Towson University

Office of Graduate Studies

TOWARDS EFFICIENT THREAT DETECTION IN MOBILE
NETWORKS

by
Lingiang Ge

A Dissertation
Presented to the Faculty of the Graduate School
of Towson University
in Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF SCIENCE

Department of Computer and Information Sciences

TOWSON UNIVERSITY
Towson, Maryland, 21252

May 2016

DISSERTATION APPROVAL PAGE

This is to certify that the dissertation prepared by Lingiang Ge,
entitled “Towards Efficient Threat Detection in Mobile Networks”,

has been approved by this committee as satisfactorily completing

the dissertation requirements for the degree of Doctor of Science in

Information Technology.

_—Ss. -‘«?,"‘/

Dr. Wei Yu

Chair, Dissertation Committee

Dr. Chao Lu

Member, Dissertation Committee

) N—

T l I'
Dr. Alex Wijesinha

Member, Dissertation Committee

TS e

Dr. Micﬁael McGuire

Member, Dissertation Committee

ﬁ//f/g,wsﬁﬁ

Dr. Chao Lu
Chair, Department of COSC

() /J 4

Dr. Ramesh Karne

Doctoral Program Director

r. Janet DeLany

Dean of Graduate Studies

ii

//6’/2»/5

Date

1/ & /2ot &

Date

fl/é /’LO/é

Date

J/@/Z;H(o

Date

) 16 S=ols

Date

-6 =201/

Date

[~ 1~ Ao/é

Date

Dedicated
To
My Parents

iv

Table of Contents

Page

Abstract vii
Acknowledgement. ix
Listof Tables e X
Listof Figures e xi
Chapter 1 Introduction 1
1.1 Motivation o v vt e e e e e 1

1.2 Significance of Proposed Research 4

1.3 Organization of Dissertation Research 7
Chapter 2 Background and Related Work 8
2.1 Mobile Network Security e 8
2.2 Scalability Issue in Network Security 10
2.3 Cloud Computing and MapReduce Techniques 13

Chapter 3 Behavior-based Malware Detection Approach on Mobile Devices 16

3.1 OVEIVIEW o o e e e e e e e e e e e e e e e 16
3.2 Artificial Neural Networks 18
3.2.1 Feedforward Neural Networks (FNN) 18
3.2.2 Recurrent Neural Networks (RNN) 20
3.3 Permissionsand System Calls 20
3.3.1 Overview e e e e e 21
3.3.2 PermiSSionsS o o e e e e e e e e e e e e e e e e e e 21
3.33 SystemCalls., 24
3.4 An ANN-Based Malware Detection System 25
3.4.1 Permission-Based Detection 25
3.4.2 System Call-Based Detection 31
3.5 Performance Evaluation 33
3.5.1 Evaluation Methodology 33
3.5.2 EvaluationResults 35
3.6 DisCuSSION v i e e e e e e e e 38
3.7 Summary e e e e e e 40

Chapter 4 Effective Sampling and Data Aggregation Techniques in Host-based

Intrusion Detection 41

4.1 OVEIVIEW . . o v i v i e e e e e e e e e e e e e e e e e e e 41

4.2 A Host-based Intrusion Detection Architecture in MANET 44

4.3 OurApproaches e 48

4.3.1 OVerview e e e 48

4.3.2 Sampling Techniques 52

4.3.2.1 Simple Random Sampling 53

4.3.2.2 Stratified Sampling 53

4.3.3 Data Aggregation Techniques 56

4.3.4 Detection i .t e e e e e e e e 57

4.4 Analysis e e e e 61

4.4.1 Anomaly-based Detection 62

4.4.2 Simple Random Sampling 64

4.4.3 Stratified Sampling L oo 67

4.4.4 Data Aggregation Techniques 71

4.4.5 Impact of Intrusion Detectionon MANET 72

4.5 Performance Evaluation 74

4.5.1 Methodology 74

4.5.2 EvaluationResults 80

4.6 SUMMATY v v v vt et e e e e e e e e e e e e e e e 82
Chapter 5 MapReduce Based Machine Learning Techniques for Processing

Massive Network Threat MonitoringData 84

5.1 OVeIVIEW o v ittt e e e e e e e e e e e e 84

5.2 OurApproach e 86

5.2.1 DesignRationale 87

5.2.2 Algorithms Design 89

5.2.3 Implementation 97

5.3 Performance Evaluation 101

5.3.1 Evaluation Methodology 101

5.3.2 EvaluationResults 104

5S4 SUMMATY . . . v v v vt e e e e e e e e e e e e e e e e 106

Chapter 6 FinalRemarks 108

References e 109

Curriculum Vita e 120

vi

Abstract

Towards Efficient Threat Detection in Mobile Networks

Lingiang Ge

With the popularity of mobile networks, it has become a burgeoning target for
cyber-attacks. For example, malware has proven to be a serious problem for the
mobile platform because malicious applications can be distributed to mobile devices
through an application market. From the defender’s perspective, how to effectively
detect threats and enhance the cognitive performance of mobile networks becomes
a challenging issue. In addition, mobile networks have limited network resources
and mobile devices are characterized by limited storage capacity, constraint battery
life time, and limited computation resources so that developing a scalable, reliable
and robust cyber threat defense system is challenging.

To address those challenges, in this dissertation we develop effective schemes
to efficiently conduct threat detection in mobile networks. First, we develop an
Artificial Neural Network (ANN)-based malware detection scheme to detect unknown
malware on mobile devices. Second, to enable the effective detection and desirable
impact on the performance of mobile networks, we develop both sampling and

aggregation techniques to achieve desirable tradeoffs between the detection accuracy

vii

and the use for network resources. Third, we develop MapReduce-based Machine
Learning (MML) schemes with the goal of rapidly and accurately detecting and

processing of malicious traffic in a cloud environment.

viii

Acknowledgement

I would like to gratefully and sincerely express my sincere gratitude to Dr. Wei
Yu for his guidance, understanding and patience. His mentorship was paramount
in providing a well rounded experience consistent my long-term career goals. He
encouraged me to not only grow as a researcher but also as an instructor and an

independent thinker.

I would also like to thank Dr. Chao Lu for his help and guidance in getting my
graduate career started on the right foot and providing me with the foundation for

becoming a synthetic doctoral student.

I would also like to acknowledge Dr. Alexander Wijesinha and Dr. Michael
McGuire to provide guidance on my dissertation. In addition, I would like to thank
my colleagues and our research group members who collaborate with me and give

me many academic helps.

Towson, Maryland Lingiang Ge

January, 2016

ix

Table 4.1

Table 5.1

Table 5.2

Table 5.3

List of Tables

Page
Notations e 64
Description of Extracted Features. 99

Detection Accuracy of the Naive Bayes Machine Learning Scheme.104

Detection Results of Logistic Regression Scheme. 105

List of Figures

Page
Figure 1.1 Technical Approaches 4
Figure2.1 The MapReduce Workflow 14
Figure3.1 A Typical Structure of FNN 19
Figure 3.2 An Example of Mapped Permissions 22
Figure 3.3 Distribution of Permissions 23
Figure3.4 Workflow o 26
Figure 3.5 Dumping Permissions 27
Figure 3.6 An Example of Permissions 29
Figure 3.7 Detection Rate for Permission Based Detection vs. Training Set
Ratio (FNN with 10 Nodes)« o v v v v v v .. 34
Figure 3.8 Detection Rate for Permission Based Detection vs. Training Set
Ratio (FNN with 20 Nodes) o o v v v v v v v v .. 34
Figure 3.9 Detection Rate for Permission Based Detection vs. Training Set
Ratio (RNN with 10 Nodes) o v .. 36

Figure 3.10 Detection Rate for System Call Based Detection vs. Training

Set Ratio (FNN with 10 Nodes) 36

xi

Figure 3.11 Detection Rate for System Call Based Detection vs. Training

Set Ratio (FNN with 20 Nodes) 37
Figure 3.12 Detection Rate for System Call Based Detection vs. Training

Set Ratio (RNN with 10 Nodes) 37
Figure 3.13 Error Rate for Permission Based Detection vs. Training Set

Ratio (1-gram) o i i it it e e e e 38

Figure 3.14 Error Rate for System Call Based Detection vs. Training Set

Ratio (1-gram) i i it e 38
Figure4.1 System Architecture 44
Figure4.2 System Workflow 48
Figure4.3 An Example of SystemLogs 56
Figure4.4 An Example of Original System-Logs 57
Figure4.5 An Example of Aggregated SystemLogs 58
Figure 4.6 Detection Rate vs. Sampling Rate (Experiment) 76
Figure4.7 Error Rate vs. Sampling Rate (Experiment) 77
Figure 4.8 Error Rate vs. Sampling Rate (Theory) 78

Figure 4.9 End-to-End Delay of Normal Mission Application without Intrusion
Detection Application 78

Figure 4.10 Sampling Ratio vs. End-to-End Delay of Normal Mission Application 79

Figure 5.1 Machine Learning Based on MapReduce Framework. 92

xii

Figure 5.2 MapReduce Based Framework for Parallel Machine Learning. 93

Figure 5.3 Cost of Gradient Descent using MapReduce. 94
Figure5.4 Detection Work flow 97
Figure 5.5 Flow Extraction. 98
Figure5.6 The Information of a Data Packet. 99
Figure5.7 An Example of Data Selection OQutput. 99

Figure 5.8 Screenshot of Feature Values Computing for Logistic Regression.
100

Figure5.9 Screenshot of Feature Values Computing for Bayes Machine

Learning. e 100
Figure 5.10 A Cloud Computing Testbed. 102
Figure 5.11 Time Cost versus Number of Nodes for Naive Bayes 106
Figure 5.12 Time Cost versus Number of Nodes for Logistic Regression . . 107

xiii

Chapter 1

Introduction

1.1 Motivation

With the development of modern mobile operating systems and computing and
communication technologies, smart mobile devices have been widely used to support
applications (voice, video, game, music, GPS navigation, etc.). To improve the
productivity for business operation, organizations are having the new wave of transition
to mobile enterprise, enabling employees using smart mobile devices for performing
mobile working and improving the productivity of the business operation. The
modern mobile computing techniques will dramatically improve the accessibility
and operational efficiency of enterprise business. Particularly, smart mobile devices
have been used to support numerous applications and integrated to enterprise
information infrastructure for organizations. As such, the mobile-enabled enterprises
focus on improving the flexibility and productivity by enabling their employees and
customers to access business applications easily.

With the popularity of smart mobile devices, it has become a burgeoning target
for cyber-attacks as well. On one hand, malware, as a malicious application that
can be installed on mobile devices, can gain access to these devices and collect user

sensitive information. Malware has proven to be a serious problem for the mobile

Ge, Linqiang

platform as malicious applications can be distributed to mobile devices through
an application market. On the other hand, some types of wireless networks (e.g.,
Mobile Ad Hoc Networks) demand a robust, diverse, and resilient communication
and computation infrastructure, which enables the network-centric operation with
a very low rate of downtime. Nonetheless, the nature of these networks also leads
to cyber security risks as mobile nodes are deployed in the open field that could
be hostile and the wireless communication makes the information accessible by
the adversary, who may actively intercept, disrupt, or manipulate the information.
The adversary may hack into hosts and network devices inside the network using
sophisticated attack techniques to prey on the vulnerabilities of system components
and disrupt the effectiveness of mobile devices and networks.

From the defender’s perspective, effectively detecting malware and enhancing
the cognitive performance of users and system administrators are critical. There
are several challenging issues in monitoring and detecting cyber attacks in wireless
networks. First, unlike wired networks, resources in wireless networks (i.e., communication
bandwidth and host storage and computation capability) are much limited. To
enable the monitoring and detection of cyber attacks, we shall transmit a large
amount of suspicious information over the wireless network in real time, which
has limited network bandwidth resources connected hosts to the operation center.

Nonetheless, transmitting a large amount of data associated with threat monitoring

and detection activities over wireless networks will pose a negative impact on other
mission related applications supported by networks themselves. Therefore, the
monitoring and detection of cyber attacks should be designed such that their impact
on the normal operation of the network should be controlled and limited. Second,
although a number of HIDS (Host-based Intrusion Detection Systems) [1-3] and
agent-based intrusion detection framework [4] have been developed, those systems
mainly aim at securing enterprise networks, which have defined structures. Because
wireless networks are mostly ad hoc in nature and have limited bandwidth and
computing resources, the existing HIDS cannot be directly used for MANET.
Developing a scalable cyber threat defense system is also a challenging task.
Cyber-threats are significantly more dangerous than what they have ever been
and are growing in number and sophistication. Due to the widespread nature of
cyber-threats (malware propagation, etc.), the traffic monitoring across a large-scale
network has become an essential part of effectively detecting and defending against
contemporary cyber-attacks. Nonetheless, threat monitoring over a large-scale network
also leads to massive data collected from monitored hosts and network equipment.
Collected massive data poses serious challenges for cyber operations because an
ever growing large and complex threat monitoring system collected from a large
computer network needs to capture, store, manage, and process big data. As

such, there is an urgent need to develop techniques to efficiently process the threat

monitoring data into manageable, useful, and exploitable information.

1.2 Significance of Proposed Research

In this dissertation, we consider a threat monitoring and detection framework for
enterprise networks, which consists of a number of mobile devices. The system
that we consider consists of the three main components: mobile devices, cloud

infrastructure, and an operation center listed below.

- T T ==
- ~~
-
- S~o
-~

. . . (.
Intrusion Efficiency CompuTahonJ
Detection . Core

T

—'[Secure Wireless Networks }

Figure 1.1: Technical Approaches

Due to the exponential increase in the use of smart mobile devices, malware
threats on those devices have been growing and posing security risks. As shown
in Figure 1.1, based on the framework, we have made several contributions in this

dissertation.

¢ First, we develop an Artificial Neural Network (ANN)-based malware detection
scheme to detect unknown malware. In our scheme, we consider both permissions
requested by applications and system calls associated with the execution of
applications to distinguish between benign applications and mal-ware. We
used ANN, a representative machine learning technique, to understand the
anomaly behavior of malware by learning the characteristic permissions and
system calls used by applications. After that, the trained ANN is used to detect

new malware.

e Second, we develop sampling and data aggregation techniques in MANET,
which is a typical wireless network, to enable effective attack monitoring
and detection. To be specific, we develop both simple random sampling and
the stratified sampling techniques to achieve desirable tradeoffs between the
detection accuracy and the consumption for network resources. The simple
random sampling technique uniformly samples the detection information and
the stratified sampling technique stratifies the detection information and samples
them with different priorities. We derive closed formulae to analyze the
impact of sampling techniques and key parameters on detection accuracy.
We also develop two types of data aggregation techniques: lossless and lossy
aggregation, in order to reduce the use of resources (e.g., energy consumption

and bandwidth) for transmitting threat detection information through MANET,

while preserving the desired detection accuracy for cyber security operation.
We conduct both real-world experiments and simulation studies to evaluate
the effectiveness of our proposed sampling and data aggregation techniques

in terms of energy consumption and detection accuracy.

Third, we develop an efficient threat monitoring scheme to improve the scalability
of defense system. Our developed scheme can process the real-time data
streams generated by threat monitoring agents that collect the statuses of
hosts or networks and then detect suspicious activities. To ensure that the
threat detection methods are efficient, MapReduce-based machine learning
(MML) schemes are proposed to efficiently deal with threat monitoring data.
The main idea of the MML system is to speed up the machine learning (ML)
process using parallel computing techniques. To accurately and rapidly detect
traffic anomalies, two MapRduce-based ML schemes are developed to profile
the dynamic characteristics of traffic flows and then to detect anomalies based
on learned classifiers: Logistic Regression and Naive Bayes. The experimental
results demonstrate that our proposed MML proposed monitoring schemes
can accurately and efficiently detect attack traffic flows over massive data

collected from networks.

1.3 Organization of Dissertation Research

This dissertation is structured as follows. In chapter 2, we introduce the background
and related work of mobile networks and security, scalability issue, and cloud
computing. In Chapter 3, we present the behavior-based malware detection scheme
on mobile devices. In chapter 4, we discuss effective sampling and data aggregation
techniques in MANET. We study the MapReduce-based machine learning techniques
for efficiently processing massive network threat monitoring data in Chapter 5.

Finally, we conclude the dissertation in chapter 6.

Chapter 2

Background and Related Work

In this chapter, we introduce the background of our research, including security in
mobile networks, scalability issue in network security, and cloud computing and

MapReduce techniques.

2.1 Mobile Network Security

The security issues have become a primary concern in mobile networks. MANET is
a typical mobile network. Generally speaking, MANET is a self-organizing network
without fixed infrastructure. Because of its dynamically changing topology, the
vulnerability of wireless communication links, the limited physical protection of
nodes, MANET is vulnerable to security threats [5-8]. There are a number of
research efforts on studying the security issues in MANET [9, 10] and a number of
research efforts to study the host-based IDS [1,2,11]. Nonetheless, these systems
are mainly aimed at securing wired networks with a defined structure and cannot
directly be used for the MANET, which is dynamic and has limited host and network
resources. The most of the existing IDS systems rely on a central correlation engine
to analyze the data produced from the individual IDS. The large amount of data

produced by the system can overwhelm the limited resources in MANET. In addition,

a number of the existing IDS systems are signature-based and cannot effectively
conduct cyber attack detection in MANET.

The detection of malware on a mobile platform can be categorized into static
analysis, dynamic analysis, and permission analysis. These techniques have been
investigated by [12-16]. For example, Bose et al. [12] proposed a malware behavioral-based
detection scheme on mobile handsets. Shamili et al. [13] presented a distributed
Support Vector Machine (SVM) scheme to conduct malware detection, along with
a statistical classification model. Deepak et al. [14] proposed a signature-based
malware detection scheme. Schmidt et al. [16] conducted the static analysis of
malware on the Android platform. To measure the effectiveness of different schemes
on malware detection, Shabtai et al. [15] evaluated several classification and anomaly
detection schemes and feature selection methods for mitigating malware on mobile
devices.

Through permission analysis, malware detection can be conducted through the
analysis of extracted security configurations and policy rules [17-20]. For example,
Aung et al. [18] developed a machine learning-based detection on the Android
platform by monitoring permission related features and events. Huang et al. [19]
conducted the permission-based detection for Android malware by using machine
learning schemes such as AdaBoost, Naive Bayes, Decision Tree (C4.5), and Support

Vector Machine. David et al. [20] presented a Self-Organizing Map (SOM) scheme

10

to identify the permission-based security model using 1,100 android applications.
Neural networks can be used to learn and classify anomaly activities based on
limited data sources [21]. There have been a number of research efforts on using
neural networks to carry out threat detection [21-24]. For example, Mukkamala et
al. [22] investigated schemes to conduct intrusion detection using neural networks
and SVMs. Linda et al. [23] proposed a neural network-based approach to conduct
intrusion detection for critical infrastructures. Golovko et al. [24] discussed the
use of neural networks and artificial immune systems for carrying out malware and

intrusion detection.

2.2 Scalability Issue in Network Security

To defend against cyber-attacks, the development of effective cyber threat monitoring
system is critical, and it should be able to characterize, track, and mitigate security
threats in networks in a timely manner. Developing a scalable cyber threat defense
system is also a challenging task. To detect those attacks, a large amount of threat
monitoring and detection tools, including the Advanced Intrusion Detection Environment
(AIDE) (http://aide.sourceforge.net/), OSSEC (http:// www.ossec.net/), and others,
have been developed with the intention to monitor behavioral changes on hosts and
network devices. By leveraging these tools, massive data (e.g., system logs, security

logs, application logs, and traffic logs) generated by hosts (e.g., computers, mobile

11

devices, and others) and network devices (e.g., routers, firewalls, and others) can
be collected for carrying out cyber-threat situational awareness. In addition to
passively logging the activities associated with attacks, Honeypots can directly and
actively interact with attacks and collect more insightful data from these attacks.
For a large network, the collected threat monitoring related data will be massive
and is featured by a high volume of data size, a high velocity of data transmission,
and a high variety of data types [25]. For example, about a gigabyte of data per
day needs to be gathered for further analysis [25]. In addition, data collected from
different monitoring systems have different data formats, which can be structured
or unstructured. Therefore, effectively processing and analyzing massive threat
monitoring related data is a challenging issue.

To solve the scalability problem in network security, many efficient techniques
have been developed and integrated for security purpose. Particularly, sampling
techniques have been mainly used for network traffic measurement and accounting
to obtain the vast quantities of traffic data continuously collected for network monitoring
and management [26-31]. For example, Mai et al. [29] studied the impact of
flow sampling techniques, including the random packet sampling, random flow
sampling, intelligent sampling, and sample-and-hold on volume-based anomaly
detection and port-scan detection. Ficara et al. [30] proposed sampling techniques

to accelerate pattern matching in those network intrusion detection. Their solution

12

consists of two matching stages with the Deterministic Finite Automata (DFAs).
One match is conducted on the traffic by a “sampled” DFA, and if necessary, a more
accurate processing is conducted through another DFA (reverse DFA) to confirm the
match.

Data aggregation, as another technique to improve the efficiency, has been
extensively studied in sensor networks [32-36]. For example, using a tree structure,
Dina et al. [33] proposed to maintain additional region leader information at sensor
nodes, enabling the determination of aggregated records based on a tree routing
model. LEACH [36] proposed a hierarchical protocol based on a cluster structure,
in which the network is divided into a number of clusters and some nodes are
randomly selected as the cluster header. Based on the recorded signal strength to
cluster headers, each node selects a cluster to join. Shrivastava et al. [34] proposed
a synopsis diffusion approach based on a ring topology for data aggregation. During
the subsequent query aggregation period, nodes are divided into a set of rings based
on the distance to the ring center. The aggregation starts from the outermost ring
to the center. In addition, the data aggregation can be operated in either a dense or
sparse network. Gao et al. [35] proposed a sparse data aggregation technique. By
forming a tree structure, the hot node receives data from other nodes and performs

data aggregation.

13

2.3 Cloud Computing and MapReduce Techniques

The acceleration of data generation requires new technologies to analyze massive
data. With a large data storage space, high computational capacity, and low infrastructure
investment, cloud computing can offer a platform for massive data analysis. Cloud
computing [37-51] is a technology that uses the Internet and central remote servers
to provide computation, software, data access, and storage services that do not
require knowledge of users’ physical location and the configuration of servers. Most
current clouds are built on the top of a modern data center [52]. Cloud incorporates
different service models [53] such as Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), Software as a Service (SaaS) and so on. Cloud computing is
gaining popularity in both academia and industry and both have been active in
the research on cloud computing architectures. For example, Vecchiola et al. [54]
introduced a .NET-based Cloud Computing platform, which provides a set of APIs
that allow developers to build .NET applications that leverage their computation
using the cloud. Huang et al. [55] developed a low-cost, scalable, and secured
platform that enables web-delivery of application-based services with a set of common
business and operational services.

By leveraging cloud computing techniquee, a large number of distributed servers
can be used for data access, computation, and storage. MapReduce is a parallel

programming model primarily designed for batch processing big data in a distributed

14

computing environment [56]. MapReduce is designed using the concept of divide-and-conquer
and follows the master/slave computing paradigm, consisting of the map function
and the reduce function [57]. The purpose of the map function is to split and
distribute data sets to different servers for processing whereas the purpose of the

reduce function is to collect the results for data sets and generate the final result.

Result

Step 4

Reduce Function

‘ Slave Server Slave Server ‘

ﬂ Step 3
/“ Step 1

Programmer
Map Function

Step 2

’ Master Server
Slave Server Slave Server

Figure 2.1: The MapReduce Workflow

As shown in Figure 2.1, the workflow of MapReduce is detailed as follows: Step
1. Functions definition: In this step, programmers need to define both the map
and the reduce functions, which will be used by MapReduce to implement data
analysis; Step 2. Data split and distribution: For a large data set, the master server

will the data them into several relatively small subsets and distribute the subsets to

15

map slave servers for computation; Step 3. Data computation: With the defined map
function, the map slave servers can concurrently process small subsets and generate
intermediate results; and Step 4. Data resolving: After collecting intermediate
results, based on the defined reduce function, the reduce slave servers will resolve
and aggregate the intermediate results to produce the final result. It is worth noting
that MapReduce has a built-in fault-tolerant feature, through which data can be
duplicated and assigned to different servers for processing. The working status of
slave nodes shall be periodically reported to the master node. If a slave node does
not reply to the request in a given time, it will be considered as a failure node. Then,
the task that the failure node was initially assigned to process will be reassigned to

other nodes.

Chapter 3

Behavior-based Malware Detection Approach
on Mobile Devices

3.1 Overview

The rapid growth of smart mobile devices has led to a renaissance for mobile
services. These devices can augment cognitive abilities with multi-function applications
related to web, education, travel, game, financial, and many others. For example,
face recognition applications can help identify or verify a person to enhance human
cognitive abilities. The Android platform is an open source operating system for
smart mobiles and provides services, including security configuration, process management,
and others [58]. With 48% of smartphone subscribers using Android mobiles,
Android leads the smartphone market in the U.S. [59].

Nonetheless, the popularity of Android mobile devices has led to enormous
security challenges. Malware, as a malicious application that can be installed on
mobile devices, can gain access to these devices and collect user sensitive information.
Malware has proven to be a serious problem for the Android platform because
malicious applications can be distributed to mobile devices through an application
market. From the defender’s perspective, how to effectively detect malware and

enhance the cognitive performance of users and system administrators becomes a

16

17

challenging issue. Traditional static analysis techniques heavily rely on capturing
malicious characteristics and bad code segments embedded in software. This makes
it infeasible to deal with a large population of unknown malware. Therefore, it is
critical to develop a machine learning based system that can dynamically learn
the behavior of malware and augment the human cognition process of defending
against malware attacks in the battle of mobile security.

In this chapter, we propose an Artificial Neural Network (ANN) based malware
detection system that uses both permissions and system calls to detect unknown
malware. In our system, we consider two types of ANNs: Feedforward Neural
Networks (FNN) to learn the patterns of permissions and Recurrent Neural Networks
(RNN) to understand the structure of system calls. Permission requests are collected
from applications to distinguish between benign applications and malware. We also
collected system calls associated with application execution to capture the runtime
behaviors of benign applications and malware. Through the training process, the
ANN can learn the anomaly behaviors of malware in terms of permission requests
and system calls. The resulting model can be further used to detect unknown
malware. To evaluate the effectiveness of our malware detection system, we used
real-world malware and benign applications to conduct experiments on Android
mobile devices. The resulting data shows that our system can effectively detect

malware.

18

Note that the materials in this chapter are adapted from my previous publication

[60,61]

3.2 Artificial Neural Networks

We consider ANN to conduct malware detection. Generally speaking, a neural
network refers to a network or circuit that mimics the structure and behavior of
biological neurons [62]. The parameters of a neural network are set through a
training process that uses known data sets as inputs. After that, the trained neural

network can be used as a classifier to conduct detection.

3.2.1 Feedforward Neural Networks (FNN)

FNNs are a well-known and widely used type of neural network [63-67]. An FNN
consists of a certain number of layers and a number of units called artificial neurons
or nodes that are organized in layers. In a typical setting, an FNN has an input
layer, an output layer, and one or more hidden layers between the input and the
output layer. In an FNN, all data and computation flows are in one direction: from
input to output data. Except for input units, each unit in a layer is connected to
all the units in the previous layer and receives inputs directly from the nodes in the
previous layer. Each connection may have a different strength or weight. During the

training process, the weight can be adjusted through learning algorithms such as

19

BackPropagation (BP). The typical structure of an FNN is illustrated in Figure 3.1.

Input Layer Hidden Layer Output Layer

Input<

>Output
Value

Value

Figure 3.1: A Typical Structure of FNN

Here, 1 represents the layer of the FNN, where 1=1 is for the input layer, 1=2
is for the hidden layer, and 1=3 is for the output layer. In principle, the output
values are compared with the correct answer to compute the value of a predefined
error-function that is then sent back through the network. With the backward
propagation errors between real and estimated values from the output layer to the
hidden layer and from the hidden layer to the input layer, errors in each layer can
be estimated and the assigned weights w; j((l)) can be updated correspondingly.
After repeating this procedure many times, the neural network eventually reaches
a state where the computed error is small. At this moment, the training process is

complete.

20

3.2.2 Recurrent Neural Networks (RNN)

Unlike the FNN, the fundamental feature of an RNN is that the network contains
at least one feedback connection. This makes an RNN useful for handling temporal
classification problems or learning sequences. Similar to an FNN, an RNN consists
of a number of units and multiple layers: input layer, output layer, and one or more
hidden layers. When the data is fed to an RNN, a state activation is generated
in the hidden layers. In the next time slot, the previous state activation is fed
back to the hidden layer, combining with new input data. During the training
process, the weight of unit connections and feedback connections can be adjusted
through learning algorithms such as Back Propagation Through Time (BPTT). The
BP algorithm used in an FNN cannot be directly applied to an RNN because of the
inherent cycles present. Hence, BPTT unfolds the network over time, eliminating
cycles and allowing the neural network to be trained as if it consists of several

connected FNNs where the BP algorithm can be used.

3.3 Permissions and System Calls

In this section, we first review the typical malware detection techniques. Then we
examine in detail how permissions and system calls can be used as the fundamental

detection data source.

21

3.3.1 Overview

There are several types of detection techniques. Static analysis [13] has been
used to carry out malware detection through the process of decompiling executable
software, generating source code, and then using code analysis tools to inspect the
recovered source code. Static analysis is limited by the capability of code analyzers
and can only deal with applications that involve a small number of permissions and
system calls.

Permission and dynamic analysis schemes are promising techniques to defend
against a large class of unknown malware. To be specific, permission-based detection
sets security policy rules. When an application is installed, the permission-based
detection extracts security configurations and checks them against security policy
rules. Conversely, dynamic analysis-based detection [68] executes the mobile application
and monitors the applications dynamic behavior. Based on the runtime behavior,
the malware can be detected. As malicious behavior is always difficult to hide
and can be used as a feature to identify malware, we can use ANN techniques to

accurately characterize the behavior of applications.

3.3.2 Permissions

Android provides third-party applications that have the capability of accessing re-sources

such as phone hardware, settings, user data, and others through permissions. For

22

800 | | sorted_permissions
1 ACCESS_WIFI_STATE

2 WRITE_SMS

3 RECEIVE_BOOT_COMPLETED

4 VIBRATE

5 READ_SMS

B RECEIVE_SMS

7 SEND_SMS

B DISABLE_KEYGUARD

g READ_COMTACTS

1@ WRITE_CONTACTS

11 INTERMET

12 ACCESS_METWORK_STATE

13 READ_PHOME_STATE

14 CALL_PHOME

15 WAKE_LOCK

16 RESTART_PACKAGES

17 WRITE_APN_SETTINGS

18 READ_LOGS

19 WRITE_EXTERMAL_STORAGE

28 ACCESS_COARSE_LOCATION

21 ACCESS_FIME_LOCATION

22 PROCESS_OUTGOING_CALLS

23 DELETE_PACKAGES

24 INSTALL_PACKAGES

25 ACCESS_LOCATION_EXTRA_COMMAMDS
26 MODIFY_AUDIO_SETTIMNGS

27 MOUNT_UMMOUNT_FILESYSTEMS
2B RECORD_AUDIO |
28 GET_TASKS

38 SET_WALLPAPER

31 CAMERA

32 WRITE_SETTINGS

33 CHECK_LICEMNSE

Figure 3.2: An Example of Mapped Permissions

example, the INTERNET permission allows applications to open network connections.
Each application must declare in advance what permissions it requires, and users
are notified during the installation about the permissions that it will obtain. Users
can cancel the installation process if they do not want to grant a permission to the
application, but they might not have the knowledge to determine which permissions
should be requested by and granted by a particular application. Usually, different

types of applications request reasonable permissions. Nonetheless, even an application

23

requesting a reasonable permission might conduct malicious behavior. For example,
a social network application that requests to only access the contact may additionally
copy contacts personal information to a remote server.

To show the potential of using permissions to detect malware, we investigated
the distribution of permissions requested by electronic books. We installed 96
benign applications from Google Play and used 92 digital book malware samples
from the Android Malware Genome Project [69]. For each Android application, we
extracted permissions from the corresponding application package (APK) file. The
details of the retrieving process will be presented in Section 3.4.1. We define each
captured permission as one feature and map it to an integer. Figure 3.2 shows an

example of mapped permissions.

-Benign Application
06r — Malware]

10 WRITE_CONTACTS

11 CALL PHONE

12 ACCESS METWORK_STATE
13 INTERNET B
14 READ_PHOMNE_STATE
15 WAKE_LOCK

16 RESTART_PACKAGES
17 WRITE_APN_SETTINGS g
18 READ_LOGE

19 WRITE_EXTERMAL_STORAGE

0 10 20 30 40 50 60 70 80
Permissions

Figure 3.3: Distribution of Permissions

24

After retrieving the permissions from all applications, the distribution of permissions

can be computed. One such example is shown in Figure 3.3. As we can see, most
malware samples heavily request permissions 1-20, which are WRITE SMS, SEND
SMS, READ CONTACT, etc. We can conclude that electronic book applications that
request permissions 1-20 are probably malware. Hence, the permissions requested

by an application can be used to recognize whether the application contain malware.

3.3.3 System Calls

A system call is the mechanism used by applications to request a service from the
operating system kernel. System calls provide the interface between the process and
operating systems. The operating system provides services, including the creation
and execution of new processes and access control of resources. The sequence
of system calls occurs consecutively over time and can capture actions performed
by applications during execution. In Android, there are 56 system calls in the
library and the main types of system calls consist of: Process Control for controlling
processes, File Management for managing files, Device Management for managing
devices, Information Maintenance for setting system data and obtaining process
information, and Communications for establishing connections. As system calls
provide an essential interface between the application and operating system, we

shall examine system calls to capture the runtime behavior of the interactions

25

between applications and the operating system.

3.4 An ANN-Based Malware Detection System

We now present the workflow of our proposed ANN-based malware detection system
as shown in Figure 3.4. We would like to emphasize that the workflow is general
and can be used for both permission-based detection and system call-based detection.
In the offline training phase, we first collected real-world benign and malicious
applications. Next, we executed the collected applications and dumped the data
sources. In order for machine learning algorithms to learn the feature pat-terns
of malware and benign applications, all data sources needed to be parsed and
mapped to the format required by the FNN and RNN algorithms described in Section
2. Using the mapped data as input, we then trained the neural network. In the
online detection phase, we dumped the data sources from new applications and the
trained neural network would be used to determine whether the new application
is malware or benign. As permissions and system calls contain different features
and have different formats, we first introduce permission-based detection and then

system call-based detection in the following subsections.

3.4.1 Permission-Based Detection

Offline Training We now discuss the steps used for the offline training process.

26

Collect Collect Convert
Executables _ | Dataset by _ | Target Data Train the

as Data | Dumping "| to Features Classifier

Source Target data for ANN

Offline Training
Dump Target Convert Implement . .
_ | Target Data _ . _ |Diagnostic of
Data of New » » the Trained >
to Features . Executable
Executable Classifier
for ANN

Online Detection
Figure 3.4: Workflow

Step 1: Data source collection and classification. The first step in the offline
training phase is to collect the data source from the executing applications. With
real-world benign applications and malware samples, we consider that applications
in the same category should exhibit similar activities and we use such activities
to learn the anomaly profile. Based on these learned profiles, we can categorize
applications as benign or malicious.

Step 2: Dumping Permissions of Data source. Using the benign application
and malware samples, we dump the permissions requested by each application.
In the Android system, all permissions are included in the Android-Manifest.xml
file. After collecting application apk files, we use a known reverse engineering tool
Android Asset Packaging Tool (aapt) to reconstruct the source code and obtain the

AndroidManifest.xml file for each application. An example is shown below:

27

<manifest xmlns: android="http://schemas.android.com/apk/res/android"

package="

com.android.app.QQ for Pad v 1.9.3" > A:

android:versionCode(0x0101021b) = (type 0x10)0x7 A:

android:versionName (0x0101021c)="2.1-updatel" A:

package='

'com.android.spare_parts" <uses-permission

an-droid:name="android.permission.READ PHONE STATE'"/> <us-es-permission

an-droid:name=

"android.permission.CAMERA"/> ... </manifest>

Lingiangs-MacBook—-FPro:tools Linglangges
Lingiangs-MacBook-Pro:tools lingiangge$./aapt dump permissions QQ_for_Pad_wv_1.9.3.a

pk

package: com.tencent.android.pad

uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
uses-permission:
i ocom.
i ocom.
permission: com.
permission: com.

android.permission.READ_PHONE_STATE
android.permi on. CAMERA
android.per on.WRITE_EXTERNAL_STORAGE
android.per on. MOUNT_UNMOUNT_FILESYSTEMS
android.per
android.per
android.per
android.permi on.ACCESS_MNETWORK_STATE
android.permission, SYSTEM_ALERT_WINDOW
com.android. launcher.permission. INSTALL_SHORTCUT
android.permission.MODIFY_AUDIO_SETTIMNGS
android.permission. RECORD_AUDIO
com. tencent.android. pad.permission. IM_SERVICE
com. tencent.android. pad.permission. EXT_IM_SERVICE
tencent.android.pad.permission.IM_SERVICE
tencent.android.pad.permission.EXT_IM_SERVICE
tencent.android.pad. permission.WRITE_SETTINGS
tencent.android.pad.permission.READ_SETTINGS

Lingiangs-MacBook-Pro:tools lingiangge$

Figure 3.5: Dumping Permissions

We then use the command aapt dump permission to collect all permissions

requested by each application. Figure 3.5 shows an example of the dumping process

and the corresponding result.

Step 3: Feature extraction. Next, we collect a set of files where each file consists

of permissions requested by one application. For training, we process the data

and map them to the format required by the ANN. To this end, we developed

28

a mapping algorithm to convert the original permissions into usable input. As
described previously, we use Algorithm 1 to define each permission as one feature
and assign an integer to each feature.

Using the example shown in Figure 3.5, we now explain Algorithm 1. In this
algorithm, we care about the feature (i.e., permission name) and the feature value,
defined as whether it was requested by the application. Note that one permission
can be requested only once by an application. If a particular permission is requested,
its feature value is 1; otherwise its feature value is 0. After the first for loop of

Algorithm 1, we obtain the output shown in Figure 3.6.

Algorithm 1: Permission Mapping Algorithm

input : Original Android system calls stored in raw data folder
output : Permission Feature Vector A
1 n = gram number;

foreach file in raw data folder do

N

foreach line in file do
| remove all information except the system call name;
end
store file in system call name data folder;
end

N O bW

®
=

oreach file in system call name data folder do

9 foreach line in file do

10 | map system call name to integers as feature names;
11 end

12 store file in mapped-integer data folder;

13 end

14 if n > 1 then

15 | map to n-gram format;

16 end

17 foreach file in feature-value pair data folder do
18 add target to files;

19 combine files together;

20 end

29

Because the ANN only accepts integers as input, we map each permission name
to an integer number after processing the name sequence of permissions. After the
second for loop in Algorithm 1, the mapping produces output similar to “01,02,03,06,09,15,20”.
As examples, INTERNET is mapped to 11, READ PHONE STATE is mapped to 13,
and SEND SMS is mapped to 7. We can extend this idea to use 2-grams as a
detection feature by applying two contiguous permissions instead of one. As an

example, we combine every two contiguous integers

pErMmIssions. txt

READ_PHOME_STATE
CAMERA
WRITE_EXTERNAL_STORAGE
MOUNT_UNMOUNT_FILESYSTEMS
VIBRATE

INTERNET

WAKE_LOCK
ACCESS_NETWORK_STATE
SYSTEM_ALERT_WINDOW
INSTALL_SHORTCUT
MODIFY_AUDIO_SETTINGS
RECORD_AUDID

IM_SERVICE

EXT_IM_SERVICE

IM_SERVICE

EXT_IM_SERVICE
WRITE_SETTINGS
READ_SETTINGS

Figure 3.6: An Example of Permissions

and the mapping produces output similar to “0102,0203,0304,0405” where
“0102” represents the permissions ACCESS WIFI STATE and WRITE SMS requested

sequentially. After we have the input to the ANN mapped as an integer sequence,

30

the next step is to obtain the value for the each feature. Recall that we use the
appearance of a permission as the feature value. For each feature that appears, its
value is assigned as 1. For the features that do not appear, we assign their values
as 0. After the last two for loops in Algorithm 1, we obtain a feature vector for the

input of ANN as follows:

1,0,0,0,0,0,0,0,0,9,1,0,1,0,1,0,0,0,1,0,0,0,1,0,1,0,
0,0,0,0,1,0,

0,1,0

Step 4: Classifier learning. In this step, we use the learning module established
in the neural network to learn the application behavior from training data. We input
the feature vectors to the Matlab Neural Network Toolbox built-in Matlab R2013a
(8.1.0.604) to implement permission-based detection. We set the number of nodes
in the hidden layer to 10 and then 20.

Online Detection The workflow of the online detection phase is similar to the
one described in the offline training phase. Similarly, to classify an application, the
first step is to dump permissions and map the permission sequence to the format
required by the ANN. We can then use the trained ANN to determine whether a new
application is either malware or benign. We use the established ANN and test data
as input from new applications. The test file has the same format as the training file,

which consists of the feature vector associated with each application. The online

31

detection process outputs the result file which contains the classification result.
In our implementation, the result is either +1 or -1. Here, when the number is
positive, the ANN classifies it as a benign application; when the number is negative,

the ANN classifies it as malware.

3.4.2 System Call-Based Detection

The workflow of the detection system based on system calls is similar to the detection
system based on permissions. The major difference is to use a different data source.
In the following, we briefly introduce the workflow of system call-based detection.
Offline Training As before, we now discuss the steps for offline training.

Step 1: Data set collection and classification. The first step is to collect the
da-ta set. After we collect real-world benign applications and malware samples, we
categorize them into different groups.

Step 2: System calls recording. We record the system calls used by our benign
applications and malware samples by applying a known tool Strace. In order to
install Strace, we use the Nexus Root Tookit v1.6.2 to obtain root permission on
Android devices. Next, we run Strace and capture the system calls used by the
benign applications and malware. To install malware on an Android device from a
remote computer, we use the Android Debug Bridge (ADB).

Step 3: Feature extraction. We then record a set of files where each file contains

32

the system calls generated by each executed application. To use the ANN, we need
to process the data and map them to the required format described previously.
Using Algorithm 1, we map each system call named to an integer. As an example,
clock-gettime is mapped to 1, recvfrom is mapped to 5, and ioctl is mapped to 7.
Again, we can extend this idea to use 2-grams as a detection feature by applying
two contiguous system calls as a detection feature instead of one. To construct the
mapping for 2-grams, we combine each pair of contiguous integers and generate
output similar to “0101 0101 0105 0507 0701 0117 1717 1717 1717 1706” where
“0105” represents system calls clock-gettime and recvfrom executed sequentially.
We then capture the density of system calls by computing the ratio of the number
of instances of each system call to the total number of system calls generated by the
application. We can then express a feature and its value as feature:value such as
“1:0.2283 2:0.0369 3:0.0387 4:0.0267 5:0.0848” where feature 1 has a density of
0.2283, feature 2 has a density of 0.0369, etc.

Step 4: Classifier learning. This step is the same as Step 4 for permission- based
detection. Afterwards, we have completed the training process of the ANN and are
ready to use it to conduct online detection.

Online Detection The workflow of the online detection phase is similar to the
one in the offline training phase. Similarly, to classify an application, we execute it,

dump the system calls, and map the sequence of system calls to the format required

33

by the ANN. Using the ANN established through the offline training phase, we can

determine whether a new application is malware or benign.

3.5 Performance Evaluation

In the following, we present the performance evaluation.

3.5.1 Evaluation Methodology

Using real-world malware and benign applications collected on the Android platform,
we show the effectiveness of our developed detection system. We installed 96
benign software applications from Google Play and evaluated 92 digital book malware
samples from the Android Malware Genome Project (http: //www.malgenomeproject.org/).
We installed and executed applications on the Sumsang Galaxy Nexus and Google
Nexus 7 smartphones in our experiments. First, we collected and transmitted each
application’s permission requests and system calls to a remote computer which
conducted both the offline and online detection processes described in Section 4. A
Samsung Notebook NP700G equipped with Intel Core i7 2.40GHZ processor, 16GB
RAM, and 320GB hard drive served as our detection computer. Again, we used the
Matlab Neural Network Toolbox built-in Matlab R2013a (8.1.0.604) that contains
both of the FNN and RNN implementations used in our experiments. The number

of hidden nodes in the FNN and the RNN are set to 10 and then 20.

34

With a larger training set, more information can be used to train the ANN
classifier, leading to higher detection accuracy. To validate this hypothesis, we let
p € [0,1] which define the training set ratio as the ratio of the number of training
samples to the total number of samples. If n is the number of total applications
then np is the number of applications used for training and n(1 — p) is the number
of applications used to validate the accuracy of the trained ANN. To measure the
effectiveness of our detection system, we define the detection rate as the probability
of correctly classifying the malware. That is, the ratio of the number of malware
correctly detected to the total number of malware samples. We also define the
error rate as the probability of falsely classifying applications. That is, the ratio of

the number of applications falsely classified to the total number of applications.

=)
=]

©
o

95

©
=]

90

@
o

@
=]

85

Detection Rate (%)

Detection Rate (%)

«§
o

80 © 1gram

© 1gram
e 2 gram

—a— 2gram

~
=)

o
ral
=1

%0 40 50 60 70 80 90 40 20 70 & 20

60
Training Set (%) Training Set (%)

Figure 3.7: Detection Rate
for Permission Based
Detection vs. Training Set
Ratio (FNN with 10 Nodes)

Figure 3.8: Detection Rate
for Permission Based
Detection vs. Training Set
Ratio (FNN with 20 Nodes)

35

3.5.2 Evaluation Results

Permission-Based Detection: Figure 3.7 illustrates the relationship between the
detection rate and the training set ratio in terms of the length of grams when an
FNN with 10 hidden nodes is used. As we can see, in general, the detection rate rises
as the training set ratio increases. The permission-based detection with 2-gram data
as input can achieve a better detection rate than the permission-based detec-tion
with 1-gram data as input. For example, when the training set ratio is 60 %, the
detection rate reaches almost 90 % when 2-grams are used while the detection
rate is 85 % when 1-grams are used. As we expected, when using more training
data, more knowledge of malware can be obtained, leading to increased detection
accuracy.

Figure 3.8 shows the detection rate versus training set ratio when the number
of hidden nodes of the FNN is set to 20. Similar to Figure 3.7, as we increase the
size of the training set, the detection rate increases. Like before, detection using
2-gram data as input achieves better performance than detection using 1-gram data
as input. In the case of 2-gram data as input, when the training set ratio is higher
than 50%, the FNN with 20 hidden nodes performs better than the one with 10
hidden nodes. We also observed that, in the case of 1-gram data as input, the FNN
with 10 hidden nodes performs better than the FNN with 20 hidden nodes. One

reason may be caused by limited malware samples.

36

@
o

@
S

85

Detection Rate (%)
Detection Rate (%)

=
70 —8— 2gram

1gram 80 © 1gram
—&— 2gram

70 80 90

N 40 50 60 70 80 %0 lEn 40 50 60
Traing Set (%) Training Set (%)

Figure 3.9: Detection Rate Figure 3.10: Detection Rate
for Permission Based for System Call Based
Detection vs. Training Set Detection vs. Training Set
Ratio (RNN with 10 Nodes) Ratio (FNN with 10 Nodes)

Figure 3.9 illustrates the result of an RNN with 10 hidden nodes. In comparison
with Figure 3.7, we can see that the FNN achieves better performance in both the
1-gram and 2-gram cases than when using the RNN. Hence, we conclude that the
FNN is more effective for permissions-based detection.

System Call-Based Detection: Figures 3.10, 3.11 and 3.12 illustrate the relationship
between the detection rate and training set ratio in terms of the length of data grams
when we take system calls as input. Similar to the permission-based detection
shown in Figures 3.7, 3.8 and 3.9, when more samples are used in the training
process, a higher detection rate can be achieved. For example, when we use a
training set of 90%, both the FNN and the RNN achieved detection rates of more
than 93%. When the hidden nodes are set to 10, the RNN obtains better detection

accuracy than the FNN for both permission-based and system call-based detection.

37

100 T 100

Detection Rate (%)

Detection Rate (%)

—o— 1 70 il 1gram
70 — ;::$ - —8— 2gram
% 40 50 Traming’os — 70 80 90 %5 0 50 o0 70 80 30
Figure 3.11: Detection Rate Figure 3.12: Detection Rate
for System Call Based for System Call Based
Detection vs. Training Set Detection vs. Training Set
Ratio (FNN with 20 Nodes) Ratio (RNN with 10 Nodes)

We also study the accuracy of our detection system using another metric: error
rate. We expect that with a larger training set, our detection will produce a lower
error rate. Figures 3.13 and 3.14 illustrate the relationship between error rate and
the training set ratios when we take permissions and system calls as inputs to an
FNN and an RNN. In our evaluation, we selected two scenarios to validate that our
de-tection system obtains low error rates; other scenarios are essentially similar.

We used 1-grams for data input and set the hidden layer of the FNN and RNN to
contain 10 nodes. We have several observations from Figures 3.13 and 3.14. First,
for both permissions-based and system call-based detection, the error rates of both
the FNN and RNN decrease as the training set ratio increases. This can be explained
by observing that as we use more data in the training process, the FNN and RNN

have a better chance to learn input data. This leads to the generation of a more

38

—a—FNN with 10 nodes
—&—RNN with 10 nodes

—&—FNN with 10 nodes | |
—&—RNN with 10 nodes

=)

Error Rate (%)
Error Rate (%)

70 80 90 30 40 50 70 80 90

0 60
Training set (%)

60
Training Set (%)

Figure 3.13: Error Rate for Figure 3.14: Error Rate for
Permission Based Detection System Call Based Detection
vs. Training Set Ratio vs. Training Set Ratio
(1-gram) (1-gram)

accurate network for classification and a lower error rate. Second, the error rates
are low for both the FNN and RNN in our detection system. For example, using a
training set of 60% with permissions-based detection, the error rate is 10 % using
the FNN and 8% using the RNN. Similar results have been obtained using system
call based detection. Thus, we have confirmed that our detection system obtains

high detection rates as well as low error rates, ensuring detection accuracy.

3.6 Discussion

We now discuss some issues related to our malware detection system.
The major overhead of our ANN-based detection system comes from the training
process. It is worth noting that the training process consists of procedures for

collecting data sources, mapping data sources, and training the neural network.

39

After the network is well trained, the online detection procedure can be fast. Overhead
for the training process can be presented by T = np(T; + T,,) + T;, where n is the
number of total applications, p is the training set ratio, and 7, T,,, T; are the average
overhead for: dumping permissions and system calls from one application, mapping
process and training the neural network, respectively.

As an example, consider training using 1-grams. In our experiment, we implemented
the permission-based detection and measured the execution time of each step.
With p = 90% and n = 188, the average time consists of 0.000343 second to
dump permissions, 0.00012 second to map permissions, and 0.41 second to train
neural networks. Hence, the total overhead of the training process is 0.613 second.
Similarly, we investigated the overhead of system call-based detection. We note that
in order to dump system calls associated with the execution of applications, we need
to manually execute applications on real-world mobile devices and the execution
times can be random, depending on the application. In our experiments, the
overhead of mapping process is 0.00026 second and the total time for the training
process is 0.194 second. It is worth noting that the computation overhead linearly
increases with the number of applications. To make our system scale, one possible
solution is to take advantage of powerful hardware for neuromorphic approaches

to conduct threat analysis and detection.

40

3.7 Summary

Malware attacks on smart mobile devices have been growing and posing security
risks to mobile users. In this chapter, we developed an ANN-based malware detection
system to automatically learn the behavior of applications and to detect unknown
malware. In our developed system, we systematically compared the per-mission
requests from application requests and system calls to capture the behavior of
applications. Using real-world malware and benign applications, we conducted
experiments on Android mobile devices. Our data shows the effectiveness of our

developed detection system.

Chapter 4

Effective Sampling and Data Aggregation
Techniques in Host-based Intrusion
Detection

4.1 Overview

In this chapter, we address the issue of monitoring and detecting cyber attacks in
MANET. A MANET demand a robust, diverse, and resilient communication and
computation infrastructure, which enables the network-centric operation with a
very low rate of downtime. Nonetheless, the nature of MANET leads cyber security
risks, because mobile nodes are deployed in the open field, which could be hostile
and the wireless communication makes the information accessible by the adversary,
who may actively intercept, disrupt, or manipulate the information. The adversary
may hack into hosts and network devices inside the network using sophisticated
attack techniques to prey on the vulnerabilities of system components and disrupt
the mission of MANET.

There are several challenging issues in monitoring and detecting cyber attacks in
MANET. First, unlike wired or infrastructure mode wireless networks, resources in
MANET (i.e., communication bandwidth and host storage and computation capability)

are very limited. To enable cyber attack monitoring and detection to secure MANET

41

42

as the homeland in battle fields, we shall transmit a large amount of suspicious
information over MANET in real time, which has limited bandwidth resources connected
hosts to the operation center. Nonetheless, transmitting a large amount of attack
monitoring and detection data over MANET has a negative impact on other mission
related applications supported by MANET itself. Therefore, the monitoring and
detection of attacks should be designed such that its impact on mission related
applications should be controlled and limited. Second, although a number of HIDS
[1-3] have been developed in the past, those systems mainly aim at securing enterprise
networks that have defined structures. Because MANET is mostly ad hoc in nature
and has limited bandwidth and computing resources, the existing HIDS cannot be
directly used for MANET.

To address these issues, in this chapter we first study the host-based detection
architecture to monitor and detect cyber attacks and secure MANET. To enable
the effective detection and desirable impact on the performance of MANET, we
develop two sampling techniques and investigate proper settings for those sampling
techniques to achieve desirable tradeoffs between the detection accuracy and the
consumption for network resources. In particular, we develop both simple random
sampling and the stratified sampling techniques. The simple random sampling
technique uniformly samples the detection information and the stratified sampling

technique stratifies the detection information and sample them with different priorities.

43

We derive closed formulae to analyze the impact of sampling techniques and key
parameters on detection accuracy. We investigate the impact of attack detection on
the performance of MANET and formalize an optimization problem of allocating
network resources for the normal mission related application supported by MANET
and the application for conducting attack monitoring and detection in MANET. We
discuss various issues, including the system architecture options, dynamic sampling,
and data aggregation. We also implemented our proposed sampling techniques and
conduct experiments on a real-world testbed. Our experimental data show that the
stratified sampling technique achieves much better performance than the simple
random sampling technique in terms of detection accuracy and the consumption of
network resources. We also evaluate the performance impact of sampling techniques
on the performance of MANET using the ns-3 based simulation.

While sampling techniques have been widely used for traffic measurement and
accounting to deal with the vast amount of traffic data continuously collected for
network monitoring and management [30], little research has been paid to investigate
sampling techniques on the host-based detection in MANET, which have limited
network and computing resources. We would like to point out that our developed
sampling techniques mainly deal with the host detection information in MANET,
which are different from the information in the traditional wired and sensor networks.

Our sampling techniques consider tradeoffs between bandwidth reduction and detection

44

accuracy. We derive closed formulae to study the relationship between detection
accuracy and sampling techniques and sampling rate. Our experimental results
validate our theoretical findings well. In addition, we also briefly discuss various
system architecture option, dynamic sampling, and aggregation techniques.

Notice that the materials in this chapter are adapted from my previous publication [70,

71].

4.2 A Host-based Intrusion Detection Architecture in MANET

Remote Operation Center

Figure 4.1: System Architecture

MANET may operate in hostile environments. The adversary may hack into
the entities of such systems by preying on vulnerabilities in host and network
components to disrupt supported missions and inflict significant damage. To monitor
and detect cyber attacks in MANET, we study the host-based detection architecture
shown in Figure 4.1. In this architecture, there are two main components: (i) the

host-based threat monitoring agent, which is installed and executed on hosts in

45

MANET, and (ii) an operation center, which enables the human analyst to monitor
and detect attacks in MANET.

To monitor and detect cyber attacks, hosts in MANET are deployed with the
threat monitoring software denoted as the threat monitoring agent. Generally
speaking, the agent collects the suspicious information in real time from system
logs, security logs, application logs, and others, and forwards detection reports to
the operation center, which further conducts threat analysis and detection. Generally
speaking, the monitoring agent shall monitor suspicious activities on the host,
including the integrity of system files, dynamic behavior, suspicious processes, illegal
resource accesses and suspicious system function calls, changes in user privileges,
login attempts, and many others. Considering that hosts are mobile and have
limited storage and computing resources, the agent on hosts shall have a small
memory and CPU footprint by default and shall not affect system usage. In addition
to monitoring and detection, agents on some high performance hosts could detect
intrusions by parsing host events directly to extract the meaningful information
using system level semantics and compare activities with patterns that are deemed
anomalous on hosts. The agent updates the monitoring and detection information
to the operation center in real time and receives commands from the operation
center to dynamically update the monitoring and detection policies enforced locally.

In this chapter, we use the OSSEC, a well-known open-source, host-based intrusion

46

detection system [3] as an example, to conduct experiments to demonstrate our
proposed sampling techniques. Nevertheless, this architecture is generic and other
host-based intrusion detection and network-based intrusion detection can be generally
applied as well.

The operation center is responsible for managing agents on hosts in MANET
and conducting monitoring and detecting attacks. The operation center will receive
the detection information and alerts from agents and manage a large number of
agents in the system to detect, track and classify attacks in a time and resource
efficient way. As shown in Figure 4.1, the detection information from agents will
be transmitted to the operation center through dynamic routes in MANET, which
consist of wireless links with limited bandwidths [72]. The operation center will
provision threat analysis and detection tools to conduct cyber attack monitoring,
detection, and visualization, and to aid in the mitigation of cyber attacks. The
interaction between agents and operation center could be conducted in an on-demand
way through control and management protocols. For example, the security analyst
located at the operation center could dynamically select a area (denoted as monitored
region that consists of a number of hosts), which may have a high security risk
and send commands to agents associated with the monitored region and update
monitoring policies to collect relevant detection information dynamically.

There are several challenging issues in monitoring and detecting attacks in

47

MANET. First, unlike wired or infrastructure based wireless network, the resources
of MANET (i.e., communication bandwidth and host storage and computing capability)
are very limited. To enable attack monitoring and detection, we need to transmit

a large amount of attack monitoring and detection data over MANET that has
limited network and computing resources to the operation center in real time.
Nonetheless, transmitting a large amount of data over MANET clearly poses a
negative impact on the normal mission related applications supported by MANET.
Hence, the monitoring and detection of attacks should be designed in such a way
that it has a limited and controllable impact on the normal mission related applications
in MANET. Second, although many HIDS (Host-based Intrusion Detection Systems)
have been developed [1-3] in the past, those systems mainly aim at securing enterprise
networks with fixed infrastructures, which do not need to worry about dynamic
packet transmission routes, energy consumption, low bandwidth, and other constraints.
Therefore, the existing HIDS cannot be directly used in MANET without addressing
these fundamental challenges.

To enable effective attack monitoring and detection in MANET, we shall address
the following fundamental problem: How can we develop techniques to transmit the
attack detection information with desirable and controllable impact on the performance
of MANET while achieving the desired detection accuracy? To address this issue,

in our research project we consider the following two orthogonal dimensions for

48

developing our techniques: (i) sampling, and (ii) aggregation. Due to the limited
space, in this chapter, we focus on the development of effective sampling techniques
for monitoring and detecting cyber attacks in MANET with desirable and controllable

impact on the performance of MANET.

4.3 Our Approaches

In this section, we introduce our proposed approaches in detail.

4.3.1 Overview

Event Collection Intrusion Detection

Host - Operation
Center

¥

Sampling Data Processing

-

Figure 4.2: System Workflow

Recall that in our system, there are two major components: (i) monitoring
agents, and (ii) the operation center. From Figure 4.1, we can see that monitoring

agents are deployed on mobile hosts in MANET and the operation center is located

49

remotely through bandwidth-limited network links. The basic workflow is listed as
follows: The monitoring agent located in MANET traps suspicious activities on hosts
and store such information temporarily in local. Because the volume of detection
information can be high given a large number of hosts in the network, transmitting
all detection information through MANET will disrupt its normal mission related
application in MANET. To address this issue, we develop sampling techniques.
The system workflow is illustrated in Figure 4.2. As we can see, the original
detection information will be the input to our developed sampling algorithms and
the sampled detection information will be transmitted through MANET to the operation
center. The operation center processes the received detection information that is
sampled and maps the information to the format used by detection algorithms,
which make detection decision.

Step 1: Data collection. In this step, we install the agent on mobile hosts to
collect suspicious activities on hosts (e.g., system logs, security logs, application
logs, and others). Given a large number of hosts in MANET, a large volume of real
time data from agents will be generated and transmitted to the operation center for
processing and detect malicious threats. Because MANET has limited bandwidth
and computing resources, we cannot afford to transmit all logged data at hosts to
the operation center. To reduce the impact on MANET, we deploy the sampling

process, which will be described in the next step.

50

Step 2: Sampling. In this step, collected data will be the input to the sampling
process. We develop two sampling techniques: (i) simple random sampling, and
(ii) stratified sampling. Both techniques use a sampling rate to control the amount
of detection information to be transmitted through MANET, which is defined as the
fraction of data to be selected from the total data generated at the host. Obviously,
the sampling process could effectively reduce the traffic load overhead to MANET.
Nevertheless, there is a tradeoff between sampling rate and detection accuracy.
A higher sampling rate will result in a higher detection accuracy and requires a
larger amount of bandwidth, which might exceed the capacity of MANET, posing a
negative impact on the normal mission related applications. The detailed description
of sampling techniques and their impact on the performance of MANET will be
presented in Section 4.3.2 and Section 4.4, respectively.

Step 3: Data processing. Typically, a HIDS collects and analyzes system logs
to identify and detect malicious activities on hosts. Nevertheless, in MANET, data
will be transmitted to the operation center. To facilitate the detection process, we
develop a feature-based data process to describe incidents. We define a series of
basic features and each event could be described as a combination of features. Using
the break-in attempt as an example, the attack could be defined by the following
basic features: pam, syslog, and authentication success. It is initiated by “pam”

(the authentication facility in UNIX), then recorded by “syslog”, and followed by

51

“authentication_success”. As another example, a critical system file change may
reflect syscheck and sysfile_integrity because it is detected by “syscheck” program in
OSSEC and the integrity of system files. With the feature extraction, each incident
contains the following fields: time, source host, source program, severity level, and

features. The details of processing data can be found in Algorithm 2.

Algorithm 2: Data Processing Algorithm
input : An array of collected binary data Array(A); Empty array Array(B)
output : {X;}, hashable array of events with feature data

1 Array[l :n] = X1,Xp,... Xp;

foreach Element A; in Array(A) do
k = extract bin(A;);
B[features'] = k['features’];

end
Sort Array(B) by features;
Remove duplicate entry in Array(B);
foreach element A; in Array(A) do
k = extract bin(A));
fori=1tondo
if B[features'] == k[features’] then

| Bi['events'] += abstract(k);
else

| pass;
end
end
end
foreach Element B, in Array(B) do
19 | Aggregate B;[events'];
20 end
21 X < B;

O O N A wWwN

= e e e e
A W N = O

—_
N u

-
[e BN |

Therefore, the sampled data will be converted into a stream of numerical data,

which represents threat magnitude of events. A larger value represents a higher

52

probability of threats. This value will be the input to the intrusion detection algorithm,
which will make detection decision. The process of detection is described next.
Step 4: Intrusion detection. The operation center is responsible for coordinating
agents on hosts in MANET and conducting detection. With the sampled data in Step
3, the operation center provisions threat analysis and detection algorithms, enabling
the cyber analyst to monitor, query, detect, and visualize the detection information
with the aim of mitigating cyber attacks by planning network defense resources.
As a preliminary result, we have implemented a statistical anomaly-based detection
technique, which analyzes collected data in comparison with the normal profile to
make the detection decision. To be specific, we obtain the statistics of processing
data through the offline training, and then determine whether the received detection
data contains attack or not. The detailed description of detection algorithms will
be discussed in Section 4.3.4. Note that other advanced detection algorithms could
be provisioned in our prototypical system and we leave the full investigation in our

future study.

4.3.2 Sampling Techniques

We now introduce the sampling techniques in detail. Recall that the main objective
of sampling techniques is to balance the tradeoff between reduction of bandwidth

usage and detection accuracy.

53

4.3.2.1 Simple Random Sampling

The simple random sampling is a baseline sampling technique. With this sampling
technique, each detection event will be selected randomly with an equal probability.
On a monitoring agent, we select n events (denoted as sampling data) out of N
original events (denoted as the full set of detection data) such that each of C}
distinct samples has an equal probability of being drawn. In principle, the sample,
as an unbiased random selection of detection data, is used to represent the behavior
of the original full set of data. Nevertheless, because the sampled data is only a
subset of the full set of data, it will incur some error to detection decision.

To conduct detection in the operation center, we use the sampled data to detect
attacks. However, in real-world practice, the detection information should not be
treated equally. To improve detection accuracy, we shall categorize the detection
information into different groups based on various priority levels. For this purpose,

we introduce the stratified sampling technique, which will be described next.

4.3.2.2 Stratified Sampling

We now introduce an enhanced sampling technique denoted as stratified sampling.
The original detection data from a host contains different events that tell information
from the system security aspect. As an example, an event where a malware copies

itself to a system directory is more risky than a normal system call from the security

54

aspect. To quantify this, we introduce the stratified sampling technique that defines

the priority levels of individual events and put various weights during the sampling
process. In particular, the original detection information of N units will be first
divided into sub-groups of Ni,N,,...,N, units and each group contains events that

have the same priority level. These subgroups are disjoint and together comprise

the full set of detection data, i.e., Ny +N> + ...+ N, = N. To obtain the benefits

of stratification, the true values of N, could be estimated. When the strata are
determined, a sample is drawn from each group and the drawings are made independently
in different strata. The sample sizes within strata are denoted by ny,ny,...,nz,
respectively.

Nonetheless, in both the random and stratified sampling, a sampling error will
exist because sampling process only uses a subset of detection data to estimate
the characteristics of the full set of detection data. In principle, a sample selected
from the full set of detection data is the one of all possible samples. Any value
computed from the sample is based on the sampled data and is denoted as the
sample statistics. The sample statistics may not be close to the statistics of the
full set of detection data. If one statistics measure is 6 and the true value of the
statistical measure for the full set of detection data is , the difference between
6 and 6 is defined the sampling error. We will further investigate the impact of

detection accuracy caused by sampling process in Section 4.4.

Algorithm 3: Sampling Algorithms

input : An array of converted data Array[X|; Sampling rate
P, € [0%, 100%];
output : [Y], array of sampled data

1 Array[X] = X1, X2, -+, Xn3

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

if Simple Random Sampling then
fori=1:Ndo
for j=1:P;xN do
a = random(min = 0,max = 100);
if a < P, then
| Xi=Y;
else
| pass;
end
end
end
[X] — [Y].
else
if Stratified Sampling then
Array[X'];
ArrayAllayer|[n];
ArrayA = stratify(X, layers=L);
//A is a two dimension array. First dimension is layer, second
dimension is data in this layer
c = element _count(A);
P! = P; x element_count(X)/c;
foreach layer in A do
foreach element in layer do
a = random(min = 0,max = 100);
if a < P/ then
‘ X'+ = element;
else
| pass;
end
end
end
X'] —[Y].
else
| pass;
end
end

56

Oct 16 00:19:01 web CRON[32132]: pam_unix(cron:session): session opened for user bbs by uid=0}
Oct 16 00:19:01 web CRON[32133]: pam_unix(cron:session): session opened for user bbs by uid=0}

Figure 4.3: An Example of System Logs

4.3.3 Data Aggregation Techniques

To enable the effective detection and reduce the impact on network performance,
we also consider the data aggregation techniques. Generally speaking, data aggregation
is a process, which reduces the volume of data while preserving the meaning information
of data [73-77]. The aggregation techniques can be categorized into two groups:
lossless and lossy aggregation. To be specific, for the lossless aggregation technique,
we could adopt the compression strategy to consolidate the detection information
under the constraint, in which the decompressed data contains the exactly same
amount of information as the original one. Different from the existing compression
mechanisms, we consider the lossless aggregation technique that use the syntax of
detection information to effectively remove the duplicated information and compress
the pivotal data with a high aggregation ratio.

We use the OSSEC [78] to investigate the feasibility of lossless data aggregation,
which generates the system logs shown as in Figure 4.3. As we can see, the content
of messages have lots of redundant information. In our preliminary study, we
found that for a sample system-log with 10000 records, there are only 2367 unique

message bodies, 3 daemons and 3993 unique timestamps. To remove the redundant

57

Sample Input:

Oct 16 00:19:01 web CRON[32132]: pam_unix(cron:session): session opened for user bbs by (uid=0)

Oct 16 00:19:01 web CRON|32133]: pam_unix(cron:session): session opened for user bbs by (uid=0)

Oct 16 00:19:01 web CRON|32133]: pam_unix(cron:session): session closed for user bbs

Oct 16 00:19:02 web CRON[32132]: pam_unix(cro n): session closed for user bbs

Oct 16 00:20:01 web CRON[1709]: pam_unix(c sion): session opened for user www-data by (uid=0)
Oct 16 00:20:01 web CRON[1711]: pam_unix(c sion): session opened for user bbs by (uid=0)

Oct 16 00:20:01 web CRON[1709]: pam_unix(c sion): session closed for user www-data

Oct 16 00:20:01 web CRON[1711]: pam_unix(cron:session n closed for user bbs

Oct 16 00:21:01 web CRON[5292]: pam_unix(cron:session on opened for user bbs by (uid=0)

Oct 16 00:21:02 web CRON[5292]: pam_unix(cron:session on closed for user bbs

Oct 16 00:22:01 web CRON[7528]: pam_unix(cron:session n opened for user bbs by (uid=0)

Oct 16 00:22:01 web CRON|7528]: pam_unix(cron:session): session closed for user bbs

web CRON[13862]: pam_unix(cron:session): session opened for user bbs by (uid=0)

web CRON[13862]: pam_unix(cron:session): session closed for user bbs

web sul15748]: Successful su for alex by root

web su[15748]: + pis/1 root:alex

web su[15748]: pam_env(su:session): Unable to open env file: letc/defaultllocale: No such file or directory
web su[15748]: pam_unix(su:session): session opened for user alex by root(uid=0)

Oct 16 00:24:01 web CRON[15842]: pam_unix(cron:session): session opened for user bbs by (uid=0)

Figure 4.4: An Example of Original System-Logs

information and reduce the bandwidth consumption on transmitting data through
MANET. As a proof-of-concept, the detailed steps on data aggregation are described
below. First, we split the log file into several parts: DATE (e.g., Oct 16 00:19:01),
Domain (e.g., web CRON [32133]), Message Body (e.g., pam_unix(cron:session):
session closed for user bbs), and Message Source (e.g., uid=0). We then scan the
system log files and find unique strings and generate the index for those unique
strings, and output strings and index for each system log entry into a binary file
and then apply generic compression methods such as bzip2 and Lempel-Ziv—-Markov
chain (LZMA) algorithm [79] to compress the file. The examples of original system

logs and aggregated system logs can be found in Figure 4.4 and Figure 4.5.

4.3.4 Detection

Generally speaking, an intrusion detection system can be classified as either signature-based

or anomaly-based detection. In a signature-based detection, a large repository

Sample Output:

Daemons:
CRON
su

Index:
111
000
002
201
303
200
204
201
400
501
600
501
700
801
925
816
1017
918
1100

Messages:

pam_unix(cron:session): session opened for user bbs by (uid=0)

pam_unix(cron:session): session closed for user bbs

pam_unix(cron:session): session opened for user www-data by (uid=0)
pam_unix(cron:session): session closed for user www-data

Successful su for alex by root

+ pts/l root:alex

pam_env(su:session): Unable to open env file: /etc/default/locale: No such file or directory
pam_unix(su:session): session opened for user alex by root(uid=0)

Date_Time:

Oct 16 00:19:01
Oct 16 00:19:02
Oct 16 00:20:01
Oct 16 00:21:01
Oct 16 00:21:02
Oct 16 00:22:01
Oct 16 00:23:01
Oct 16 00:23:02
Oct 16 00:23:50
Oct 16 00:23:51
Oct 16 00:24:01

Original Size: 1698 Bytes

Compressed Total Size: 360 Bytes (compression ratio: 21%)
Compressed Original Size: 420 Bytes (compression ratio: 25%)

Figure 4.5: An Example of Aggregated System Logs

58

59

of known attack signatures [80] will be maintained and used to detect attacks.
The disadvantage of this approach is that it cannot deal with new attacks. In

a anomaly detection, the system administrator commonly defines the baseline or
normal measures of system behavior (e.g., activities on hosts, network traffic rate,
and others). In the anomaly-based detection, system activities will be monitored
and compared with the normal baselines to determine whether an attack was occurred.
One common technique is to estimate the normal behavior of the protected system
and generate a detection alert whenever the deviation between a given observation
and the normal behavior exceeds a predefined threshold [81,82].

In our developed system, we adopt the system log as as the basic detection
sources to formalize detection information on hosts [3]. Recall that the anomaly
detection works through establishing a “normal” operation profile in a system and
detect suspicious activities by comparing the system run-time behavior with the
normal operation profile. With the development of modern operating systems, the
user and administrator need to know what are happening on hosts and network
components. It is desirable to provide human readable and reliable data to define
system status. The benefit of system logs provide a standard data format, which
could be collected and processed to detect threats.

In this chapter, we use the OSSEC, which is a well-known open source HIDS, to

demonstrate the effectiveness of our proposed sampling algorithms. In particular,

60

we install the OSSEC client on the end host that collect system logs in real time.
Then the daata processing components introduced in Section 4.3.1 will process
the collected data and transmit the information to the OSSEC server, which is
denoted as the operation center. Then the server take the responsibility of intrusion
detection based on analyzing system logs. In its release package, the OSSEC server
executes simply “compare-match” mechanism to identify the abnormal behavior. In
this paper, we develop the statistical threshold-based detection algorithm to detect
intrusions, which will be detailed below.

We consider the statistical threshold-based detection, which is a generic and
fundamental technique to conduct anomaly-based detection. The insight of this
technique works in the following way: We first compute the mean and the standard
deviation of collected detection data. The mean (m) and the standard deviation
(v) are the statistical measures of normal behavior of protected system. We then
establish a threshold as 7, = k-v, where k determines the sensitivity degree of
deviation from the system normal behavior. Recall that in our system, we use the
attack feature and map it to the number and assume that the larger the number,
the higher severity the attack is. A data X; is treated to be anomalous if it deviates
from the mean by more than a threshold, i.e. X; >T,. The statistical anomaly
based detection is shown in Algorithm 4. As we can see, in this anomaly-based

detection we obtain the statistical characteristics of detection information through

61

offline training and compare it with the run-time data and make decision.

4.4 Analysis

In this section, we first show the analytical results for investigating the accuracy
of anomaly-based detection. We then study the impact of sampling techniques on
detection accuracy and bandwidth reduction in MANET. Our experimental results
in Section 4.5 match our theoretical results. All notations for sampling techniques
can be found in Table 4.1. Note that here, we use Gaussian white noise as an
example in our theoretical analysis to provide insights into the effectiveness of our
developed sampling techniques. Nevertheless, we would like to clarify that the
Gaussian distribution has been widely used as a model of quantitative phenomena
in the natural and behavioral sciences. The use of the Gaussian distribution can
be theoretically justified by assuming that many small, independent effects are
additively contributing to each observation. Indeed, the distribution of detection
data is still open question, which is largely depend on the attack behaviors. As
shown in Section 4.5, the real-world experimental results and theoretical analysis
results are consistent and follow the same trend, which demonstrate the impact
of sampling algorithms and sampling rate on detection accuracy. The difference
between the experimental results and analytical results indicates that the real-world

attack information may not follow the Gaussian white noise distribution and further

62

study can be one direction of our future work.

4.4.1 Anomaly-based Detection

Algorithm 4: Statistical Anomaly-Based Detection
input : An array of converted data
parameter: a, measure of degree of deviation
output : T,, Threshold

Array[l :n] = X1,X2,..., Xp;

[y

sum += Array[i];

m = sum/n;
v = std(Array[i]);

SetT, =m + a.v;
foreach element X; in Arrayli| do
if X; > T, then

| X; is abnormal data;
else

| X; is normal data;
end
end

O 0 N A 1A~ WwN

—
(=}

[
N =

We assume that the anomaly-based detection uses the statistical-based detection
scheme described in Section 4.3 because it is a generic and representative one.
To evaluate detection accuracy, we consider two metrics. One is the detection
rate Pp, which is defined as the probability of correctly determining attack. The
other is the false positive rate Pr, which is defined as the probability that the
attack is mistakenly detected while no attack exists. To make detection decision,
we determine the anomaly detection threshold 7, where T = m + k-, k is the

parameter to determine the degree of deviation from normal behavior. Without loss

63

of generality and simplifying our analysis, we assume that the background activities
follows the Gaussian random distribution with the mean m and standard deviation
v. With the attack in place, we assume that the mean and standard deviation
of monitored activities are m, and v,, respectively. Then we have Theorem 1 for

detection accuracy.

Theorem 4.4.1. For the statistical-based detection described in Section 4.3.1, the

detection rate Pp can be derived by

Ta_ a
Py = 1-(-2— ey (4.4.1)

Va
and the false positive rate P can be derived by

T, —
Pr o= 11— "

)s (4.4.2)

v

Here ®(x) = \/iﬁ e "dr is the standard error function, T, is, v, i ..., m is ...
Theorem 1 can be proved based on the standard definition of probability density
function. In particular, Pp = 1 — -1 [¢~ 2dy and Pr = 1 — —L [0 e~ b?g
unction. In particular, Pp = _\/TTrf—“’ e y and Pr = —ﬁf_w e y.
We have some observations from Theorem 1. First, the detection rate grows when
the attack is stronger, which means the statistical based anomaly detection could
effectively detect attacks, which show a relatively strong activities. Second, there
are some tradeoffs between detection rate and false positive rate. If the value of
threshold declines, a higher detection rate could be achieved. However, a smaller

value of threshold always incurs a higher false positive rate.

64

Y Total Population

Yy Total Samples

Y Population Mean

y Sample Mean

52 Population Variance

5 Sample Variance

Py Sampling Rate

N, Total number of units in stratum 4
ny, Number of units in stratum 4 sample
Vhi Value obtained for /unit

W, = % Stratum proportion

57 Variance in stratum A

b, = X,—’; Sampling fraction in the stratum

Vi Sample mean in the stratified sampling

Table 4.1: Notations
4.4.2 Simple Random Sampling

Recall that we sample the detection information randomly based on a sampling
rate P, € [0,1]. The sampling process will have a negative impact on detection
accuracy. To measure such an impact, we define the error rate as the ratio of
detection rate, i.e., sampled detection data vs. detection rate with the full set of
detection information.

After the sampling and data processing described in Section 4.3, we obtain the
sampled detection data as the input to the detection algorithm. The variance of the

sample mean y for a simple random sample is

V(y) = E(G-Y), (4.4.3)
(

= ———=—(1-h), (4.4.4)

65

where P, = n/N is the sampling rate.

We then obtain the standard error of y from the following,

Gy—:%\/(N—n)/N:%\/l—Ps. (4.4.5)

To derive the closed formulae, we assume that the estimation of y follows a Gaussian
distribution. Then, the interval estimate of mean value of full detection datais Y €
[y — %ﬁ J+ &—Sﬁ\/l——Ps], where t is the value of normal deviation corresponding
to desired confidence probability.

We now apply our sampling process to the anomaly-based detection and derive
error limits for attack detection. The results are shown in Theorem 4.4.2 that is

listed below.

Theorem 4.4.2. By using the simple random sampling technique, the error limit of

detection rate for the anomaly-based detection is

APy < max(py, pu). (4.4.6)
Here, we have
_ ! e _%d 4.4.7
pr = E/T“g} e s (4.4.7)
1 [2
. € Tdy, (4.4.8)

Pu = 7= |y
V2 J
where y is the sample mean, e, is the sampling error and can be denoted as,

l’ —
0y = % 1—p, (4.4.9)

and oy is the variance of the sample as the estimate of variance of detection data.

66

Proof. In the random sampling, we consider the sample as a representative from
the full set of detection data. Nevertheless, because of sampling error e, there is an

error between the sample mean and the mean of full set of detection data. We have

_ ts
According to Theorem 4.4.1, the detection rate is
T, —
Pi=1— “Gm). (4.4.11)

Then we derive the error limits of detection rate as following,

T, (UL+e T, —
apy = (o WED) (o glaz By (4.4.12)
T, — T,— 1 —
_ (B gty (4.4.13)
o (o}
1 s e
= _ﬁ/racyee Tdy = py. (4.4.14)
Similarly, we have
1 T e
PI= Jog s € 2 dy. (4.4.15)

Given the threshold for anomaly detection, to balance the tradeoffs between

detection rate and false positive rate, we have

,when T, > ¥,
AP, < Pu a=>)y

(4.4.16)
pi,when T, < y,

Then, we have

AP; < max(py, pu)- (4.4.17)

Hence, Theorem 4.4.2 is proved. O

67

4.4.3 Stratified Sampling

Recall that in the stratified sampling, the full set of detection information is first
divided into the mutually exclusive stratums (or groups) and each group is assigned
by a priority to determine the weight of selection during the sampling process. The

estimation used in the stratified sampling is y;; where st stands for stratified, and

we have
L NY; L
Vst = —Zh_;\] Wk — Z Wyyh, (4.4.18)
h=1
and the sample mean is
L -
y= —Z“nnhy 3 (4.4.19)

The difference between y and yy is that in y, estimates from individual strata

receive ratio N, /N. It is evident that y coincides with y;, when in every stratum we

Ny
N

ny _
have 7+ =

If the simple random sample is taken in each stratum, an unbiased estimate of
s7 becomes

1 &

— — Vi) 4.2
nh_li;(ym Vi) (4.4.20)

[°0)
Bl)

Then with the stratified sampling, an unbiased estimate of variance yy, is

1 & 52
V(i) = 5> (Vs —]72 W(Np — np) — (4.4.21)

”h

68

and

L W2S2 L WS2
Oy, = \/s20w) = | XL T - Y = (4.4.22)

h=1 T p=)

Notice that the derivation of interval estimate of mean value is similar to the one
in the simple random sampling, that is, ¥ € [y;; —t5(¥y), Vs +15(ys;)]. Based on this,
we can derive the sampling error in the stratified sampling. Using the same metrics
defined above, that is, the error limit of detection rate, we have Theorem 4.4.3

listed below.

Theorem 4.4.3. By using the stratified sampling technique to estimate the characteristics

of the full set of detection information, the error limit of detection rate is

AP < max(plstvpust)~ (4.4.23)
Here, we have
Pist =, . e 7dy, (4.4.24)
275 Tao_*s,rst
1 Ta(;g’}t _ﬁ
e Zdy, (4.4.25)

Pust = —F/—— e
V2w Sl
where yy; is the estimate of the mean of full data, ey, is the sampling error and can be

denoted as,

Iy %
eg =1 mh;lNh(Nh —nh) - s (4426)

where oy;, is the variance of sample as the estimate of variance of detection data.

Proof. The proof is similar to the simple random sampling and the basic idea is

listed below. We first divide the full data set into stratums. We then conduct

69

the simple random sampling in each stratum and derive the corresponding sample
mean yy; and variance v(yy). Based on them, we could then derive the sampling
error ey. After substituting same variables in Theorem 4.4.2, we derive the error

limits of detection on the stratified sampling technique. O

We now show an example, in which the detection data is prioritized based on
the severity level of security risks. The stratums of detection data will be numbered
from 1 to L. Without loss of generality, we introduce a stratum weight w; = ¥, where
i=1,2,...,L and k is the parameter to map the security severity level to sampling
weight. Hence, the sampling weight for stratum # is

ny wi
Py=—= . 4.2
N T T (4.4.27)

Then, we have Theorem 4.4.4 listed below.

Theorem 4.4.4. If the stratified sampling is the weight-based sampling, the sampling

error can be denoted as,

_ 10y iNz(! 1) (4.4.28)
Cot = N 1 h PSXPh ’ o

where f is the total sampling rate for extracting information from the full set of

detection information.

Proof. We have
ny wi

_ M 4.2
Ny = T (4.4.29)

and oy, is the variance of sample as an estimate of variance of detection data. We
have

n, = Py, X Py X Nj,. (4430)

70

Then, the sampling error can be denoted as,

1 & o
ey = t\ mhzlzvh(zvh—nh) nyh (4.4.31)
1 & o}
= t,|— Y N,(N,—P, x P, xN, L (4.4.32)
\Nzhz,] h(h h s h)PsNh
_ i 262 LB X B (4.4.33)
- \h:1 h y_stPhXPst27 th
tGy_z 2 1
= N, —1). 4.3
N Z’ h<Ph><Ps) (4.4.39)
h=1
]

From Theorem 4.4.2, Theorem 4.4.3 and Theorem 4.4.4, we observe that with
the increase of sampling rate f, the sampling error declines and the detection error
decreases as well. We derive the numerical data based on one simple example
described below. We set the detection threshold 7= m+2-v and let the confidence
probability be 80%(r = 1.28). According to Theorem 4.4.2, we derive detection

errors for different sampling rates. To analyze the effectiveness of stratified sampling

2

J

technique, we assume that there are five stratums and the stratum weight is w; = i
wherei=1,2,---,5. We substitute the above corresponding parameters in Theorem
4.4.3 and derive numerical results for error rates. The numerical data is shown in
Figure 4.8. As we can see, the error rate declines when the sampling rate grows
and the stratified sampling technique achieves a better detection accuracy than the

simple random sampling technique.

71

4.4.4 Data Aggregation Techniques

We now define metric and conduct the theoretical analysis on the bandwidth reduction
of our proposed data aggregation techniques. Using a simplified case, we show
the aggregation performance in terms of the effectiveness of our data aggregation
techniques to conduct the bandwidth reduction. The metric that we use is the
data rate T, which is defined as the average rate of data transmission rate over
the network. We assume that there is N services nodes in MANET, which executes
our proposed aggregation techniques. We introduce the aggregation ratio, R,, to
measure the efficiency of data aggregation and it is defined as the reduced data size
vs. the size of input data. Our analysis is based on the simple scenario, in which
the service nodes collect the detection data and use the aggregation techniques to
consolidate the data. After that, the aggregated data is transmitted to the operation
center.

Consider the following scenario: a batch of K; packets needs to be transmitted
from the service nodet (r =1,...,N) to the operation center. Packets are transmitted
through communication channels. We assume there are L channels in total and each
channel has a data rate of R; bits per second and the propagation delay of d; seconds
(i=1,...,L). We assume that all packets have the same size with § bits of payload
and H bits of protocol header. We assume that the bandwidth is large enough so that

we ignore the query delay in the data rate computation and all packets from one

72

service node are transmitted through one communication channel. For the system
without using data aggregation, the overall network throughput 7 can be computed

by T=Y%V, %, where i is the index of communication channel selected for
+di

node .

Then, we consider the use of data aggregation. The payload and size of protocol
header are (1 —R,)S and (1 — R,)H, respectively. The overall network throughput
T after using data aggregation become T’ = YV, %.

With the same network condition, it is easy to prove that T' is smaller than
T. This means that in the system using data aggregation, the use of bandwidth is
smaller than the system without the use of data aggregation. In addition, we can see
from the above analysis, the aggregation ratio is the key factor for the bandwidth

reduction. After multiplying 1/(1 —R,), we have T' =¥V %
R;

TR
In comparison with data rate for the system without data aggregation, because
R, €]0,1], we know that T' is smaller than 7. With the increase of aggregation

ratio, T’ declines. From the above analysis, we can see that the data aggregation

techniques can reduce the network bandwidth usage.

4.4.5 Impact of Intrusion Detection on MANET

We now show the impact of intrusion detection on MANET. Without loss of generality,

we assume that MANET has limited bandwidth capacity C and needs to support two

73

types of applications: the normal mission related application S, and the intrusion
detection application S;. We adopt the average end-to-end delay as a metric for
normal mission-related application, and the detection accuracy and end-to-end
delay as metrics for intrusion detection application to meet the design goals for
our developed system. To optimally allocate the network resources, we assign
a parameter W, which is defined as the ratio that the allocated bandwidth vs.
requested bandwidth. In order to optimize the overall performance of MANET,
we shall consider the following constraints: (i) the required total bandwidth should
not be larger than the maximum capacity of network, (ii) the quality of service
on intrusion detection application S; should meet requirements, and (iii) when
the network is heavily loaded, the quality of normal mission related application
S, should not be severely impacted by the intrusion detection application ;.

We then formalize the impact of intrusion detection on MANET as follows:

(4.4.35)

N P K _P
Objective. Min Lizi wir Lo Wi
N+K

S.t.

YN W.B,+YK wB; <C

N P < max
i=1 W;B;N — =normal

K P max
S=1 WsBsK < QIDS

W,,W; € [0,1]

\

where P is packet size, B,,, B; denote requested bandwidth from the normal mission

related application and intrusion detection application to monitor and detect attacks

74

in MANET, N is the number of traffic flows associated with normal mission related
application, K is the number of traffic flows associated with monitoring and detecting
attacks in MANET, O, is the required maximum delay for each application (e.g.,
Qrax s the required maximum delay for the normal mission related application

normal

and Q"< . is the required maximum delay for the application that conduct monitoring
and detecting attacks). With Equation (4.4.35), we could derive the weight for
each application and achieve the optimal bandwidth setting for MANET that shall

support both the intrusion detection and normal mission related applications.

4.5 Performance Evaluation

In this section, we investigate the effectiveness of our proposed sampling techniques
in a real-world testbed and evaluate their performance impact on MANET using ns-3

based simulation [83].

4.5.1 Methodology

We implemented the host-based intrusion detection system using virtual machines
and deployed virtual machines acting as host monitoring agents and the operation
center. We use the OSSEC as an example to validate our proposed schemes. Note
that our developed sampling strategies and theoretical framework can be generally

applied to other host-based and network-based intrusion detection systems as well.

75

We deployed the OSSEC agent on the host and the OSSEC server on the operation
center. The detection data is collected by the OSSEC agent on the host and transmitted
to the OSSEC server. During the data collection process, we simulate known attacks,
including the port scanning, brute force password cracking attacks, and others.

We would like to point out that we implemented our sampling techniques based
on simulated attacks, which can emulate real-world attack behaviors. To validate
the effectiveness of our developed techniques, we simulated several attacks against
hosts and generated events related to those attacks. In this way, we can generate a
large amount of detection related data by adjusting the attack parameters such as
scan rate and further study the effectiveness of sampling techniques and obtain the
insightful relationship between detection accuracy and sampling rate. Note that
there are many attacks are various and emerging endlessly. Defending the new
attacks is always open research topic. In this chapter, we simulate and generate
generic attacks, which contain the common malicious behaviors, to analyze the
the effectiveness of sampling techniques. We also simulate the normal system
operations, including the system patching and others, which may pose false positives
for attack detection. After the detection data is collected by the OSSEC agent, we
use such data as input to validate our proposed sampling and detection techniques.

The OSSEC agent records activities such as accessing and modifying system

critical areas. However, some normal applications will exhibit similar behavior

76

(e.g., installing the new software). To obtain the false positive rate, we conducted
experiments on the same testbed and collected the detection information as background
data, in which no attack is in place. Based on the collected background data,
we obtained the detection threshold for the statistical-based anomaly detection
discussed in Section 4.3. To measure detection rate, we collected hundreds of data
entries and each entry represents one attack event. Through the feature mapping
algorithm described in Section 4.3, we converted each feature into a number that is
used to present the attack severity. We then used the converted data as the input to
validate the effectiveness of our developed simple random sampling and stratified

sampling techniques.

©
=1

—&— Simple Random Sampling
—#— Stratified Random Sampling

Detection Rate (%)
~ <] ©
o o o

~
[=}

o
a

]

60
0 5 10 20 25 30

15
Sampling Rate (%)

Figure 4.6: Detection Rate vs. Sampling Rate (Experiment)

To evaluate the impact of transmitting detection data on MANET, we implemented
a simulation environment based on NS-3 [83], which is a well-known network

simulation tool in the networking community. The evaluation environment is also

77

0.1

—&— Simple Random Sampling (Experiment)
0.09r —k— Stratified Random Sampling (Experiment)

0.081
0.07

o 0.06

rror Rat

0.05F
Wo.04F
0.03f
0.02

0.01r

00 20 40 60 80 100

Sampling Rate (%)

Figure 4.7: Error Rate vs. Sampling Rate (Experiment)

based on virtual machine that runs the version of Ubuntu Linux 11.10 with 2GB
memory. In our simulation, we consider an outdoor environment with 50 mobile
nodes and one operation center. Nodes in the network move according to a random
Waypoint mobility model in an 800m x 1000m rectangular field and their initial
positions are randomly assigned. Each node moves from a random location to a
random destination with a randomly assigned speed, which is uniformly distributed
in the range of 0 —20m/s. The operation center is statically located at the lower left
corner of the rectangular field and each simulation lasts for 20 seconds.

To simulate the traffic associated with the normal mission related applications on
MANET, we randomly select N source/destination pairs and the data rate is 56 Kb/s
in NS-3. We monitor each traffic flow and measure the throughput and end-to-end
delay. To validate the impact of intrusion detection on MANET, we consider a nearly

saturated MANET. We introduce a parameter to emulate the sampling ratio, defined

78

0.2

—*— Stratified Random Sampling
0.18¢ —&—Simple Random sampling
0.161
0.14f
o 0.12F
T
T oar
8
i 0.08f

0.06

0.04f

0.02-

0
0 20 40 60 80 100

Sampling Rate (%)

Figure 4.8: Error Rate vs. Sampling Rate (Theory)

as the ratio between the number of nodes running the normal mission related
application over the total number of nodes. To simulate traffic for monitoring and
detecting attacks, we randomly choose a number of nodes to send CBR (Constant
Bit Rate) traffic to the operation center. We monitor the normal traffic flows and
measure the performance when the amount of traffic associated with monitoring

and detecting attacks increases.

VN L L L
0 40 60 80 100
Sampling Rratio of Normal Traffic Flows (%)

Figure 4.9: End-to-End Delay of Normal Mission Application without Intrusion
Detection Application

79

—&— Normal Traffic
; —#— DS Traffic

Average Delay (s)
o o o
ES o ©

o
()

0 10 20 30 40 50 60
Sampling Ratio of IDS Taffic Flows (%)

Figure 4.10: Sampling Ratio vs. End-to-End Delay of Normal Mission Application

We also implement the aggregation techniques and evaluate their impact on
the MANET using ns-3. In our evaluation, we consider the following topology:
an outdoor 802.11b (1Mbps) MANET with 60 mobile nodes and an operation
center. These 60 mobile nodes are clustered into six groups. In each cluster,
there is one data collection agent. Nodes configured with IDS application send
IDS data to the data collection agent in their cluster and data collection agent send
aggregated data to the operation center. Nodes in the network move according
to a random Waypoint mobility model in a 600m x 900m rectangular field and their
initial positions are randomly assigned. Each node moves from a random location to
another randomly selected destination with a randomly selected speed, uniformly
distributed in 0 — 10m/s. The remote operation center is installed in a static location
at (0,0) and our simulation lasts for 20 seconds.

We use two metrics for quantifying the detection accuracy: (i) detection rate

80

defined as the probability of correctly determining the attack, and (ii) error rate
defined as the error limits of detection rate after the sampling technique is applied.

In the stratified sampling, we select the sampling weight as w; = . To compute

2
X,
the error rate, we apply the full set of detection dtat to the detection algorithm
and obtain the detection rate. We then apply the sampled data with different
sampling rates (e.g., 10%,20%, - -- ,90%) to the detection technique and obtain the
corresponding detection rate. Assuming that the detection rate is R when the

sampling rate is 100% and the detection rate is R, when the sampling rate is k%.

Then, the error rate is defined as,

R,—R

E=|=k

. (4.5.1)

4.5.2 Evaluation Results

Figure 4.6 illustrates the relationship between sampling rate and detection rate
in terms of the two sampling techniques investigated in Sections III and IV. As
we can see from the figure, the detection rate increases when the sampling rate
grows. Obviously, the operation center obtains a better detection result with more
detection information. In addition, the stratified sampling technique achieves a
higher detection rate. This is because the stratified sampling technique gives a
higher priority to the detection information with a higher security severity. Note

that there is a fluctuate trend when the sampling rate is low, this is because the

81

sampling error is significant and unstable in a low sampling rate. As the sampling
rate increases, the sampling error declines and the sample data becomes to stabilize.

Figure 4.7 illustrates the relationship between sampling rate and error rate
for the two sampling techniques. As we can see from the figure, both sampling
techniques work as expected with a relatively low error rate, the error rate declines
as the sampling rate increases, and the stratified sampling achieves a better detection
accuracy. In addition, the analytical results from Section 4.4 are shown in Figure
4.8 and match with our experimental results well. We evaluate the performance
of MANET without traffic associated with monitoring and detecting attacks. From
the results shown in Figure 4.9, we could see that the end-to-end delay increases as
the sampling ratio grows. In other words, as more nodes are selected to transmit
data associated with the normal mission related application, the end-to-end delay
increases. In our experimental setting, we note that when the sampling ratio
approaches above 55%, the end-to-end delay increases rapidly.

We also evaluate the performance of the fifteen normal traffic flows associated
with the normal mission related application and different numbers of flows associated
with monitoring and detecting attacks transmitted to the operation center. We
randomly select nodes that conduct monitoring and detection. Figure 4.10 illustrates
the relationship between the sampling ratio for traffic flows associated with the

monitoring and detection and the end-to-end delay. As we can see, when the

82

sampling ratio of traffic flows associated with the monitoring and detection increases,
the end-to-end delay of the traffic associated with normal mission related applications
grows as well. We conclude that the traffic associated with monitoring and detecting
attacks has a negative impact on the traffic flow associated with the normal mission
related application. For example, when the sampling ratio increases over 32% of
total traffic, the end-to-end delay of traffic associated with the normal mission
related application increases 168.5% in comparison with the scenario, in which
there is no traffic associated with monitoring and detection. When the amount of
traffic flows associated with monitoring and detecting attacks approaches 40%, the
end-to-end delay of traffic associated with the normal mission related application
increases 440.9%. From this example, to reduce the bandwidth and limit the impact
on MANET, the sampling is necessary when we transmit detection information over

MANET.

4.6 Summary

To secure MANET, in this chapter we studied a host-based detection architecture
and investigated the simple random sampling and stratified sampling techniques.
We derived the closed formulae to study the impact of detection accuracy vs. sampling
techniques along with parameters used in the sampling process. We investigated

the impact of attack detection on the performance of MANET and formalized it

83

as an optimization problem for allocating network resources. We also discussed
related issues, including the system architecture options, dynamic sampling, and
data aggregation. We conducted experiments on our real-world test bed and our
data showed that the stratified sampling technique achieves better performance
than the simple random sampling technique in terms of providing tradeoff between
detection accuracy and bandwidth cost reduction. The performance impact of

transmitting the detection information on MANET was also simulated using ns-3.

Chapter 5

MapReduce Based Machine Learning
Techniques for Processing Massive Network
Threat Monitoring Data

5.1 Overview

Networking technology has greatly changed the way that our society functions
as a whole, leading to a new era of e-business, social interaction, and virtual
organizations. There is an omnipresent need for security and robust detection
schemes to protect critical network infrastructures. Cyber-threats are significantly
more dangerous than they have ever been and are growing in number and sophistication.
Due to the widespread nature of cyber-threats (malware propagation, etc.), large-scale
traffic monitoring across networks has become an essential part of effectively detecting
and defending against contemporary cyber-attacks. Nonetheless, large-scale threat
monitoring over distributed networks leads to extremely big data from monitored
end-hosts and network devices [84].

Effectively processing of threat monitoring data from both end-hosts and network
devices will better facilitate the detection of cyber-threats as well as help security
administrators respond to cyber-threats in a timely manner. In our previous work,

the development of effective threat monitoring systems to defend against cyber-attacks

84

85

was established [61, 71, 85, 86]. Nonetheless, big data poses serious challenges
for cyber operations because an ever growing large and complex threat monitoring
system from a large computer network needs to capture, store, manage, and process
big data. With continuous, unbounded, rapid, and time-varying data streams generated
by end-hosts and network devices, the complexity of storing and processing big
network data will significantly increase. As such, there is an urgent need to develop
efficient techniques to process and transform these complex, often vast unstructured,
amounts of network threat monitoring data into manageable, useful, and exploitable
information.

To address big cyber data, we consider a threat monitoring system with an
objective of monitoring and processing the real-time data streams generated by
threat monitoring agents, which monitors the statuses of end-hosts or networks
and then detects suspicious activities. To ensure that the threat detection methods
are efficient, MapReduce based machine learning (MML) schemes can efficiently
deal with threat monitoring over big data. The main idea of the MML system is to
speed up the machine learning (ML) process using cloud computing. The first step
is to collect the characteristics of traffic flows (flow duration and average bytes per
packet of the flow, average bytes per seconds of the flow, etc.). To accurately and
rapidly detect traffic anomalies, two MapRduce based ML schemes are developed

to profile the dynamic characteristics of traffic flows and then to detect anomalies

86

based on learned classifiers: Logistic Regression and Naive Bayes. In the proposed
MML schemes, the computational burden of the learning process is spread across
multiple machines. The learned computational results from multiple machines are
then integrated into one single learned classifier. Lastly, the learned classifier will
then be used to recognize whether a new traffic flow is either normal or abnormal
(benign or malicious).
Using real-world datasets consisting of both botnet and normal traffic, we develop

a cloud computing test bed and conduct experiments to evaluate the effectiveness
of the developed MML schemes in terms of learning accuracy, training set size,
and training and detection processes overhead. The experimental data shows that
the proposed MML schemes rapidly detect anomalous traffic flows with the same
accuracy as standard machine learning schemes without using MapReduce.

Notice that the materials in this chapter are adapted from my previous publication [87].

5.2 Our Approach

In this section, we first introduce the design rationale of our approach and then

present our MapReduce-based machine learning (MML) schemes in detail.

87

5.2.1 Design Rationale

To defend against cyber-attacks, anomaly-based intrusion detection systems have
been widely developed. Anomaly-based detection refers to the issue of finding
patterns in data that do not conform to an expected behavior [88]. In anomaly
detection, the system administrator commonly defines the baseline (i.e., normal)
measures to qualify normal system behavior (e.g., network traffic volumes). The
threat monitoring and detection system monitors various system segments and
compares their states to defined profiles. If the observed states are beyond the
defined profiles, anomaly alerts will be issued.

Due to the widespread nature of threats such as malware propagation, a large-scale
traffic monitoring system across networks has become essential. Such threat monitoring
systems can lead to extremely large amounts of data collected from monitored
end-hosts and network devices. In the realm of cyber security, big data refers to the
management and analysis of large-scale information, which exceeds the capabilities
of traditional data processing technology. With the continuous, unbounded, rapid,
and time-varying data streams generated by end-hosts and network devices; the
complexity to store and process big network data will significantly increase. Hence,
the effective processing of threat monitoring data from both end-hosts and network
devices will facilitate the detection of cyber-threats and help security administrators

respond to cyber-threats in a timely manner. In this chapter, the key focus is on the

88

network based intrusion detection system (IDS), which analyzes network traffic in
order to identify the presence of malicious traffic flows. Using traffic flows as an
example to demonstrate our idea, we begin with the following collection of traffic
flow characteristics: flow duration, average bytes per packet of the flow, average
bytes per second of the flow, etc. To accurately detect traffic anomalies, we then
implement the MML schemes to profile the characteristics of traffic flows and to
detect traffic anomalies based on a learned classifier.

To make the threat detection capability efficient, how to make machine learning
schemes to efficiently deal with big network data for threat monitoring is critical.
The main idea is to speed up the machine learning process by using the cloud
computing system. Our developed MML schemes will distribute the computational
task of the learning process across multiple physical machines. The detection system
consists of both the offline training and the online detection phases. In the offline
training phase, we use a training set, where collected network traffic flows consist
of both normal flows and attack flows. The subsets of the training set are then
assigned to different computers to conduct the training process independently. The
computational results of the learning phase from different computers are then
integrated into one single learned classifier. In the online detection phase, the use
of the learned classifier is then set in place to determine whether a traffic flow in

question is either normal or malicious. The detail of the algorithm design and the

89

detection workflow will be introduced in the following sections.

5.2.2 Algorithms Design

Being one of the most dangerous network-based attacks, botnets can be massive.
Coordinated groups of compromised hosts have the ability of conducting malicious
activities such as spamming, DDoS (Distributed Denial-of-Service) attacks, etc. To
accurately and rapidly learn the anomalous behavior of malicious traffic associated
with botnets, we develop two MML schemes: Logistic Regression and Naive Bayes
in a cloud computing environment.

MapReduce Based Logistic Regression Machine Learning Scheme

Logistic regression is a type of probabilistic statistical classification model, which
is commonly used for binary classification problems [89,90]. We implement the
traditional logistic regression algorithm in the MapReduce framework to carry out
the learning process in parallel. In our detection system, we first collect the characteristics
of traffic flows. Each characteristic is considered as one feature of observed data
and each feature has its own numerical value. The detailed feature definition
and extraction process will be introduced in Section 5.2.3. Because each flow is
either normal or malicious, we consider each flow as one observation which can
be represented as (X,Y), where X = (x;,x2,...,x,) is the feature value vector and

Y € (0,1) is the class value. For logistic regression machine learning, we take our

90

input features x;, multiply each one by the regression coefficient 6 = (69, 0, ...,6,),
and then add them up as z = 6pxo + 61x; + - - - + 6,x,,. The result z will be put into the
logistic (sigmoid) function [91]. In this way, we will obtain a number between 0 and
1. We then consider input observations > 0.5 as class 1 and input observations <
0.5 as class 0. In this way, the logistic regression classifier is a probability estimate
process. The detailed principle of the logistic regression algorithm can be found
in [89].

During the training process, it is critical to determine the best regression coefficients.
Suppose we train a dataset with m observations, (Xi,y1),((X2,y2)),.-.,(Xm,ym) and
each observation has n features X = (x;,xp,...,x,). We implement the gradient
descent as an optimization method to find the best regression coefficients. Gradient
descent can be used for most machine learning schemes to update parameters
iteratively in order to minimize the cost function [92]. In logistic regression, the

gradient descent rule is

Y 8L(9)_am Ty .
0,—6,—« 50 — mZizl(h(G Xi) —yi)Xi, (5.2.1)

where « is the arbitrary learning rate that determines the step size, L(0) is the
cost function, and h is the sigmoid function. With a training set input, the parameter
0 will be iteratively updated based on 5.2.1.

It is worth noting that in the parameter updating process of gradient descent,

all iterations need to visit all of the training samples for a given parameter. It is

91

challenging to develop an efficient mechanism to process and transform complex,
large amounts of data into useful detection information. In an attempt to remediate
this, we apply the MapReduce framework to distribute the computational task to
multiple nodes in the cloud. Recall that MapReduce is a parallel programming
model primarily designed for batch processing big data in a distributed computing
environment. MapReduce is designed using the concept of divide-and-conquer
and follows the master/slave computing paradigm. The master node receives the
computational training task and sends the subset to the slave nodes to separately
conduct different training processes. Eventually the computational results will be
combined together as learned classifier. Figure 5.1 illustrates the main idea of this
process.

Using the MapReduce framework, we implement gradient descent for the logistic
regression learning scheme and update the parameters iteratively. Suppose that we
have large-scale data, which contains one million observations (one million traffic
flows in our performance evaluation), then we need to conduct the gradient descent

as

L(6) o
=06 —a =06,— WZ}Q?OOOO(}Z(QTXJ —yi)Xi, (5.2.2)

Then, we use MapReduce to distribute the dataset to four different computers.

Computer one uses subset ((X1,y1), (X2,¥2),- .., (X250000,y,50000)) to carry out gradient

92

Results Combined

Computer4

Figure 5.1: Machine Learning Based on MapReduce Framework.

descent. Similarly, computers 2, 3, and 4 also get their respective subsets. In doing

so, we can derive the computational process as:

((X1,31),(X2,32), -+ (X250000,¥250000)) tmpl = 58532900 (h(07X;) — y;)X;
((X1,51), (X2,¥2), -, (X500000,y500000)) tmpl = 583200000 0 (R(0T X)) — yi) X;
((X1,51), (X2,¥2), -, (X750000,y,50000)) tmpl = 58T P00 (07 X)) — yi)X;
| ((X1,31), (X2,2), -5 (X1000000; Y1000000)) ~ tmpl = Feissg 299000 (h(67X;) — yi)Xi
o
6,=06;,— 700000 (tmpl +tmp2 +tmp3 + tmp4) (5.2.3)

In our MapReduce based logistic regression scheme, each iteration has a map
phase and a reduce phase. Figure 5.2 illustrates the MapReduce based framework

for conducting this parallel machine learning process. As we can see, the MapReduce

93

framework is based on key/value tuples and relies on two built-in functions: a map
function and a reduce function. Suppose that we have data samples (A1,A,,...,A,)
collected from threat monitors on end-hosts and network devices. Each data sample
contains values of pre-defined features (e.g. system logs, source and destination
addresses, and others). In the Map function, the map workers visit the training
samples in parallel and perform key matching to list associated key/value pairs.
Visiting one training sample generates n key/value pairs. The keys are 1 to n and

the values in the gradient descent algorithm are (hg(x((i))) — y((i)))xg.(i)). Then,

we can obtain intermediate results such as K} — agl(l)),agz(l)), e ,agm(l)) , where

agm(l)) represents the value of key K; from sample m computed by map worker
1. In the reduce phase, the values of the same key are added up to yield Xi =
1) ((he(x(i))) —y((i)))xﬁ.(i)) and the parameters are updated by 6, := 6; — 2 ((hg (x{(i))) -
y((i)))xﬁ.(i)). Then, the aforementioned process will be further validated in our

developed cloud computing test bed until convergence of the subtasks, where the

learned model is ready for use.

Reduce Function

A, Map Function
(1)
A i
2 |
(1) Ky = Computation Result
educer :
@ .
. ljm
.
L[]

K; = Computation Result

Ky = Computation Result

K, = Computation Result

S

Figure 5.2: MapReduce Based Framework for Parallel Machine Learning.

94

We use real world data to evaluate the performance of our parallel machine
learning scheme. Based on the cost function of logistic regression (LR) machine
learning, we collected the cost of gradient descent in the MapReduce process shown
in Figure 5.3. As we can see from Figure 5.3, the computational cost of gradient
descent declines as the number of iterations increases. This demonstrates that our
LR MML scheme can speed up the learning process. In addition, we compared the
cost of different arbitrary learning rates . We can see that the higher the arbitrary
learning rate, the cost declines at a higher speed. Hence, we conclude that with
a big arbitrary learning rate, the gradient descent algorithm can quickly locate the

optimal point in a function.

0.25} =
—a=0.1
—a=0.2
0.2 a=056]
=028
a =1
— 015§ s
B
=}
O
0.1H s
0.05(s
0 : :
0 50 100 150 200 250 300

Number of lterations

Figure 5.3: Cost of Gradient Descent using MapReduce.

95

Next, we explore another common MML technique of naive Bayes.

MapReduce Based Naive Bayes Machine Learning Scheme

The other machine learning algorithm we implement is the Naive Bayes classifier.
Generally speaking, the Naive Bayes classifier is a probabilistic classifier based on
applying Bayes’ theorem [93]. The Naive Bayes can construct a classifier given a set
of training data with class labels. In our system, the training data is the observation
of features determined by features associated with traffic flows and the class falls
into two categories: 1 (a positive one when the monitored data is normal) and O (a
negative one when the monitored data is malicious). Denote X = (x1,xp,...,x,) to
be one observation of E, where x, is the value of feature n. Then, the probability of

observation E in this category c is P(c|x;,x2,...,x,). Using Bayes theorem, we have

P(C|X1,XZ, Ce ,xn)

P(clxi,x2,...,x,) = (5.2.4)

P(x1,x2,...,%p)
Then, we can define two types of parameters for the Naive Bayes model: ¢(c)
for c € 1,0, where P(c) = ¢(c) and g;(x;|c) with P(x;|c) = gi(xi|c). Then, we have the

Naive Bayes model as

P(c|x1,x2,...,xn) = q(c)IT 1 qi(xi|c) (5.2.5)

The Naive Bayes model learns the probability of classes when each feature is

given. The Naive Bayes model analyzes all features and combines them to form

96

the probability of each class. After that, whenever a new observation appears, the
classifier then distinguishes the class according to the value of each feature. The
detailed principle of the Naive Bayes model can be found in [93].

Similar to logistic regression, we can use the maximize likelihood estimate (MLE)
method to learn the optimal parameters. Suppose we are given a training set that
contains m observations (Xi,y;),(X2,y2),...,(Xm,vm) and each observation has n
features of X = (x1,x2,...,x,). Based on the log-likelihood function [36] of the Naive
Bayes model, we then apply gradient descent to maximize the likelihood. The rule

is similar to logistic regression as:

o (04
9,' = Gi — E = n—12i:16m(q(c) +qi<Xi|Ci>) (526)

. Hence, in the

I [ei=c] count(c) I [ci=c&X =X]] count (X;|c;)
where q(c) = - = 5 Qi(Xi|C) = - o - count(lc)l

n n
Naive Bayes algorithm, we need to conduct only one iteration to optimize the
parameter 6;. We also apply the MapReduce framework to improve the learning
efficiency of Naive Bayes to train the data set in parallel. The mechanism is similar
to the logistic regression learning scheme. Each computer receives a subset of the
training data and then computes ¢(c) and g;(X;|c). In the following subsection, we

introduce the procedures to implement the parallel machine learning scheme in the

MapReduce framework.

97

Flow Extraction

Useful Information

Extraction

Machine Learning Features
Definition and Calculation

Train The Classifier

Figure 5.4: Detection Work flow

5.2.3 Implementation

Figure 5.4 illustrates the workflow of the offline training process. In this process, we
first extract and select the useful information from traffic flows as samples. Then,
we define the features for machine learning and give the features a value for each
sample. Lastly, we conduct the training process for the classifier.

The detailed steps are illustrated as follows:

Step 1: Flow Extraction: To conduct network traffic monitoring, we collect a
large volume of traffic data. Recall that in common practice, data will be stored
in PCAP (packet capture) format and a large number of flows will be stored in
one PCAP file. Therefore, we need to extract traffic flows from each PCAP file and

separate each traffic flow into a single file. Figure 5.5 illustrates what was extracted

98

from 1,045,225 traffic flows to form a large dataset.

2| I 1SOT_Botnet_DataSet_2010.pcap.UDP_207-209-189-126_1026_224-2-127-254_9875.pcap
™% 150T_Botnet_DataSet_2010.pcap.UDP_207-209-189-126_1028_224-2-127-254_9875.pcap
™ 150T_Botnet_DataSet_2010,pcap.UDP_207-234-181-44_1027_224-2-127-254 9875.pcap
™ 150T_Botnet_DataSet_2010,pcap.UDP_207-234-181-217_10002_233-4-200-19_10002.pcap
™ 150T_Botnet_DataSet_2010.pcap.UDP_feB0--cabc-caff-fefic-caff_5353_ff02--fb_5353.pcap

- || outputdata.tct

Virtual Machines
MedbusPLCTarget
SG30_Vmware

E GraduateProject.zip

1,045,225 items

Figure 5.5: Flow Extraction.

Step 2: Useful Information Selection: The trace file of each traffic flow consists
of massive packets. As shown in Figure 5.6, in each packet, there is plenty of data
recorded and most of this data is useless and redundant. In this step, we propose
to select the most useful information, which will be used for our machine learning
process. The tool TSHARK (https://www.wireshark.org/docs/man-pages/tshark.html)
is used to extract and select the useful information from each flow in the sample.
Figure 5.7 shows an example flow output file through this step, where each row
represents one packet in this flow. Note that each column contains one characteristic
of packets, where the selected characteristics include: the time, the size of the
packet (bytes), the type of network, and the destination MAC (media access control)
address. For a destination MAC address, when the MAC address is of the format
aa:aa:aa:aa:aa:aa, it can be regarded as an instance of malicious traffic. We can see
that only small amounts of data in packets are selected so that the size of the input
data is then placed into the machine learning algorithms, which are used to largely

reduce the data size and to help speed up the data processing.

99

<figld name="frame.ancap_type" showname="Encapsulation type: Ethernet (1)” size="0" pos="0" show="1"/>
=field ni 2000 18:0¢ 2010 18:05:38.958556000>

" showname="Time shift for this packet: .00 000 seconds” size

<fleld name="frame,offset_st

" 64002 T38. 958596000 /=

& delta from previous captured frame: 0000000000 <o * Show="0.000000000" >
ame="Time delta from previcus displayed frame: 0.000000000 seconds” size= L
0000 seconds” size="0" pos="0" show="0.000000000° >

=field name="Ffram. time e="Epoch Time: 1286402 T35 958559 conds” size

" 9y

«field name="frame.time_delta"
3 " show:

LT
show="62">

=fiald nama " ame="Frame is marked:
<field name vname="Frame is ignored: 0"/
field name="fram 5" showname="Protocols in frame: eth:ip: shows="eth:ip:tcp"/>

Figure 5.6: The Information of a Data Packet.

Dct 6, 2018 1B:23:57.9926R3080 B2 65535 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct B, 201@ 1B:23:57.902834000 B2 5840 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct 6, 2018 18:23:57.903173002 68 65535 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct 6, 20190 1B8:24:28.038100220 183 5840 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct 6, 2010 1B8:24:28.052300020 185 65486 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct 6, 2010 1B8:24:28.052466000 54 5840 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct B, 201@ 1B:24:0B8.852566808 76 5848 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct B, 201@ 1B:24:QB.254R360800 BB 65464 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct 6, 201@ 1B:24:QB.5563630002 6B 65464 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct 6, 2010 1B8:24:28.556633000 BB 5840 Ethernet II, Src: aa:aa:aa:aa:aa:aa
Oct 6, 2010 1B8:24:28.757903220 69 65450 Ethernet II, Src: aa:aa:aa:aa:aa:aa

Figure 5.7: An Example of Data Selection Output.

Step 3: Machine Learning Features Definition and Computation: Based on the
output data of Step 2, we define and compute the features for the machine learning
process for each sample. In our study, we consider eight features during the training
stage, which are shown in Table 5.1:

Figure 5.8 shows a screenshot of the computed input data for the logistic regression

duration defined as the total time duration of the flow

bpp defined as average bytes per packet of the flow

bps defined as the average bytes per second of the flow

pPps defined as the average packets per second of the flow

VarlIAT defined as the variance of packet inter-arrival time of the flow
VarBpp defined as the variance of bytes-per-packet of the flow

tws defined as the average TCP window size of the flow

VarTws defined as the variance of TCP window size of the flow

Table 5.1: Description of Extracted Features.

100

classifier. In this screenshot, each row represents one observation and each column
stands for each computed feature value. For example, in the first observation, the
value of Average Bytes per Packet is 90.1429 and the value of Average Bytes per
Second is 194.15. In addition, the last column represents the class of data, either
0 or 1, meaning that the observation is either non-malicious or malicious traffic,
respectively. Similarly, we can compute feature values as input for Naive Bayes,

which is shown in Figure 5.9.

13000.6 90.14285714285714 194.15384615384616 2.1538461538461537 29263.62962962963 13973.622448979591 39607.75 8.912140347589285E8 1
13000.6 94.5 203.53846153846155 2.1538461538461537 40698. 07467407407 19332. 678571428572 39578.. 5509897959E8 1

13000.6 92.96428571428571 200. 923 .1538461538461537 36136.88888888889 17189.534438775514 2 8.908382220344385E8
13000.6 94.39285714285714 o 2 1538461538461537 40370.96296296296 19179.624234693883 5 8.93326087167!
13000.6 92.53571428571429 30769230769232 .1538461538461537 34912.88888888889 16614.177295918365
9000.6 62.0 20.G6 0.3333333333333333 0.0 0.0 65535.0 6.0 1

13000.6 93.07142857142857 200.46153846153845 .1538461538461537 37145.7037037037 7677.923469387755 39624.25 1
13000.0 89.53571428571429 192.84615384615384 1538461538461537 26442.222222222223 12618.39158163265 39570.03571428572 .936774483915817E8
13000.6 90.39285714285714 194.69236769230768 .1538461538461537 28850.88888888889 3757.381377551017 39661.857142857145 8.915973804795921E8
13000.0 96.03571428571429 206.84615384615384 1538461538461537 46092.81481481482 21877.105867346934 39624.57142857143 8.901229410306121E8
9000.6 62.0 20.666666666666668 0.33333333333333. [X] 65535.0 6.0 1

13000.6 87.78571428571429 189. 1538461538461537 24126.5925 9 11566.882653061 39539.392857142855 8.956964274528061E8
13000.6 90.75 195.46153846153845 2.15384615384615. 30131.925925925927 14367. 544642857143 39548. 17857142857 8.951159590752553E8

13000.0 89.35714285714286 192.46153846153845 1538461538461537 27006.962962962964 12905.515306122443 39578.28571428572 8.931365509897959E8
13000.6 94.35714285714286 203.23076923076923 1538461538461537 40999.03703703764 19488.943877551028 39581.17857142857 8.92947154289541€8
13000.0 93.14285714285714 200.6153846153846 53 37967.62962962963 18076.62244897959 39554.17857142857 8.947202809323981E8
13000.6 96.53571428571429 207.92367692307693 48663.92592592593 23102 51 39645. 78571428572 8.887536361683674E8
13000.6 88.42857142857143 190.46153846153845 1538461538461537 24747.85185185185 11841 39547.642857142855 8.951513166581633E8
13000.6 94.10714285714286 202.69230769230768 1538461538461537 39712.148148148146 18873 39569.607142857145 8.937055779528059E8

E8

.916741196752553E8

13000.6 91.03571428571429 196.07692307692307 1538461538461537 30978.37037037037 14767.677295918369 39557.82142857143 8.944803405038265E8

.03703703764 22094.316326530603 39628.42857142857 .B9873418602041E8
9.9999999E7 65338.17391304348 30208 . 74305555556 33457.333333333336 8.6533054 8 1

13000.6 96.42857142857143 207.69230769230768 1538461538461537 465
0.0 106.08333333333333 9.9999999)

1800.6 111.875 2685.0 24.0 88404.52173913043 40839. 276641666664 33485.333333333336 8

0.0 103.20833333333333 9.9999999ET 9.9999999E7 57622.52173913043 26409.16493055557 33549.583333333336 8.604850311597223E8

13000.8 95.07142857142857 204.76923676923077 2.1538461538461537 42896.2962962963 20373.780612244907 39597.57142857143 8.91876548887755E8
111.45833333333333 9.9999999E7 9.9999999E7 87516.66869565218 40447.998263888965 .583333333336 8.64315207326389E8
108.95833333333333 9.9999999E7 9.9999999E7 77077.13043478261 35630.20659722221 .333333333336 8.574776469722223E8
106.70833333333333 9.9999999E7 9.9999999E7 67761.04347826086 31325.373263888876 3489.333333333336 8.63643933638889E8
116.16666666666667 9.9999999ET 9.9999999E7 109439.39130434782 50561.8888888889 .833333333336 8.534732090555558E8
90.25 194.3846153846154 2.1538461538461537 29362.74074074074 14016.61607142857 92857142857 8.911374350663265E8
168.375 9.9999999E7 9.9999999E7 72314.52173913043 33389.317708333336 33547.333333333336 8.686026069722223E8
110.45833333333333 2651.0 24.6 85248.17391364347 39436.41493055554 33453.833333333336 8.655153936555558E8
110.33333333333333 9.9999999E7 9.9999999E7 79612.43478260869 36740.47222222224 33637.333333333336 8.559232669722223E8
103.33333333333333 9.9999999E7 9.9999999E7 58134.95652173913 26936.055555555544 33567.583333333336 8.595455181597223E8
109.66666666666667 9.9999999E7 9.9999999E7 78895.21739130435 36450.30555555555 33629.333333333336 8.563372403055556E8

13000.0 91.46428571428571 197.0 2.1538461538461537 31854.14814814815 15173.963010204083 39567.46428571428 8.93846271677296E8

13000.0 87.67857142857143 188.84615384615384 2.1538461538461537 23232.51851851852 11131.860969387752 39588.25 8.924847717589285E8

13000.0 97.57142857142857 210.,15384615384616 2.1538461538461537 51114.81481481482 24232.173469387762 39574.107142857145 8.934103702385205E8

9.8 97.32142857142857 209.6153846153846 2.1538461538461537 50825.48148148148 23716.289546816313 39566.392857142855 8.939166472385203E8
13000.0 96.0 206.76923876923077 2.1538461538461537 44430.2962962963 21865.5 39610.167142857145 8.910608585242348E8
13000.0 95.14285714285714 204,92307692307693 2.1538461538461537 43229.851851851854 20532.622448979597 39600,46428571428

-638544243055558E8
3

8.916880740344387E8
© 95.21428571428571 205.07692307692307 2.1538461538461537 43564.88888888889 20692.168367346945 39603.357142857145 8.914997466581631E8
168.66666666666667 9.9999999E7 9.9999999E7 78501.30434782668 36338.80555555558 33625.333333333336 8.565443769722223E8
103.125 9.9999999E7 9.9999999E7 56193.13043478261 26018.026041666668 33536.083333333336 8.611909416597223E8

Figure 5.9: Screenshot of Feature Values Computing for Bayes Machine Learning.

Step 4: Train the Classifier: After Step 3, we have the input data ready for the
machine learning schemes. We input the data to the HDFS (Hadoop File System)

using the command: “sudo -u hdfs hadoop fs -put train.txt /inputs/”, which means

101

that the input data is train.txt and we store it in the “/inputs” folder on the HDFS
(Hadoop Distributed File System). We train the input data with our machine
learning schemes with the command: “sudo -u hdfs hadoop jar BigData-1.0-SNAPSHOT.jar
bigdata.towson.edu.BigDataCC/inputs/train.txt/output”, where our executable java
program is called BigData-1.0-SNAPSHOT.jar. Then, the trained model will be
generated under the “/output” folder on the HDFS, which can be used for the offline
detection process. For the online detection process, similar to the offline training
process, we use our data preprocessing program to obtain the input file and then
use the classification program to classify the input test data based on the trained

model.

5.3 Performance Evaluation

To validate the effectiveness of our proposed approach, we developed a cloud test
bed and used it to conduct experiments. In the following, we first present the

evaluation methodology and then show the experimental results.

5.3.1 Evaluation Methodology

As shown in Figure 5.10, we built a cloud computing testbed with one master node
and three slave nodes. Each slave node can act as both a map node and a reduce

node. Each node is a DELL Optiplex 9010 computer with Intel Core i7 3.40GHZ 8

102

Mobile Device
Master/Control J

A
Server Acoess5830
Wireless Access Point

witch (8 port
Swi 8 port) NetFlow Router Internet

v

A
Layer 2 Remote Switch

sw

Slaver Slaver Slaver

Figure 5.10: A Cloud Computing Testbed.

processors with 16GB RAM and 2TB hard drive. We use the Cloudera Manager as
the central interface to perform management tasks such as configurations, management,
and monitoring of the designed system. We downloaded cloudera-manager-installer.bin
from the Cloudera website. The executable permission was configured by using the
command “chmod u+x cloudera-manager-installer.bin”. Then, the installer can be
executed with the command “sudo ./cloudera-manager- installer.bin” to install the
Cloudera Manager. To install the Cloudera Manager on hosts in the cloud, the

Cloudera Manager Admin Console is used to install and configure CDH (Cloudera

103

Distribution including Apache Hadoop).

To evaluate the effectiveness of our developed system, we obtained the ISOT
dataset [94] from http://www.uvic.ca/engineering/ece/isot/datasets to conduct our
experiments. The ISOT dataset is the combination of several publicly available
malicious and non-malicious datasets. Specifically, the ISOT dataset contains 1,675,424
total traffic flows, which consists of 55,904 (3.33%) malicious traffic flows and
1,619,520 (96.66%) non-malicious traffic flows.

For the accuracy of detection, we expect that with a number of training samples,
the machine learning schemes will have more information for the training process,
leading to higher detection accuracy. To validate this hypothesis, we define the
following evaluation metrics: (i) Detection Rate: It is defined as the probability
of correctly classifying the malicious traffic flows and is the ratio of the number
of malicious traffic flows correctly classified versus the total number of malicious
traffic flows. (ii) False Positive Rate: It is defined as the probability of falsely
classifying non-malicious traffic flows and is the ratio of the number of non-malicious
traffic flows falsely classified as malicious traffic flows versus the total number of
non-malicious traffic flows. In our experiments, we show the correlation between

these metrics and the number of traffic flow samples used for the training process.

104

Training Detection Rate | False Positive Rate
Samples

Numbers

20 78.19% 28.68%

100 99.31% 0.18%

140 99.30% 0.69%

200 99.19% 0.81%

1000 99.92% 0

Table 5.2: Detection Accuracy of the Naive Bayes Machine Learning Scheme.

5.3.2 Evaluation Results

We select 20,000 test samples (10,000 malicious traffic flows and 10,000 non-malicious
traffic flows) from the dataset, which are not used in the training process. In terms
of the training samples, in each group of samples, the number of malicious flows
and the number of non-malicious flows are equal. For example, when we use 100
samples for training, 50 are malicious traffic flows and 50 are non-malicious traffic
flows.

Table 5.2 illustrates the relationship between the detection accuracy of the Naive
Bayes machine learning scheme and the number of samples used for the training
process. As we can see, the Naive Bayes machine learning scheme can achieve
a high detection accuracy. The detection rate from using 20 samples is 78.91%.
Starting from 100 samples, the detection rate of each scenario is close to 100%,
meaning that all malicious traffic flows can be accurately identified. In addition, the

false positive rate is near 0, meaning that very few numbers of non-malicious flows

105

Training Detection Rate | False Positive Rate
Samples

Numbers

20 99.48% 0.14%

100 99.55% 0.12%

140 99.99% 0.02%

200 99.48% 0.14%

1000 1% 0

Table 5.3: Detection Results of Logistic Regression Scheme.

are falsely classified as malicious flows. Table 5.3 shows the detection accuracy
of the logistic regression machine learning scheme. In comparison with the Naive
Bayes machine learning scheme, when there are 20 training samples, the logistic
regression machine learning scheme can achieve a high detection accuracy near
99% and a low false positive rate near 0%.

In addition to the detection accuracy, the time efficiency of the MML schemes
are also measured. The metric we used is the training time, which is defined as
the time taken for the training process. Figure 5.11 illustrates the relationship
between the training time of the Naive Bayes machine learning scheme and the
number of slave nodes used in the training process. As we can see, the training
duration declines when the number of nodes increases. When we use 3 nodes to
carry out the training process, it takes only 10.35 minutes to complete the training
process. If we only use 1 node, it will take 30.58 minutes. Similarly, in the logistic
regression based machine learning scheme, the training time can be significantly

reduced when more slave nodes are used (Figure 5.12).

106

35

N N w
o i L

Training Duration (Min)

—
L4

10 -
1 2 3
Number of Nodes

Figure 5.11: Time Cost versus Number of Nodes for Naive Bayes

5.4 Summary

In this chapter, we addressed the issue of detecting malicious traffic flows from
a large scale of monitored traffic data. To make threat detection efficient, we
developed Logistic Regression and Naive Bayes MapReduce based machine learning
schemes to deal with a large amount of threat monitoring data. The main contribution
is to speed up the machine learning process using the MapReduce framework in a
cloud computing environment. We demonstrated our MapReduce based machine
learning schemes in cloud computing environment with a variety of existing structures
of data flows, detection techniques, and implementation protocols. Using a real-world
traffic dataset consisting of both botnet traffic and normal traffic, we conducted

experiments and evaluated the effectiveness of our developed MapReduce based

107

B
[==]

o

[w w
[43] [[42]

]
[==)

Training Duration (Min)

-
[

10 -
1 2 3
Number of Nodes

Figure 5.12: Time Cost versus Number of Nodes for Logistic Regression

machine learning schemes. Our results verify the accuracy and efficiency of our

proposed MML detection schemes to detect malicious traffic.

Chapter 6

Final Remarks

In this dissertation, we developed schemes to enable efficient threat detection in
mobile networks. To be specific, we first developed a machine learning-based
scheme that can dynamically learn the behavior of malware on mobile devices
and augment the human cognition process of defending against malware attacks.
We then developed sampling and aggregation techniques with proper settings to
reduce the bandwidth use. We also developed MapReduce-based Machine Learning
(MML) schemes to rapidly and accurately process and detect malicious traffic in
a cloud environment. In the near future and beyond, research on other types of
wireless networks can be carried out, including intelligent transportation systems

and wireless networks in a three dimensional environment.

108

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection
systems,” in Proceedings of ACM Conference on Computer and Communications
Security, 2002, pp. 255-264.

P. de Boer and M. Pels, “Host-based intrusion detection systems,” 2010.
Ossec. [Online]. Available: http://www.ossec.net/

B. Uphoff and J. S. Wong, “An agent-based framework for intrusion detection
alert verification and event correlation,” International Journal of Security and

Networks, vol. 3, pp. 193-200, 2008.

D. Djenouri, L. Khelladi, and N. Badache, “A survey of security issues in mobile
ad hoc and sensor networks,” IEEE Communications Surveys and Tutorials,
vol. 7, pp. 2-28, 2005.

P. Joshi, “Security issues in routing protocols in MANETSs at network layer,”

Procedia Computer Science, vol. 3, pp. 954-960, 2011.

H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, “Security in mobile ad hoc
networks: challenges and solutions,” IEEE Wireless Communications, vol. 11,
pp. 3847, 2004.

M. Taghiloo, J. Taghiloo, and M. Dehghan, “A SURVEY OF SECURE ADDRESS
AUTO-CONFIGURATION IN MANET,” 2008.

R. Sheikh, M. S. Chande, and D. K. Mishra, “Security issues in MANET: A
review,” in Proceedings of IFIP International Conference on Wireless and Optical

Communications Networks, 2010.

109

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

110

M. Taghiloo, M. Tajamolian, M. Dehghan, and R. Mousavi, “Virtual address
space mapping for IP auto-configuration in MANET with security capability,”
pp- 1-7, 2008.

M. M. Yasin and A. A. Awan, “A study of host-based IDS using system calls,”
Procedia Engineering, 2004.

A. Bose, X. Hu, K. G. Shin, and T. Park, “Behavioral detection of malware on
mobile handsets,” in Proceedings of the 6th International Conference on Mobile

Systems, Applications, and Services, ser. MobiSys "08, 2008.

A. S. Shamili, C. Bauckhage, and T. Alpcan, “Malware detection on mobile
devices using distributed machine learning,” in Proceedings of the 2010 20th

International Conference on Pattern Recognition, ser. ICPR "10, 2010.

D. Venugopal and G. Hu, “Efficient signature based malware detection on
mobile devices,” Mob. Inf. Syst., vol. 4, no. 1, pp. 33-49, Jan. 2008.

A. Shabtai, “Malware detection on mobile devices,” in Proceedings of 2010
Eleventh International Conference on Mobile Data Management (MDM), May
2010.

A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. Yuksel,
S. Camtepe, and S. Albayrak, “Static analysis of executables for collaborative
malware detection on android,” in Proceedings of IEEE International Conference

on Communications (ICC), June 2009.

A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis via
hardware virtualization extensions,” in Proceedings of the 15th ACM Conference

on Computer and Communications Security, 2008.

M.-Y. Su and W.-C. Chang, “Permission-based malware detection mechanisms
for smart phones,” in Proceedings of 2014 International Conference on
Information Networking (ICOIN), Feb 2014.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

111

C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance evaluation on

’

permission-based detection for android malware,” in Advances in Intelligent
Systems and Applications - Volume 2, ser. Smart Innovation, Systems and
Technologies, J.-S. Pan, C.-N. Yang, and C.-C. Lin, Eds. = Springer Berlin

Heidelberg, 2013, vol. 21, pp. 111-120.

D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, ‘A
methodology for empirical analysis of permission-based security models and
its application to android,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security, ser. CCS "10, 2010, pp. 73-84.

J. Cannady, “Artificial neural networks for misuse detection,” in Proceedings
of NATIONAL INFORMATION SYSTEMS SECURITY CONFERENCE, 1998, pp.
443-456.

S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using
neural networks and support vector machines,” in Proceedings of the 2002

International Joint Conference on Neural Networks, 2002.

O. Linda, T. Vollmer, and M. Manic, “Neural network based intrusion
detection system for critical infrastructures,” in Proceedings of International

Joint Conference on Neural Networks, June 2009.

V. Golovko, S. Bezobrazov, P. Kachurka, and L. Vaitsekhovich, “Neural network
and artificial immune systems for malware and network intrusion detection,”
in Advances in Machine Learning II, ser. Studies in Computational Intelligence,
J. Koronacki, Z. Ras, S. Wierzchon, and J. Kacprzyk, Eds. Springer Berlin
Heidelberg, 2010, vol. 263, pp. 485-513.

S. Marchal, X. Jiang, R. State, and T. Engel, “A big data architecture for large
scale security monitoring,” in Proceedings of 2014 IEEE International Congress

on Big Data (BigData Congress), June 2014.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

112

K. Yoshida, Sampling-Based Stream Mining for Network Risk Management,
2006.

S. Goldberg and J. Rexford, “Security vulnerabilities and solutions for packet

sampling,” in Proceedings of IEEE Sarnoff Symposium, 2007.

K. Bartos, M. Rehak, and V. Krmicek, “Optimizing flow sampling for network
anomaly detection,” in Proceedings of International Conference on Wireless

Communications and Mobile Computing, 2011.

J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled data
sufficient for anomaly detection?” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, ser. IMC ’06, 2006, pp. 165-176.

D. Ficara, G. Antichi, A. D. Pietro, S. Giordano, G. Procissi, and F. Vitucci,
“Sampling techniques to accelerate pattern matching in network intrusion

detection systems.” pp. 1-5, 2010.

W. J. Scheirer and M. C. Chuah, “Syntax vs. semantics: competing approaches
to dynamic network intrusion detection,” International Journal of Security and
Networks, vol. 3, pp. 24-35, 2008.

S. Lai and B. Ravindran, “Achieving Max-Min lifetime and fairness with rate
allocation for data aggregation in sensor networks,” Ad Hoc Networks, vol. 9,
pp. 821-834, 2011.

D. Q. Goldin, “Faster In-Network Evaluation of Spatial Aggregationin Sensor
Networks,” in Proceedings of International Conference on Data Engineering,
2006.

N. Shrivastava, C. Buragohain, and D. Agrawal, “Medians and beyond:
New aggregation techniques for sensor networks,” in Proceedings of the 2nd

international conference on Embedded networked sensor systems (SenSys), 2004.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

113

J. Gao, L. J. Guibas, N. Milosavljevic, and J. Hershberger, “Sparse data
aggregation in sensor networks,” in Proceedings of Information Processing in

Sensor Networks, 2007.

W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive protocols for
information dissemination in wireless sensor networks,” in Mobile Computing

and Networking, 1999, pp. 174-185.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” in Proceedings of the 6th Conference on Symposium on Opearting

Systems Design & Implementation - Volume 6, 2004.

J. Lin and C. Dyer, Data-intensive Text Processing with MapReduce, ser. G -
Reference, Information and Interdisciplinary Subjects Series. = Morgan &
Claypool, 2010.

J. T. Morken, “Distributed netflow processing using the map-reduce model,”

PHD Thesis, Norwegian University of Science and Technology, 2010.

M. Ebrahimi, “Solving linear programs in mapreduce,” Master Thesis,

Universitdt des Saarlandes, 2011.

D. Alves, P. Bizarro, and P. Marques, “Flood: Elastic streaming mapreduce,”
in Proceedings of the Fourth ACM International Conference on Distributed

Event-Based Systems, 2010.

C. Doulkeridis and K. Norvag, “On saying enough already! in mapreduce,” in

Proceedings of the ACM 1st International Workshop on Cloud Intelligence, 2012.

F. Halim, R. H. Yap, and Y. Wu, “A mapreduce-based maximum-flow algorithm
for large small-world network graphs,” in Proceedings of IEEE International

Conference on Distributed Computing Systems (ICDCS), 2011.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

114

S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema,
“A performance analysis of ec2 cloud computing services for scientific

computing,” Cloud Computing, pp. 115-131, 2010.

T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “Mapreduce in the clouds for
science,” in Proceedings of 2010 IEEE Second International Conference on Cloud

Computing Technology and Science (CloudCom), 2010.

E. E. Marinelli, “Hyrax: cloud computing on mobile devices using mapreduce,”
DTIC Document, Tech. Rep., 20009.

H. Shivhare, N. Mishra, and S. Sharma, “Cloud computing and big data,” in
Proceedings of 2013 International Conference on Cloud, Big Data and Trust,
2013.

Z. Chen, F. Han, J. Cao, X. Jiang, and S. Chen, “Cloud computing-based
forensic analysis for collaborative network security management system,”

Tsinghua Science and Technology, vol. 18, no. 1, pp. 40-50, 2013.

H. Liu and D. Orban, “Cloud mapreduce: a mapreduce implementation on
top of a cloud operating system,” in Proceedings of the 2011 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2011.

J. Tan, X. Pan, E. Marinelli, S. Kavulya, R. Gandhi, and P. Narasimhan,
“Kahuna: Problem diagnosis for mapreduce-based cloud computing
environments,” in Proceedings of 2010 IEEE Network Operations and
Management Symposium (NOMS), 2010.

J. Zhang, D. Xiang, T. Li, and Y. Pan, “M2m: A simple matlab-to-mapreduce
translator for cloud computing,” Tsinghua Science and Technology, vol. 18,
no. 1, pp. 1-9, 2013.

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

115

W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-oriented cloud computing
architecture,” in Proceedings of 2010 Seventh International Conference on

Information Technology: New Generations (ITNG). IEEE, 2010, pp. 684-689.

D. Leaf, “Overview: Nist cloud computing efforts, nist senior executive for

cloud computing,” 2010.

C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a software platform for .net-based
cloud computing,” High Speed and Large Scale Scientific Computing, vol. 18,
pp. 267-295, 2009.

Y. Huang, H. Su, W. Sun, J. M. Zhang, C. J. Guo, J. M. Xu, Z. B. Jiang, S. X.
Yang, and J. Zhu, “Framework for building a low-cost, scalable, and secured
platform for web-delivered business services,” IBM Journal of Research and

Development, vol. 54, no. 6, pp. 4-1, 2010.

N. Nurain, H. Sarwar, M. Sajjad, and M. Mostakim, “An in-depth study of map
reduce in cloud environment,” in Proceedings of 2012 International Conference
on Advanced Computer Science Applications and Technologies (ACSAT), Nov
2012.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large
clusters,” Commun. ACM, vol. 51, no. 1, Jan. 2008.

H. Pieterse and M. Olivier, “Android botnets on the rise: Trends and
characteristics,” in Information Security for South Africa (ISSA), 2012, Aug
2012, pp. 1-5.

K. Mallinson, “Smartphone revolution: Technology patenting and licensing
fosters innovation, market entry, and exceptional growth.” IEEE tranactions

on Consumer Electronics Magazine, vol. 4, no. 2, pp. 60-66, April 2015.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

116

G. X. Wei Yu, Lingiang Ge and X. Fu, “Towards neural network based malware
detection on android mobile devices,” Springer Book Series: Cybersecurity

Systems for Human Cognition Augmentation, 2014.

Y. Wei, H. Zhang, L. Ge, and R. Hardy, “On behavior-based detection
of malware on android platform,” in Proceedings of 2013 IEEE Global
Communications Conference (GLOBECOM), Dec 2013.

A. Nere, A. Hashmi, M. Lipasti, and G. Tononi, “Bridging the semantic gap:
Emulating biological neuronal behaviors with simple digital neurons,” in
Preceedings of 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA2013), Feb 2013.

D. J. Montana and L. Davis, “Training feedforward neural networks using
genetic algorithms,” in Proceedings of the 11th International Joint Conference
on Artificial Intelligence - Volume 1, ser. IJCAI'89, 1989.

X. Yu, M. Efe, and O. Kaynak, “A general backpropagation algorithm for
feedforward neural networks learning,” IEEE Transactions on Neural Network,
vol. 13, no. 1, pp. 251-254, Jan 2002.

G. Arulampalam and A. Bouzerdoum, ‘A generalized feedforward neural
network architecture for classification and regression,” Neural Networks,
vol. 16, no. 5-6, pp. 561 — 568, 2003, advances in Neural Networks Research:
{IJCNN} ’03.

Y. Kim and J. Ra, “Weight value initialization for improving training speed in
the backpropagation network,” in Proceedings of International Joint Conference
on Neural Networks, Nov 1991, pp. 2396-2401 vol.3.

M. Hagan and M. Menhaj, “Training feedforward networks with the
marquardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6,
pp. 989-993, Nov 1994.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

117

I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-based
malware detection system for android,” in Proceedings of the 1st ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, ser.
SPSM ’11, 2011.

Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution,” in Proceedings of the 2012 IEEE Symposium on Security and Privacy,
ser. SP’12, 2012.

D. Zhang, L. Ge, R. Hardy, W. Yu, H. Zhang, and R. Reschly, “On effective
data aggregation techniques in host-based intrusion detection in manet,” in

Proceedings of IEEE International Consumer Communications and Networking
Conference (CCNC), Jan 2013.

W. Yu, L. Ge, D. Zhang, R. L. Hardy, and R. J. Reschly, “On effective sampling
techniques in host-based intrusion detection in tactical manet,” Int. J. Secur.

Netw., vol. 8, no. 3, pp. 154-168, Nov. 2013.

H. Deng, W. Li, and D. P. Agrawal, “Routing security in wireless ad hoc
networks,” IEEE Communications Magazine, vol. 40, pp. 70-75, 2002.

X. T. Dang, N. Bulusu, and W. chi Feng, RIDA: A Robust Information-Driven
Data Compression Architecture for Irregular Wireless Sensor Networks, 2007.

D. Tsitsipis, S. Dima, A. Kritikakou, C. Panagiotou, and S. Koubias, “Data
merge: A data aggregation technique for wireless sensor networks,” in
Emerging Technologies Factory Automation (ETFA), 2011 IEEE 16th Conference
on, sept. 2011, pp. 1 4.

C. Yang, Z. Yang, K. Ren, and C. Liu, “Transmission reduction based on order
compression of compound aggregate data over wireless sensor networks,”
in Pervasive Computing and Applications (ICPCA), 2011 6th International

Conference on, oct. 2011.

[76]

[77]

[78]
[79]
[80]
[81]

[82]

[83]

[84]

[85]

[86]

118

S. Ozdemir and H. Cam, “Integration of false data detection with data
aggregation and confidential transmission in wireless sensor networks,”
Networking, IEEE/ACM Transactions on, vol. 18, no. 3, pp. 736 -749, june
2010.

Y.-C. Fan and A. Chen, “Efficient and robust schemes for sensor data
aggregation based on linear counting,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 21, no. 11, pp. 1675 -1691, nov. 2010.

OSSSE, http://www.ossec.net/, 2010.

A. Kattan, “Universal intelligent data compression systems: A review,” 2010.
S. Axelsson, “Intrusion Detection Systems: A Survey and Taxonomy,” 2000.
W. Stallings, Network security essentials. Prentice Hall, 2007, vol. 2.

P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez,
“Anomaly-based network intrusion detection: Techniques, systems and

challenges,” computers & security, vol. 28, no. 1-2, pp. 18-28, 2009.
Ns3. [Online]. Available: http://www.nsnam.org/

A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with big
data,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2032-2033, Aug. 2012.
[Online]. Available: http://dx.doi.org/10.14778/2367502.2367572

D. Zhang, W. Yu, and R. Hardy, “A distributed network-sensor based intrusion
detection framework in enterprise networks,” in Proceedings of IEEE Military
Communication Conference (MILCOM), Nov 2011.

W. Yu, Z. Chen, G. Xu, S. Wei, and N. Ekedebe, “A threat monitoring system
for smart mobiles in enterprise networks,” in Proceedings of the 2013 Research

in Adaptive and Convergent Systems, 2013.

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

119

G. X. Lingiang Ge, Hanling Zhang, C. C. Wei Yu, and E. P. Blasch,
“Towards mapreduce based machine learning techniques for processing

massive network threat monitoring data,” Networking for Big Data, published
by CRC Press & Francis Group, 2014.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM
Comput. Surv., vol. 41, no. 3, pp. 15:1-15:58, Jul. 2009.

J. Liu, J. Chen, and J. Ye, “Large-scale sparse logistic regression,” in
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2009.

R. Xi, N. Lin, and Y. Chen, “Compression and aggregation for logistic
regression analysis in data cubes,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, no. 4, pp. 479-492, April 2009.

R. Garg, A. Varna, and M. Wu, “A gradient descent based approach to
secure localization in mobile sensor networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEE International Conference on, March 2012.

J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, “Internet traffic
classification by aggregating correlated naive bayes predictions,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 1, pp. 5-15,
Jan 2013.

C. Chelba and A. Acero, “Conditional maximum likelihood estimation of
naive bayes probability models using rational function growth transform,”
Microsoft Research, Tech. Rep. MSR-TR-2004-33, April 2004. [Online].
Available: http://research.microsoft.com/apps/pubs/default.aspx?id=70051

A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing a
systematic approach to generate benchmark datasets for intrusion detection,”
Comput. Secur., vol. 31, no. 3, pp. 357-374, May 2012.

120

Curriculum Vita

Name: Lingiang Ge

Research Interests: Cyber Security, Computer Networks, Cyber-Physical Systems,
and Information Assurance, including security and privacy issues in wireless networks,
Cyber-physical systems and security, Mobile/celluler networks security, and large
scale data publishing/processing.

Education:

e D.Sc. in Information Technology September 2011 - May 2016
Towson University, Towson, MD, U.S.A.

e M.S. in Applied Information Technology June 2011
Towson University, Towson, MD, U.S.A.

e B.S. in Mathematics June 2009
Qingdao University, Qingdao, P.R.China.

e B.S. in Economics June 2009

Qingdao University, Qingdao, P.R.China.
Teaching Experience:

e Lecturer 09/2013 -12/2015

Department of Computer and Information Sciences, Towson University.

e Teaching Assistant 09/2011 - 05/2013

Department of Computer and Information Sciences, Towson University.
Research Experience:

e Researching Assistant 01/2011 - Present

Department of Computer and Information Sciences, Towson University.

Working Experience:

121

e Assistant Professor 02/2016 - present

Department of Computer Science, Georgia Southwestern Sate University.

e Research Assistant 08/2011-12/2015

Department of Computer Science, Towson University.

e Math Lab Tutor 09/2010 - 06/2011

Department of Mathematics, Towson University.

e Website Developer 02/2011-05/2011

Department of Psychology, Towson University.

e Software Engineer 01/2009-12/2009
Qingdao Chinsoftware Co.,Ltd.

Research Projects

e Modeling and Defense of Malware Attacks on Tactical Mobile Ad Hoc Networks
(PI: Wei Yu). Source: Army Research Laboratory (ARL). Grant Number:
WO911NEF-11-2-0092. Duration: 02/2014-05/2015.

e A Network Sensor Based Defense Framework for Active Network Security
Situation Awareness and Impact Mitigation — Phase II (PI: Wei Yu, Co-PI: Chao
Lu). Source: Air Force SBIR contract. Duration: 12/2013-02/2016.

e Membership Inference in a Differentially Private World and Beyond (PI: Wei
Yu). Source: National Science Foundation (NSF). Grant Number: CNS-1117175.
Duration: 09/2011-08/2015

e A Network Sensor Based Defense Framework for Active Network Security
Situation Awareness and Impact Mitigation (PI: Wei Yu, Co-PI: Chao Lu).
Source: Air Force SBIR contract. Duration: 01/2012-01/2013 and 12/2013-02/2016.

122

e A Distributed Host-Based Intrusion Detection Framework for Military Network
Operation (PI: Wei Yu). Source: Army Research Laboratory (ARL). Grant
Number: W911NF-11-1-0193. Duration: 05/2011-05/2014.

Refereed Book Chapters:

e Lingiang Ge, Hanling Zhang, Guobin Xu, and Wei Yu, “Towards MapReduce
Based Machine Learning Techniques for Processing Massive Network Threat
Monitoring Data", accepted to appear in Networking for Big Data, published
by CRC Press & Francis Group, USA, 2015.

e Wei Yu, Lingiang Ge, Guobin Xu, and Xinwen Fu, “Towards Neural Network
Based Malware Detection On Android Mobile Devices", accepted to appear in
Springer Book Series: Cybersecurity Systems for Human Cognition Augmentation,
2014.

Refereed Journal Publications:

e Zhijiang Chen, Lingiang Ge, Guobin Xu, Wei Yu, Robert F. Erbacher, Hasan
Cam, and Nnanna Ekedebe, “A Threat Monitoring System in Enterprise Networks
with Smart Mobile Devices", International Journal of Security and Networks
(IJSN) - Inderscience Publisher, January 2015.

e Wei Yu, David Griffith, Lingiang Ge, Sulabh Bhattarai, and Nada Golmie
“An Integrated Detection System against False Data Injection Attacks in the
Smart Grid", in the International Journal of Security and Communication
Networks (SCN) — John Wiley & Sons, 2014.

e Difan Zhang, Linqiang Ge, Wei Yu, Rommie Hardy, Robert J. Reschly, and
Hanlin Zhang, “Effective Aggregation Techniques for Host-based Intrusion
Detection in MANET", in the International Journal of Security and Networks
(IJSN) - Inderscience Publisher, 2013.

123

e Wei Yu, Linqgiang Ge, Difan Zhang, Rommie Hardy, and Robert J. Reschly,
“Effective Sampling Techniques for Host-based Intrusion Detection in MANET",
in the International Journal of Security and Networks (IJSN) — Inderscience
Publisher, 2013.

Refereed Conference Publications:

e Xiaofei He, Xinyu Yang, Jie Lin, Linqiang Ge and Wei Yu, “Defending against
Energy Dispatching Data Integrity Attacks in Smart Grid", in Proc. of 34rd IEEE

International Performance Computing and Communications Conference. 2015.

e Sulabh Bhattarai, Stephen Rook, Lingiang Ge, Sixiao Wei, Wei Yu, and Xinwen
Fu, “On Simulation Studies of Cyber Attacks against LTE Networks", in Proc.
of IEEE International Conference on Computer Communication and Networks
(ICCCN), August 2014, Shanghai, P. R. China (Acceptance Ratio: 28%).

e Sixiao Wei, Wei Yu, Lingiang Ge, Khanh D. Pham, Erik P. Blasch, Dan Shen,
and Genshe Chen, “Simulation Study of Unmanned Aerial Vehicle Communication
Networks Addressing Bandwidth Disruptions", in Proc. of SPIE Defense, Security,
and Sensing (DSS), May 2014, Baltimore, MD, USA.

e Lingiang Ge, Wei Yu, Khanh D. Pham, Erik P. Blasch, Genshe Chen, and
Dan Shen, “Toward Effectiveness and Agility of Network Security Situation
Awareness using Moving Target Defense (MTD)", in Proc. of SPIE Defense,
Security, and Sensing (DSS), May 2014, Baltimore, MD, USA.

e Wei Yu, Hanlin Zhang, Linqgiang Ge, and Rommie Hardy, “On Behavior-based
Detection of Malware on Android Platform", in Proc. of IEEE Globe Communication
(GLOBECOM) — Communication and Information System Security (CISS) Symposium,
December 2013, Atlanta, GA, USA.

e Lingiang Ge, Wei Yu, and Mohammad Ali Sistani, “On Localization Attacks

Against Cloud Infrastructure", in Proc. of SPIE Defense, Security, and Sensing

124

2013, April/May 2013, Baltimore, MD, USA.

e Difan Zhang, Linqiang Ge, Rommie Hardy, Hanlin Zhang, Wei Yu, and Robert
J. Reschly, “On Effective Data Aggregation Techniques in Host-based Intrusion
Detection in MANET", in Proc. of the 10th Annual IEEE Consumer Communications
and Networking (CCNC) — Green Communications and Computations Track,

January 2013.

e Lingiang Ge, Difan Zhang, Rommie Hardy, Hui Liu, Wei Yu, and Robert J.
Reschly, “On Effective Sampling Techniques for Host-based Intrusion Detection
in MANET", in Proc. of IEEE Military Communication (MILCOM) - Track 3:
Cyber Security and Trusted Computing, October 2012, Orlando, FL, USA.

e Sulabh Bhattarai, Lingiang Ge, and Wei Yu “A Novel Architecture against False
Data Injection Attacks in Smart Grid", in Proc. of IEEE International Conference
on Communication (ICC) — Communication and Information Systems Security

Symposium (CISS), June 2012, Ottawa, Canada.

e Difan Zhang, Hanlin Zhang, Lingiang Ge, Wei Yu, Chao Lu, Genshe Chen and
Khanh Pham, “On Effectiveness of Network Sensor-based Defense Framework",
in Proc. of SPIE Defense, Security, and Sensing 2012,, April/May 2012, Baltimore,
MD, USA.

Technical Skills
e Language: Java, C++,R, HTML, CSS, JavaScript, PHP, and SQL.
e Operating System: Windows, Linux, and MAC OS.

e Software & Tools: Matlab, NS-2, Gridlab-D, Wireshark, Eclipse, Netbeans,
Android SDK, Xcode, Photoshop, Dreamweaver, MS office suits, etc.

Honors and Awards:

125

e Travel Grant Awards: GEC 21, 2014.
e University Scholarship Awards: Qingdao University, 2005-2009.

Conference Technical Program Committee (TPC):

e Technical program committee member of Asia Pacific Conference on Wireless
and Mobile 2014.

e Technical program committee member of International Conference on Connected
Vehicles & Expo (ICCVE) 2013.

e Technical program committee member of IEEE Consumer Communications and
Networking Conference (CCNC) 2013.

Research Paper Review:

e IEEE International Conference on Computer Communications (INFOCOM),
2015

e IEEE International Conference on Communications (ICC), Track: Ad-hoc and

Sensor Networking, 2015.

e The 34th Annual IEEE International Conference on Computer Communications,

Track:Information security and privacy, 2015.

e IEEE Wireless Communications and Networking Conference (WCNC), Track:

Services, Applications, and Business, 2015.

e IEEE Global Communications Conference (GLOBECOM), Communication and

Information System Security Symposium, 2014.

e Second International Symposium on Security in Computing and Communications

(SSCC’14), Track: Security and Privacy in Networked Systems, 2014.

126

IEEE International Conference on Communications (ICC), Communication

and Information Systems Security Symposium, 2014.

IEEE Wireless Communications and Networking Conference (WCNC), Track:

Services, Applications, and Business, 2014.

IEEE SmartGridComm Symposium, Track: Smart Grid Cyber Security and
Privacy, 2013.

The Premier International Military Communications Conference (MILCOM),

Track: Cyber Security and Trusted Computing, 2012.

