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Abstract— Conventionally, network and cloud infrastructure 

security is handled by firewalls which monitor traffic and block 

malicious access by matching certain observables, e.g., IP, and 

DNS, to blacklisted entries in intelligence databases. Therefore, 

such an approach fails to deal with emerging threats that utilize 

unclassified observables, and to report suspicious activities of 

individual users. In this paper we propose MuSeR, a novel 

approach to assign reputation scores for observables, even when 

no prior information is available, and flag suspicious sessions by 

conducting inter-observable analysis of user requests. In essence, 

MuSeR opts to assist network and cloud administrators mitigate 

attacks while avoiding unwarranted blocking of benign access.  

MuSeR achieves such an objective by associating session 

reputation scores based on the trustworthiness of the user 

navigation pattern, and conducting dynamic analysis of 

individual observables involved within requests. Specifically, 

MuSeR employs a new machine learning model for classifying 

observables using features specifically chosen to factor in 

evidence provided by blacklists, and access patterns of known 

attacks.  To determine a request score, MuSeR maps the 

classifier probabilities to adaptive subjective logic and then uses 

multinomial fusion to leverage evidence from the different 

observables. Given the request scores, MuSeR further promotes a 

novel session reputation scoring model that uses three-valued 

subjective logic to handle trust propagation and aggregation over 

user requests. The effectiveness of MuSeR is validated using a 

large dataset obtained from popular databases such as WHOIS, 

CYMUS, and passive DNS databases.  

Keywords: Firewalls, Networks security, Intrusion detection, 

dynamic multi-observable analysis, reputation scoring. 

I. INTRODUCTION 

Modern societies have become increasingly reliant on 

information technology, where networked computers 

constitute a core infrastructure for enterprise operation, 

trading, banking, retail, etc.  Moreover, cloud service 

providers have become prominent by offering inexpensive and 

reliable computation and storage resources on-demand. 

Unfortunately, the criticality of these computation, 

communication, and storage platforms has also attracted 

cyber-criminals [1]. Examples of prominent attacks include 

the malicious Zeus command and control (C&C) server hosted 

on Amazon EC2 [2], the SpyEye banking Trojan found to be 

using Amazon S3 storage [3], and the Android malware that 

exploited the Google Cloud Message service [1][4]. Thus, 

guarding network and cloud resources are of utmost 

importance. The main objectives are to detect malicious user 

sessions and prevent attackers from accessing the system by 

blocking connection requests. Decisions for blocking access 

are usually made based on pre-knowledge of bad IP, DNS and 

URL that can be observed at the firewall [5]. This is often 

referred to as static observable analysis and falls short in 

dealing with unknown observables.   

This paper strives to effectively tackle network protection 

when the categorization of observables as bad or good is not 

available due to lack of reports, and to detect suspicious 

activities within a user session. We promote a novel reputation 

scoring framework for alerting the administrator about 

suspected observables that are unknown before and providing 

evidence to assist in taking the right action. Basically the 

administrator is often challenged with how to appropriately 

deal with new observables that have some attributes matching 

bad observables, yet no report is available to support a certain 

classification. Our approach assesses the user session as well 

in order to better qualify the evidence about observables so 

that the administrator gains increased fidelity about malicious 

access/activities if the session score is low, and does not 

unnecessarily block certain observables as a precautionary 

measure if the session is deemed unsuspicious.   

Particularly we associate session scores based on the 

trustworthiness of the user navigation pattern and the analysis 

of individual observables involved within requests in the 

session. Again, observables include parameters tracked by a 

firewall, e.g., IP, DNS, and URL.  The contemporary approach 

is to actively probe public IP addresses or DNS independent of 

the context of their usage [6]. Unlike such an approach, we 

factor in the correlation between observables within the same 

requests. Indeed, those observables are tightly related to each 

other, each IP belongs to a domain and each URL involves a 

domain and a set of IPs. Moreover, we do not just provide 

nominal categorization of observables as bad or good; instead 

we track the degree of suspension, in terms of confidence, for 

each user request according to attribute similarity to known 

bad/good observables. We further consider correlation among 

requests and aggregate the trustworthiness of requests within a 

session. Thus, the focus of our solution is to track and probe 

individual observables and determine whether to trust a user 

session, so that a network/cloud administrator becomes able to 

not only counter suspicious access attempts but also identify 

user sessions involving malicious activities. Scoring user 

sessions is also quite useful for cloud systems to point out 

suspected virtual machines. To our knowledge, such session 

assessment methodology has not been pursued in the 

literature. 

Motivation: The conventional approach applied by firewalls is 

to detect malicious individual observables, namely, IP, URLs 

and domains involved within the session, by matching to 

blacklists provided by popular intelligence databases [7]-[9]. 

Contemporary techniques such as rating-based reputation [10], 

could be then applied to provide an aggregate measure for the 

trustworthiness of the session. Unfortunately, the effectiveness 

of such static blacklisting is limited because there is a large 

number of new attacks appearing every day and attackers 



frequently switch their IP, domain and URL to evade 

detection, thus making it difficult to keep blacklists up-to-date 

[11]. In other words, static blacklisting does not quickly adapt 

to new attacks.  

Dynamic analysis of observables overcomes the limitations 

of static blacklists and enables the detection of new malware 

related to domains or IPs [11]. Most existing dynamic analysis 

based solutions perform classification based on the known 

attributes of an observable in order to discriminate between 

malicious and benign ones. However, these solutions consider 

observables individually without factoring in the correlation 

among them. Domain analysis has demonstrated that the 

relationship between observables provides evidence that boost 

the effectiveness of malware detection [12]. However, the 

scope of such domain analysis involves the entire network 

traffic; thus it is computationally intensive and lacks 

responsiveness. To overcome the aforementioned 

shortcomings, we promote MuSeR, a novel multi-observable 

session reputation scoring mechanism that exploits evidence 

and suspicious patterns of some observables to score the user 

requests. To the best of our knowledge, such dynamic scoring 

has not been pursued before.  

Contribution: In MuSeR, a session is viewed as a set of 

requests, each involving multiple observables.  MuSeR, which 

means “ponder” in old French, explores the interrelationship 

between the attributes of the involved observables in order to 

capture similarity with known malicious patterns. The results 

of such analysis will be captured as a reputation score for the 

request. A session reputation is then determined by 

aggregating the scores of the user requests.  In other words, 

the solution consists of three main phases: inter-observables 

analysis, user request scoring, and session scoring.  

During the inter-observables analysis phase, MuSeR 

employs a new supervised machine learning model using 

features specifically chosen to factor in the relationship 

between observables. To illustrate, from the URL, we extract 

lexical and statistical features of the host, domain, sub-

domain, path, and any IP contained within it. For a domain, 

we exploit evidence provided by blacklists and informational 

databases for its records and the corresponding IPs. Finally, 

the IP statistical features are based on external reports, 

historical registry logs along with ASN (Autonomous System 

Number) information.  This mutual correlation between the 

distinct observables is illustrated in Figure 1. The selected 

features of entries in blacklists, suspicious patterns of known 

malware, botnet, etc. are used as training data. The machine 

learning classifier provides a probabilistic assessment (score) 

for whether an observable is malicious or benign. Since the 

precision of such a score depends on the classifier and training 

data, during the request analysis the observable scores are 

modeled as subjective binomial logic [13] in order to assert 

the degree of trust, distrust and uncertainties provided by each 

observable.  To derive a request score, we use cumulative 

source fusion [14] to aggregate the scores of the individual 

observables within the request. 

Given the request scores, we define a session score as the 

probability that no malicious activities are involved. 

Generally, a suspected session could include a mix of benign 

and malicious activities. For scoring a session, we consider the 

dependency between requests to infer the degree of trust for 

the specific user activities. We formalize the problem as a 

graph (trust network [15]) where vertices correspond to 

requests and an edge between two requests implies 

dependency. The session score is then calculated by applying 

distortion and aggregation using three-valued subjective logic 

(3VSL) operators [16][17].  The effectiveness of MuSeR is 

validated through extensive experiments using dataset from 

major intelligence databases. We also analyze the 

effectiveness of the session scores in comparison with an 

alternative scheme in the literature. The results have 

demonstrated that MuSeR achieves high probabilities of 

detection with low false positive rates. In summary, the paper 

makes the following contributions: 

• A novel approach for detecting malicious user sessions. Our 

approach leverages evidence obtained from existing 

blacklists and features extracted from known attack patterns. 

• A rigorous evaluation of the attributes of observables in 

order to identify features that enable detecting malicious 

observables even when no IP or URL reputation information 

is available. 

• A novel request scoring mechanism that factors in both 

evidence and uncertainties. 

• A novel formulation for the session scoring problem based 

on the request pattern.  

The rest of the paper is organized as follows. The next section 

sets MuSeR apart from published schemes. Section III 

highlights the attack model and provides an overview of our 

system. MuSeR is described in detail in Sections IV and V. 

Section VI reports the validation results. Finally the paper is 

concluded in Section VII.  

II. RELATED WORK 

We categorize prior work based on the type of analysis into 

static and dynamic; and on the scope into single and multi-

observables. Overall very little attention has been given to 

multi-observable analysis and most published techniques 

consider only a single observable, as discussed below.  

Proactive blacklisting:  This category of approaches is based 

on referencing existing databases of observables that have 

been associated with malicious behavior, e.g., a host that 

spreads a malware. As pointed out earlier and noted by prior 

studies like [18][19], such analysis is deemed static as it does 

not adapt well to new attacks and its hit rate decreases 

significantly over a period of time. Some work strives to 

mitigate this shortcoming. For example, Sato et al. [20] have 

proposed a way to extend current blacklists by observing the 

 
Figure 1: The multi-observables relationship will check not only the 

reputation of individual observables, e.g., IP address, but also the 

correlation between the observables in the request, meaning the 

URL, domain name, and IP address, within a user request.  

 



co-occurrence of domain information. If a domain name DN 

frequently co-occurs with a known blacklisted name, DN will 

be suspected. Meanwhile, Felegyhazi et al. [21] use a blacklist 

as a seed source to extract all name-servers that have resolved 

a blacklisted domain within a certain period, and track 

domains that have switched to the same name-server at the 

same time. However, the performance of such an approach 

depends on the availability of historical and registration 

information. Our work takes advantage of the evidence 

provided by these intelligence databases and pursues dynamic 

observables analysis.  

Dynamic Observable Analysis: Analyzing DNS data has been 

a popular means for dynamic detection of attacks against 

hosts, networks, or the global Domain Name System itself. 

Some approaches identify infected network nodes by 

monitoring the DNS traffic and/or the behavior of groups of 

machines. For example, in [22]-[25] anomaly-based botnet 

detection mechanisms are proposed by monitoring group 

activities in DNS traffic of a specific network. Some work 

focuses on a specific type of attack. For example, Garera et al. 

[26] rely on URL properties to detect “phishing” activities 

while Holz et al. [27] use statistical features to detect fast flux 

networks. Meanwhile, Anderson et al. [28], Hao et al. [29] and 

Qian et al. [30] identify and characterize spam tactics to 

increase the accuracy of spam-oriented blacklisting. The 

approaches of [6][31][32] rely on analyzing the suspicious 

pattern of blacklisted domains, and domains that are extracted 

from spam mails in order to predict future attacks. MuSeR is a 

general framework and can handle various kinds of malicious 

observables, such as phishing sites, spamming domains, drop 

zones, and botnet command and control servers, etc., by 

factoring in their suspicious pattern over a set of features 

meticulously chosen for such purpose.  

Dynamic observable analysis approaches can also be 

categorized based on how DNS data is collected into: active 

DNS probing, passive DNS, and WHOIS requests. The data 

collected affects the feature extraction and thus the results of 

the analysis.  The methodology pursued by [33][34][35] is to 

repeatedly issue queries with the objective to detect the 

abnormal patterns. Although such methodology performs well 

in detecting new botnets, it imposes excessive overhead that 

degrades the network performance. Furthermore, it does not 

preserve the privacy of the IP addresses of the clients that 

issued the DNS queries. MuSeR reduces such overload by 

exploiting aggregated domains over the passive DNS with the 

focus on the activities of clients. On the other hand, Zdrnja et 

al. [36] have studied passive DNS, i.e., how the domain data 

can be aggregated and used for detecting spams.  Perdisci et 

al. [37] perform passive DNS analysis on recursive DNS 

traffic collected to detect malicious Fast-Flux services. Passive 

DNS monitoring has also been pursued for the identification 

of malicious domains in [11][12][27][37]-[39][40]. The main 

drawback of passive DNS analysis is ignoring the relationship 

between observables, which increases vulnerability once the 

features extracted are known by attackers. We argue that a 

combination of WHOIS information and passive DNS 

provides useful insight about the observables overloading the 

network with excessive traffic.  

Multi-Observable Analysis: A category of existing work 

factors in the relationship between the IP and domain. For 

example, Khalil et al. [41]  argue that with single observable 

analysis, attackers may know what features are being 

employed in detecting malicious domains and use such 

knowledge to evade detection. To address this issue, they have 

developed graphs reflecting the global associations among 

domains and IPs, and proposed a path-based mechanism to 

derive a malicious score for each domain based on their 

topological connection to known malicious domains. 

However, the complexity of such a domain-domain similarity 

graph and path-based interference scoring is high and does not 

suit dynamic analysis. The same research group [42] has 

adopted belief propagation on the graph to identify domains 

controlled by the same entity. To detect malicious domain/IP, 

Najafi et al. [43] have pursued belief propagation on a graph 

using the domain to IP resolution, domain to domain referral 

and sub-domain relationship.  

Graph-based classification has also been used to infer 

Homophily relationships between devices and their installed 

apps to detect unknown compromised [44]. Generally, most 

graph inference based approaches use belief propagation to 

assess maliciousness based on association. On the other hand, 

MalRank [45] uses a knowledge graph to model the 

association among entries in DNS logs. The authors argue that 

belief propagation enables labeling a node based on prior 

knowledge of its neighbors in the graph; yet a balance among 

labels is assumed, which would bias toward the assessment 

towards benign classifications. The result of MalRank 

outperforms existing belief propagation approaches in 

detecting malicious behavior. MuSeR further considers the 

uncertainty on observable scores and captures the inter-play 

between observables within a request. In Section VI, the 

performance of MuSeR will be compared to MalRank. 

Peng et al. [46] also detect malicious domains by focusing 

on the domains that are not resolved to IP addresses directly, 

and only appear in DNS CNAME records. Their rationale is 

that domains connected by CNAME resource records share 

intrinsic relations and are likely to be similar to one another. 

Watkins et al. [47] have proposed a semi-supervised machine 

learning approach to filter out non-malicious domains using 

passive DNS data and the association between domain names 

and IP addresses, i.e., based on their interaction. Meanwhile, 

in [48]  the dependency between domain and IPs is also 

factored in in order to characterize time-series patterns of DNS 

queries and extract temporal behaviors. Ma et al. [49] also 

consider IP dependency for large domain names and present a 

graph-based method to mitigate advanced persistent threats. 

MuSeR stands out in terms of factoring in the uncertainty 

within the observables relationship and at the same time 

focusing on the reputation of the user session.  

III. ATTACK MODEL AND SOLUTION STRATEGY 

This section highlights the specific challenges and states the 

design objective of MuSeR. In addition, we present the 

architecture of MuSeR and provide an overview of its 

capabilities and operation. We further discuss how MuSeR can 

be integrated with existing network security infrastructure.    

Adversary Model: This work considers contemporary threats 

to networked computer infrastructure where an attacker tries 

to intrude into the system by gaining remote access. If 

successful a broad range of malicious activities could be 

launched such as implanting malware, spreading a worm, 

deleting files, generating spam emails, launching denial of 

service attacks, etc. To guard the system, a firewall is often 

employed to monitor packet traffic. The firewall is provided 



with a set of rules, defined by the system administrator, to 

determine how to filter packets. For example, the rule could be 

to discard packets originated from IP addresses, URL, and 

DNS that belong to a provided list of known malicious entries. 

Such a list is often compiled from intelligence databases that 

are made available and maintained by multiple public and 

private sources. The databases are updated based on reported 

attacks after being subjected to an extensive analysis. 

Although firewalls could also apply dynamic analysis of 

observables, as pointed out earlier, such analysis is 

computationally heavy and often cannot be conducted on the 

firewall itself. Thus, an adversary could exploit unknown 

observables to launch attacks relying on the tardiness in 

updating the firewall rules and the dissemination of the new 

intelligence. Moreover the accuracy of dynamic analysis is not 

high with high false-positives and false-negatives.  

MuSeR opts to tackle the aforementioned vulnerability by 

proactively classifying new observables by matching the 

attributes to known bad/good ones and providing a measure 

for the level of suspicion as a guide to the administrator. 

Nonetheless, such classification does not constitute evidence 

to block an IP, DNS or URL. This is especially true when the 

level of suspicion is not very high. Therefore, additional 

analysis would be required to avoid penalizing benign 

observables. MuSeR fills such an important technical gap by 

analyzing user requests and aggregating the assessment across 

sessions. Such session-based analysis will not only provide 

more evidence to the administrator but also predict malicious 

users before an attack takes place.  The latter is particularly 

invaluable for cloud systems where virtual machines can be 

exploited; this capability is not possible through contemporary 

cloud security techniques.  

Approach Overview: MuSeR provides the following three key 

capabilities that: (i) employing a multi-observable analysis to 

enable detecting malicious observables even when no IP or 

URL reputation information, (ii) quantifying the level of 

suspicion in a user request while factoring in both evidence 

and uncertainties, and (iii) aggregating the request scores 

across sessions to alert administrators misbehaving users. 

These capabilities are invaluable for increasing resilience to 

cyber-attacks, and are not supported by prior work, to the best 

of our knowledge. MuSeR operates in a training mode and a 

regular mode. For the training mode, we collect a knowledge 

base that includes whitelists and blacklists of individual 

observables, namely, IP, DNS, and URL. For each observable, 

we extract a set of features and assign a label that reflects 

whether the observable is legitimate or malicious.  In 

particular, we consider three sets: blacklist based features, 

suspicious pattern features and inter-attributes based features. 

MuSeR then leverages machine learning techniques to 

analyze the feature vectors to define rules that can effectively 

distinguish between malicious and legitimate observables. In 

our experiments, as explained in Section VI, we have 

compared eight classifiers in order to select the most 

appropriate for each observable. Such supervised learning 

enables MuSeR to determine the statistical characteristics of 

malicious observables and access patterns in order to monitor 

new requests. Given an observable, the statistical classifier S 

assigns a label and a reputation score, which expresses 

whether the query/use patterns of such an observable 

resembles either known legitimate or malware behavior, and 

with what probability. In order to account for possible 

classification errors, MuSeR considers the precision of the 

classifier as well as the vector of probabilities to assert 

evidence (trust and distrust) and uncertainties. Thus, the 

evidence indicates whether the observable could be trusted 

and associates a confidence level (belief and disbelief). 

Finally, MuSeR aggregates the reputation scores of the 

different observables within a request using cumulative multi-

source fusion [14]. Given the aggregated scores of requests, 

MuSeR models the requests as a trust network in order to infer 

the session reputation score. Figure 2 summarizes the main 

steps of our solution.  

System Deployment: From a system architecture point of 

view, MuSeR could be deployed at the firewall itself relying 

on agents like Snort [50]  to collect the data. Figure 3 shows 

an articulation for such a scenario where the system 

administrator would load the intelligence databases to the 

firewall and define the action rules. MuSeR is to report the 

session scores to the administrator who in turn determines 

what action to be made, or even craft rules for the actions to 

be taken by the firewall autonomously. Alternatively, MuSeR 

could be assigned to a designated server or on the cloud; in 

such a case the administrator will enable the dissemination of 

the data collected by the firewall to where MuSeR is to 

execute.  Such a deployment option could be necessary if the 

firewall is constrained in terms of computational resources.  

 

Figure 3: An articulation of the system architecture showing 

where MuSeR could be integrated. We note that MuSeR could also 

be executed on the cloud based on the data provided from the 

firewall to cope with resource limitations.  

 

MuSeR opts to assist network/cloud admin in detecting 
suspicious activities. It associates session reputation 
scores based on the trustworthiness of the user 
navigation pattern and the dynamic analysis of individual 
observables involved within requests in the session. 
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Figure 2: An overview of MuSeR’s operation; the left side 

highlights the relevant data that MuSeR considers to perform the 

steps on the right side. 

 



IV. MULTI-OBSERVABLE ANALYSIS                                        

As pointed out in the previous section, MuSeR provides three 

novel capabilities. This section focuses on the first, namely, 

the multi-observable analysis that, unlike prior work, conducts 

inter-observable correlation by considering the attributes of 

the observables within a user request. The scoring of requests 

and sessions are covered in the next section.  The multi-

observable analysis involves three steps, specifically, data 

collection, features selection and observable score.  

A. Data collection and features selection   

As explained earlier, MuSeR employs a supervised learning 

model to distinguish between malicious and benign 

observables through the classification of their respective 

features. In order to determine relevant features, MuSeR 

exploits the relationship among observables within a request. 

Basically, the URL includes three parts: the path, host and 

domain. The domain includes a set of records [51], most of 

which have association with distinct IPs. An IP, in its turn, 

involves an ASN number and BGP ranking.  In the balance of 

this section, we describe the selected features for IP, URL and 

DNS and explain why we believe that they may be indicative 

of malicious behavior. We distinguish three types of statistical 

features:  

1) Blacklist-based: Ma et al. [33] have shown that the 

capabilities of a classification system can be increased by 

combining information from multiple intelligence 

databases. Therefore, to define blacklist-based features we 

factor in the evidence of malicious behavior based on 

which an observable is blacklisted.  

2) Suspicious pattern: Previous work on data analysis 

provides valuable insight about patterns of known 

malicious behavior like spam, phishing, fast flux, etc. 

MuSeR exploits attack databases to define suspicious 

pattern based features.  

3) Inter-attributes based: The identity of the malicious 

domain and IP, the registration update log along with the 

correlation with particular registrar contact information for 

an observable could provide valuable insight about 

unknown observables. Thus, MuSeR defines inter-

attributes correlation features.  

URL Features: Considering the different parts of a URL, we 

exploit a combination of lexical features such as:  the URL 

length, the number of dots in the URL and a binary bag-of-

words representation of the hostname and the path [52].  As 

most benign URLs consist of meaningful words, we count the 

number of meaningful words within each URL part. Similar to 

[52], we check whether the URL contains some unsafe 

keywords and whether the IP address is associated with the 

hostname.  Using the domain name included in the URL, we 

consider also its ranking that is provided by Alexa [53] as well 

as safe browsing lookup tool [54]. To train the MuSeR’s 

supervised learning model, we use the whitelisted popular 

Global Sites from Alexa since well-known URLs are very 

unlikely to be malicious. We also use malicious URL extracted 

from the following intelligence sources [55], and [56]. 

DNS Data and Features: To identify relevant DNS features for 

distinguishing between benign and malicious domains, we 

first have recorded the passive DNS information from [57], 

the registration data from WHOIS [58] and the domain records 

of DIG [59]. The passive DNS data includes the name of the 

queried domain, the first and last time queries were issued 

along with the type of their respective domain record.  We 

have also exploited data provided by the WHOIS database, 

particularly, the registrar information, dates for recent updates, 

and ASN information. Using WHOIS, we can determine when 

a domain was first registered, when it was inserted in and 

removed from the zone file or transferred between registrars. 

In order to factor in the DNS records, we collect DIG data 

[59], namely, A, AAA, SOA, TXT and NS.  Then, we extract 

the list of IP addresses that are associated with each queried 

domain. It is important to mention that those records 

complement each other and provide useful insight about the 

domain. To illustrate, the A, AAA and NS records are used for 

conversion of domain names to/from corresponding IP 

addresses. Thus, they are indicative of the frequent usage of 

the domain. In addition, CNAME records are used for creating 

aliases of domain names and can hold arbitrary non-formatted 

text strings. Those records may hint malicious domain if their 

usage is more frequent then the domain conversion records. 

Moreover, the SOA record specifies core information about a 

DNS zone like the primary name server, the email of the 

domain administrator and more importantly the domain serial 

number, and refresher timers that may be used to infer the 

request patterns and their irregularities.  

Based on the collected data, we classify the domain, by 

inspecting the diversity of IP addresses associated with the 

DNS records. Basically, we determine the number of IP 

addresses, analyze the location of each IP address, to which 

ASN it belongs, whether it has been blacklisted, and factor in 

whether the IP addresses of the associated A, MX and NS 

records are located within the same AS. Although the 

approach of [60] also checks the diversity of the IPs, the 

analysis is limited to domains that are included in spam 

emails. By considering suspicious patterns, it has been shown 

by Zhou et al. [61] that domain generation algorithms (DGAs) 

are often used for a short period of time (active time) and have 

similar life and query style. We argue that WHOIS databases 

can also provide valuable information about domain lifetime 

duration, the difference between creation and expiration date, 

and thus possible presence of DGA-created domains.  

It has been shown in [62] that DNS query response patterns 

of known malicious domains are irregular and observed that 

many freshly registered domains are used for malicious 

activities. Since we are unable to track the DNS activities due 

to the overhead of communication as explained in the previous 

section, we thus factor in the freshness of the DNS records and 

the length of the period of activities. Freshness is expressed as 

the duration once the last record has been seen, while the 

activity duration reflects the time between last seen and first 

seen. The authors of [62] also demonstrate that zone based 

features carry discriminative power and show empirically that 

a legitimate domain will not change its hosting name-server 

very often, while malicious domains tend to do so. The most 

notable features here are the maximum number of days for a 

name-server to host a domain (TTL) and ratio of active versus 

non-active name-servers for a domain. Not only do we use the 

TTL value of the start of authority (SOA) records but we 

extend their list of features to include not only the frequent 

change in the SOA but also A, AAA and NS records.   

CNAME records have been used in the literature to 

identify inactive domains in the absence of the other records. 

We compare the relative number of CNAME and TXT records 



to the overall records in order to detect fictitious domains. Liu 

et al. [63] have shown a relationship between blacklisted spam 

and the management activity on these domains as recorded in 

WHOIS databases and DNS zone files. Therefore, we track 

the registration information like contact names and date of 

registration in order to factor in the domain with the same 

contact information of malicious domain. A list of the 

considered features can be found in Appendix A. 

IP Data and Features: To identify the appropriate IP features, 

we check IP statistics that include the total number of packets 

blocked from an IP and the number of unique destination IP 

addresses for these packets [64].  In addition to the 

aforementioned IP features we note the period until the last 

reported attack, the last date that the IP has been seen, the size 

of the AS, the number of reported time, and the number of 

observed attacks. Furthermore, MuSeR uses the BGP ranking 

of the ASN, obtained using [65], to determine the rank of the 

host as well as the country for the IP. Similar to domains, 

MuSeR uses IPWHOIS to find out the owner type of an IP 

address, e.g., enterprise; MuSeR also factors in the IP address 

lifetime using IPWHOIS registration and expiration dates.  

Moreover, MuSeR promotes inter-attribute correlation features 

in order to check for suspicious registrar and the consistency 

of the registration.  The whitelisted IPs in MuSeR training set 

are the IP corresponding to Alexa popular domain [53]. The 

considered blacklists for malicious IPs are obtained from Virus 

Total [9], Talos [66] and DNSBL [67]. In the next subsection, 

we will highlight how MuSeR exploits the aforementioned 

features to detect suspicious patterns in requests and sessions. 

B. Observable scoring  

Our objective is to score each observable given the 

probabilities vector 𝑃(𝑃𝑞
𝑡 , 𝑃𝑞

𝑡̅ ) provided by the supervised 

learning classifier, where 𝑃𝑞
𝑡 , 𝑃𝑞

𝑡̅  indicate, respectively, the 

probability that an observable q is benign or malicious. It is 

important to note that in some cases, the classifier may 

indicate that a certain observable takes one of several possible 

states, but it is not clear which one in particular. On the other 

hand, these probabilities depend on the classifier precision and 

training data. Moreover, the precision of a classifier depends 

on the type of observables (IP, URL and domain) that should 

be later aggregated within the same request score. Given the 

aforementioned three notes, it is often practical to consider not 

only the possible binomial value for an observable (benign and 

malicious) but also their composites values, which constitute 

the uncertainty of the classification along with the degree of 

belief for each possible value. By doing so, we can lower the 

reputation score as we have more evidence of “bad 

associations” with malicious observables. Therefore, MuSeR 

factors in the precision of the classifier in order to assert the 

degree of trust, distrust and uncertainties for each observable. 

Then, MuSeR employs an adaptive subjective logic approach 

to infer the observable score.  

A subjective opinion over a variable q is represented in 

subjective logic by a quadruple of real numbers 

𝜔q=(𝑏q,𝑑q,𝑢q,𝑎q) where 𝑏q, 𝑑q, 𝑢q, 𝑎q  are the belief, disbelief, 

uncertainty and relative atomicity of q, respectively. 

Meanwhile, 𝑎q is the base rate probability distribution 

expressing prior knowledge about the specific class of random 

variables, so that in case of significant uncertainty about a 

specific variable, the base rate indicates the default likelihood. 

In the case of unknown observable, 𝑎q would equal 0.5 

assuming equal probability for an observable being good and 

bad. The sum of the belief masses is less than or equal to 1, 

and is complemented with an uncertainty mass which reflects 

the opinion’s confidence level. Therefore, 𝑏q+𝑑q+𝑢q=1. In 

particular, when 𝑢q = 0, i.e., we have a dogmatic opinion 

because there no uncertainty while bq = 1 is known as an 

absolute opinion. In contrast, an opinion with complete 

uncertainty, is called a vacuous opinion. 

The following equation indicates how MuSeR converts the 

classifier probabilities to subjective opinion:  

𝑏𝑞 = 𝑃𝑟𝐶 × 𝑃𝑞
𝑡

𝑑𝑞 = 𝑃𝑟𝐶 × 𝑃𝑞
𝑡̅

𝑢q = 1 − 𝑏𝑞 − 𝑑𝑞

𝐸q =  𝑏𝑞 + a𝑞 ∗ u𝑞}
 
 

 
 

   (1) 

where: 𝑃𝑞
𝑡 , and 𝑃𝑞

𝑡̅ are the probabilities assessed by the 

classifier that an observable q is malicious and benign, 

respectively (i.e., 𝑃𝑞
𝑡 , + 𝑃𝑞

𝑡̅ = 1);    𝑃𝑟𝐶  represents the precision 

of classifier C; 𝑏q, 𝑑q, and 𝑢q are the belief, disbelief, 

uncertainty about the trustworthiness of q (i.e., q is benign); 

𝐸q is the expected probability of q being benign (while 

factoring the uncertainty in the classifier assessment).  

It is also important to note that the subjective logic 

operator overcomes the binomial classification of observables. 

In fact, simple visualizations for binomial and trinomial 

opinions are based on a barycentric coordinate system. As 

illustrated in Figure 4, the Barycentric Coordinates are simply 

an equilateral triangle with vertices belief, disbelief and 

uncertainty [13]. The opinion is represented as a center of 

gravity (barycenter or geometric centroid) of locating three 

masses 𝑀𝐴, 𝑀B, and 𝑀𝐶 at the triangle vertices. These masses 

are represented by 𝑏q, dq, and 𝑢q, respectively, and located 

over three axes perpendicular over the opposite triangle side of 

each vertex. The base rate 𝑎𝑥 is represented by a point on the 

side of belief and disbelief. The line connecting the 

uncertainty vertex to the point represented by 𝑎q is called the 

director. The projected probability Eq of an opinion 𝜔q 

(reputation score of observable q) can be determined by 

drawing a line from the opinion point 𝜔q to the base and 

parallel to the director line [13].  In the next section, we will 

aggregate the IP, URL and DNS scores to provide the score 

for the request.   

 

Figure 4: Illustrating the application of subjective logic using 

Barycentric Coordinates. 
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V. SCORE AGGREGATION MECHANSIMS 

The multi-observable analysis yields reputation scores for the 

unknown observables. MuSeR analyzes the individual scores 

within a user request and aggregates them across the various 

requests within a session. The resultant session score reflects 

the evidence and uncertainty that malicious activities are 

taking place within the session. To the best of our knowledge 

MuSeR is the first to provide such quantitative assessment. 

A. Request scoring  

The objective of the request scoring is to aggregate the 

knowledge about the distinct observables in the same request. 

Some observables within a request may have malicious 

characteristics, while the other do not. Such conflicting 

classification of observables may yield wrong assessment if 

the degree of certainty is not considered. Therefore, MuSeR 

factors in the classification fidelity in order provide fine-tuned 

tracking of any malicious behavior of the user. Basically, the 

observables represented by their subjective logic vector 

constitute multiple separate sources that can produce different 

and possibly conflicting opinions about the degree of trust for 

a request x. Therefore, MuSeR mathematically fuses these 

multi-source assessments; we denote such fusion by (ωip, 

ωurl, ωdns).  

However, it is challenging to identify the correct fusion 

operator for a specific situation as previous descriptions of 

subjective opinion fusion have been expressed in terms of just 

two sources [13].  Furthermore, the different belief fusion 

operators proposed in the literature vary significantly 

depending on the purpose and nature of the fusion process 

[13]. MuSeR opts to accurately score the request by factoring 

in the degree of evidence and confidence provided by the 

individual IP, URL and DNS classifiers. In [14], subjective 

opinion logic has been generalized to analyze belief fusion 

situations involving an arbitrary number of sources and 

present cumulative and averaging multi-source belief fusion in 

the formalism of subjective logic.  The Cumulative Belief 

Fusion (CBF) is appropriate for cases when the amount of 

independent evidence increases by including additional 

sources; thus CBF perfectly fits the objective of MuSeR. The 

basic idea of belief fusion is illustrated in Figure 5, where the 

cumulative fused opinion (𝑏𝑥
⋄ , 𝑑𝑥

⋄ , 𝑢𝑥
⋄ ) is expressed as 

follows: 

{
  
 

  
 𝑏𝑥

⋄ =
∑ 𝑏𝑥

𝐶∏ 𝑢𝑥
𝐶𝑗

𝐶𝑗≠𝐶𝐶∈ℭ

∑ (∏ 𝑢𝑥
𝐶𝑗
)−(𝑁−1)∏ 𝑢𝑥

𝐶
𝐶∈ℭ𝐶𝑗≠𝐶𝐶∈ℭ

𝑢𝑥
⋄ =

∏ 𝑢𝑥
𝐶

𝐶∈ℭ

∑ (∏ 𝑢𝑥
𝐶𝑗
)−(𝑁−1)∏ 𝑢𝑥

𝐶
𝐶∈ℭ𝐶𝑗≠𝐶𝐶∈ℭ

𝑑𝑥
⋄ = 1 − (𝑏𝑥

⋄ + 𝑢𝑥
⋄ )                         

  (2) 

 

where: ℭ ∈ {𝑈𝑅𝐿, 𝑖𝑝, 𝑑𝑛𝑠}, while 𝑏𝑥
⋄ , 𝑑𝑥

⋄ , and 𝑢𝑥
⋄  are the belief, 

disbelief, and uncertainty for request x, respectively.  The 

intuition behind Eq. (2) is as follows. The belief of 𝑏𝑥
⋄   for a 

given request x reflects the degree of trust that there is no 

malicious activities within x.   The belief for x is expressed as 

the summation of belief for each observable within x subject 

to the uncertainty about the other observables. This is further 

normalized over each combination of possible (N-1) 

observable uncertainties, where N is the number of 

observables in x. Meanwhile, the uncertainty of the request 

score, 𝑢𝑥
⋄ , is the aggregate of the individual observable 

uncertainties. Using Eq. (2), the overall trust for request x is 

based on evidence related to the observables in x. As we have 

more evidence, the uncertainty for x decreases and 

consequently, we can have higher certainty (belief + disbelief) 

as the three components of the subjective logic sum to 1. 

Overall, the request score is expressive and reflects possible 

threat caused by the appearance of as little as a single 

malicious observable as we show in the following Lemma. 

Lemma 1: If a score below 0.5 reflects bad reputation and is 

deemed alarming, the request score will raise alarm in the 

presence of a single suspicious observable that has the least 

uncertainty. 

Proof: Fundamentally the Lemma asserts that if two 

observables are good and one is bad with less uncertainty than 

the two good ones, the request score will be less than 0.5. Let 

us assume that the first observable is suspicious with a score 

of less than 0.5 while the other two observables are not, i.e., 

having a score that exceeds 0.5. That is: 

𝑏𝑥
1 < 0.5, 𝑏𝑥

2 > 0.5, and 𝑏𝑥
3 > 0.5. 

Since 𝑢x + 𝑏𝑥 < 1, both 𝑢𝑥
2 and 𝑢𝑥

3 are less than 0.5.  

Based on the Lemma statement: 𝑢𝑥
1 < 𝑢𝑥

2 < 𝑢𝑥
3. Thus, 𝑢𝑥

1 <
0.5. 

To prove the Lemma, we need to show that 𝑏𝑥
⋄  < 0.5.  Assume 

that 𝑏𝑥
⋄ = ∆, i.e., 

𝑏𝑥
⋄ =

𝑏𝑥
1 [𝑢𝑥

2𝑢𝑥
3] + 𝑏𝑥

2 [𝑢𝑥
1𝑢𝑥

3] + 𝑏𝑥
3 [𝑢𝑥

1𝑢𝑥
2]

[𝑢𝑥
2𝑢𝑥

3] + [𝑢𝑥
1𝑢𝑥

3] + [𝑢𝑥
1𝑢𝑥

2] − 2𝑢𝑥
1𝑢𝑥

2𝑢𝑥
3
= ∆ 

Thus, 

𝑏𝑥
1 [𝑢𝑥

2𝑢𝑥
3] + 𝑏𝑥

2 [𝑢𝑥
1𝑢𝑥

3] + 𝑏𝑥
3 [𝑢𝑥

1𝑢𝑥
2] 

                            = ∆ ∗ [[𝑢𝑥
2𝑢𝑥

3] + [𝑢𝑥
1𝑢𝑥

3] + [𝑢𝑥
1𝑢𝑥

2] − 2𝑢𝑥
1𝑢𝑥

2𝑢𝑥
3] 

 

 

[ 𝑏𝑥
1 − ∆][𝑢𝑥

2𝑢𝑥
3] + [𝑏𝑥

2 − ∆][𝑢𝑥
1𝑢𝑥

3] + [𝑏𝑥
3 − ∆][𝑢𝑥

1𝑢𝑥
2] 

= − 2∆ 𝑢𝑥
1𝑢𝑥

2𝑢𝑥
3 

 

Under the assumptions in the Lemma, it suffices to show that 

the above equation holds for ∆ < 0.5.  

Let ∆ = 0.5, then 

[ 𝑏𝑥
1 − 0.5][𝑢𝑥

2𝑢𝑥
3] + [𝑏𝑥

2 − 0.5][𝑢𝑥
1𝑢𝑥

3] + [𝑏𝑥
3

− 0.5][𝑢𝑥
1𝑢𝑥

2] = − 𝑢𝑥
1𝑢𝑥

2𝑢𝑥
3 

 

Since 𝑏𝑥
2 > 0.5,  [𝑏𝑥

2 − 0.5][𝑢𝑥
1𝑢𝑥

3] > 0; similarly 𝑏𝑥
3 > 0.5 

implies that [𝑏𝑥
3 − 0.5][𝑢𝑥

1𝑢𝑥
2] > 0.  

Thus,  [ 𝑏𝑥
1 − 0.5][𝑢𝑥

2𝑢𝑥
3] < − 2 𝑢𝑥

1𝑢𝑥
2𝑢𝑥

3, 

which implies that: [ 𝑏𝑥
1 − 0.5] < − 𝑢𝑥

1 , or 𝑏𝑥
1 < 0.5 − 𝑢𝑥

1  

 

Figure 5: MuSeR applies cumulative belief to fuse the scores of the 

individual observables (subjective opinion) within a user request. 
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Since 𝑢1 < 0.5 and 𝑏𝑥
1 < 0.5, the above inequality holds and 

hence 𝑏𝑥
⋄ < ∆, for ∆= 0.5 

B.  Session analysis  

Given a set of request scores, Γ = {Ω1, … , Ω𝑛}, we define a 

session score as the probability that no malicious activities are 

involved, or equivalently the level of trust that the system has 

in the user activities as portrayed by the session. Generally, a 

suspected session could include a mix of benign and malicious 

activities. The straightforward approach for aggregating the 

request scores could be based on applying either a cumulative 

or averaging fusion operator to all Ωi’s, in a similar manner to 

the request scoring. However, such an approach does not 

handle trust propagation over a dependent set of requests, i.e., 

inter-request relationships. To illustrate, we can refer to an 

example where a user accesses “www.google.com” to make a 

search and ends up visiting some blacklisted or malicious 

websites that appeared in the search results.  Such a pattern 

differs from visiting the blacklisted website by typing the 

URL. A subjective logic fusion operator in the form of [𝑏𝑒𝑙𝑖𝑒𝑓 

(trust), disbelief (𝑑𝑖𝑠𝑡𝑟𝑢𝑠𝑡), 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦] does not consider 

trust transitivity between the original request 

“www.google.com” and the site whose link appeared in the 

search. In other words, a subjective logic fusion operator does 

not consider trust discounting over a dependent set of requests.  

To address the aforementioned issue, we formulate the 

session scoring problem as a trust network [15]. A trust 

network is modeled as a directed graph (𝑉, E) where a vertex x 

 𝑉 represents a request, and an edge (x, y)  𝐸 denotes the 

succession of requests x and y. In a trust network, two edges 

are in series if they are incident to a vertex of degree 2 and are 

parallel if they join the same pair of distinct vertices. In other 

words, we build a browsing activity tree, where a vertex in the 

tree is the request and there is an edge between two vertices if 

the request for the URL of the child vertex is triggered from 

the URL of the parent vertex. Note that the dependency 

between requests is known in the referrer field in the HTTP 

header. Each sub-path connects a set of requests expressed as 

a set of subjective opinions. MuSeR measures the degree of 

trustworthiness of each sub-path and then aggregates their 

scores to determine the session reputation. The objective is to 

discount the degree of trust over a particular sub-path and fuse 

the trustworthiness evidence over a parallel path. To do so, 

MuSeR defines trust propagation using Three-Valued 

Subjective Logic (3VSL) [16], where trust is defined as the 

probability that a trustee (user) will behave as expected by the 

trustor (system).  

Theoretically, the capability of the 3VSL operator is based 

on the Dirichlet distribution [68] and is shown to be effective 

for capturing trust propagation in social networks [17]. While 

trust in social networks is usually reflected as reputation based 

on ratings, and recommendation preferences, MuSeR focuses 

on the definition of normal/abnormal behavior in the realm of 

network security to quantitatively capture user misbehavior 

based on collected evidence. Unlike subjective logic, the 

3VSL operator defines trust as a trinary event (trust, distrust, 

neutral) instead of a binary event (belief, disbelief). The 

neutral state expresses the posteriori trustworthiness 

uncertainty caused by trust propagation, which is ignored in 

subjective logic. Fundamentally the neutral state keeps the 

evidence distorted from certain spaces when trust propagates 

from one entity to another. Thus, the 3VSL distinguishes the 

posteriori and priori uncertainties existing in trust.  Let 𝐴 =
(𝑏𝐴, 𝑑𝐴, 𝑛𝐴, 𝑒𝐴) be the trustworthiness vector  of a request A, 

where 𝑏𝐴, 𝑑𝐴, 𝑛𝐴, 𝑒𝐴 are, respectively, the belief, disbelief, the 

posteriori and priori uncertainty. Using the trustworthiness 

vector of requests, MuSeR assesses the session score using 

3VSL aggregation and the distortion operators. Although the 

3VSL operator captures the trust change over time, it is based 

on the assumption of known trustworthiness criteria and does 

not consider the malicious manipulation of trust. To overcome 

such a shortcoming, we associate the trust/distrust according 

to the data-driven evidence collected through the previously 

presented multi-observable analysis. In the following, we 

highlight how to use the aggregation and distortion operators 

to monitor dependent and independent user’s requests as well 

as mitigating possible manipulation of trust.  

Trust Propagation over Dependent Requests: A trust 

discounting operator captures the effect of request 

dependency.  Let 𝐴 and 𝐵 be two requests and there is a path 

connecting A and B within the session’s trust network model. 

Then, the trust discounting operation Δ(A, B) is carried out 

as follows [17]: 

Δ(A, B ) = {

𝑏AB = 𝑏A × 𝑏B
𝑑AB = 𝑏A × 𝑑B
𝑒AB = 𝑒B

𝑛AB = 1 − 𝑏AB − 𝑑AB − 𝑒B

  (3) 

Eq. (3) computes the session belief 𝑏AB, disbelief 𝑑AB, 

posteriori uncertainty 𝑛AB, and priori uncertainty 𝑒AB.  Clearly 

the belief of a session is dependent on the belief of requests, 

i.e., conditional probability of being benign; the session belief 

will be the product of the belief of the requests, 

i.e., equals  (𝑏A × 𝑏B). The disbelief is conditional to the 

disbelief in the new request (𝑑B) given the belief in the 

previous request (A) or session score, is thus equal to (𝑏A ×
𝑑B). The session uncertainty, 𝑒AB, is due to the uncertainty on 

request B. However, the posteriori uncertainty, 𝑛AB, that it is 

initially zero will increase over time to capture the cumulative 

uncertainties over the previous requests. This is captured by 

subtracting the degree of belief, disbelief and uncertainty in 

the current session score. This way the trust will decrease over 

time because the posteriori uncertainty increases each time. 

Thus, a user session is trusted by default; however such trust is 

diminished with bad dependent requests, because we are 

accumulating evidence and the distrust for each request is 

added to the posteriori probability. 

Similarly, it is important to mention that the posteriori 

uncertainty exists because of evidence distortions, which is 

initially equal to zero, for each path of dependent requests and 

is later updated according to (3). According to the Δ(A, B) 

operator, we have to evaluate the trustworthiness of the 

sequence of requests (A  B) in terms of belief, disbelief, 

priori and posteriori uncertainties.  The belief constitutes 

conditional probability that depends on certainty of both 

requests. However, the priori uncertainty depends on the lack 

of evidence, thus it depends on the uncertainty of B since the 

uncertainty of the request A has been reinforced by the degree 

of distrust on B. Thus, Δ(A, B) discounts 𝐵’s opinion to 

obtain the trustworthiness of the sub-path (A-B), some certain 

evidence from A will be distorted and will be reflected into the 

posteriori uncertainty of the resulting opinion. However, the 

priori evidence will keep reflecting the uncertainty in B.  

http://www.google.com/
http://www.google.com/


Figure 6 illustrates the effect of Δ(A, B) using the 

scores of the sequence  of dependent requests in Table 1. 

Basically, the distorted evidence is saved into the posteriori 

uncertainty space and increases as the disbelief in subsequent 

requests grows.  The discounting operation is analogous to 

electromagnetic wave propagation where the original signal is 

distorted into a weak one at the receiving side. Since the 

uncertainty determined by Δ(A, B) is distorted and captured 

in the posteriori uncertainty space of B, the same joint 

evidence (belief and disbelief) among all requests in the sub-

paths will be preserved. Therefore, for multi-request distortion 

path, the resulting opinion of a discounting operation shares 

exactly the same evidence space with the original opinion. It is 

also important to note that the trust discounting operation is 

associative but not commutative. This implies that the order of 

execution of the distortion operation should reflect exactly the 

order of issued requests.  

Trust Aggregation of Independent Requests: Given the scores 

for the dependent set of requests (path), MuSeR needs to 

calculate the expected score for the session while also 

considering independent requests. The introduction of neutral 

state makes the operations in 3VSL different from subjective 

logic, which makes the cumulative multi-source fusion 

operator impractical [17]. Eq. (4) shows the aggregation 

operator. The scores for the session are fused in real time as 

the scores for the independent set of requests are accumulated 

progressively given that the operator is associative and 

commutative.  

(𝐵,A) =

{
  
 

  
 𝑏 =

𝑒B∗𝑏A+𝑒A∗𝑏B

𝑒A+𝑒B−𝑒A∗𝑒B

𝑑 =
𝑒B∗𝑑A+𝑒A∗𝑑B

𝑒A+𝑒B−𝑒A∗𝑒B

𝑛 =
𝑒B∗𝑛A+𝑒A∗𝑛B

𝑒A+𝑒B−𝑒A∗𝑒B

𝑒 =
𝑒A∗𝑒B

𝑒A+𝑒B−𝑒A∗𝑒B

   (4) 

According to Eq. (1), the expected score for the session that 

consists of two independent requests A and B, is: 𝐸𝑠  =
 𝑏𝜃(𝜔𝐴,𝜔𝐵) + 𝑎 ∗ 𝑛𝜃(𝜔A,𝜔B). To find the belief, b, of the session 

score, we accumulate the disjoint belief space of requests A 

and B. This is achieved by considering the conditional 

probability of the uncertainty of one request over the belief on 

the other, as shown in Eq. (4). The disbelief, d, is similarly 

computed. The priori and posteriori uncertainties reflect the 

conditional probability of the uncertainty for both requests.  

Countering Score Manipulation: Therefore, we conclude that 

to assess session trust, the original request scores are 

combined by merging the evidence they provide into the final 

opinion. Although the aforementioned aggregation operator 

considers the evidence of the independent requests scores, it 

does not prevent malicious users from manipulating the 

scoring by alternating patterns of good and bad requests to 

neutralize the session scores. To illustrate, Figure 7 reflects the 

result of the session score for the set of requests indicated in 

Table 1, assuming that they are independent. It is important to 

note that for the requests indicated in Table 1, the session is 

classified as bad using the distortion operator of Eq. (3) with a 

score of 0.1, while the aggregation operator of Eq. (4) 

generates a score of 0.54, which implies a neutral session.  

Table1: Example of fusing request scores within a session. 

Score Request Trust Distrust Uncertainty 

0.95 google.com 0.932 0.024 0.05 

0.89 yahoo.com 0.866 0.09 0.044 

0.37 subuys.com 0.354 0.608 0.039 

0.36 subuys.com/6v5r7thh 0.345 0.616 0.039 

To address the aforementioned shortcomings of the 

aggregation operator, we will introduce a distortion factor  𝜇 

following each occurrence of a bad request. Such a factor will 

grow in significance as a function of the number of bad 

requests. By introducing this factor, the objective is to impose 

excessive penalties for users that frequently alternate good and 

bad requests in order to hide the malicious characteristic of the 

session. In fact, when we consider the set of requests as 

dependent, we can discount the trust progressively as we have 

more evidence of distrust. However, when we have a set of 

independent requests, their evidence is considered equitably 

when the requests do not have any new bad pattern. Therefore, 

by applying the distortion factor 𝜇 each time a request is 

classified as suspicious, the aggregator operator will be 

inflicting a penalty that diminishes the trust. Example of 𝜇 

settings could be: 

 𝜇 = 𝛼, or 𝜇 = 𝑒−𝛼 where 𝛼 < 1 

After the first application, 𝛼 could be decreased by a ratio 𝛽 

(i.e., 𝛼 =  𝛼 𝛽), in order to grow the significance of the 

distrust penalty. The penalty could be incorporated in the 

aggregation operator in (4) as: 

𝑏∗ = 𝑏𝐴𝐵 ∗ 𝜇, 

 

Figure 7: Illustrating session trust evolution using trust aggregation 

of our requests, namely, R1, R2, R3, and R4. 

 

Figure 6: Illustrating the effect of applying a trust discount operator. 



𝑑∗ = 𝑑𝐴𝐵 + 𝑏𝐴𝐵 ∗ (1 − 𝜇), 
𝑒∗ = 𝑒𝐴𝐵 , 
𝑢∗ = 𝑢𝐴𝐵 ,   

where 𝑏∗, 𝑑∗, 𝑒∗, 𝑢∗ are the session belief, disbelief priori and 

posteriori uncertainties, respectively. It is important to note 

that the distortion factor varies according to parameters 𝛼 and 

𝛽, which are determined by the network/cloud administrator.  

VI. PEFROMANCE VALIDATION 

The effectiveness of MuSeR is validated through extensive 

experimentation. This section discusses the setup, 

performance metrics and results. 

A. Simulation Environment and Performance Metrics  

We gauge the effectiveness of MuSeR inter-observables 

analysis using the following contemporary metrics: precision, 

recall, F1-score, and Receiver Operating Characteristic 

(ROC).  Since initially we have binary classification, we track 

the samples that get correctly predicted, denoted by true 

positive (TP) and true negative (TN) for the benign or 

malicious categories, respectively. Analogously, fault positive 

(FP) and fault negative (FN) reflect wrongly classified 

samples. The precision is defined TP/(TP+FP) and gauges the 

classifier’s ability to avoid designating a malicious observable 

as benign. Thus, the smaller the number of FP is, the higher 

the precision becomes. The accuracy is the percentage of 𝑇𝑃 
and 𝑇𝑁. On the other hand, the Recall (Sensitivity) metric 

measures the proportion of benign observables that are 

correctly identified, i.e., TP/(TP+FN). Hence, the smaller the 

number of FN is, the higher the recall gets. The F1-score is 

the harmonic mean of precision and sensitivity, and is 

calculated as 2𝑇𝑃/(2𝑇𝑃+𝐹𝑁+𝐹𝑃). Meanwhile, the ROC curve 

is constructed using the values of true positive rate (Recall) 

and false positive rate. In a perfect scenario, the true positive 

rate is close to one (no false negatives) and the false positive 

rate is nearly a zero (no false positives). In the experiments, 

we compare the performance of the following classifiers: 

“Linear SVM”, “RBF SVM”, “Decision Tree”, “Neural Net”, 

“AdaBoost”, and “Naive Bayes”. We compare the MuSeR’s 

multi-observable analysis to contemporary single-observable 

features used in the literature [52][61]-[64]. Using the 

observable scores, we also have conducted validation of the 

request and session scores. For that, we use MalRank [45] as a 

baseline for comparison. MalRank employs a knowledge 

graph to model the associations among observables and then 

applies a graph-based inference algorithm to assess a node 

maliciousness score based on its associations to other nodes 

(observables) in the graph.  

B. Experiment Setup and Results 

We divide the analysis into two categories, namely, classifier 

and the score effectiveness.  

Classifier performance: The objective of these experiments is 

to validate our proposed multi-observable analysis for 

unknown IP, URL and Domains. We assess the effectiveness 

of the classification compared to a single-observable analysis; 

basically, we exclude any feature related to other observables. 

Appendix A enumerates all considered features, and 

distinguishes those used in the single-observable analysis. We 

note that all listed features in the appendix are factored in 

MuSeR’s multi-observable analysis, and not just those marked 
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Figure 8: Classifier effectiveness for (a) domains, (b) IP, and (c) 

URL. 



with “Multi”.    We assess the classification performance using 

the following three datasets, namely, A, B and C, for the three 

set of observables domain, IP and URL, respectively. The 

entries for the domain and the IP have been randomly picked 

from Alexa and Virus Total [8], Talos [60] and DNSBL [61]. 

The entries in the URL set are randomly picked from Alexa 

and from [49], and [50]. The features for each of those entries 

(observables) are extracted from diverse data sources like 

WHOIS, CYMUS, and passive DNS databases as explained in 

detail in data collection (Section IV.A). We have selected the 

aforementioned databases due to their reliability and 

popularity so that the scores produced by MuSeR can be 

validated. The overall dataset contains 7367 domains (Good= 

5984, Bad=1383), 94447 IPs (50479 Good and 43968 Bad), 

7496 URLs (Good= 2620, Bad= 4876). We have divided 

randomly our dataset into 80% used as training data and 20% 

that serves as test data.     

Figure 8 shows the classifier performance results, where 

we compare single- and multi-observable analysis. While we 

have experimented with six classifiers, we are showing the 

best performing four in each plot for clarity of the 

presentation.  When using the set A, we see over Figure 8(a) 

that the best classifier for domains yields accuracy of 94% 

under MuSeR, which surpasses the best results for a single-

attribute analysis, where “AdaBoost” provides an accuracy of 

0.83. “Decision Tree” has provided 71% accuracy, which is 

the worst for domains classification, and consequently 

“Decision Tree” is not shown in Figure 8(a). For MuSeR, the 

“Neural Net” and “Linear SVM” classifiers achieve the 

highest precision and recall. To factor in the relation between 

these two metrics, we illustrate the ROC curve in Figure 9(a). 

Our evaluation shows that the TP rate jumps very quickly to 

94%, which is close to the ideal scenario. The single-attribute 

analysis has much inferior ROC results.  

As indicated by the results for IP classification in Figure 

8(b), the “AdaBoost” classifier leads the way with an accuracy 

score of 86% and precision of 81%. The “Decision Tree” 

classifier comes next in this case. Although the MuSeR’s 

multi-observable approach slightly boosts accuracy for these 

two classifiers compared to the single-observable analysis, 

MuSeR significantly improves their precision; on the other 

hand, both the accuracy and precision for the “Naïve Bayes” 

and “Linear SVM” classifiers, have experienced major 

improvements through MuSeR, as shown in Figure 8(b). 

Unlike DNS, IP classification does not involve many multi-

observable features as evident from Appendix A. When 

comparing the ROC results in Figure 9(b), we also observe 

higher precision and recall values for “AdaBoost” and 

“Decision Tree”, where the curve reaches close to 1 at low FP 

rate, as indicated in Fig. 9(b). Note also that the multi-

observable analysis consistently improves the classification 

performance. Even though the precision or recall measures are 

high for some of single-observable classifiers, the 

corresponding F1-score reflects imbalance between the 

precision and recall values.  

Meanwhile Figures 8(c) and 9(c) report the evaluation 

results for the URL classification. For MuSeR, the highest 

accuracy has been accomplished by “RBF SVM”, while 

“Neural Net” follows very closely. The best ROC value 

performance is achieved by “RBF SVM”. We can clearly see 

the impact on using MuSeR as URL features are mainly 

syntactical. Basically, the multi-observable analysis involves 

more context for the names of domain and subdomains within 

the URL. We note that MuSeR considers the results of the 

various classifiers as evidence with some degree of 

uncertainty and applies subjective logic to fuse these results to 

assign a request score, as validated next.  

Request score expressiveness: The objective of this 

experiment is to validate the effectiveness of our request 

scoring. The observables within the same request may have 

conflicting scores according to the evidence and the 

similarities of their features to known labeled observables 

within their respective category. MuSeR factors in the degree 

of evidence to come up with a consistent score for the entire 

user request. To assess the expressiveness of request scoring, 

we have performed experimentation over sample requests for 

which we have manipulated the malicious characteristics of 

some observables.  For a given request within the sample, we 

have varied the malicious behavior by switching the degree of 

trust and distrust for one of the involved observables. In order 
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Figure 9: Receiver Operating Characteristics (ROC) for (a) 

domains, (b) IP, and (c) URL. 



to capture the effect of the degree of uncertainty, we have 

manipulated the uncertainty of the malicious observable so 

that it has the least, middle and most uncertainty in the 

request. The results are reported in Figure 10, where three 

levels of uncertainty are shown and compared to the “original” 

non-manipulated score. Based on the results, we can note that 

when the malicious observable has the highest degree of 

evidence (least uncertainty) the request score drops 

significantly. This is expected and is consistent with Lemma 1.  

Session scoring analysis: To illustrate the efficiency of the 

session scores, we have used a sample of good and bad 

requests.  We have studied the effect of alternating good and 

bad requests on the session score. Basically, we vary the 

number of occurrences of good requests following each bad 

request, which not only captures the effect of frequency of 

malicious requests but also how forgiving the trust assessment 

is to suspicious activities. The objective is to show how 

expressive the scores of MuSeR are and the effect of trust 

distortion. We have experimented using two trust distortion 

functions, namely multiplicative and exponential, as indicated 

in Section V-B.  Figures 11(a) and 11(b) show the results for 

multiplicative and exponential distortion factors, respectively. 

The value 𝛼 and 𝛽 are set to 0.8, and 0.7, respectively. The x-

axis reflects the number of good requests made after each bad 

one. The figure shows how the belief increasingly gets 

distorted based on the multiplicity of the bad requests in the 

session. Figure 11(a) implies that the multiplicative function is 

more tolerant to the first bad request and becomes more 

penalizing with repeated occurrence. On the other hand, as 

shown in Figure 11(b) the exponential function inflicts high 

penalty on the first bad request in the session and slowly 

grows the trust distortion level as more bad requests are made.  

On the other hand, the baseline approach, MalRank, also 

seems to decrease the scores significantly with high frequency 

of bad requests. This is evident from Figure 11(c). However, 

when the frequency of bad requests diminishes, the 

performance of MalRank drops significantly, meaning that it 

provides scores that do not much reflect suspicion in the 

session. Thus, a misbehaving user can manipulate the session 

by ensuring that the number of good requests consistently 

exceeds the bad ones. In addition, MalRank does not reflect 

the severity of the situation when the number of occurrences 

varies; for example the MalRank score for a combination of 2 

good and 1 bad requests is similar to having 4 good followed 

by 2 bad ones. In summary, good requests in MalRank always 

neutralize the bad ones in the same way, which introduces 

vulnerability. Consequently, MalRank fails to make any 

alarming observation and can be fooled. On the other hand, 

given the evidence based trust assessment, MuSer session 

scores stay indicative of the malicious activities even if the 

attacker increases the number of good requests to evade 

suspicion.    

VII. CONCLUSION 

In this paper, we have presented MuSeR, a novel approach for 

user session reputation scoring. MuSeR factors in evidence 

from known blacklists and suspicious use patterns of 

observables to classify the user requests. In essence, MuSeR 

assists a network/cloud administrator in determining the 
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Figure 11: The effect of the distortion function on session scores 

as a function of the frequency of bad requests, i.e., how many 

good requests follow a bad request.  

 
Figure 10: The request score diminishes the most when 

associated with low uncertainty. The baseline is shown as 

“Original”, and reflects the case where the malicious 

characteristics of observables are not manipulated. 



trustworthiness of a user session based on the navigation 

pattern and the dynamic analysis of individual observables 

involved within requests in that session. Specifically, MuSeR 

employs a machine learning model using features that are 

carefully chosen to factor in evidence provided by blacklists, 

and access patterns of known attacks.  To determine reputation 

scores for observables, MuSeR maps the classifier 

probabilities into subjective logic and then uses cumulative 

fusion to calculate user request scores. Given the request 

scores, MuSeR applies an adaptive version of three-valued 

subjective logic to handle trust propagation and aggregation 

over user requests. MuSeR has been subject to extensive 

evaluation using data from existing databases. The evaluation 

results have demonstrated that MuSeR provides high 

accuracy, detects unknown malicious observables, and 

outperforms competing approaches in the literature. In 

addition, the utility of request and session scores is analyzed. 

For the future work, we would like to extend MuSeR to alert 

the presence of collusive malicious activities across multiple 

user sessions. The idea is to subject sessions with low scores 

to further analysis that correlates the involved observables and 

checks whether there is coordination about the malicious 

attempts of the involved users. 
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APPENDIX A 

DNS Features 

- Single: Lifetime of the domain 

- Single: Freshness of the domain requests 

- Single: Idle time (Time from the last request) 

- Single: Number of countries to which the ASN belongs 

- Single: The TTL of the name server 

- Single: The ratio of active name servers 

- Single: The TTL of A and AAA records 

- Single: The min, max and avg. TTL, serial, refresh, 

retry, and “expire” of the individual SOA records 

- Single: The number of CNAME records 

- Single: The number of TXT records 

- Single: NS check if valid name server 

- Single: The number of NS records 

- Single: The popularity rank of the domain 

- Single: Country rank 

- Multi:  Number of IPs associated with the domain 

- Multi:  Number of blacklisted IPs within the domain 

- Multi:  Number of Popular IPs within the domain 

- Multi:  Max popularity/BGP ranking of IPs 

- Multi:  Min popularity ranking/BGP of IPs BGP 

- Multi:  AVG popularity ranking/BGP of IPs 

- Multi:  Number of ASNs 

IP Features 

- Single: Number of packet blocked for an IP 

- Single: Number of unique destinations from an IP 

- Single: Number of observed attacks using an IP 

- Single: IP freshness (time since an IP was last seen) 

- Single: Number of target addresses hit from an IP 

- Single: Time since the last reported attack 

- Single: Number of packets originating from an IP. 

- Single: IP lifetime 

- Single: Host ranking (Alexa popularity) 

- Single: Rank of the country 

- Single: City associated with geolocation of IP address 

- Single: IP type (Organization/individual) 

- Single: IP lifetime 

- Multi:  Size and BGP ranking of the associated ASN 

- Multi:  Registrar qualification (Suspicious or trusted) 

http://www.faqs.org/rfcs/rfc1834.html
http://www.team-cymru.org/
http://www.dnsbl.info/


URL Features 

- Single: URL length 

- Single: Number of tokens in the URL 

- Single: The occurrence of any IP 

- Single: AVG token length of host, domain and path 

- Single: MAX token  length of host, domain and path 

- Single: Presence of security sensitive words 

- Single: Number of meaningful words 

- Single: Safe-browsing lookup 

- Multi:  Domain popularity ranking 

- Multi:  Rank of the country 

- Multi:  ASN number rank 

- Multi:  IP address is associated with the hostname 
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