 illustrates the result of an RNN with 10 hidden nodes. In comparison

with Figure 3.7, we can see that the FNN achieves better performance in both the

1-gram and 2-gram cases than when using the RNN. Hence, we conclude that the

FNN is more effective for permissions-based detection.

System Call-Based Detection: Figures 3.10, 3.11 and 3.12 illustrate the relationship

between the detection rate and training set ratio in terms of the length of data grams

when we take system calls as input. Similar to the permission-based detection

shown in Figures 3.7, 3.8 and 3.9, when more samples are used in the training

process, a higher detection rate can be achieved. For example, when we use a

training set of 90%, both the FNN and the RNN achieved detection rates of more

than 93%. When the hidden nodes are set to 10, the RNN obtains better detection

accuracy than the FNN for both permission-based and system call-based detection.

37

Figure 3.11: Detection Rate
for System Call Based

Detection vs. Training Set
Ratio (FNN with 20 Nodes)

Figure 3.12: Detection Rate
for System Call Based

Detection vs. Training Set
Ratio (RNN with 10 Nodes)

We also study the accuracy of our detection system using another metric: error

rate. We expect that with a larger training set, our detection will produce a lower

error rate. Figures 3.13 and 3.14 illustrate the relationship between error rate and

the training set ratios when we take permissions and system calls as inputs to an

FNN and an RNN. In our evaluation, we selected two scenarios to validate that our

de-tection system obtains low error rates; other scenarios are essentially similar.

We used 1-grams for data input and set the hidden layer of the FNN and RNN to

contain 10 nodes. We have several observations from Figures 3.13 and 3.14. First,

for both permissions-based and system call-based detection, the error rates of both

the FNN and RNN decrease as the training set ratio increases. This can be explained

by observing that as we use more data in the training process, the FNN and RNN

have a better chance to learn input data. This leads to the generation of a more

38

Figure 3.13: Error Rate for
Permission Based Detection

vs. Training Set Ratio
(1-gram)

Figure 3.14: Error Rate for
System Call Based Detection

vs. Training Set Ratio
(1-gram)

accurate network for classification and a lower error rate. Second, the error rates

are low for both the FNN and RNN in our detection system. For example, using a

training set of 60% with permissions-based detection, the error rate is 10 % using

the FNN and 8% using the RNN. Similar results have been obtained using system

call based detection. Thus, we have confirmed that our detection system obtains

high detection rates as well as low error rates, ensuring detection accuracy.

3.6 Discussion

We now discuss some issues related to our malware detection system.

The major overhead of our ANN-based detection system comes from the training

process. It is worth noting that the training process consists of procedures for

collecting data sources, mapping data sources, and training the neural network.

39

After the network is well trained, the online detection procedure can be fast. Overhead

for the training process can be presented by T = np(Td + Tm)+ Tl, where n is the

number of total applications, p is the training set ratio, and Td, Tm, Tl are the average

overhead for: dumping permissions and system calls from one application, mapping

process and training the neural network, respectively.

As an example, consider training using 1-grams. In our experiment, we implemented

the permission-based detection and measured the execution time of each step.

With p = 90% and n = 188, the average time consists of 0.000343 second to

dump permissions, 0.00012 second to map permissions, and 0.41 second to train

neural networks. Hence, the total overhead of the training process is 0.613 second.

Similarly, we investigated the overhead of system call-based detection. We note that

in order to dump system calls associated with the execution of applications, we need

to manually execute applications on real-world mobile devices and the execution

times can be random, depending on the application. In our experiments, the

overhead of mapping process is 0.00026 second and the total time for the training

process is 0.194 second. It is worth noting that the computation overhead linearly

increases with the number of applications. To make our system scale, one possible

solution is to take advantage of powerful hardware for neuromorphic approaches

to conduct threat analysis and detection.

40

3.7 Summary

Malware attacks on smart mobile devices have been growing and posing security

risks to mobile users. In this chapter, we developed an ANN-based malware detection

system to automatically learn the behavior of applications and to detect unknown

malware. In our developed system, we systematically compared the per-mission

requests from application requests and system calls to capture the behavior of

applications. Using real-world malware and benign applications, we conducted

experiments on Android mobile devices. Our data shows the effectiveness of our

developed detection system.

Chapter 4

Effective Sampling and Data Aggregation
Techniques in Host-based Intrusion

Detection

4.1 Overview

In this chapter, we address the issue of monitoring and detecting cyber attacks in

MANET. A MANET demand a robust, diverse, and resilient communication and

computation infrastructure, which enables the network-centric operation with a

very low rate of downtime. Nonetheless, the nature of MANET leads cyber security

risks, because mobile nodes are deployed in the open field, which could be hostile

and the wireless communication makes the information accessible by the adversary,

who may actively intercept, disrupt, or manipulate the information. The adversary

may hack into hosts and network devices inside the network using sophisticated

attack techniques to prey on the vulnerabilities of system components and disrupt

the mission of MANET.

There are several challenging issues in monitoring and detecting cyber attacks in

MANET. First, unlike wired or infrastructure mode wireless networks, resources in

MANET (i.e., communication bandwidth and host storage and computation capability)

are very limited. To enable cyber attack monitoring and detection to secure MANET

41

42

as the homeland in battle fields, we shall transmit a large amount of suspicious

information over MANET in real time, which has limited bandwidth resources connected

hosts to the operation center. Nonetheless, transmitting a large amount of attack

monitoring and detection data over MANET has a negative impact on other mission

related applications supported by MANET itself. Therefore, the monitoring and

detection of attacks should be designed such that its impact on mission related

applications should be controlled and limited. Second, although a number of HIDS

[1–3] have been developed in the past, those systems mainly aim at securing enterprise

networks that have defined structures. Because MANET is mostly ad hoc in nature

and has limited bandwidth and computing resources, the existing HIDS cannot be

directly used for MANET.

To address these issues, in this chapter we first study the host-based detection

architecture to monitor and detect cyber attacks and secure MANET. To enable

the effective detection and desirable impact on the performance of MANET, we

develop two sampling techniques and investigate proper settings for those sampling

techniques to achieve desirable tradeoffs between the detection accuracy and the

consumption for network resources. In particular, we develop both simple random

sampling and the stratified sampling techniques. The simple random sampling

technique uniformly samples the detection information and the stratified sampling

technique stratifies the detection information and sample them with different priorities.

43

We derive closed formulae to analyze the impact of sampling techniques and key

parameters on detection accuracy. We investigate the impact of attack detection on

the performance of MANET and formalize an optimization problem of allocating

network resources for the normal mission related application supported by MANET

and the application for conducting attack monitoring and detection in MANET. We

discuss various issues, including the system architecture options, dynamic sampling,

and data aggregation. We also implemented our proposed sampling techniques and

conduct experiments on a real-world testbed. Our experimental data show that the

stratified sampling technique achieves much better performance than the simple

random sampling technique in terms of detection accuracy and the consumption of

network resources. We also evaluate the performance impact of sampling techniques

on the performance of MANET using the ns-3 based simulation.

While sampling techniques have been widely used for traffic measurement and

accounting to deal with the vast amount of traffic data continuously collected for

network monitoring and management [30], little research has been paid to investigate

sampling techniques on the host-based detection in MANET, which have limited

network and computing resources. We would like to point out that our developed

sampling techniques mainly deal with the host detection information in MANET,

which are different from the information in the traditional wired and sensor networks.

Our sampling techniques consider tradeoffs between bandwidth reduction and detection

44

accuracy. We derive closed formulae to study the relationship between detection

accuracy and sampling techniques and sampling rate. Our experimental results

validate our theoretical findings well. In addition, we also briefly discuss various

system architecture option, dynamic sampling, and aggregation techniques.

Notice that the materials in this chapter are adapted from my previous publication [70,

71].

4.2 A Host-based Intrusion Detection Architecture in MANET

Figure 4.1: System Architecture

MANET may operate in hostile environments. The adversary may hack into

the entities of such systems by preying on vulnerabilities in host and network

components to disrupt supported missions and inflict significant damage. To monitor

and detect cyber attacks in MANET, we study the host-based detection architecture

shown in Figure 4.1. In this architecture, there are two main components: (i) the

host-based threat monitoring agent, which is installed and executed on hosts in

45

MANET, and (ii) an operation center, which enables the human analyst to monitor

and detect attacks in MANET.

To monitor and detect cyber attacks, hosts in MANET are deployed with the

threat monitoring software denoted as the threat monitoring agent. Generally

speaking, the agent collects the suspicious information in real time from system

logs, security logs, application logs, and others, and forwards detection reports to

the operation center, which further conducts threat analysis and detection. Generally

speaking, the monitoring agent shall monitor suspicious activities on the host,

including the integrity of system files, dynamic behavior, suspicious processes, illegal

resource accesses and suspicious system function calls, changes in user privileges,

login attempts, and many others. Considering that hosts are mobile and have

limited storage and computing resources, the agent on hosts shall have a small

memory and CPU footprint by default and shall not affect system usage. In addition

to monitoring and detection, agents on some high performance hosts could detect

intrusions by parsing host events directly to extract the meaningful information

using system level semantics and compare activities with patterns that are deemed

anomalous on hosts. The agent updates the monitoring and detection information

to the operation center in real time and receives commands from the operation

center to dynamically update the monitoring and detection policies enforced locally.

In this chapter, we use the OSSEC, a well-known open-source, host-based intrusion

46

detection system [3] as an example, to conduct experiments to demonstrate our

proposed sampling techniques. Nevertheless, this architecture is generic and other

host-based intrusion detection and network-based intrusion detection can be generally

applied as well.

The operation center is responsible for managing agents on hosts in MANET

and conducting monitoring and detecting attacks. The operation center will receive

the detection information and alerts from agents and manage a large number of

agents in the system to detect, track and classify attacks in a time and resource

efficient way. As shown in Figure 4.1, the detection information from agents will

be transmitted to the operation center through dynamic routes in MANET, which

consist of wireless links with limited bandwidths [72]. The operation center will

provision threat analysis and detection tools to conduct cyber attack monitoring,

detection, and visualization, and to aid in the mitigation of cyber attacks. The

interaction between agents and operation center could be conducted in an on-demand

way through control and management protocols. For example, the security analyst

located at the operation center could dynamically select a area (denoted as monitored

region that consists of a number of hosts), which may have a high security risk

and send commands to agents associated with the monitored region and update

monitoring policies to collect relevant detection information dynamically.

There are several challenging issues in monitoring and detecting attacks in

47

MANET. First, unlike wired or infrastructure based wireless network, the resources

of MANET (i.e., communication bandwidth and host storage and computing capability)

are very limited. To enable attack monitoring and detection, we need to transmit

a large amount of attack monitoring and detection data over MANET that has

limited network and computing resources to the operation center in real time.

Nonetheless, transmitting a large amount of data over MANET clearly poses a

negative impact on the normal mission related applications supported by MANET.

Hence, the monitoring and detection of attacks should be designed in such a way

that it has a limited and controllable impact on the normal mission related applications

in MANET. Second, although many HIDS (Host-based Intrusion Detection Systems)

have been developed [1–3] in the past, those systems mainly aim at securing enterprise

networks with fixed infrastructures, which do not need to worry about dynamic

packet transmission routes, energy consumption, low bandwidth, and other constraints.

Therefore, the existing HIDS cannot be directly used in MANET without addressing

these fundamental challenges.

To enable effective attack monitoring and detection in MANET, we shall address

the following fundamental problem: How can we develop techniques to transmit the

attack detection information with desirable and controllable impact on the performance

of MANET while achieving the desired detection accuracy? To address this issue,

in our research project we consider the following two orthogonal dimensions for

48

developing our techniques: (i) sampling, and (ii) aggregation. Due to the limited

space, in this chapter, we focus on the development of effective sampling techniques

for monitoring and detecting cyber attacks in MANET with desirable and controllable

impact on the performance of MANET.

4.3 Our Approaches

In this section, we introduce our proposed approaches in detail.

4.3.1 Overview

Figure 4.2: System Workflow

Recall that in our system, there are two major components: (i) monitoring

agents, and (ii) the operation center. From Figure 4.1, we can see that monitoring

agents are deployed on mobile hosts in MANET and the operation center is located

49

remotely through bandwidth-limited network links. The basic workflow is listed as

follows: The monitoring agent located in MANET traps suspicious activities on hosts

and store such information temporarily in local. Because the volume of detection

information can be high given a large number of hosts in the network, transmitting

all detection information through MANET will disrupt its normal mission related

application in MANET. To address this issue, we develop sampling techniques.

The system workflow is illustrated in Figure 4.2. As we can see, the original

detection information will be the input to our developed sampling algorithms and

the sampled detection information will be transmitted through MANET to the operation

center. The operation center processes the received detection information that is

sampled and maps the information to the format used by detection algorithms,

which make detection decision.

Step 1: Data collection. In this step, we install the agent on mobile hosts to

collect suspicious activities on hosts (e.g., system logs, security logs, application

logs, and others). Given a large number of hosts in MANET, a large volume of real

time data from agents will be generated and transmitted to the operation center for

processing and detect malicious threats. Because MANET has limited bandwidth

and computing resources, we cannot afford to transmit all logged data at hosts to

the operation center. To reduce the impact on MANET, we deploy the sampling

process, which will be described in the next step.

50

Step 2: Sampling. In this step, collected data will be the input to the sampling

process. We develop two sampling techniques: (i) simple random sampling, and

(ii) stratified sampling. Both techniques use a sampling rate to control the amount

of detection information to be transmitted through MANET, which is defined as the

fraction of data to be selected from the total data generated at the host. Obviously,

the sampling process could effectively reduce the traffic load overhead to MANET.

Nevertheless, there is a tradeoff between sampling rate and detection accuracy.

A higher sampling rate will result in a higher detection accuracy and requires a

larger amount of bandwidth, which might exceed the capacity of MANET, posing a

negative impact on the normal mission related applications. The detailed description

of sampling techniques and their impact on the performance of MANET will be

presented in Section 4.3.2 and Section 4.4, respectively.

Step 3: Data processing. Typically, a HIDS collects and analyzes system logs

to identify and detect malicious activities on hosts. Nevertheless, in MANET, data

will be transmitted to the operation center. To facilitate the detection process, we

develop a feature-based data process to describe incidents. We define a series of

basic features and each event could be described as a combination of features. Using

the break-in attempt as an example, the attack could be defined by the following

basic features: pam, syslog, and authentication_success. It is initiated by “pam”

(the authentication facility in UNIX), then recorded by “syslog”, and followed by

51

“authentication_success”. As another example, a critical system file change may

reflect syscheck and sysfile_integrity because it is detected by “syscheck” program in

OSSEC and the integrity of system files. With the feature extraction, each incident

contains the following fields: time, source host, source program, severity level, and

features. The details of processing data can be found in Algorithm 2.

Algorithm 2: Data Processing Algorithm
input : An array of collected binary data Array(A); Empty array Array(B)
output : {Xi}, hashable array of events with feature data

1 Array[1 : n] = X1,X2, . . . Xn;

2 foreach Element Ai in Array(A) do
3 k = extract_bin(Ai);
4 Bi[0 f eatures0] = k[’features’];
5 end
6 Sort Array(B) by features;
7 Remove duplicate entry in Array(B);
8 foreach element Ai in Array(A) do
9 k = extract_bin(Ai);

10 for i = 1 to n do
11 if Bi[0 f eatures0] == k[’features’] then
12 Bi[0events0] += abstract(k);
13 else
14 pass;
15 end
16 end
17 end
18 foreach Element Bi in Array(B) do
19 Aggregate Bi[0events0];
20 end
21 X � B;

Therefore, the sampled data will be converted into a stream of numerical data,

which represents threat magnitude of events. A larger value represents a higher

52

probability of threats. This value will be the input to the intrusion detection algorithm,

which will make detection decision. The process of detection is described next.

Step 4: Intrusion detection. The operation center is responsible for coordinating

agents on hosts in MANET and conducting detection. With the sampled data in Step

3, the operation center provisions threat analysis and detection algorithms, enabling

the cyber analyst to monitor, query, detect, and visualize the detection information

with the aim of mitigating cyber attacks by planning network defense resources.

As a preliminary result, we have implemented a statistical anomaly-based detection

technique, which analyzes collected data in comparison with the normal profile to

make the detection decision. To be specific, we obtain the statistics of processing

data through the offline training, and then determine whether the received detection

data contains attack or not. The detailed description of detection algorithms will

be discussed in Section 4.3.4. Note that other advanced detection algorithms could

be provisioned in our prototypical system and we leave the full investigation in our

future study.

4.3.2 Sampling Techniques

We now introduce the sampling techniques in detail. Recall that the main objective

of sampling techniques is to balance the tradeoff between reduction of bandwidth

usage and detection accuracy.

53

4.3.2.1 Simple Random Sampling

The simple random sampling is a baseline sampling technique. With this sampling

technique, each detection event will be selected randomly with an equal probability.

On a monitoring agent, we select n events (denoted as sampling data) out of N

original events (denoted as the full set of detection data) such that each of Cn
N

distinct samples has an equal probability of being drawn. In principle, the sample,

as an unbiased random selection of detection data, is used to represent the behavior

of the original full set of data. Nevertheless, because the sampled data is only a

subset of the full set of data, it will incur some error to detection decision.

To conduct detection in the operation center, we use the sampled data to detect

attacks. However, in real-world practice, the detection information should not be

treated equally. To improve detection accuracy, we shall categorize the detection

information into different groups based on various priority levels. For this purpose,

we introduce the stratified sampling technique, which will be described next.

4.3.2.2 Stratified Sampling

We now introduce an enhanced sampling technique denoted as stratified sampling.

The original detection data from a host contains different events that tell information

from the system security aspect. As an example, an event where a malware copies

itself to a system directory is more risky than a normal system call from the security

54

aspect. To quantify this, we introduce the stratified sampling technique that defines

the priority levels of individual events and put various weights during the sampling

process. In particular, the original detection information of N units will be first

divided into sub-groups of N1,N2, . . . ,NL units and each group contains events that

have the same priority level. These subgroups are disjoint and together comprise

the full set of detection data, i.e., N1 +N2 + . . .+NL = N. To obtain the benefits

of stratification, the true values of Nk could be estimated. When the strata are

determined, a sample is drawn from each group and the drawings are made independently

in different strata. The sample sizes within strata are denoted by n1,n2, . . . ,nL,

respectively.

Nonetheless, in both the random and stratified sampling, a sampling error will

exist because sampling process only uses a subset of detection data to estimate

the characteristics of the full set of detection data. In principle, a sample selected

from the full set of detection data is the one of all possible samples. Any value

computed from the sample is based on the sampled data and is denoted as the

sample statistics. The sample statistics may not be close to the statistics of the

full set of detection data. If one statistics measure is q and the true value of the

statistical measure for the full set of detection data is q̂ , the difference between

q̂ and q is defined the sampling error. We will further investigate the impact of

detection accuracy caused by sampling process in Section 4.4.

55

Algorithm 3: Sampling Algorithms
input : An array of converted data Array[X]; Sampling rate

Ps 2 [0%,100%];
output : [Y], array of sampled data

1 Array[X] = X1,X2, · · · ,XN;

2 if Simple Random Sampling then
3 for i = 1 : N do
4 for j = 1 : Ps⇥N do
5 a = random(min = 0,max = 100);
6 if a < Ps then
7 Xi = Yj;
8 else
9 pass;

10 end
11 end
12 end
13 [X]�! [Y].
14 else
15 if Stratified Sampling then
16 Array[X 0];
17 ArrayA[layer][n];
18 ArrayA = stratify(X , layers=L);
19 //A is a two dimension array. First dimension is layer, second

dimension is data in this layer
20 c = element_count(A);
21 P0s = Ps⇥ element_count(X)/c;
22 foreach layer in A do
23 foreach element in layer do
24 a = random(min = 0,max = 100);
25 if a < P0s then
26 X 0+= element;
27 else
28 pass;
29 end
30 end
31 end
32 [X 0]�! [Y].
33 else
34 pass;
35 end
36 end

56

Oct 16 00:19:01 web CRON[32132]: pam_unix(cron:session): session opened for user bbs by uid=0}
Oct 16 00:19:01 web CRON[32133]: pam_unix(cron:session): session opened for user bbs by uid=0}

Figure 4.3: An Example of System Logs

4.3.3 Data Aggregation Techniques

To enable the effective detection and reduce the impact on network performance,

we also consider the data aggregation techniques. Generally speaking, data aggregation

is a process, which reduces the volume of data while preserving the meaning information

of data [73–77]. The aggregation techniques can be categorized into two groups:

lossless and lossy aggregation. To be specific, for the lossless aggregation technique,

we could adopt the compression strategy to consolidate the detection information

under the constraint, in which the decompressed data contains the exactly same

amount of information as the original one. Different from the existing compression

mechanisms, we consider the lossless aggregation technique that use the syntax of

detection information to effectively remove the duplicated information and compress

the pivotal data with a high aggregation ratio.

We use the OSSEC [78] to investigate the feasibility of lossless data aggregation,

which generates the system logs shown as in Figure 4.3. As we can see, the content

of messages have lots of redundant information. In our preliminary study, we

found that for a sample system-log with 10000 records, there are only 2367 unique

message bodies, 3 daemons and 3993 unique timestamps. To remove the redundant

57

Sample Input:

Oct 16 00:19:01 web CRON[32132]: pam_unix(cron:session): session opened for user bbs by (uid=0)
Oct 16 00:19:01 web CRON[32133]: pam_unix(cron:session): session opened for user bbs by (uid=0)
Oct 16 00:19:01 web CRON[32133]: pam_unix(cron:session): session closed for user bbs
Oct 16 00:19:02 web CRON[32132]: pam_unix(cron:session): session closed for user bbs
Oct 16 00:20:01 web CRON[1709]: pam_unix(cron:session): session opened for user www-data by (uid=0)
Oct 16 00:20:01 web CRON[1711]: pam_unix(cron:session): session opened for user bbs by (uid=0)
Oct 16 00:20:01 web CRON[1709]: pam_unix(cron:session): session closed for user www-data
Oct 16 00:20:01 web CRON[1711]: pam_unix(cron:session): session closed for user bbs
Oct 16 00:21:01 web CRON[5292]: pam_unix(cron:session): session opened for user bbs by (uid=0)
Oct 16 00:21:02 web CRON[5292]: pam_unix(cron:session): session closed for user bbs
Oct 16 00:22:01 web CRON[7528]: pam_unix(cron:session): session opened for user bbs by (uid=0)
Oct 16 00:22:01 web CRON[7528]: pam_unix(cron:session): session closed for user bbs
Oct 16 00:23:01 web CRON[13862]: pam_unix(cron:session): session opened for user bbs by (uid=0)
Oct 16 00:23:02 web CRON[13862]: pam_unix(cron:session): session closed for user bbs
Oct 16 00:23:50 web su[15748]: Successful su for alex by root
Oct 16 00:23:50 web su[15748]: + pts/1 root:alex
Oct 16 00:23:51 web su[15748]: pam_env(su:session): Unable to open env file: /etc/default/locale: No such file or directory
Oct 16 00:23:51 web su[15748]: pam_unix(su:session): session opened for user alex by root(uid=0)
Oct 16 00:24:01 web CRON[15842]: pam_unix(cron:session): session opened for user bbs by (uid=0)

Figure 4.4: An Example of Original System-Logs

information and reduce the bandwidth consumption on transmitting data through

MANET. As a proof-of-concept, the detailed steps on data aggregation are described

below. First, we split the log file into several parts: DATE (e.g., Oct 16 00:19:01),

Domain (e.g., web CRON [32133]), Message Body (e.g., pam_unix(cron:session):

session closed for user bbs), and Message Source (e.g., uid=0). We then scan the

system log files and find unique strings and generate the index for those unique

strings, and output strings and index for each system log entry into a binary file

and then apply generic compression methods such as bzip2 and Lempel–Ziv–Markov

chain (LZMA) algorithm [79] to compress the file. The examples of original system

logs and aggregated system logs can be found in Figure 4.4 and Figure 4.5.

4.3.4 Detection

Generally speaking, an intrusion detection system can be classified as either signature-based

or anomaly-based detection. In a signature-based detection, a large repository

58

Sample Output:

Daemons:
CRON
su

Index:
1 1 1
0 0 0
0 0 2
2 0 1
3 0 3
2 0 0
2 0 4
2 0 1
4 0 0
5 0 1
6 0 0
5 0 1
7 0 0
8 0 1
9 2 5
8 1 6
10 1 7
9 1 8
11 0 0

Messages:
pam_unix(cron:session): session opened for user bbs by (uid=0)
pam_unix(cron:session): session closed for user bbs
pam_unix(cron:session): session opened for user www-data by (uid=0)
pam_unix(cron:session): session closed for user www-data
Successful su for alex by root
+ pts/1 root:alex
pam_env(su:session): Unable to open env file: /etc/default/locale: No such file or directory
pam_unix(su:session): session opened for user alex by root(uid=0)

Date_Time:
Oct 16 00:19:01
Oct 16 00:19:02
Oct 16 00:20:01
Oct 16 00:21:01
Oct 16 00:21:02
Oct 16 00:22:01
Oct 16 00:23:01
Oct 16 00:23:02
Oct 16 00:23:50
Oct 16 00:23:51
Oct 16 00:24:01

Original Size: 1698 Bytes
Compressed Total Size: 360 Bytes (compression ratio: 21%)
Compressed Original Size: 420 Bytes (compression ratio: 25%)

Figure 4.5: An Example of Aggregated System Logs

59

of known attack signatures [80] will be maintained and used to detect attacks.

The disadvantage of this approach is that it cannot deal with new attacks. In

a anomaly detection, the system administrator commonly defines the baseline or

normal measures of system behavior (e.g., activities on hosts, network traffic rate,

and others). In the anomaly-based detection, system activities will be monitored

and compared with the normal baselines to determine whether an attack was occurred.

One common technique is to estimate the normal behavior of the protected system

and generate a detection alert whenever the deviation between a given observation

and the normal behavior exceeds a predefined threshold [81,82].

In our developed system, we adopt the system log as as the basic detection

sources to formalize detection information on hosts [3]. Recall that the anomaly

detection works through establishing a “normal” operation profile in a system and

detect suspicious activities by comparing the system run-time behavior with the

normal operation profile. With the development of modern operating systems, the

user and administrator need to know what are happening on hosts and network

components. It is desirable to provide human readable and reliable data to define

system status. The benefit of system logs provide a standard data format, which

could be collected and processed to detect threats.

In this chapter, we use the OSSEC, which is a well-known open source HIDS, to

demonstrate the effectiveness of our proposed sampling algorithms. In particular,

60

we install the OSSEC client on the end host that collect system logs in real time.

Then the daata processing components introduced in Section 4.3.1 will process

the collected data and transmit the information to the OSSEC server, which is

denoted as the operation center. Then the server take the responsibility of intrusion

detection based on analyzing system logs. In its release package, the OSSEC server

executes simply “compare-match” mechanism to identify the abnormal behavior. In

this paper, we develop the statistical threshold-based detection algorithm to detect

intrusions, which will be detailed below.

We consider the statistical threshold-based detection, which is a generic and

fundamental technique to conduct anomaly-based detection. The insight of this

technique works in the following way: We first compute the mean and the standard

deviation of collected detection data. The mean (m) and the standard deviation

(v) are the statistical measures of normal behavior of protected system. We then

establish a threshold as Ta = k·v, where k determines the sensitivity degree of

deviation from the system normal behavior. Recall that in our system, we use the

attack feature and map it to the number and assume that the larger the number,

the higher severity the attack is. A data Xi is treated to be anomalous if it deviates

from the mean by more than a threshold, i.e. Xi >Ta. The statistical anomaly

based detection is shown in Algorithm 4. As we can see, in this anomaly-based

detection we obtain the statistical characteristics of detection information through

61

offline training and compare it with the run-time data and make decision.

4.4 Analysis

In this section, we first show the analytical results for investigating the accuracy

of anomaly-based detection. We then study the impact of sampling techniques on

detection accuracy and bandwidth reduction in MANET. Our experimental results

in Section 4.5 match our theoretical results. All notations for sampling techniques

can be found in Table 4.1. Note that here, we use Gaussian white noise as an

example in our theoretical analysis to provide insights into the effectiveness of our

developed sampling techniques. Nevertheless, we would like to clarify that the

Gaussian distribution has been widely used as a model of quantitative phenomena

in the natural and behavioral sciences. The use of the Gaussian distribution can

be theoretically justified by assuming that many small, independent effects are

additively contributing to each observation. Indeed, the distribution of detection

data is still open question, which is largely depend on the attack behaviors. As

shown in Section 4.5, the real-world experimental results and theoretical analysis

results are consistent and follow the same trend, which demonstrate the impact

of sampling algorithms and sampling rate on detection accuracy. The difference

between the experimental results and analytical results indicates that the real-world

attack information may not follow the Gaussian white noise distribution and further

62

study can be one direction of our future work.

4.4.1 Anomaly-based Detection

Algorithm 4: Statistical Anomaly-Based Detection
input : An array of converted data
parameter: a, measure of degree of deviation
output : Ta, Threshold

1 Array[1 : n] = X1,X2, . . . ,Xn;

2 sum += Array[i];
3 m = sum/n;
4 v = std(Array[i]);
5 Set Ta = m + a.v ;
6 foreach element Xi in Array[i] do
7 if Xi > Ta then
8 Xi is abnormal data;
9 else

10 Xi is normal data;
11 end
12 end

We assume that the anomaly-based detection uses the statistical-based detection

scheme described in Section 4.3 because it is a generic and representative one.

To evaluate detection accuracy, we consider two metrics. One is the detection

rate PD, which is defined as the probability of correctly determining attack. The

other is the false positive rate PF , which is defined as the probability that the

attack is mistakenly detected while no attack exists. To make detection decision,

we determine the anomaly detection threshold T , where T = m + k·v, k is the

parameter to determine the degree of deviation from normal behavior. Without loss

63

of generality and simplifying our analysis, we assume that the background activities

follows the Gaussian random distribution with the mean m and standard deviation

v. With the attack in place, we assume that the mean and standard deviation

of monitored activities are ma and va, respectively. Then we have Theorem 1 for

detection accuracy.

Theorem 4.4.1. For the statistical-based detection described in Section 4.3.1, the

detection rate PD can be derived by

PD = 1�F(
Ta�ma

va
), (4.4.1)

and the false positive rate PF can be derived by

PF = 1�F(
Ta�m

v
), (4.4.2)

Here F(x) = 2p
p
R •

x e�t2
dt is the standard error function, Ta is, va is ..., m is

Theorem 1 can be proved based on the standard definition of probability density

function. In particular, PD = 1� 1p
2p

R Ta�ma
va

�• e�
1
2 y2

dy and PF = 1� 1p
2p

R Ta�m
v

�• e�
1
2 y2

dy.

We have some observations from Theorem 1. First, the detection rate grows when

the attack is stronger, which means the statistical based anomaly detection could

effectively detect attacks, which show a relatively strong activities. Second, there

are some tradeoffs between detection rate and false positive rate. If the value of

threshold declines, a higher detection rate could be achieved. However, a smaller

value of threshold always incurs a higher false positive rate.

64

Y Total Population
Ân yi Total Samples
Y Population Mean
ȳ Sample Mean
S2 Population Variance
s2 Sample Variance
Ps Sampling Rate
Nh Total number of units in stratum h
nh Number of units in stratum h sample
yhi Value obtained for ithunit
Wh =

Nh
N Stratum proportion

s2
h Variance in stratum h

Ph =
nh
Nh

Sampling fraction in the stratum
ȳst Sample mean in the stratified sampling

Table 4.1: Notations

4.4.2 Simple Random Sampling

Recall that we sample the detection information randomly based on a sampling

rate Ps 2 [0,1]. The sampling process will have a negative impact on detection

accuracy. To measure such an impact, we define the error rate as the ratio of

detection rate, i.e., sampled detection data vs. detection rate with the full set of

detection information.

After the sampling and data processing described in Section 4.3, we obtain the

sampled detection data as the input to the detection algorithm. The variance of the

sample mean ȳ for a simple random sample is

V (ȳ) = E(ȳ� Ȳ)2, (4.4.3)

=
S2

n
(N�n)

N
=

S2

n
(1�Ps), (4.4.4)

65

where Ps = n/N is the sampling rate.

We then obtain the standard error of ȳ from the following,

sȳ =
Sp
n

p
(N�n)/N =

Sp
n

p
1�Ps. (4.4.5)

To derive the closed formulae, we assume that the estimation of ȳ follows a Gaussian

distribution. Then, the interval estimate of mean value of full detection data is Ȳ 2

[ȳ� tsp
n

p
1�Ps, ȳ+ tsp

n

p
1�Ps], where t is the value of normal deviation corresponding

to desired confidence probability.

We now apply our sampling process to the anomaly-based detection and derive

error limits for attack detection. The results are shown in Theorem 4.4.2 that is

listed below.

Theorem 4.4.2. By using the simple random sampling technique, the error limit of

detection rate for the anomaly-based detection is

DPd  max(pl, pu). (4.4.6)

Here, we have

pl =
1p
2p

Z Ta+erd�y
s

Ta�y
s

e�
y2
2 dy, (4.4.7)

pu =
1p
2p

Z Ta�y
s

Ta�y�erd
s

e�
y2
2 dy, (4.4.8)

where ȳ is the sample mean, erd is the sampling error and can be denoted as,

erd =
tsȳp

n

p
1�Ps, (4.4.9)

and sȳ is the variance of the sample as the estimate of variance of detection data.

66

Proof. In the random sampling, we consider the sample as a representative from

the full set of detection data. Nevertheless, because of sampling error e, there is an

error between the sample mean and the mean of full set of detection data. We have

Ȳ = ȳ± e = ȳ± tsp
n

p
1�Ps. (4.4.10)

According to Theorem 4.4.1, the detection rate is

Pd = 1�F(
Ta�m

s
). (4.4.11)

Then we derive the error limits of detection rate as following,

DPd = (1�F(
Ta˘(µ + e)

s
))� (1�F(

Ta�µ
s

)), (4.4.12)

= F(
Ta�µ

s
)�F(

Ta�µ� e
s

), (4.4.13)

=
1p
2p

Z Ta�ȳ
s

Ta�ȳ�e
s

e�
y2
2 dy = pu. (4.4.14)

Similarly, we have

pl =
1p
2p

Z Ta+e�ȳ
s

Ta�ȳ
s

e�
y2
2 dy. (4.4.15)

Given the threshold for anomaly detection, to balance the tradeoffs between

detection rate and false positive rate, we have

DPd 

8
><

>:

pu,when Ta > ȳ,

pl,when Ta < ȳ,
(4.4.16)

Then, we have

DPd  max(pl, pu). (4.4.17)

Hence, Theorem 4.4.2 is proved.

67

4.4.3 Stratified Sampling

Recall that in the stratified sampling, the full set of detection information is first

divided into the mutually exclusive stratums (or groups) and each group is assigned

by a priority to determine the weight of selection during the sampling process. The

estimation used in the stratified sampling is ȳst where st stands for stratified, and

we have

ȳst =
ÂL

h=1 Nhȳh

N
=

L

Â
h=1

Wyȳh, (4.4.18)

and the sample mean is

ȳ =
ÂL

h=1 nhȳh

n
. (4.4.19)

The difference between ȳ and yst is that in yst , estimates from individual strata

receive ratio Nh/N. It is evident that ȳ coincides with ȳst when in every stratum we

have nh
n = Nh

N .

If the simple random sample is taken in each stratum, an unbiased estimate of

s2
h becomes

s2
h =

1
nh�1

nh

Â
i=1

(yhi� ȳh)
2. (4.4.20)

Then with the stratified sampling, an unbiased estimate of variance ȳst is

n(ȳst) = s2(ȳst) =
1

N2

L

Â
h=1

Nh(Nh�nh)
S2

nh
. (4.4.21)

68

and

sȳst =
q

s2(ȳst) =

vuut
L

Â
h=1

W 2
h s2

h
nh
�

L

Â
h=1

Whs2
h

N
. (4.4.22)

Notice that the derivation of interval estimate of mean value is similar to the one

in the simple random sampling, that is, Ȳ 2 [ȳst � ts(ȳst), ȳst + ts(ȳst)]. Based on this,

we can derive the sampling error in the stratified sampling. Using the same metrics

defined above, that is, the error limit of detection rate, we have Theorem 4.4.3

listed below.

Theorem 4.4.3. By using the stratified sampling technique to estimate the characteristics

of the full set of detection information, the error limit of detection rate is

DPdst  max(plst , pust). (4.4.23)

Here, we have

plst =
1p
2p

Z Ta+est� ¯yst
sst

Ta� ¯yst
sst

e�
y2
2 dy, (4.4.24)

pust =
1p
2p

Z Ta� ¯yst
sst

Ta� ¯yst�est
sst

e�
y2
2 dy, (4.4.25)

where ȳst is the estimate of the mean of full data, est is the sampling error and can be

denoted as,

est = t

vuut 1
N2

L

Â
h=1

Nh(Nh�nh)
s2

ȳst

nh
, (4.4.26)

where sȳst is the variance of sample as the estimate of variance of detection data.

Proof. The proof is similar to the simple random sampling and the basic idea is

listed below. We first divide the full data set into stratums. We then conduct

69

the simple random sampling in each stratum and derive the corresponding sample

mean ȳst and variance n(ȳst). Based on them, we could then derive the sampling

error est . After substituting same variables in Theorem 4.4.2, we derive the error

limits of detection on the stratified sampling technique.

We now show an example, in which the detection data is prioritized based on

the severity level of security risks. The stratums of detection data will be numbered

from 1 to L. Without loss of generality, we introduce a stratum weight wi = ik, where

i = 1,2, . . . ,L and k is the parameter to map the security severity level to sampling

weight. Hence, the sampling weight for stratum h is

Ph =
nh

Nh
=

wi

ÂL
1 wi

. (4.4.27)

Then, we have Theorem 4.4.4 listed below.

Theorem 4.4.4. If the stratified sampling is the weight-based sampling, the sampling

error can be denoted as,

est =
tsȳst

N

s
L

Â
1

N2
h (

1
Ps⇥Ph

�1), (4.4.28)

where f is the total sampling rate for extracting information from the full set of

detection information.

Proof. We have

Ph =
nh

Nh
=

wi

ÂL
1 wi

, (4.4.29)

and sȳst is the variance of sample as an estimate of variance of detection data. We

have

nh = Ph⇥Ps⇥Nh. (4.4.30)

70

Then, the sampling error can be denoted as,

est = t

vuut 1
N2

L

Â
h=1

Nh(Nh�nh)
s2

ȳst

nh
, (4.4.31)

= t

vuut 1
N2

L

Â
h=1

Nh(Nh�Ph⇥Ps⇥Nh)
s2

ȳst

PsNh
, (4.4.32)

= t

vuut
L

Â
h=1

N2
h s2

ȳst

1�Ph⇥Ps

Ph⇥Ps⇥N2 , (4.4.33)

=
tsȳst

N

vuut
L

Â
h=1

N2
h (

1
Ph⇥Ps

�1). (4.4.34)

From Theorem 4.4.2, Theorem 4.4.3 and Theorem 4.4.4, we observe that with

the increase of sampling rate f , the sampling error declines and the detection error

decreases as well. We derive the numerical data based on one simple example

described below. We set the detection threshold T = m+2 · v and let the confidence

probability be 80%(t = 1.28). According to Theorem 4.4.2, we derive detection

errors for different sampling rates. To analyze the effectiveness of stratified sampling

technique, we assume that there are five stratums and the stratum weight is wi = i2,

where i = 1,2, · · · ,5. We substitute the above corresponding parameters in Theorem

4.4.3 and derive numerical results for error rates. The numerical data is shown in

Figure 4.8. As we can see, the error rate declines when the sampling rate grows

and the stratified sampling technique achieves a better detection accuracy than the

simple random sampling technique.

71

4.4.4 Data Aggregation Techniques

We now define metric and conduct the theoretical analysis on the bandwidth reduction

of our proposed data aggregation techniques. Using a simplified case, we show

the aggregation performance in terms of the effectiveness of our data aggregation

techniques to conduct the bandwidth reduction. The metric that we use is the

data rate T , which is defined as the average rate of data transmission rate over

the network. We assume that there is N services nodes in MANET, which executes

our proposed aggregation techniques. We introduce the aggregation ratio, Ra, to

measure the efficiency of data aggregation and it is defined as the reduced data size

vs. the size of input data. Our analysis is based on the simple scenario, in which

the service nodes collect the detection data and use the aggregation techniques to

consolidate the data. After that, the aggregated data is transmitted to the operation

center.

Consider the following scenario: a batch of Kt packets needs to be transmitted

from the service node t (t = 1, . . . ,N) to the operation center. Packets are transmitted

through communication channels. We assume there are L channels in total and each

channel has a data rate of Ri bits per second and the propagation delay of di seconds

(i = 1, . . . ,L). We assume that all packets have the same size with S bits of payload

and H bits of protocol header. We assume that the bandwidth is large enough so that

we ignore the query delay in the data rate computation and all packets from one

72

service node are transmitted through one communication channel. For the system

without using data aggregation, the overall network throughput T can be computed

by T = ÂN
t=1

Kt(S+H)
Kt (S+H)

Ri
+di

, where i is the index of communication channel selected for

node t.

Then, we consider the use of data aggregation. The payload and size of protocol

header are (1�Ra)S and (1�Ra)H, respectively. The overall network throughput

T
0
after using data aggregation become T

0
= ÂN

t=1
Kt(1�Ra)(S+H)
Kt (1�Ra)(S+H)

Ri
+di

.

With the same network condition, it is easy to prove that T
0

is smaller than

T . This means that in the system using data aggregation, the use of bandwidth is

smaller than the system without the use of data aggregation. In addition, we can see

from the above analysis, the aggregation ratio is the key factor for the bandwidth

reduction. After multiplying 1/(1�Ra), we have T
0
= ÂN

t=1
Kt(S+H)

Kt (S+H)
Ri

+
di

1�Ra

.

In comparison with data rate for the system without data aggregation, because

Ra 2 [0,1], we know that T
0

is smaller than T . With the increase of aggregation

ratio, T
0

declines. From the above analysis, we can see that the data aggregation

techniques can reduce the network bandwidth usage.

4.4.5 Impact of Intrusion Detection on MANET

We now show the impact of intrusion detection on MANET. Without loss of generality,

we assume that MANET has limited bandwidth capacity C and needs to support two

73

types of applications: the normal mission related application Sn and the intrusion

detection application Si. We adopt the average end-to-end delay as a metric for

normal mission-related application, and the detection accuracy and end-to-end

delay as metrics for intrusion detection application to meet the design goals for

our developed system. To optimally allocate the network resources, we assign

a parameter W , which is defined as the ratio that the allocated bandwidth vs.

requested bandwidth. In order to optimize the overall performance of MANET,

we shall consider the following constraints: (i) the required total bandwidth should

not be larger than the maximum capacity of network, (ii) the quality of service

on intrusion detection application Si should meet requirements, and (iii) when

the network is heavily loaded, the quality of normal mission related application

Sn should not be severely impacted by the intrusion detection application Si.

We then formalize the impact of intrusion detection on MANET as follows:

Objective. Min

(
ÂN

i=1
P

WiBi
+ÂK

s=1
P

WSBS

N +K

)
(4.4.35)

S.t.
8
>>>>><

>>>>>:

ÂN
i=1WnBn +ÂK

s=1WiBi C

ÂN
i=1

P
WiBiN

 Qmax
normal

ÂK
S=1

P
WSBSK  Qmax

IDS

Wn,Wi 2 [0,1]

where P is packet size, Bn,Bi denote requested bandwidth from the normal mission

related application and intrusion detection application to monitor and detect attacks

74

in MANET, N is the number of traffic flows associated with normal mission related

application, K is the number of traffic flows associated with monitoring and detecting

attacks in MANET, Qmax is the required maximum delay for each application (e.g.,

Qmax
normal is the required maximum delay for the normal mission related application

and Qmax
normal is the required maximum delay for the application that conduct monitoring

and detecting attacks). With Equation (4.4.35), we could derive the weight for

each application and achieve the optimal bandwidth setting for MANET that shall

support both the intrusion detection and normal mission related applications.

4.5 Performance Evaluation

In this section, we investigate the effectiveness of our proposed sampling techniques

in a real-world testbed and evaluate their performance impact on MANET using ns-3

based simulation [83].

4.5.1 Methodology

We implemented the host-based intrusion detection system using virtual machines

and deployed virtual machines acting as host monitoring agents and the operation

center. We use the OSSEC as an example to validate our proposed schemes. Note

that our developed sampling strategies and theoretical framework can be generally

applied to other host-based and network-based intrusion detection systems as well.

75

We deployed the OSSEC agent on the host and the OSSEC server on the operation

center. The detection data is collected by the OSSEC agent on the host and transmitted

to the OSSEC server. During the data collection process, we simulate known attacks,

including the port scanning, brute force password cracking attacks, and others.

We would like to point out that we implemented our sampling techniques based

on simulated attacks, which can emulate real-world attack behaviors. To validate

the effectiveness of our developed techniques, we simulated several attacks against

hosts and generated events related to those attacks. In this way, we can generate a

large amount of detection related data by adjusting the attack parameters such as

scan rate and further study the effectiveness of sampling techniques and obtain the

insightful relationship between detection accuracy and sampling rate. Note that

there are many attacks are various and emerging endlessly. Defending the new

attacks is always open research topic. In this chapter, we simulate and generate

generic attacks, which contain the common malicious behaviors, to analyze the

the effectiveness of sampling techniques. We also simulate the normal system

operations, including the system patching and others, which may pose false positives

for attack detection. After the detection data is collected by the OSSEC agent, we

use such data as input to validate our proposed sampling and detection techniques.

The OSSEC agent records activities such as accessing and modifying system

critical areas. However, some normal applications will exhibit similar behavior

76

(e.g., installing the new software). To obtain the false positive rate, we conducted

experiments on the same testbed and collected the detection information as background

data, in which no attack is in place. Based on the collected background data,

we obtained the detection threshold for the statistical-based anomaly detection

discussed in Section 4.3. To measure detection rate, we collected hundreds of data

entries and each entry represents one attack event. Through the feature mapping

algorithm described in Section 4.3, we converted each feature into a number that is

used to present the attack severity. We then used the converted data as the input to

validate the effectiveness of our developed simple random sampling and stratified

sampling techniques.

0 5 10 15 20 25 30
60

65

70

75

80

85

90

Sampling Rate (%)

D
et

ec
tio

n
R

at
e

(%
)

Simple Random Sampling
Stratified Random Sampling

Figure 4.6: Detection Rate vs. Sampling Rate (Experiment)

To evaluate the impact of transmitting detection data on MANET, we implemented

a simulation environment based on NS-3 [83], which is a well-known network

simulation tool in the networking community. The evaluation environment is also

77

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sampling Rate (%)

Er
ro

r R
at

e

Simple Random Sampling (Experiment)
Stratified Random Sampling (Experiment)

Figure 4.7: Error Rate vs. Sampling Rate (Experiment)

based on virtual machine that runs the version of Ubuntu Linux 11.10 with 2GB

memory. In our simulation, we consider an outdoor environment with 50 mobile

nodes and one operation center. Nodes in the network move according to a random

Waypoint mobility model in an 800m⇥ 1000m rectangular field and their initial

positions are randomly assigned. Each node moves from a random location to a

random destination with a randomly assigned speed, which is uniformly distributed

in the range of 0�20m/s. The operation center is statically located at the lower left

corner of the rectangular field and each simulation lasts for 20 seconds.

To simulate the traffic associated with the normal mission related applications on

MANET, we randomly select N source/destination pairs and the data rate is 56 Kb/s

in NS-3. We monitor each traffic flow and measure the throughput and end-to-end

delay. To validate the impact of intrusion detection on MANET, we consider a nearly

saturated MANET. We introduce a parameter to emulate the sampling ratio, defined

78

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Sampling Rate (%)

Er
ro

r
R

at
e

Stratified Random Sampling
Simple Random sampling

Figure 4.8: Error Rate vs. Sampling Rate (Theory)

as the ratio between the number of nodes running the normal mission related

application over the total number of nodes. To simulate traffic for monitoring and

detecting attacks, we randomly choose a number of nodes to send CBR (Constant

Bit Rate) traffic to the operation center. We monitor the normal traffic flows and

measure the performance when the amount of traffic associated with monitoring

and detecting attacks increases.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sampling Rratio of Normal Traffic Flows (%)

Av
er

ag
e

D
el

ay
 (s

)

Figure 4.9: End-to-End Delay of Normal Mission Application without Intrusion
Detection Application

79

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

Sampling Ratio of IDS Taffic Flows (%)

Av
er

ag
e

D
el

ay
 (s

)

Normal Traffic
IDS Traffic

Figure 4.10: Sampling Ratio vs. End-to-End Delay of Normal Mission Application

We also implement the aggregation techniques and evaluate their impact on

the MANET using ns-3. In our evaluation, we consider the following topology:

an outdoor 802.11b (1Mbps) MANET with 60 mobile nodes and an operation

center. These 60 mobile nodes are clustered into six groups. In each cluster,

there is one data collection agent. Nodes configured with IDS application send

IDS data to the data collection agent in their cluster and data collection agent send

aggregated data to the operation center. Nodes in the network move according

to a random Waypoint mobility model in a 600m⇥900m rectangular field and their

initial positions are randomly assigned. Each node moves from a random location to

another randomly selected destination with a randomly selected speed, uniformly

distributed in 0�10m/s. The remote operation center is installed in a static location

at (0,0) and our simulation lasts for 20 seconds.

We use two metrics for quantifying the detection accuracy: (i) detection rate

80

defined as the probability of correctly determining the attack, and (ii) error rate

defined as the error limits of detection rate after the sampling technique is applied.

In the stratified sampling, we select the sampling weight as wi =
i2

Ân
i=1 i2 . To compute

the error rate, we apply the full set of detection dtat to the detection algorithm

and obtain the detection rate. We then apply the sampled data with different

sampling rates (e.g., 10%,20%, · · · ,90%) to the detection technique and obtain the

corresponding detection rate. Assuming that the detection rate is R when the

sampling rate is 100% and the detection rate is R0k when the sampling rate is k%.

Then, the error rate is defined as,

E = |
R0k�R

R
|. (4.5.1)

4.5.2 Evaluation Results

Figure 4.6 illustrates the relationship between sampling rate and detection rate

in terms of the two sampling techniques investigated in Sections III and IV. As

we can see from the figure, the detection rate increases when the sampling rate

grows. Obviously, the operation center obtains a better detection result with more

detection information. In addition, the stratified sampling technique achieves a

higher detection rate. This is because the stratified sampling technique gives a

higher priority to the detection information with a higher security severity. Note

that there is a fluctuate trend when the sampling rate is low, this is because the

81

sampling error is significant and unstable in a low sampling rate. As the sampling

rate increases, the sampling error declines and the sample data becomes to stabilize.

Figure 4.7 illustrates the relationship between sampling rate and error rate

for the two sampling techniques. As we can see from the figure, both sampling

techniques work as expected with a relatively low error rate, the error rate declines

as the sampling rate increases, and the stratified sampling achieves a better detection

accuracy. In addition, the analytical results from Section 4.4 are shown in Figure

4.8 and match with our experimental results well. We evaluate the performance

of MANET without traffic associated with monitoring and detecting attacks. From

the results shown in Figure 4.9, we could see that the end-to-end delay increases as

the sampling ratio grows. In other words, as more nodes are selected to transmit

data associated with the normal mission related application, the end-to-end delay

increases. In our experimental setting, we note that when the sampling ratio

approaches above 55%, the end-to-end delay increases rapidly.

We also evaluate the performance of the fifteen normal traffic flows associated

with the normal mission related application and different numbers of flows associated

with monitoring and detecting attacks transmitted to the operation center. We

randomly select nodes that conduct monitoring and detection. Figure 4.10 illustrates

the relationship between the sampling ratio for traffic flows associated with the

monitoring and detection and the end-to-end delay. As we can see, when the

82

sampling ratio of traffic flows associated with the monitoring and detection increases,

the end-to-end delay of the traffic associated with normal mission related applications

grows as well. We conclude that the traffic associated with monitoring and detecting

attacks has a negative impact on the traffic flow associated with the normal mission

related application. For example, when the sampling ratio increases over 32% of

total traffic, the end-to-end delay of traffic associated with the normal mission

related application increases 168.5% in comparison with the scenario, in which

there is no traffic associated with monitoring and detection. When the amount of

traffic flows associated with monitoring and detecting attacks approaches 40%, the

end-to-end delay of traffic associated with the normal mission related application

increases 440.9%. From this example, to reduce the bandwidth and limit the impact

on MANET, the sampling is necessary when we transmit detection information over

MANET.

4.6 Summary

To secure MANET, in this chapter we studied a host-based detection architecture

and investigated the simple random sampling and stratified sampling techniques.

We derived the closed formulae to study the impact of detection accuracy vs. sampling

techniques along with parameters used in the sampling process. We investigated

the impact of attack detection on the performance of MANET and formalized it

83

as an optimization problem for allocating network resources. We also discussed

related issues, including the system architecture options, dynamic sampling, and

data aggregation. We conducted experiments on our real-world test bed and our

data showed that the stratified sampling technique achieves better performance

than the simple random sampling technique in terms of providing tradeoff between

detection accuracy and bandwidth cost reduction. The performance impact of

transmitting the detection information on MANET was also simulated using ns-3.

Chapter 5

MapReduce Based Machine Learning
Techniques for Processing Massive Network

Threat Monitoring Data

5.1 Overview

Networking technology has greatly changed the way that our society functions

as a whole, leading to a new era of e-business, social interaction, and virtual

organizations. There is an omnipresent need for security and robust detection

schemes to protect critical network infrastructures. Cyber-threats are significantly

more dangerous than they have ever been and are growing in number and sophistication.

Due to the widespread nature of cyber-threats (malware propagation, etc.), large-scale

traffic monitoring across networks has become an essential part of effectively detecting

and defending against contemporary cyber-attacks. Nonetheless, large-scale threat

monitoring over distributed networks leads to extremely big data from monitored

end-hosts and network devices [84].

Effectively processing of threat monitoring data from both end-hosts and network

devices will better facilitate the detection of cyber-threats as well as help security

administrators respond to cyber-threats in a timely manner. In our previous work,

the development of effective threat monitoring systems to defend against cyber-attacks

84

85

was established [61, 71, 85, 86]. Nonetheless, big data poses serious challenges

for cyber operations because an ever growing large and complex threat monitoring

system from a large computer network needs to capture, store, manage, and process

big data. With continuous, unbounded, rapid, and time-varying data streams generated

by end-hosts and network devices, the complexity of storing and processing big

network data will significantly increase. As such, there is an urgent need to develop

efficient techniques to process and transform these complex, often vast unstructured,

amounts of network threat monitoring data into manageable, useful, and exploitable

information.

To address big cyber data, we consider a threat monitoring system with an

objective of monitoring and processing the real-time data streams generated by

threat monitoring agents, which monitors the statuses of end-hosts or networks

and then detects suspicious activities. To ensure that the threat detection methods

are efficient, MapReduce based machine learning (MML) schemes can efficiently

deal with threat monitoring over big data. The main idea of the MML system is to

speed up the machine learning (ML) process using cloud computing. The first step

is to collect the characteristics of traffic flows (flow duration and average bytes per

packet of the flow, average bytes per seconds of the flow, etc.). To accurately and

rapidly detect traffic anomalies, two MapRduce based ML schemes are developed

to profile the dynamic characteristics of traffic flows and then to detect anomalies

86

based on learned classifiers: Logistic Regression and Naïve Bayes. In the proposed

MML schemes, the computational burden of the learning process is spread across

multiple machines. The learned computational results from multiple machines are

then integrated into one single learned classifier. Lastly, the learned classifier will

then be used to recognize whether a new traffic flow is either normal or abnormal

(benign or malicious).

Using real-world datasets consisting of both botnet and normal traffic, we develop

a cloud computing test bed and conduct experiments to evaluate the effectiveness

of the developed MML schemes in terms of learning accuracy, training set size,

and training and detection processes overhead. The experimental data shows that

the proposed MML schemes rapidly detect anomalous traffic flows with the same

accuracy as standard machine learning schemes without using MapReduce.

Notice that the materials in this chapter are adapted from my previous publication [87].

5.2 Our Approach

In this section, we first introduce the design rationale of our approach and then

present our MapReduce-based machine learning (MML) schemes in detail.

87

5.2.1 Design Rationale

To defend against cyber-attacks, anomaly-based intrusion detection systems have

been widely developed. Anomaly-based detection refers to the issue of finding

patterns in data that do not conform to an expected behavior [88]. In anomaly

detection, the system administrator commonly defines the baseline (i.e., normal)

measures to qualify normal system behavior (e.g., network traffic volumes). The

threat monitoring and detection system monitors various system segments and

compares their states to defined profiles. If the observed states are beyond the

defined profiles, anomaly alerts will be issued.

Due to the widespread nature of threats such as malware propagation, a large-scale

traffic monitoring system across networks has become essential. Such threat monitoring

systems can lead to extremely large amounts of data collected from monitored

end-hosts and network devices. In the realm of cyber security, big data refers to the

management and analysis of large-scale information, which exceeds the capabilities

of traditional data processing technology. With the continuous, unbounded, rapid,

and time-varying data streams generated by end-hosts and network devices; the

complexity to store and process big network data will significantly increase. Hence,

the effective processing of threat monitoring data from both end-hosts and network

devices will facilitate the detection of cyber-threats and help security administrators

respond to cyber-threats in a timely manner. In this chapter, the key focus is on the

88

network based intrusion detection system (IDS), which analyzes network traffic in

order to identify the presence of malicious traffic flows. Using traffic flows as an

example to demonstrate our idea, we begin with the following collection of traffic

flow characteristics: flow duration, average bytes per packet of the flow, average

bytes per second of the flow, etc. To accurately detect traffic anomalies, we then

implement the MML schemes to profile the characteristics of traffic flows and to

detect traffic anomalies based on a learned classifier.

To make the threat detection capability efficient, how to make machine learning

schemes to efficiently deal with big network data for threat monitoring is critical.

The main idea is to speed up the machine learning process by using the cloud

computing system. Our developed MML schemes will distribute the computational

task of the learning process across multiple physical machines. The detection system

consists of both the offline training and the online detection phases. In the offline

training phase, we use a training set, where collected network traffic flows consist

of both normal flows and attack flows. The subsets of the training set are then

assigned to different computers to conduct the training process independently. The

computational results of the learning phase from different computers are then

integrated into one single learned classifier. In the online detection phase, the use

of the learned classifier is then set in place to determine whether a traffic flow in

question is either normal or malicious. The detail of the algorithm design and the

89

detection workflow will be introduced in the following sections.

5.2.2 Algorithms Design

Being one of the most dangerous network-based attacks, botnets can be massive.

Coordinated groups of compromised hosts have the ability of conducting malicious

activities such as spamming, DDoS (Distributed Denial-of-Service) attacks, etc. To

accurately and rapidly learn the anomalous behavior of malicious traffic associated

with botnets, we develop two MML schemes: Logistic Regression and Naive Bayes

in a cloud computing environment.

MapReduce Based Logistic Regression Machine Learning Scheme

Logistic regression is a type of probabilistic statistical classification model, which

is commonly used for binary classification problems [89, 90]. We implement the

traditional logistic regression algorithm in the MapReduce framework to carry out

the learning process in parallel. In our detection system, we first collect the characteristics

of traffic flows. Each characteristic is considered as one feature of observed data

and each feature has its own numerical value. The detailed feature definition

and extraction process will be introduced in Section 5.2.3. Because each flow is

either normal or malicious, we consider each flow as one observation which can

be represented as (X ,Y), where X = (x1,x2, . . . ,xn) is the feature value vector and

Y 2 (0,1) is the class value. For logistic regression machine learning, we take our

90

input features xi, multiply each one by the regression coefficient q = (q0,q1, . . . ,qn),

and then add them up as z = q0x0+q1x1+ · · ·+qnxn. The result z will be put into the

logistic (sigmoid) function [91]. In this way, we will obtain a number between 0 and

1. We then consider input observations > 0.5 as class 1 and input observations 

0.5 as class 0. In this way, the logistic regression classifier is a probability estimate

process. The detailed principle of the logistic regression algorithm can be found

in [89].

During the training process, it is critical to determine the best regression coefficients.

Suppose we train a dataset with m observations, (X1,y1),((X2,y2)), . . . ,(Xm,ym) and

each observation has n features X = (x1,x2, . . . ,xn). We implement the gradient

descent as an optimization method to find the best regression coefficients. Gradient

descent can be used for most machine learning schemes to update parameters

iteratively in order to minimize the cost function [92]. In logistic regression, the

gradient descent rule is

qi = qi�a ∂L(q)
∂q

=
a
m

Sm
i=1(h(q T Xi)� yi)Xi, (5.2.1)

where a is the arbitrary learning rate that determines the step size, L(q) is the

cost function, and h is the sigmoid function. With a training set input, the parameter

q will be iteratively updated based on 5.2.1.

It is worth noting that in the parameter updating process of gradient descent,

all iterations need to visit all of the training samples for a given parameter. It is

91

challenging to develop an efficient mechanism to process and transform complex,

large amounts of data into useful detection information. In an attempt to remediate

this, we apply the MapReduce framework to distribute the computational task to

multiple nodes in the cloud. Recall that MapReduce is a parallel programming

model primarily designed for batch processing big data in a distributed computing

environment. MapReduce is designed using the concept of divide-and-conquer

and follows the master/slave computing paradigm. The master node receives the

computational training task and sends the subset to the slave nodes to separately

conduct different training processes. Eventually the computational results will be

combined together as learned classifier. Figure 5.1 illustrates the main idea of this

process.

Using the MapReduce framework, we implement gradient descent for the logistic

regression learning scheme and update the parameters iteratively. Suppose that we

have large-scale data, which contains one million observations (one million traffic

flows in our performance evaluation), then we need to conduct the gradient descent

as

qi = qi�a ∂L(q)
∂q

= qi�
a

1000000
S1000000

i=1 (h(q T Xi)� yi)Xi, (5.2.2)

Then, we use MapReduce to distribute the dataset to four different computers.

Computer one uses subset ((X1,y1),(X2,y2), . . . ,(X250000,y250000)) to carry out gradient

92

Figure 5.1: Machine Learning Based on MapReduce Framework.

descent. Similarly, computers 2, 3, and 4 also get their respective subsets. In doing

so, we can derive the computational process as:

8
>>>>>>><

>>>>>>>:

((X1,y1),(X2,y2), ..,(X250000,y250000)) tmp1 = a
250000S250000

i=1 (h(q T Xi)� yi)Xi

((X1,y1),(X2,y2), ..,(X500000,y500000)) tmp1 = a
250000S500000

i=250000(h(q
T Xi)� yi)Xi

((X1,y1),(X2,y2), ..,(X750000,y750000)) tmp1 = a
250000S750000

i=500001(h(q
T Xi)� yi)Xi

((X1,y1),(X2,y2), ..,(X1000000,y1000000)) tmp1 = a
250000S1000000

i=750001(h(q
T Xi)� yi)Xi

qi = qi�
a

100000
(tmp1+ tmp2+ tmp3+ tmp4) (5.2.3)

In our MapReduce based logistic regression scheme, each iteration has a map

phase and a reduce phase. Figure 5.2 illustrates the MapReduce based framework

for conducting this parallel machine learning process. As we can see, the MapReduce

93

framework is based on key/value tuples and relies on two built-in functions: a map

function and a reduce function. Suppose that we have data samples (A1,A2, . . . ,Am)

collected from threat monitors on end-hosts and network devices. Each data sample

contains values of pre-defined features (e.g. system logs, source and destination

addresses, and others). In the Map function, the map workers visit the training

samples in parallel and perform key matching to list associated key/value pairs.

Visiting one training sample generates n key/value pairs. The keys are 1 to n and

the values in the gradient descent algorithm are (hq (x((i)))� y((i)))x(j(i)). Then,

we can obtain intermediate results such as K1! a(11(1)),a
(
12(1)), . . . ,a

(
1m(1)) , where

a(1m(1)) represents the value of key K1 from sample m computed by map worker

1. In the reduce phase, the values of the same key are added up to yield S(i =

1)m((hq (x((i)))�y((i)))x(j(i)) and the parameters are updated by q j := q j� a
m((hq (x((i)))�

y((i)))x(j(i)). Then, the aforementioned process will be further validated in our

developed cloud computing test bed until convergence of the subtasks, where the

learned model is ready for use.

Figure 5.2: MapReduce Based Framework for Parallel Machine Learning.

94

We use real world data to evaluate the performance of our parallel machine

learning scheme. Based on the cost function of logistic regression (LR) machine

learning, we collected the cost of gradient descent in the MapReduce process shown

in Figure 5.3. As we can see from Figure 5.3, the computational cost of gradient

descent declines as the number of iterations increases. This demonstrates that our

LR MML scheme can speed up the learning process. In addition, we compared the

cost of different arbitrary learning rates a. We can see that the higher the arbitrary

learning rate, the cost declines at a higher speed. Hence, we conclude that with

a big arbitrary learning rate, the gradient descent algorithm can quickly locate the

optimal point in a function.

Figure 5.3: Cost of Gradient Descent using MapReduce.

95

Next, we explore another common MML technique of naïve Bayes.

MapReduce Based Naïve Bayes Machine Learning Scheme

The other machine learning algorithm we implement is the Naïve Bayes classifier.

Generally speaking, the Naïve Bayes classifier is a probabilistic classifier based on

applying Bayes’ theorem [93]. The Naïve Bayes can construct a classifier given a set

of training data with class labels. In our system, the training data is the observation

of features determined by features associated with traffic flows and the class falls

into two categories: 1 (a positive one when the monitored data is normal) and 0 (a

negative one when the monitored data is malicious). Denote X = (x1,x2, . . . ,xn) to

be one observation of E, where xn is the value of feature n. Then, the probability of

observation E in this category c is P(c|x1,x2, . . . ,xn). Using Bayes theorem, we have

P(c|x1,x2, . . . ,xn) =
P(c|x1,x2, . . . ,xn)

P(x1,x2, . . . ,xn)
(5.2.4)

Then, we can define two types of parameters for the Naïve Bayes model: q(c)

for c 2 1,0, where P(c) = q(c) and qi(xi|c) with P(xi|c) = qi(xi|c). Then, we have the

Naïve Bayes model as

P(c|x1,x2, . . . ,xn) = q(c)Pn
i=1qi(xi|c) (5.2.5)

The Naïve Bayes model learns the probability of classes when each feature is

given. The Naïve Bayes model analyzes all features and combines them to form

96

the probability of each class. After that, whenever a new observation appears, the

classifier then distinguishes the class according to the value of each feature. The

detailed principle of the Naïve Bayes model can be found in [93].

Similar to logistic regression, we can use the maximize likelihood estimate (MLE)

method to learn the optimal parameters. Suppose we are given a training set that

contains m observations (X1,y1),(X2,y2), . . . ,(Xm,ym) and each observation has n

features of X = (x1,x2, . . . ,xn). Based on the log-likelihood function [36] of the Naïve

Bayes model, we then apply gradient descent to maximize the likelihood. The rule

is similar to logistic regression as:

qi = qi�
a
m

=
a
m

Si=16m(q(c)+qi(Xi|ci)) (5.2.6)

where q(c) = Sm
i=1[ci=c]

n = count(c)
n , qi(Xi|c) =

Sm
i=1[ci=c&X=Xi]

Sm
i=1

= count(Xi|ci)
count(c) . Hence, in the

Naïve Bayes algorithm, we need to conduct only one iteration to optimize the

parameter qi. We also apply the MapReduce framework to improve the learning

efficiency of Naïve Bayes to train the data set in parallel. The mechanism is similar

to the logistic regression learning scheme. Each computer receives a subset of the

training data and then computes q(c) and qi(Xi|c). In the following subsection, we

introduce the procedures to implement the parallel machine learning scheme in the

MapReduce framework.

97

Figure 5.4: Detection Work flow

5.2.3 Implementation

Figure 5.4 illustrates the workflow of the offline training process. In this process, we

first extract and select the useful information from traffic flows as samples. Then,

we define the features for machine learning and give the features a value for each

sample. Lastly, we conduct the training process for the classifier.

The detailed steps are illustrated as follows:

Step 1: Flow Extraction: To conduct network traffic monitoring, we collect a

large volume of traffic data. Recall that in common practice, data will be stored

in PCAP (packet capture) format and a large number of flows will be stored in

one PCAP file. Therefore, we need to extract traffic flows from each PCAP file and

separate each traffic flow into a single file. Figure 5.5 illustrates what was extracted

98

from 1,045,225 traffic flows to form a large dataset.

Figure 5.5: Flow Extraction.

Step 2: Useful Information Selection: The trace file of each traffic flow consists

of massive packets. As shown in Figure 5.6, in each packet, there is plenty of data

recorded and most of this data is useless and redundant. In this step, we propose

to select the most useful information, which will be used for our machine learning

process. The tool TSHARK (https://www.wireshark.org/docs/man-pages/tshark.html)

is used to extract and select the useful information from each flow in the sample.

Figure 5.7 shows an example flow output file through this step, where each row

represents one packet in this flow. Note that each column contains one characteristic

of packets, where the selected characteristics include: the time, the size of the

packet (bytes), the type of network, and the destination MAC (media access control)

address. For a destination MAC address, when the MAC address is of the format

aa:aa:aa:aa:aa:aa, it can be regarded as an instance of malicious traffic. We can see

that only small amounts of data in packets are selected so that the size of the input

data is then placed into the machine learning algorithms, which are used to largely

reduce the data size and to help speed up the data processing.

99

Figure 5.6: The Information of a Data Packet.

Figure 5.7: An Example of Data Selection Output.

Step 3: Machine Learning Features Definition and Computation: Based on the

output data of Step 2, we define and compute the features for the machine learning

process for each sample. In our study, we consider eight features during the training

stage, which are shown in Table 5.1:

Figure 5.8 shows a screenshot of the computed input data for the logistic regression

duration defined as the total time duration of the flow
bpp defined as average bytes per packet of the flow
bps defined as the average bytes per second of the flow
pps defined as the average packets per second of the flow
VarIAT defined as the variance of packet inter-arrival time of the flow
VarBpp defined as the variance of bytes-per-packet of the flow
tws defined as the average TCP window size of the flow
VarTws defined as the variance of TCP window size of the flow

Table 5.1: Description of Extracted Features.

100

classifier. In this screenshot, each row represents one observation and each column

stands for each computed feature value. For example, in the first observation, the

value of Average Bytes per Packet is 90.1429 and the value of Average Bytes per

Second is 194.15. In addition, the last column represents the class of data, either

0 or 1, meaning that the observation is either non-malicious or malicious traffic,

respectively. Similarly, we can compute feature values as input for Naïve Bayes,

which is shown in Figure 5.9.

Figure 5.8: Screenshot of Feature Values Computing for Logistic Regression.

Figure 5.9: Screenshot of Feature Values Computing for Bayes Machine Learning.

Step 4: Train the Classifier: After Step 3, we have the input data ready for the

machine learning schemes. We input the data to the HDFS (Hadoop File System)

using the command: “sudo -u hdfs hadoop fs -put train.txt /inputs/”, which means

101

that the input data is train.txt and we store it in the “/inputs” folder on the HDFS

(Hadoop Distributed File System). We train the input data with our machine

learning schemes with the command: “sudo -u hdfs hadoop jar BigData-1.0-SNAPSHOT.jar

bigdata.towson.edu.BigDataCC/inputs/train.txt/output”, where our executable java

program is called BigData-1.0-SNAPSHOT.jar. Then, the trained model will be

generated under the “/output” folder on the HDFS, which can be used for the offline

detection process. For the online detection process, similar to the offline training

process, we use our data preprocessing program to obtain the input file and then

use the classification program to classify the input test data based on the trained

model.

5.3 Performance Evaluation

To validate the effectiveness of our proposed approach, we developed a cloud test

bed and used it to conduct experiments. In the following, we first present the

evaluation methodology and then show the experimental results.

5.3.1 Evaluation Methodology

As shown in Figure 5.10, we built a cloud computing testbed with one master node

and three slave nodes. Each slave node can act as both a map node and a reduce

node. Each node is a DELL Optiplex 9010 computer with Intel Core i7 3.40GHZ 8

102

Figure 5.10: A Cloud Computing Testbed.

processors with 16GB RAM and 2TB hard drive. We use the Cloudera Manager as

the central interface to perform management tasks such as configurations, management,

and monitoring of the designed system. We downloaded cloudera-manager-installer.bin

from the Cloudera website. The executable permission was configured by using the

command “chmod u+x cloudera-manager-installer.bin”. Then, the installer can be

executed with the command “sudo ./cloudera-manager- installer.bin” to install the

Cloudera Manager. To install the Cloudera Manager on hosts in the cloud, the

Cloudera Manager Admin Console is used to install and configure CDH (Cloudera

103

Distribution including Apache Hadoop).

To evaluate the effectiveness of our developed system, we obtained the ISOT

dataset [94] from http://www.uvic.ca/engineering/ece/isot/datasets to conduct our

experiments. The ISOT dataset is the combination of several publicly available

malicious and non-malicious datasets. Specifically, the ISOT dataset contains 1,675,424

total traffic flows, which consists of 55,904 (3.33%) malicious traffic flows and

1,619,520 (96.66%) non-malicious traffic flows.

For the accuracy of detection, we expect that with a number of training samples,

the machine learning schemes will have more information for the training process,

leading to higher detection accuracy. To validate this hypothesis, we define the

following evaluation metrics: (i) Detection Rate: It is defined as the probability

of correctly classifying the malicious traffic flows and is the ratio of the number

of malicious traffic flows correctly classified versus the total number of malicious

traffic flows. (ii) False Positive Rate: It is defined as the probability of falsely

classifying non-malicious traffic flows and is the ratio of the number of non-malicious

traffic flows falsely classified as malicious traffic flows versus the total number of

non-malicious traffic flows. In our experiments, we show the correlation between

these metrics and the number of traffic flow samples used for the training process.

104

Training
Samples
Numbers

Detection Rate False Positive Rate

20 78.19% 28.68%
100 99.31% 0.18%
140 99.30% 0.69%
200 99.19% 0.81%
1000 99.92% 0

Table 5.2: Detection Accuracy of the Naïve Bayes Machine Learning Scheme.

5.3.2 Evaluation Results

We select 20,000 test samples (10,000 malicious traffic flows and 10,000 non-malicious

traffic flows) from the dataset, which are not used in the training process. In terms

of the training samples, in each group of samples, the number of malicious flows

and the number of non-malicious flows are equal. For example, when we use 100

samples for training, 50 are malicious traffic flows and 50 are non-malicious traffic

flows.

Table 5.2 illustrates the relationship between the detection accuracy of the Naïve

Bayes machine learning scheme and the number of samples used for the training

process. As we can see, the Naïve Bayes machine learning scheme can achieve

a high detection accuracy. The detection rate from using 20 samples is 78.91%.

Starting from 100 samples, the detection rate of each scenario is close to 100%,

meaning that all malicious traffic flows can be accurately identified. In addition, the

false positive rate is near 0, meaning that very few numbers of non-malicious flows

105

Training
Samples
Numbers

Detection Rate False Positive Rate

20 99.48% 0.14%
100 99.55% 0.12%
140 99.99% 0.02%
200 99.48% 0.14%
1000 1% 0

Table 5.3: Detection Results of Logistic Regression Scheme.

are falsely classified as malicious flows. Table 5.3 shows the detection accuracy

of the logistic regression machine learning scheme. In comparison with the Naïve

Bayes machine learning scheme, when there are 20 training samples, the logistic

regression machine learning scheme can achieve a high detection accuracy near

99% and a low false positive rate near 0%.

In addition to the detection accuracy, the time efficiency of the MML schemes

are also measured. The metric we used is the training time, which is defined as

the time taken for the training process. Figure 5.11 illustrates the relationship

between the training time of the Naïve Bayes machine learning scheme and the

number of slave nodes used in the training process. As we can see, the training

duration declines when the number of nodes increases. When we use 3 nodes to

carry out the training process, it takes only 10.35 minutes to complete the training

process. If we only use 1 node, it will take 30.58 minutes. Similarly, in the logistic

regression based machine learning scheme, the training time can be significantly

reduced when more slave nodes are used (Figure 5.12).

106

Figure 5.11: Time Cost versus Number of Nodes for Naïve Bayes

5.4 Summary

In this chapter, we addressed the issue of detecting malicious traffic flows from

a large scale of monitored traffic data. To make threat detection efficient, we

developed Logistic Regression and Naive Bayes MapReduce based machine learning

schemes to deal with a large amount of threat monitoring data. The main contribution

is to speed up the machine learning process using the MapReduce framework in a

cloud computing environment. We demonstrated our MapReduce based machine

learning schemes in cloud computing environment with a variety of existing structures

of data flows, detection techniques, and implementation protocols. Using a real-world

traffic dataset consisting of both botnet traffic and normal traffic, we conducted

experiments and evaluated the effectiveness of our developed MapReduce based

107

Figure 5.12: Time Cost versus Number of Nodes for Logistic Regression

machine learning schemes. Our results verify the accuracy and efficiency of our

proposed MML detection schemes to detect malicious traffic.

Chapter 6

Final Remarks

In this dissertation, we developed schemes to enable efficient threat detection in

mobile networks. To be specific, we first developed a machine learning-based

scheme that can dynamically learn the behavior of malware on mobile devices

and augment the human cognition process of defending against malware attacks.

We then developed sampling and aggregation techniques with proper settings to

reduce the bandwidth use. We also developed MapReduce-based Machine Learning

(MML) schemes to rapidly and accurately process and detect malicious traffic in

a cloud environment. In the near future and beyond, research on other types of

wireless networks can be carried out, including intelligent transportation systems

and wireless networks in a three dimensional environment.

108

Bibliography

[1] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection

systems,” in Proceedings of ACM Conference on Computer and Communications

Security, 2002, pp. 255–264.

[2] P. de Boer and M. Pels, “Host-based intrusion detection systems,” 2010.

[3] Ossec. [Online]. Available: http://www.ossec.net/

[4] B. Uphoff and J. S. Wong, “An agent-based framework for intrusion detection

alert verification and event correlation,” International Journal of Security and

Networks, vol. 3, pp. 193–200, 2008.

[5] D. Djenouri, L. Khelladi, and N. Badache, “A survey of security issues in mobile

ad hoc and sensor networks,” IEEE Communications Surveys and Tutorials,

vol. 7, pp. 2–28, 2005.

[6] P. Joshi, “Security issues in routing protocols in MANETs at network layer,”

Procedia Computer Science, vol. 3, pp. 954–960, 2011.

[7] H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, “Security in mobile ad hoc

networks: challenges and solutions,” IEEE Wireless Communications, vol. 11,

pp. 38–47, 2004.

[8] M. Taghiloo, J. Taghiloo, and M. Dehghan, “A SURVEY OF SECURE ADDRESS

AUTO-CONFIGURATION IN MANET,” 2008.

[9] R. Sheikh, M. S. Chande, and D. K. Mishra, “Security issues in MANET: A

review,” in Proceedings of IFIP International Conference on Wireless and Optical

Communications Networks, 2010.

109

110

[10] M. Taghiloo, M. Tajamolian, M. Dehghan, and R. Mousavi, “Virtual address

space mapping for IP auto-configuration in MANET with security capability,”

pp. 1–7, 2008.

[11] M. M. Yasin and A. A. Awan, “A study of host-based IDS using system calls,”

Procedia Engineering, 2004.

[12] A. Bose, X. Hu, K. G. Shin, and T. Park, “Behavioral detection of malware on

mobile handsets,” in Proceedings of the 6th International Conference on Mobile

Systems, Applications, and Services, ser. MobiSys ’08, 2008.

[13] A. S. Shamili, C. Bauckhage, and T. Alpcan, “Malware detection on mobile

devices using distributed machine learning,” in Proceedings of the 2010 20th

International Conference on Pattern Recognition, ser. ICPR ’10, 2010.

[14] D. Venugopal and G. Hu, “Efficient signature based malware detection on

mobile devices,” Mob. Inf. Syst., vol. 4, no. 1, pp. 33–49, Jan. 2008.

[15] A. Shabtai, “Malware detection on mobile devices,” in Proceedings of 2010

Eleventh International Conference on Mobile Data Management (MDM), May

2010.

[16] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. Yuksel,

S. Camtepe, and S. Albayrak, “Static analysis of executables for collaborative

malware detection on android,” in Proceedings of IEEE International Conference

on Communications (ICC), June 2009.

[17] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis via

hardware virtualization extensions,” in Proceedings of the 15th ACM Conference

on Computer and Communications Security, 2008.

[18] M.-Y. Su and W.-C. Chang, “Permission-based malware detection mechanisms

for smart phones,” in Proceedings of 2014 International Conference on

Information Networking (ICOIN), Feb 2014.

111

[19] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation on

permission-based detection for android malware,” in Advances in Intelligent

Systems and Applications - Volume 2, ser. Smart Innovation, Systems and

Technologies, J.-S. Pan, C.-N. Yang, and C.-C. Lin, Eds. Springer Berlin

Heidelberg, 2013, vol. 21, pp. 111–120.

[20] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A

methodology for empirical analysis of permission-based security models and

its application to android,” in Proceedings of the 17th ACM Conference on

Computer and Communications Security, ser. CCS ’10, 2010, pp. 73–84.

[21] J. Cannady, “Artificial neural networks for misuse detection,” in Proceedings

of NATIONAL INFORMATION SYSTEMS SECURITY CONFERENCE, 1998, pp.

443–456.

[22] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using

neural networks and support vector machines,” in Proceedings of the 2002

International Joint Conference on Neural Networks, 2002.

[23] O. Linda, T. Vollmer, and M. Manic, “Neural network based intrusion

detection system for critical infrastructures,” in Proceedings of International

Joint Conference on Neural Networks, June 2009.

[24] V. Golovko, S. Bezobrazov, P. Kachurka, and L. Vaitsekhovich, “Neural network

and artificial immune systems for malware and network intrusion detection,”

in Advances in Machine Learning II, ser. Studies in Computational Intelligence,

J. Koronacki, Z. Raś, S. Wierzchoń, and J. Kacprzyk, Eds. Springer Berlin

Heidelberg, 2010, vol. 263, pp. 485–513.

[25] S. Marchal, X. Jiang, R. State, and T. Engel, “A big data architecture for large

scale security monitoring,” in Proceedings of 2014 IEEE International Congress

on Big Data (BigData Congress), June 2014.

112

[26] K. Yoshida, Sampling-Based Stream Mining for Network Risk Management,

2006.

[27] S. Goldberg and J. Rexford, “Security vulnerabilities and solutions for packet

sampling,” in Proceedings of IEEE Sarnoff Symposium, 2007.

[28] K. Bartos, M. Rehak, and V. Krmicek, “Optimizing flow sampling for network

anomaly detection,” in Proceedings of International Conference on Wireless

Communications and Mobile Computing, 2011.

[29] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled data

sufficient for anomaly detection?” in Proceedings of the 6th ACM SIGCOMM

conference on Internet measurement, ser. IMC ’06, 2006, pp. 165–176.

[30] D. Ficara, G. Antichi, A. D. Pietro, S. Giordano, G. Procissi, and F. Vitucci,

“Sampling techniques to accelerate pattern matching in network intrusion

detection systems.” pp. 1–5, 2010.

[31] W. J. Scheirer and M. C. Chuah, “Syntax vs. semantics: competing approaches

to dynamic network intrusion detection,” International Journal of Security and

Networks, vol. 3, pp. 24–35, 2008.

[32] S. Lai and B. Ravindran, “Achieving Max-Min lifetime and fairness with rate

allocation for data aggregation in sensor networks,” Ad Hoc Networks, vol. 9,

pp. 821–834, 2011.

[33] D. Q. Goldin, “Faster In-Network Evaluation of Spatial Aggregationin Sensor

Networks,” in Proceedings of International Conference on Data Engineering,

2006.

[34] N. Shrivastava, C. Buragohain, and D. Agrawal, “Medians and beyond:

New aggregation techniques for sensor networks,” in Proceedings of the 2nd

international conference on Embedded networked sensor systems (SenSys), 2004.

113

[35] J. Gao, L. J. Guibas, N. Milosavljevic, and J. Hershberger, “Sparse data

aggregation in sensor networks,” in Proceedings of Information Processing in

Sensor Networks, 2007.

[36] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for

information dissemination in wireless sensor networks,” in Mobile Computing

and Networking, 1999, pp. 174–185.

[37] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters,” in Proceedings of the 6th Conference on Symposium on Opearting

Systems Design & Implementation - Volume 6, 2004.

[38] J. Lin and C. Dyer, Data-intensive Text Processing with MapReduce, ser. G -

Reference, Information and Interdisciplinary Subjects Series. Morgan &

Claypool, 2010.

[39] J. T. Morken, “Distributed netflow processing using the map-reduce model,”

PHD Thesis, Norwegian University of Science and Technology, 2010.

[40] M. Ebrahimi, “Solving linear programs in mapreduce,” Master Thesis,

Universität des Saarlandes, 2011.

[41] D. Alves, P. Bizarro, and P. Marques, “Flood: Elastic streaming mapreduce,”

in Proceedings of the Fourth ACM International Conference on Distributed

Event-Based Systems, 2010.

[42] C. Doulkeridis and K. Norvag, “On saying enough already! in mapreduce,” in

Proceedings of the ACM 1st International Workshop on Cloud Intelligence, 2012.

[43] F. Halim, R. H. Yap, and Y. Wu, “A mapreduce-based maximum-flow algorithm

for large small-world network graphs,” in Proceedings of IEEE International

Conference on Distributed Computing Systems (ICDCS), 2011.

114

[44] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema,

“A performance analysis of ec2 cloud computing services for scientific

computing,” Cloud Computing, pp. 115–131, 2010.

[45] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “Mapreduce in the clouds for

science,” in Proceedings of 2010 IEEE Second International Conference on Cloud

Computing Technology and Science (CloudCom), 2010.

[46] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using mapreduce,”

DTIC Document, Tech. Rep., 2009.

[47] H. Shivhare, N. Mishra, and S. Sharma, “Cloud computing and big data,” in

Proceedings of 2013 International Conference on Cloud, Big Data and Trust,

2013.

[48] Z. Chen, F. Han, J. Cao, X. Jiang, and S. Chen, “Cloud computing-based

forensic analysis for collaborative network security management system,”

Tsinghua Science and Technology, vol. 18, no. 1, pp. 40–50, 2013.

[49] H. Liu and D. Orban, “Cloud mapreduce: a mapreduce implementation on

top of a cloud operating system,” in Proceedings of the 2011 11th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, 2011.

[50] J. Tan, X. Pan, E. Marinelli, S. Kavulya, R. Gandhi, and P. Narasimhan,

“Kahuna: Problem diagnosis for mapreduce-based cloud computing

environments,” in Proceedings of 2010 IEEE Network Operations and

Management Symposium (NOMS), 2010.

[51] J. Zhang, D. Xiang, T. Li, and Y. Pan, “M2m: A simple matlab-to-mapreduce

translator for cloud computing,” Tsinghua Science and Technology, vol. 18,

no. 1, pp. 1–9, 2013.

115

[52] W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-oriented cloud computing

architecture,” in Proceedings of 2010 Seventh International Conference on

Information Technology: New Generations (ITNG). IEEE, 2010, pp. 684–689.

[53] D. Leaf, “Overview: Nist cloud computing efforts, nist senior executive for

cloud computing,” 2010.

[54] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a software platform for .net-based

cloud computing,” High Speed and Large Scale Scientific Computing, vol. 18,

pp. 267–295, 2009.

[55] Y. Huang, H. Su, W. Sun, J. M. Zhang, C. J. Guo, J. M. Xu, Z. B. Jiang, S. X.

Yang, and J. Zhu, “Framework for building a low-cost, scalable, and secured

platform for web-delivered business services,” IBM Journal of Research and

Development, vol. 54, no. 6, pp. 4–1, 2010.

[56] N. Nurain, H. Sarwar, M. Sajjad, and M. Mostakim, “An in-depth study of map

reduce in cloud environment,” in Proceedings of 2012 International Conference

on Advanced Computer Science Applications and Technologies (ACSAT), Nov

2012.

[57] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters,” Commun. ACM, vol. 51, no. 1, Jan. 2008.

[58] H. Pieterse and M. Olivier, “Android botnets on the rise: Trends and

characteristics,” in Information Security for South Africa (ISSA), 2012, Aug

2012, pp. 1–5.

[59] K. Mallinson, “Smartphone revolution: Technology patenting and licensing

fosters innovation, market entry, and exceptional growth.” IEEE tranactions

on Consumer Electronics Magazine, vol. 4, no. 2, pp. 60–66, April 2015.

116

[60] G. X. Wei Yu, Linqiang Ge and X. Fu, “Towards neural network based malware

detection on android mobile devices,” Springer Book Series: Cybersecurity

Systems for Human Cognition Augmentation, 2014.

[61] Y. Wei, H. Zhang, L. Ge, and R. Hardy, “On behavior-based detection

of malware on android platform,” in Proceedings of 2013 IEEE Global

Communications Conference (GLOBECOM), Dec 2013.

[62] A. Nere, A. Hashmi, M. Lipasti, and G. Tononi, “Bridging the semantic gap:

Emulating biological neuronal behaviors with simple digital neurons,” in

Preceedings of 2013 IEEE 19th International Symposium on High Performance

Computer Architecture (HPCA2013), Feb 2013.

[63] D. J. Montana and L. Davis, “Training feedforward neural networks using

genetic algorithms,” in Proceedings of the 11th International Joint Conference

on Artificial Intelligence - Volume 1, ser. IJCAI’89, 1989.

[64] X. Yu, M. Efe, and O. Kaynak, “A general backpropagation algorithm for

feedforward neural networks learning,” IEEE Transactions on Neural Network,

vol. 13, no. 1, pp. 251–254, Jan 2002.

[65] G. Arulampalam and A. Bouzerdoum, “A generalized feedforward neural

network architecture for classification and regression,” Neural Networks,

vol. 16, no. 5–6, pp. 561 – 568, 2003, advances in Neural Networks Research:

{IJCNN} ’03.

[66] Y. Kim and J. Ra, “Weight value initialization for improving training speed in

the backpropagation network,” in Proceedings of International Joint Conference

on Neural Networks, Nov 1991, pp. 2396–2401 vol.3.

[67] M. Hagan and M. Menhaj, “Training feedforward networks with the

marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6,

pp. 989–993, Nov 1994.

117

[68] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-based

malware detection system for android,” in Proceedings of the 1st ACM

Workshop on Security and Privacy in Smartphones and Mobile Devices, ser.

SPSM ’11, 2011.

[69] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and

evolution,” in Proceedings of the 2012 IEEE Symposium on Security and Privacy,

ser. SP ’12, 2012.

[70] D. Zhang, L. Ge, R. Hardy, W. Yu, H. Zhang, and R. Reschly, “On effective

data aggregation techniques in host-based intrusion detection in manet,” in

Proceedings of IEEE International Consumer Communications and Networking

Conference (CCNC), Jan 2013.

[71] W. Yu, L. Ge, D. Zhang, R. L. Hardy, and R. J. Reschly, “On effective sampling

techniques in host-based intrusion detection in tactical manet,” Int. J. Secur.

Netw., vol. 8, no. 3, pp. 154–168, Nov. 2013.

[72] H. Deng, W. Li, and D. P. Agrawal, “Routing security in wireless ad hoc

networks,” IEEE Communications Magazine, vol. 40, pp. 70–75, 2002.

[73] X. T. Dang, N. Bulusu, and W. chi Feng, RIDA: A Robust Information-Driven

Data Compression Architecture for Irregular Wireless Sensor Networks, 2007.

[74] D. Tsitsipis, S. Dima, A. Kritikakou, C. Panagiotou, and S. Koubias, “Data

merge: A data aggregation technique for wireless sensor networks,” in

Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th Conference

on, sept. 2011, pp. 1 –4.

[75] C. Yang, Z. Yang, K. Ren, and C. Liu, “Transmission reduction based on order

compression of compound aggregate data over wireless sensor networks,”

in Pervasive Computing and Applications (ICPCA), 2011 6th International

Conference on, oct. 2011.

118

[76] S. Ozdemir and H. Cam, “Integration of false data detection with data

aggregation and confidential transmission in wireless sensor networks,”

Networking, IEEE/ACM Transactions on, vol. 18, no. 3, pp. 736 –749, june

2010.

[77] Y.-C. Fan and A. Chen, “Efficient and robust schemes for sensor data

aggregation based on linear counting,” Parallel and Distributed Systems, IEEE

Transactions on, vol. 21, no. 11, pp. 1675 –1691, nov. 2010.

[78] OSSSE, http://www.ossec.net/, 2010.

[79] A. Kattan, “Universal intelligent data compression systems: A review,” 2010.

[80] S. Axelsson, “Intrusion Detection Systems: A Survey and Taxonomy,” 2000.

[81] W. Stallings, Network security essentials. Prentice Hall, 2007, vol. 2.

[82] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez,

“Anomaly-based network intrusion detection: Techniques, systems and

challenges,” computers & security, vol. 28, no. 1-2, pp. 18–28, 2009.

[83] Ns3. [Online]. Available: http://www.nsnam.org/

[84] A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with big

data,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2032–2033, Aug. 2012.

[Online]. Available: http://dx.doi.org/10.14778/2367502.2367572

[85] D. Zhang, W. Yu, and R. Hardy, “A distributed network-sensor based intrusion

detection framework in enterprise networks,” in Proceedings of IEEE Military

Communication Conference (MILCOM), Nov 2011.

[86] W. Yu, Z. Chen, G. Xu, S. Wei, and N. Ekedebe, “A threat monitoring system

for smart mobiles in enterprise networks,” in Proceedings of the 2013 Research

in Adaptive and Convergent Systems, 2013.

119

[87] G. X. Linqiang Ge, Hanling Zhang, C. C. Wei Yu, and E. P. Blasch,

“Towards mapreduce based machine learning techniques for processing

massive network threat monitoring data,” Networking for Big Data, published

by CRC Press & Francis Group, 2014.

[88] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM

Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[89] J. Liu, J. Chen, and J. Ye, “Large-scale sparse logistic regression,” in

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2009.

[90] R. Xi, N. Lin, and Y. Chen, “Compression and aggregation for logistic

regression analysis in data cubes,” IEEE Transactions on Knowledge and Data

Engineering, vol. 21, no. 4, pp. 479–492, April 2009.

[91] R. Garg, A. Varna, and M. Wu, “A gradient descent based approach to

secure localization in mobile sensor networks,” in Acoustics, Speech and Signal

Processing (ICASSP), 2012 IEEE International Conference on, March 2012.

[92] J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, “Internet traffic

classification by aggregating correlated naive bayes predictions,” IEEE

Transactions on Information Forensics and Security, vol. 8, no. 1, pp. 5–15,

Jan 2013.

[93] C. Chelba and A. Acero, “Conditional maximum likelihood estimation of

naive bayes probability models using rational function growth transform,”

Microsoft Research, Tech. Rep. MSR-TR-2004-33, April 2004. [Online].

Available: http://research.microsoft.com/apps/pubs/default.aspx?id=70051

[94] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing a

systematic approach to generate benchmark datasets for intrusion detection,”

Comput. Secur., vol. 31, no. 3, pp. 357–374, May 2012.

120

Curriculum Vita

Name: Linqiang Ge

Research Interests: Cyber Security, Computer Networks, Cyber-Physical Systems,

and Information Assurance, including security and privacy issues in wireless networks,

Cyber-physical systems and security, Mobile/celluler networks security, and large

scale data publishing/processing.

Education:

• D.Sc. in Information Technology September 2011 - May 2016

Towson University, Towson, MD, U.S.A.

• M.S. in Applied Information Technology June 2011

Towson University, Towson, MD, U.S.A.

• B.S. in Mathematics June 2009

Qingdao University, Qingdao, P.R.China.

• B.S. in Economics June 2009

Qingdao University, Qingdao, P.R.China.

Teaching Experience:

• Lecturer 09/2013 - 12/2015

Department of Computer and Information Sciences, Towson University.

• Teaching Assistant 09/2011 - 05/2013

Department of Computer and Information Sciences, Towson University.

Research Experience:

• Researching Assistant 01/2011 - Present

Department of Computer and Information Sciences, Towson University.

Working Experience:

121

• Assistant Professor 02/2016 - present

Department of Computer Science, Georgia Southwestern Sate University.

• Research Assistant 08/2011-12/2015

Department of Computer Science, Towson University.

• Math Lab Tutor 09/2010 - 06/2011

Department of Mathematics, Towson University.

• Website Developer 02/2011-05/2011

Department of Psychology, Towson University.

• Software Engineer 01/2009-12/2009

Qingdao Chinsoftware Co.,Ltd.

Research Projects

• Modeling and Defense of Malware Attacks on Tactical Mobile Ad Hoc Networks

(PI: Wei Yu). Source: Army Research Laboratory (ARL). Grant Number:

W911NF-11-2-0092. Duration: 02/2014-05/2015.

• A Network Sensor Based Defense Framework for Active Network Security

Situation Awareness and Impact Mitigation – Phase II (PI: Wei Yu, Co-PI: Chao

Lu). Source: Air Force SBIR contract. Duration: 12/2013-02/2016.

• Membership Inference in a Differentially Private World and Beyond (PI: Wei

Yu). Source: National Science Foundation (NSF). Grant Number: CNS-1117175.

Duration: 09/2011-08/2015

• A Network Sensor Based Defense Framework for Active Network Security

Situation Awareness and Impact Mitigation (PI: Wei Yu, Co-PI: Chao Lu).

Source: Air Force SBIR contract. Duration: 01/2012-01/2013 and 12/2013-02/2016.

122

• A Distributed Host-Based Intrusion Detection Framework for Military Network

Operation (PI: Wei Yu). Source: Army Research Laboratory (ARL). Grant

Number: W911NF-11-1-0193. Duration: 05/2011-05/2014.

Refereed Book Chapters:

• Linqiang Ge, Hanling Zhang, Guobin Xu, and Wei Yu, “Towards MapReduce

Based Machine Learning Techniques for Processing Massive Network Threat

Monitoring Data", accepted to appear in Networking for Big Data, published

by CRC Press & Francis Group, USA, 2015.

• Wei Yu, Linqiang Ge, Guobin Xu, and Xinwen Fu, “Towards Neural Network

Based Malware Detection On Android Mobile Devices", accepted to appear in

Springer Book Series: Cybersecurity Systems for Human Cognition Augmentation,

2014.

Refereed Journal Publications:

• Zhijiang Chen, Linqiang Ge, Guobin Xu, Wei Yu, Robert F. Erbacher, Hasan

Cam, and Nnanna Ekedebe, “A Threat Monitoring System in Enterprise Networks

with Smart Mobile Devices", International Journal of Security and Networks

(IJSN) – Inderscience Publisher, January 2015.

• Wei Yu, David Griffith, Linqiang Ge, Sulabh Bhattarai, and Nada Golmie

“An Integrated Detection System against False Data Injection Attacks in the

Smart Grid", in the International Journal of Security and Communication

Networks (SCN) – John Wiley & Sons, 2014.

• Difan Zhang, Linqiang Ge, Wei Yu, Rommie Hardy, Robert J. Reschly, and

Hanlin Zhang, “Effective Aggregation Techniques for Host-based Intrusion

Detection in MANET", in the International Journal of Security and Networks

(IJSN) – Inderscience Publisher, 2013.

123

• Wei Yu, Linqiang Ge, Difan Zhang, Rommie Hardy, and Robert J. Reschly„

“Effective Sampling Techniques for Host-based Intrusion Detection in MANET",

in the International Journal of Security and Networks (IJSN) – Inderscience

Publisher, 2013.

Refereed Conference Publications:

• Xiaofei He, Xinyu Yang, Jie Lin, Linqiang Ge and Wei Yu, “Defending against

Energy Dispatching Data Integrity Attacks in Smart Grid", in Proc. of 34rd IEEE

International Performance Computing and Communications Conference. 2015.

• Sulabh Bhattarai, Stephen Rook, Linqiang Ge, Sixiao Wei, Wei Yu, and Xinwen

Fu, “On Simulation Studies of Cyber Attacks against LTE Networks", in Proc.

of IEEE International Conference on Computer Communication and Networks

(ICCCN), August 2014, Shanghai, P. R. China (Acceptance Ratio: 28%).

• Sixiao Wei, Wei Yu, Linqiang Ge, Khanh D. Pham, Erik P. Blasch, Dan Shen,

and Genshe Chen, “Simulation Study of Unmanned Aerial Vehicle Communication

Networks Addressing Bandwidth Disruptions", in Proc. of SPIE Defense, Security,

and Sensing (DSS), May 2014, Baltimore, MD, USA.

• Linqiang Ge, Wei Yu, Khanh D. Pham, Erik P. Blasch, Genshe Chen, and

Dan Shen, “Toward Effectiveness and Agility of Network Security Situation

Awareness using Moving Target Defense (MTD)", in Proc. of SPIE Defense,

Security, and Sensing (DSS), May 2014, Baltimore, MD, USA.

• Wei Yu, Hanlin Zhang, Linqiang Ge, and Rommie Hardy, “On Behavior-based

Detection of Malware on Android Platform", in Proc. of IEEE Globe Communication

(GLOBECOM) – Communication and Information System Security (CISS) Symposium,

December 2013, Atlanta, GA, USA.

• Linqiang Ge, Wei Yu, and Mohammad Ali Sistani, “On Localization Attacks

Against Cloud Infrastructure", in Proc. of SPIE Defense, Security, and Sensing

124

2013, April/May 2013, Baltimore, MD, USA.

• Difan Zhang, Linqiang Ge, Rommie Hardy, Hanlin Zhang, Wei Yu, and Robert

J. Reschly, “On Effective Data Aggregation Techniques in Host-based Intrusion

Detection in MANET", in Proc. of the 10th Annual IEEE Consumer Communications

and Networking (CCNC) – Green Communications and Computations Track,

January 2013.

• Linqiang Ge, Difan Zhang, Rommie Hardy, Hui Liu, Wei Yu, and Robert J.

Reschly, “On Effective Sampling Techniques for Host-based Intrusion Detection

in MANET", in Proc. of IEEE Military Communication (MILCOM) – Track 3:

Cyber Security and Trusted Computing, October 2012, Orlando, FL, USA.

• Sulabh Bhattarai, Linqiang Ge, and Wei Yu “A Novel Architecture against False

Data Injection Attacks in Smart Grid", in Proc. of IEEE International Conference

on Communication (ICC) – Communication and Information Systems Security

Symposium (CISS), June 2012, Ottawa, Canada.

• Difan Zhang, Hanlin Zhang, Linqiang Ge, Wei Yu, Chao Lu, Genshe Chen and

Khanh Pham, “On Effectiveness of Network Sensor-based Defense Framework",

in Proc. of SPIE Defense, Security, and Sensing 2012,, April/May 2012, Baltimore,

MD, USA.

Technical Skills

• Language: Java, C++,R, HTML, CSS, JavaScript, PHP, and SQL.

• Operating System: Windows, Linux, and MAC OS.

• Software & Tools: Matlab, NS-2, Gridlab-D, Wireshark, Eclipse, Netbeans,

Android SDK, Xcode, Photoshop, Dreamweaver, MS office suits, etc.

Honors and Awards:

125

• Travel Grant Awards: GEC 21, 2014.

• University Scholarship Awards: Qingdao University, 2005-2009.

Conference Technical Program Committee (TPC):

• Technical program committee member of Asia Pacific Conference on Wireless

and Mobile 2014.

• Technical program committee member of International Conference on Connected

Vehicles & Expo (ICCVE) 2013.

• Technical program committee member of IEEE Consumer Communications and

Networking Conference (CCNC) 2013.

Research Paper Review:

• IEEE International Conference on Computer Communications (INFOCOM),

2015

• IEEE International Conference on Communications (ICC), Track: Ad-hoc and

Sensor Networking, 2015.

• The 34th Annual IEEE International Conference on Computer Communications,

Track:Information security and privacy, 2015.

• IEEE Wireless Communications and Networking Conference (WCNC), Track:

Services, Applications, and Business, 2015.

• IEEE Global Communications Conference (GLOBECOM), Communication and

Information System Security Symposium, 2014.

• Second International Symposium on Security in Computing and Communications

(SSCC’14), Track: Security and Privacy in Networked Systems, 2014.

126

• IEEE International Conference on Communications (ICC), Communication

and Information Systems Security Symposium, 2014.

• IEEE Wireless Communications and Networking Conference (WCNC), Track:

Services, Applications, and Business, 2014.

• IEEE SmartGridComm Symposium, Track: Smart Grid Cyber Security and

Privacy, 2013.

• The Premier International Military Communications Conference (MILCOM),

Track: Cyber Security and Trusted Computing, 2012.

