
This work is on a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International (CC BY-NC-ND 4.0) license, https://creativecommons.org/licenses/by-nc-
nd/4.0/. Access to this work was provided by the University of Maryland, Baltimore County
(UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access
(MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository
by emailing scholarworks-group@umbc.edu and telling
us
what having access to this work means to you and why
it’s important to you. Thank you.

https://creativecommons.org/licenses/by/4.0/
mailto:scholarworks-group@umbc.edu

Multi-observable Reputation Scoring System for Flagging

Suspicious User Sessions

Wassila Lalouani and Mohamed Younis

Dept. of Computer Science and Elect. Eng.,

University of Maryland Baltimore County.

Email: lwassil1, younis@cs.umbc.edu

Abstract— Conventionally, network and cloud infrastructure

security is handled by firewalls which monitor traffic and block

malicious access by matching certain observables, e.g., IP, and

DNS, to blacklisted entries in intelligence databases. Therefore,

such an approach fails to deal with emerging threats that utilize

unclassified observables, and to report suspicious activities of

individual users. In this paper we propose MuSeR, a novel

approach to assign reputation scores for observables, even when

no prior information is available, and flag suspicious sessions by

conducting inter-observable analysis of user requests. In essence,

MuSeR opts to assist network and cloud administrators mitigate

attacks while avoiding unwarranted blocking of benign access.

MuSeR achieves such an objective by associating session

reputation scores based on the trustworthiness of the user

navigation pattern, and conducting dynamic analysis of

individual observables involved within requests. Specifically,

MuSeR employs a new machine learning model for classifying

observables using features specifically chosen to factor in

evidence provided by blacklists, and access patterns of known

attacks. To determine a request score, MuSeR maps the

classifier probabilities to adaptive subjective logic and then uses

multinomial fusion to leverage evidence from the different

observables. Given the request scores, MuSeR further promotes a

novel session reputation scoring model that uses three-valued

subjective logic to handle trust propagation and aggregation over

user requests. The effectiveness of MuSeR is validated using a

large dataset obtained from popular databases such as WHOIS,

CYMUS, and passive DNS databases.

Keywords: Firewalls, Networks security, Intrusion detection,

dynamic multi-observable analysis, reputation scoring.

I. INTRODUCTION

Modern societies have become increasingly reliant on

information technology, where networked computers

constitute a core infrastructure for enterprise operation,

trading, banking, retail, etc. Moreover, cloud service

providers have become prominent by offering inexpensive and

reliable computation and storage resources on-demand.

Unfortunately, the criticality of these computation,

communication, and storage platforms has also attracted

cyber-criminals [1]. Examples of prominent attacks include

the malicious Zeus command and control (C&C) server hosted

on Amazon EC2 [2], the SpyEye banking Trojan found to be

using Amazon S3 storage [3], and the Android malware that

exploited the Google Cloud Message service [1][4]. Thus,

guarding network and cloud resources are of utmost

importance. The main objectives are to detect malicious user

sessions and prevent attackers from accessing the system by

blocking connection requests. Decisions for blocking access

are usually made based on pre-knowledge of bad IP, DNS and

URL that can be observed at the firewall [5]. This is often

referred to as static observable analysis and falls short in

dealing with unknown observables.

This paper strives to effectively tackle network protection

when the categorization of observables as bad or good is not

available due to lack of reports, and to detect suspicious

activities within a user session. We promote a novel reputation

scoring framework for alerting the administrator about

suspected observables that are unknown before and providing

evidence to assist in taking the right action. Basically the

administrator is often challenged with how to appropriately

deal with new observables that have some attributes matching

bad observables, yet no report is available to support a certain

classification. Our approach assesses the user session as well

in order to better qualify the evidence about observables so

that the administrator gains increased fidelity about malicious

access/activities if the session score is low, and does not

unnecessarily block certain observables as a precautionary

measure if the session is deemed unsuspicious.

Particularly we associate session scores based on the

trustworthiness of the user navigation pattern and the analysis

of individual observables involved within requests in the

session. Again, observables include parameters tracked by a

firewall, e.g., IP, DNS, and URL. The contemporary approach

is to actively probe public IP addresses or DNS independent of

the context of their usage [6]. Unlike such an approach, we

factor in the correlation between observables within the same

requests. Indeed, those observables are tightly related to each

other, each IP belongs to a domain and each URL involves a

domain and a set of IPs. Moreover, we do not just provide

nominal categorization of observables as bad or good; instead

we track the degree of suspension, in terms of confidence, for

each user request according to attribute similarity to known

bad/good observables. We further consider correlation among

requests and aggregate the trustworthiness of requests within a

session. Thus, the focus of our solution is to track and probe

individual observables and determine whether to trust a user

session, so that a network/cloud administrator becomes able to

not only counter suspicious access attempts but also identify

user sessions involving malicious activities. Scoring user

sessions is also quite useful for cloud systems to point out

suspected virtual machines. To our knowledge, such session

assessment methodology has not been pursued in the

literature.

Motivation: The conventional approach applied by firewalls is

to detect malicious individual observables, namely, IP, URLs

and domains involved within the session, by matching to

blacklists provided by popular intelligence databases [7]-[9].

Contemporary techniques such as rating-based reputation [10],

could be then applied to provide an aggregate measure for the

trustworthiness of the session. Unfortunately, the effectiveness

of such static blacklisting is limited because there is a large

number of new attacks appearing every day and attackers

frequently switch their IP, domain and URL to evade

detection, thus making it difficult to keep blacklists up-to-date

[11]. In other words, static blacklisting does not quickly adapt

to new attacks.

Dynamic analysis of observables overcomes the limitations

of static blacklists and enables the detection of new malware

related to domains or IPs [11]. Most existing dynamic analysis

based solutions perform classification based on the known

attributes of an observable in order to discriminate between

malicious and benign ones. However, these solutions consider

observables individually without factoring in the correlation

among them. Domain analysis has demonstrated that the

relationship between observables provides evidence that boost

the effectiveness of malware detection [12]. However, the

scope of such domain analysis involves the entire network

traffic; thus it is computationally intensive and lacks

responsiveness. To overcome the aforementioned

shortcomings, we promote MuSeR, a novel multi-observable

session reputation scoring mechanism that exploits evidence

and suspicious patterns of some observables to score the user

requests. To the best of our knowledge, such dynamic scoring

has not been pursued before.

Contribution: In MuSeR, a session is viewed as a set of

requests, each involving multiple observables. MuSeR, which

means “ponder” in old French, explores the interrelationship

between the attributes of the involved observables in order to

capture similarity with known malicious patterns. The results

of such analysis will be captured as a reputation score for the

request. A session reputation is then determined by

aggregating the scores of the user requests. In other words,

the solution consists of three main phases: inter-observables

analysis, user request scoring, and session scoring.

During the inter-observables analysis phase, MuSeR

employs a new supervised machine learning model using

features specifically chosen to factor in the relationship

between observables. To illustrate, from the URL, we extract

lexical and statistical features of the host, domain, sub-

domain, path, and any IP contained within it. For a domain,

we exploit evidence provided by blacklists and informational

databases for its records and the corresponding IPs. Finally,

the IP statistical features are based on external reports,

historical registry logs along with ASN (Autonomous System

Number) information. This mutual correlation between the

distinct observables is illustrated in Figure 1. The selected

features of entries in blacklists, suspicious patterns of known

malware, botnet, etc. are used as training data. The machine

learning classifier provides a probabilistic assessment (score)

for whether an observable is malicious or benign. Since the

precision of such a score depends on the classifier and training

data, during the request analysis the observable scores are

modeled as subjective binomial logic [13] in order to assert

the degree of trust, distrust and uncertainties provided by each

observable. To derive a request score, we use cumulative

source fusion [14] to aggregate the scores of the individual

observables within the request.

Given the request scores, we define a session score as the

probability that no malicious activities are involved.

Generally, a suspected session could include a mix of benign

and malicious activities. For scoring a session, we consider the

dependency between requests to infer the degree of trust for

the specific user activities. We formalize the problem as a

graph (trust network [15]) where vertices correspond to

requests and an edge between two requests implies

dependency. The session score is then calculated by applying

distortion and aggregation using three-valued subjective logic

(3VSL) operators [16][17]. The effectiveness of MuSeR is

validated through extensive experiments using dataset from

major intelligence databases. We also analyze the

effectiveness of the session scores in comparison with an

alternative scheme in the literature. The results have

demonstrated that MuSeR achieves high probabilities of

detection with low false positive rates. In summary, the paper

makes the following contributions:

• A novel approach for detecting malicious user sessions. Our

approach leverages evidence obtained from existing

blacklists and features extracted from known attack patterns.

• A rigorous evaluation of the attributes of observables in

order to identify features that enable detecting malicious

observables even when no IP or URL reputation information

is available.

• A novel request scoring mechanism that factors in both

evidence and uncertainties.

• A novel formulation for the session scoring problem based

on the request pattern.

The rest of the paper is organized as follows. The next section

sets MuSeR apart from published schemes. Section III

highlights the attack model and provides an overview of our

system. MuSeR is described in detail in Sections IV and V.

Section VI reports the validation results. Finally the paper is

concluded in Section VII.

II. RELATED WORK

We categorize prior work based on the type of analysis into

static and dynamic; and on the scope into single and multi-

observables. Overall very little attention has been given to

multi-observable analysis and most published techniques

consider only a single observable, as discussed below.

Proactive blacklisting: This category of approaches is based

on referencing existing databases of observables that have

been associated with malicious behavior, e.g., a host that

spreads a malware. As pointed out earlier and noted by prior

studies like [18][19], such analysis is deemed static as it does

not adapt well to new attacks and its hit rate decreases

significantly over a period of time. Some work strives to

mitigate this shortcoming. For example, Sato et al. [20] have

proposed a way to extend current blacklists by observing the

Figure 1: The multi-observables relationship will check not only the

reputation of individual observables, e.g., IP address, but also the

correlation between the observables in the request, meaning the

URL, domain name, and IP address, within a user request.

co-occurrence of domain information. If a domain name DN

frequently co-occurs with a known blacklisted name, DN will

be suspected. Meanwhile, Felegyhazi et al. [21] use a blacklist

as a seed source to extract all name-servers that have resolved

a blacklisted domain within a certain period, and track

domains that have switched to the same name-server at the

same time. However, the performance of such an approach

depends on the availability of historical and registration

information. Our work takes advantage of the evidence

provided by these intelligence databases and pursues dynamic

observables analysis.

Dynamic Observable Analysis: Analyzing DNS data has been

a popular means for dynamic detection of attacks against

hosts, networks, or the global Domain Name System itself.

Some approaches identify infected network nodes by

monitoring the DNS traffic and/or the behavior of groups of

machines. For example, in [22]-[25] anomaly-based botnet

detection mechanisms are proposed by monitoring group

activities in DNS traffic of a specific network. Some work

focuses on a specific type of attack. For example, Garera et al.

[26] rely on URL properties to detect “phishing” activities

while Holz et al. [27] use statistical features to detect fast flux

networks. Meanwhile, Anderson et al. [28], Hao et al. [29] and

Qian et al. [30] identify and characterize spam tactics to

increase the accuracy of spam-oriented blacklisting. The

approaches of [6][31][32] rely on analyzing the suspicious

pattern of blacklisted domains, and domains that are extracted

from spam mails in order to predict future attacks. MuSeR is a

general framework and can handle various kinds of malicious

observables, such as phishing sites, spamming domains, drop

zones, and botnet command and control servers, etc., by

factoring in their suspicious pattern over a set of features

meticulously chosen for such purpose.

Dynamic observable analysis approaches can also be

categorized based on how DNS data is collected into: active

DNS probing, passive DNS, and WHOIS requests. The data

collected affects the feature extraction and thus the results of

the analysis. The methodology pursued by [33][34][35] is to

repeatedly issue queries with the objective to detect the

abnormal patterns. Although such methodology performs well

in detecting new botnets, it imposes excessive overhead that

degrades the network performance. Furthermore, it does not

preserve the privacy of the IP addresses of the clients that

issued the DNS queries. MuSeR reduces such overload by

exploiting aggregated domains over the passive DNS with the

focus on the activities of clients. On the other hand, Zdrnja et

al. [36] have studied passive DNS, i.e., how the domain data

can be aggregated and used for detecting spams. Perdisci et

al. [37] perform passive DNS analysis on recursive DNS

traffic collected to detect malicious Fast-Flux services. Passive

DNS monitoring has also been pursued for the identification

of malicious domains in [11][12][27][37]-[39][40]. The main

drawback of passive DNS analysis is ignoring the relationship

between observables, which increases vulnerability once the

features extracted are known by attackers. We argue that a

combination of WHOIS information and passive DNS

provides useful insight about the observables overloading the

network with excessive traffic.

Multi-Observable Analysis: A category of existing work

factors in the relationship between the IP and domain. For

example, Khalil et al. [41] argue that with single observable

analysis, attackers may know what features are being

employed in detecting malicious domains and use such

knowledge to evade detection. To address this issue, they have

developed graphs reflecting the global associations among

domains and IPs, and proposed a path-based mechanism to

derive a malicious score for each domain based on their

topological connection to known malicious domains.

However, the complexity of such a domain-domain similarity

graph and path-based interference scoring is high and does not

suit dynamic analysis. The same research group [42] has

adopted belief propagation on the graph to identify domains

controlled by the same entity. To detect malicious domain/IP,

Najafi et al. [43] have pursued belief propagation on a graph

using the domain to IP resolution, domain to domain referral

and sub-domain relationship.

Graph-based classification has also been used to infer

Homophily relationships between devices and their installed

apps to detect unknown compromised [44]. Generally, most

graph inference based approaches use belief propagation to

assess maliciousness based on association. On the other hand,

MalRank [45] uses a knowledge graph to model the

association among entries in DNS logs. The authors argue that

belief propagation enables labeling a node based on prior

knowledge of its neighbors in the graph; yet a balance among

labels is assumed, which would bias toward the assessment

towards benign classifications. The result of MalRank

outperforms existing belief propagation approaches in

detecting malicious behavior. MuSeR further considers the

uncertainty on observable scores and captures the inter-play

between observables within a request. In Section VI, the

performance of MuSeR will be compared to MalRank.

Peng et al. [46] also detect malicious domains by focusing

on the domains that are not resolved to IP addresses directly,

and only appear in DNS CNAME records. Their rationale is

that domains connected by CNAME resource records share

intrinsic relations and are likely to be similar to one another.

Watkins et al. [47] have proposed a semi-supervised machine

learning approach to filter out non-malicious domains using

passive DNS data and the association between domain names

and IP addresses, i.e., based on their interaction. Meanwhile,

in [48] the dependency between domain and IPs is also

factored in in order to characterize time-series patterns of DNS

queries and extract temporal behaviors. Ma et al. [49] also

consider IP dependency for large domain names and present a

graph-based method to mitigate advanced persistent threats.

MuSeR stands out in terms of factoring in the uncertainty

within the observables relationship and at the same time

focusing on the reputation of the user session.

III. ATTACK MODEL AND SOLUTION STRATEGY

This section highlights the specific challenges and states the

design objective of MuSeR. In addition, we present the

architecture of MuSeR and provide an overview of its

capabilities and operation. We further discuss how MuSeR can

be integrated with existing network security infrastructure.

Adversary Model: This work considers contemporary threats

to networked computer infrastructure where an attacker tries

to intrude into the system by gaining remote access. If

successful a broad range of malicious activities could be

launched such as implanting malware, spreading a worm,

deleting files, generating spam emails, launching denial of

service attacks, etc. To guard the system, a firewall is often

employed to monitor packet traffic. The firewall is provided

with a set of rules, defined by the system administrator, to

determine how to filter packets. For example, the rule could be

to discard packets originated from IP addresses, URL, and

DNS that belong to a provided list of known malicious entries.

Such a list is often compiled from intelligence databases that

are made available and maintained by multiple public and

private sources. The databases are updated based on reported

attacks after being subjected to an extensive analysis.

Although firewalls could also apply dynamic analysis of

observables, as pointed out earlier, such analysis is

computationally heavy and often cannot be conducted on the

firewall itself. Thus, an adversary could exploit unknown

observables to launch attacks relying on the tardiness in

updating the firewall rules and the dissemination of the new

intelligence. Moreover the accuracy of dynamic analysis is not

high with high false-positives and false-negatives.

MuSeR opts to tackle the aforementioned vulnerability by

proactively classifying new observables by matching the

attributes to known bad/good ones and providing a measure

for the level of suspicion as a guide to the administrator.

Nonetheless, such classification does not constitute evidence

to block an IP, DNS or URL. This is especially true when the

level of suspicion is not very high. Therefore, additional

analysis would be required to avoid penalizing benign

observables. MuSeR fills such an important technical gap by

analyzing user requests and aggregating the assessment across

sessions. Such session-based analysis will not only provide

more evidence to the administrator but also predict malicious

users before an attack takes place. The latter is particularly

invaluable for cloud systems where virtual machines can be

exploited; this capability is not possible through contemporary

cloud security techniques.

Approach Overview: MuSeR provides the following three key

capabilities that: (i) employing a multi-observable analysis to

enable detecting malicious observables even when no IP or

URL reputation information, (ii) quantifying the level of

suspicion in a user request while factoring in both evidence

and uncertainties, and (iii) aggregating the request scores

across sessions to alert administrators misbehaving users.

These capabilities are invaluable for increasing resilience to

cyber-attacks, and are not supported by prior work, to the best

of our knowledge. MuSeR operates in a training mode and a

regular mode. For the training mode, we collect a knowledge

base that includes whitelists and blacklists of individual

observables, namely, IP, DNS, and URL. For each observable,

we extract a set of features and assign a label that reflects

whether the observable is legitimate or malicious. In

particular, we consider three sets: blacklist based features,

suspicious pattern features and inter-attributes based features.

MuSeR then leverages machine learning techniques to

analyze the feature vectors to define rules that can effectively

distinguish between malicious and legitimate observables. In

our experiments, as explained in Section VI, we have

compared eight classifiers in order to select the most

appropriate for each observable. Such supervised learning

enables MuSeR to determine the statistical characteristics of

malicious observables and access patterns in order to monitor

new requests. Given an observable, the statistical classifier S

assigns a label and a reputation score, which expresses

whether the query/use patterns of such an observable

resembles either known legitimate or malware behavior, and

with what probability. In order to account for possible

classification errors, MuSeR considers the precision of the

classifier as well as the vector of probabilities to assert

evidence (trust and distrust) and uncertainties. Thus, the

evidence indicates whether the observable could be trusted

and associates a confidence level (belief and disbelief).

Finally, MuSeR aggregates the reputation scores of the

different observables within a request using cumulative multi-

source fusion [14]. Given the aggregated scores of requests,

MuSeR models the requests as a trust network in order to infer

the session reputation score. Figure 2 summarizes the main

steps of our solution.

System Deployment: From a system architecture point of

view, MuSeR could be deployed at the firewall itself relying

on agents like Snort [50] to collect the data. Figure 3 shows

an articulation for such a scenario where the system

administrator would load the intelligence databases to the

firewall and define the action rules. MuSeR is to report the

session scores to the administrator who in turn determines

what action to be made, or even craft rules for the actions to

be taken by the firewall autonomously. Alternatively, MuSeR

could be assigned to a designated server or on the cloud; in

such a case the administrator will enable the dissemination of

the data collected by the firewall to where MuSeR is to

execute. Such a deployment option could be necessary if the

firewall is constrained in terms of computational resources.

Figure 3: An articulation of the system architecture showing

where MuSeR could be integrated. We note that MuSeR could also

be executed on the cloud based on the data provided from the

firewall to cope with resource limitations.

MuSeR opts to assist network/cloud admin in detecting
suspicious activities. It associates session reputation
scores based on the trustworthiness of the user
navigation pattern and the dynamic analysis of individual
observables involved within requests in the session.

Cloud/Network
Admin

Cloud

Intelligence database
provided by various
sources, e.g., Talos

Snort Snort

 ...

Multi-observable
Reputation scoring

Multi-observable
Reputation scoring

curated intelligence
based on findings

Terminate malicious sessions
and/or sandbox files

Figure 2: An overview of MuSeR’s operation; the left side

highlights the relevant data that MuSeR considers to perform the

steps on the right side.

IV. MULTI-OBSERVABLE ANALYSIS

As pointed out in the previous section, MuSeR provides three

novel capabilities. This section focuses on the first, namely,

the multi-observable analysis that, unlike prior work, conducts

inter-observable correlation by considering the attributes of

the observables within a user request. The scoring of requests

and sessions are covered in the next section. The multi-

observable analysis involves three steps, specifically, data

collection, features selection and observable score.

A. Data collection and features selection

As explained earlier, MuSeR employs a supervised learning

model to distinguish between malicious and benign

observables through the classification of their respective

features. In order to determine relevant features, MuSeR

exploits the relationship among observables within a request.

Basically, the URL includes three parts: the path, host and

domain. The domain includes a set of records [51], most of

which have association with distinct IPs. An IP, in its turn,

involves an ASN number and BGP ranking. In the balance of

this section, we describe the selected features for IP, URL and

DNS and explain why we believe that they may be indicative

of malicious behavior. We distinguish three types of statistical

features:

1) Blacklist-based: Ma et al. [33] have shown that the

capabilities of a classification system can be increased by

combining information from multiple intelligence

databases. Therefore, to define blacklist-based features we

factor in the evidence of malicious behavior based on

which an observable is blacklisted.

2) Suspicious pattern: Previous work on data analysis

provides valuable insight about patterns of known

malicious behavior like spam, phishing, fast flux, etc.

MuSeR exploits attack databases to define suspicious

pattern based features.

3) Inter-attributes based: The identity of the malicious

domain and IP, the registration update log along with the

correlation with particular registrar contact information for

an observable could provide valuable insight about

unknown observables. Thus, MuSeR defines inter-

attributes correlation features.

URL Features: Considering the different parts of a URL, we

exploit a combination of lexical features such as: the URL

length, the number of dots in the URL and a binary bag-of-

words representation of the hostname and the path [52]. As

most benign URLs consist of meaningful words, we count the

number of meaningful words within each URL part. Similar to

[52], we check whether the URL contains some unsafe

keywords and whether the IP address is associated with the

hostname. Using the domain name included in the URL, we

consider also its ranking that is provided by Alexa [53] as well

as safe browsing lookup tool [54]. To train the MuSeR’s

supervised learning model, we use the whitelisted popular

Global Sites from Alexa since well-known URLs are very

unlikely to be malicious. We also use malicious URL extracted

from the following intelligence sources [55], and [56].

DNS Data and Features: To identify relevant DNS features for

distinguishing between benign and malicious domains, we

first have recorded the passive DNS information from [57],

the registration data from WHOIS [58] and the domain records

of DIG [59]. The passive DNS data includes the name of the

queried domain, the first and last time queries were issued

along with the type of their respective domain record. We

have also exploited data provided by the WHOIS database,

particularly, the registrar information, dates for recent updates,

and ASN information. Using WHOIS, we can determine when

a domain was first registered, when it was inserted in and

removed from the zone file or transferred between registrars.

In order to factor in the DNS records, we collect DIG data

[59], namely, A, AAA, SOA, TXT and NS. Then, we extract

the list of IP addresses that are associated with each queried

domain. It is important to mention that those records

complement each other and provide useful insight about the

domain. To illustrate, the A, AAA and NS records are used for

conversion of domain names to/from corresponding IP

addresses. Thus, they are indicative of the frequent usage of

the domain. In addition, CNAME records are used for creating

aliases of domain names and can hold arbitrary non-formatted

text strings. Those records may hint malicious domain if their

usage is more frequent then the domain conversion records.

Moreover, the SOA record specifies core information about a

DNS zone like the primary name server, the email of the

domain administrator and more importantly the domain serial

number, and refresher timers that may be used to infer the

request patterns and their irregularities.

Based on the collected data, we classify the domain, by

inspecting the diversity of IP addresses associated with the

DNS records. Basically, we determine the number of IP

addresses, analyze the location of each IP address, to which

ASN it belongs, whether it has been blacklisted, and factor in

whether the IP addresses of the associated A, MX and NS

records are located within the same AS. Although the

approach of [60] also checks the diversity of the IPs, the

analysis is limited to domains that are included in spam

emails. By considering suspicious patterns, it has been shown

by Zhou et al. [61] that domain generation algorithms (DGAs)

are often used for a short period of time (active time) and have

similar life and query style. We argue that WHOIS databases

can also provide valuable information about domain lifetime

duration, the difference between creation and expiration date,

and thus possible presence of DGA-created domains.

It has been shown in [62] that DNS query response patterns

of known malicious domains are irregular and observed that

many freshly registered domains are used for malicious

activities. Since we are unable to track the DNS activities due

to the overhead of communication as explained in the previous

section, we thus factor in the freshness of the DNS records and

the length of the period of activities. Freshness is expressed as

the duration once the last record has been seen, while the

activity duration reflects the time between last seen and first

seen. The authors of [62] also demonstrate that zone based

features carry discriminative power and show empirically that

a legitimate domain will not change its hosting name-server

very often, while malicious domains tend to do so. The most

notable features here are the maximum number of days for a

name-server to host a domain (TTL) and ratio of active versus

non-active name-servers for a domain. Not only do we use the

TTL value of the start of authority (SOA) records but we

extend their list of features to include not only the frequent

change in the SOA but also A, AAA and NS records.

CNAME records have been used in the literature to

identify inactive domains in the absence of the other records.

We compare the relative number of CNAME and TXT records

to the overall records in order to detect fictitious domains. Liu

et al. [63] have shown a relationship between blacklisted spam

and the management activity on these domains as recorded in

WHOIS databases and DNS zone files. Therefore, we track

the registration information like contact names and date of

registration in order to factor in the domain with the same

contact information of malicious domain. A list of the

considered features can be found in Appendix A.

IP Data and Features: To identify the appropriate IP features,

we check IP statistics that include the total number of packets

blocked from an IP and the number of unique destination IP

addresses for these packets [64]. In addition to the

aforementioned IP features we note the period until the last

reported attack, the last date that the IP has been seen, the size

of the AS, the number of reported time, and the number of

observed attacks. Furthermore, MuSeR uses the BGP ranking

of the ASN, obtained using [65], to determine the rank of the

host as well as the country for the IP. Similar to domains,

MuSeR uses IPWHOIS to find out the owner type of an IP

address, e.g., enterprise; MuSeR also factors in the IP address

lifetime using IPWHOIS registration and expiration dates.

Moreover, MuSeR promotes inter-attribute correlation features

in order to check for suspicious registrar and the consistency

of the registration. The whitelisted IPs in MuSeR training set

are the IP corresponding to Alexa popular domain [53]. The

considered blacklists for malicious IPs are obtained from Virus

Total [9], Talos [66] and DNSBL [67]. In the next subsection,

we will highlight how MuSeR exploits the aforementioned

features to detect suspicious patterns in requests and sessions.

B. Observable scoring

Our objective is to score each observable given the

probabilities vector 𝑃(𝑃𝑞
𝑡 , 𝑃𝑞

𝑡̅) provided by the supervised

learning classifier, where 𝑃𝑞
𝑡 , 𝑃𝑞

𝑡̅ indicate, respectively, the

probability that an observable q is benign or malicious. It is

important to note that in some cases, the classifier may

indicate that a certain observable takes one of several possible

states, but it is not clear which one in particular. On the other

hand, these probabilities depend on the classifier precision and

training data. Moreover, the precision of a classifier depends

on the type of observables (IP, URL and domain) that should

be later aggregated within the same request score. Given the

aforementioned three notes, it is often practical to consider not

only the possible binomial value for an observable (benign and

malicious) but also their composites values, which constitute

the uncertainty of the classification along with the degree of

belief for each possible value. By doing so, we can lower the

reputation score as we have more evidence of “bad

associations” with malicious observables. Therefore, MuSeR

factors in the precision of the classifier in order to assert the

degree of trust, distrust and uncertainties for each observable.

Then, MuSeR employs an adaptive subjective logic approach

to infer the observable score.

A subjective opinion over a variable q is represented in

subjective logic by a quadruple of real numbers

𝜔q=(𝑏q,𝑑q,𝑢q,𝑎q) where 𝑏q, 𝑑q, 𝑢q, 𝑎q are the belief, disbelief,

uncertainty and relative atomicity of q, respectively.

Meanwhile, 𝑎q is the base rate probability distribution

expressing prior knowledge about the specific class of random

variables, so that in case of significant uncertainty about a

specific variable, the base rate indicates the default likelihood.

In the case of unknown observable, 𝑎q would equal 0.5

assuming equal probability for an observable being good and

bad. The sum of the belief masses is less than or equal to 1,

and is complemented with an uncertainty mass which reflects

the opinion’s confidence level. Therefore, 𝑏q+𝑑q+𝑢q=1. In

particular, when 𝑢q = 0, i.e., we have a dogmatic opinion

because there no uncertainty while bq = 1 is known as an

absolute opinion. In contrast, an opinion with complete

uncertainty, is called a vacuous opinion.

The following equation indicates how MuSeR converts the

classifier probabilities to subjective opinion:

𝑏𝑞 = 𝑃𝑟𝐶 × 𝑃𝑞
𝑡

𝑑𝑞 = 𝑃𝑟𝐶 × 𝑃𝑞
𝑡̅

𝑢q = 1 − 𝑏𝑞 − 𝑑𝑞

𝐸q = 𝑏𝑞 + a𝑞 ∗ u𝑞}

 (1)

where: 𝑃𝑞
𝑡 , and 𝑃𝑞

𝑡̅ are the probabilities assessed by the

classifier that an observable q is malicious and benign,

respectively (i.e., 𝑃𝑞
𝑡 , + 𝑃𝑞

𝑡̅ = 1); 𝑃𝑟𝐶 represents the precision

of classifier C; 𝑏q, 𝑑q, and 𝑢q are the belief, disbelief,

uncertainty about the trustworthiness of q (i.e., q is benign);

𝐸q is the expected probability of q being benign (while

factoring the uncertainty in the classifier assessment).

It is also important to note that the subjective logic

operator overcomes the binomial classification of observables.

In fact, simple visualizations for binomial and trinomial

opinions are based on a barycentric coordinate system. As

illustrated in Figure 4, the Barycentric Coordinates are simply

an equilateral triangle with vertices belief, disbelief and

uncertainty [13]. The opinion is represented as a center of

gravity (barycenter or geometric centroid) of locating three

masses 𝑀𝐴, 𝑀B, and 𝑀𝐶 at the triangle vertices. These masses

are represented by 𝑏q, dq, and 𝑢q, respectively, and located

over three axes perpendicular over the opposite triangle side of

each vertex. The base rate 𝑎𝑥 is represented by a point on the

side of belief and disbelief. The line connecting the

uncertainty vertex to the point represented by 𝑎q is called the

director. The projected probability Eq of an opinion 𝜔q

(reputation score of observable q) can be determined by

drawing a line from the opinion point 𝜔q to the base and

parallel to the director line [13]. In the next section, we will

aggregate the IP, URL and DNS scores to provide the score

for the request.

Figure 4: Illustrating the application of subjective logic using

Barycentric Coordinates.

Uncertainty

BeliefDisbelief

Probability axis

wy

aqEq 10

V. SCORE AGGREGATION MECHANSIMS

The multi-observable analysis yields reputation scores for the

unknown observables. MuSeR analyzes the individual scores

within a user request and aggregates them across the various

requests within a session. The resultant session score reflects

the evidence and uncertainty that malicious activities are

taking place within the session. To the best of our knowledge

MuSeR is the first to provide such quantitative assessment.

A. Request scoring

The objective of the request scoring is to aggregate the

knowledge about the distinct observables in the same request.

Some observables within a request may have malicious

characteristics, while the other do not. Such conflicting

classification of observables may yield wrong assessment if

the degree of certainty is not considered. Therefore, MuSeR

factors in the classification fidelity in order provide fine-tuned

tracking of any malicious behavior of the user. Basically, the

observables represented by their subjective logic vector

constitute multiple separate sources that can produce different

and possibly conflicting opinions about the degree of trust for

a request x. Therefore, MuSeR mathematically fuses these

multi-source assessments; we denote such fusion by (ωip,

ωurl, ωdns).

However, it is challenging to identify the correct fusion

operator for a specific situation as previous descriptions of

subjective opinion fusion have been expressed in terms of just

two sources [13]. Furthermore, the different belief fusion

operators proposed in the literature vary significantly

depending on the purpose and nature of the fusion process

[13]. MuSeR opts to accurately score the request by factoring

in the degree of evidence and confidence provided by the

individual IP, URL and DNS classifiers. In [14], subjective

opinion logic has been generalized to analyze belief fusion

situations involving an arbitrary number of sources and

present cumulative and averaging multi-source belief fusion in

the formalism of subjective logic. The Cumulative Belief

Fusion (CBF) is appropriate for cases when the amount of

independent evidence increases by including additional

sources; thus CBF perfectly fits the objective of MuSeR. The

basic idea of belief fusion is illustrated in Figure 5, where the

cumulative fused opinion (𝑏𝑥
⋄ , 𝑑𝑥

⋄ , 𝑢𝑥
⋄) is expressed as

follows:

{

 𝑏𝑥

⋄ =
∑ 𝑏𝑥

𝐶∏ 𝑢𝑥
𝐶𝑗

𝐶𝑗≠𝐶𝐶∈ℭ

∑ (∏ 𝑢𝑥
𝐶𝑗
)−(𝑁−1)∏ 𝑢𝑥

𝐶
𝐶∈ℭ𝐶𝑗≠𝐶𝐶∈ℭ

𝑢𝑥
⋄ =

∏ 𝑢𝑥
𝐶

𝐶∈ℭ

∑ (∏ 𝑢𝑥
𝐶𝑗
)−(𝑁−1)∏ 𝑢𝑥

𝐶
𝐶∈ℭ𝐶𝑗≠𝐶𝐶∈ℭ

𝑑𝑥
⋄ = 1 − (𝑏𝑥

⋄ + 𝑢𝑥
⋄)

 (2)

where: ℭ ∈ {𝑈𝑅𝐿, 𝑖𝑝, 𝑑𝑛𝑠}, while 𝑏𝑥
⋄ , 𝑑𝑥

⋄ , and 𝑢𝑥
⋄ are the belief,

disbelief, and uncertainty for request x, respectively. The

intuition behind Eq. (2) is as follows. The belief of 𝑏𝑥
⋄ for a

given request x reflects the degree of trust that there is no

malicious activities within x. The belief for x is expressed as

the summation of belief for each observable within x subject

to the uncertainty about the other observables. This is further

normalized over each combination of possible (N-1)

observable uncertainties, where N is the number of

observables in x. Meanwhile, the uncertainty of the request

score, 𝑢𝑥
⋄ , is the aggregate of the individual observable

uncertainties. Using Eq. (2), the overall trust for request x is

based on evidence related to the observables in x. As we have

more evidence, the uncertainty for x decreases and

consequently, we can have higher certainty (belief + disbelief)

as the three components of the subjective logic sum to 1.

Overall, the request score is expressive and reflects possible

threat caused by the appearance of as little as a single

malicious observable as we show in the following Lemma.

Lemma 1: If a score below 0.5 reflects bad reputation and is

deemed alarming, the request score will raise alarm in the

presence of a single suspicious observable that has the least

uncertainty.

Proof: Fundamentally the Lemma asserts that if two

observables are good and one is bad with less uncertainty than

the two good ones, the request score will be less than 0.5. Let

us assume that the first observable is suspicious with a score

of less than 0.5 while the other two observables are not, i.e.,

having a score that exceeds 0.5. That is:

𝑏𝑥
1 < 0.5, 𝑏𝑥

2 > 0.5, and 𝑏𝑥
3 > 0.5.

Since 𝑢x + 𝑏𝑥 < 1, both 𝑢𝑥
2 and 𝑢𝑥

3 are less than 0.5.

Based on the Lemma statement: 𝑢𝑥
1 < 𝑢𝑥

2 < 𝑢𝑥
3. Thus, 𝑢𝑥

1 <
0.5.

To prove the Lemma, we need to show that 𝑏𝑥
⋄ < 0.5. Assume

that 𝑏𝑥
⋄ = ∆, i.e.,

𝑏𝑥
⋄ =

𝑏𝑥
1 [𝑢𝑥

2𝑢𝑥
3] + 𝑏𝑥

2 [𝑢𝑥
1𝑢𝑥

3] + 𝑏𝑥
3 [𝑢𝑥

1𝑢𝑥
2]

[𝑢𝑥
2𝑢𝑥

3] + [𝑢𝑥
1𝑢𝑥

3] + [𝑢𝑥
1𝑢𝑥

2] − 2𝑢𝑥
1𝑢𝑥

2𝑢𝑥
3
= ∆

Thus,

𝑏𝑥
1 [𝑢𝑥

2𝑢𝑥
3] + 𝑏𝑥

2 [𝑢𝑥
1𝑢𝑥

3] + 𝑏𝑥
3 [𝑢𝑥

1𝑢𝑥
2]

 = ∆ ∗ [[𝑢𝑥
2𝑢𝑥

3] + [𝑢𝑥
1𝑢𝑥

3] + [𝑢𝑥
1𝑢𝑥

2] − 2𝑢𝑥
1𝑢𝑥

2𝑢𝑥
3]

[𝑏𝑥
1 − ∆][𝑢𝑥

2𝑢𝑥
3] + [𝑏𝑥

2 − ∆][𝑢𝑥
1𝑢𝑥

3] + [𝑏𝑥
3 − ∆][𝑢𝑥

1𝑢𝑥
2]

= − 2∆ 𝑢𝑥
1𝑢𝑥

2𝑢𝑥
3

Under the assumptions in the Lemma, it suffices to show that

the above equation holds for ∆ < 0.5.

Let ∆ = 0.5, then

[𝑏𝑥
1 − 0.5][𝑢𝑥

2𝑢𝑥
3] + [𝑏𝑥

2 − 0.5][𝑢𝑥
1𝑢𝑥

3] + [𝑏𝑥
3

− 0.5][𝑢𝑥
1𝑢𝑥

2] = − 𝑢𝑥
1𝑢𝑥

2𝑢𝑥
3

Since 𝑏𝑥
2 > 0.5, [𝑏𝑥

2 − 0.5][𝑢𝑥
1𝑢𝑥

3] > 0; similarly 𝑏𝑥
3 > 0.5

implies that [𝑏𝑥
3 − 0.5][𝑢𝑥

1𝑢𝑥
2] > 0.

Thus, [𝑏𝑥
1 − 0.5][𝑢𝑥

2𝑢𝑥
3] < − 2 𝑢𝑥

1𝑢𝑥
2𝑢𝑥

3,

which implies that: [𝑏𝑥
1 − 0.5] < − 𝑢𝑥

1 , or 𝑏𝑥
1 < 0.5 − 𝑢𝑥

1

Figure 5: MuSeR applies cumulative belief to fuse the scores of the

individual observables (subjective opinion) within a user request.

URL

IP

DNS Request
score

Since 𝑢1 < 0.5 and 𝑏𝑥
1 < 0.5, the above inequality holds and

hence 𝑏𝑥
⋄ < ∆, for ∆= 0.5

B. Session analysis

Given a set of request scores, Γ = {Ω1, … , Ω𝑛}, we define a

session score as the probability that no malicious activities are

involved, or equivalently the level of trust that the system has

in the user activities as portrayed by the session. Generally, a

suspected session could include a mix of benign and malicious

activities. The straightforward approach for aggregating the

request scores could be based on applying either a cumulative

or averaging fusion operator to all Ωi’s, in a similar manner to

the request scoring. However, such an approach does not

handle trust propagation over a dependent set of requests, i.e.,

inter-request relationships. To illustrate, we can refer to an

example where a user accesses “www.google.com” to make a

search and ends up visiting some blacklisted or malicious

websites that appeared in the search results. Such a pattern

differs from visiting the blacklisted website by typing the

URL. A subjective logic fusion operator in the form of [𝑏𝑒𝑙𝑖𝑒𝑓

(trust), disbelief (𝑑𝑖𝑠𝑡𝑟𝑢𝑠𝑡), 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦] does not consider

trust transitivity between the original request

“www.google.com” and the site whose link appeared in the

search. In other words, a subjective logic fusion operator does

not consider trust discounting over a dependent set of requests.

To address the aforementioned issue, we formulate the

session scoring problem as a trust network [15]. A trust

network is modeled as a directed graph (𝑉, E) where a vertex x

 𝑉 represents a request, and an edge (x, y)  𝐸 denotes the

succession of requests x and y. In a trust network, two edges

are in series if they are incident to a vertex of degree 2 and are

parallel if they join the same pair of distinct vertices. In other

words, we build a browsing activity tree, where a vertex in the

tree is the request and there is an edge between two vertices if

the request for the URL of the child vertex is triggered from

the URL of the parent vertex. Note that the dependency

between requests is known in the referrer field in the HTTP

header. Each sub-path connects a set of requests expressed as

a set of subjective opinions. MuSeR measures the degree of

trustworthiness of each sub-path and then aggregates their

scores to determine the session reputation. The objective is to

discount the degree of trust over a particular sub-path and fuse

the trustworthiness evidence over a parallel path. To do so,

MuSeR defines trust propagation using Three-Valued

Subjective Logic (3VSL) [16], where trust is defined as the

probability that a trustee (user) will behave as expected by the

trustor (system).

Theoretically, the capability of the 3VSL operator is based

on the Dirichlet distribution [68] and is shown to be effective

for capturing trust propagation in social networks [17]. While

trust in social networks is usually reflected as reputation based

on ratings, and recommendation preferences, MuSeR focuses

on the definition of normal/abnormal behavior in the realm of

network security to quantitatively capture user misbehavior

based on collected evidence. Unlike subjective logic, the

3VSL operator defines trust as a trinary event (trust, distrust,

neutral) instead of a binary event (belief, disbelief). The

neutral state expresses the posteriori trustworthiness

uncertainty caused by trust propagation, which is ignored in

subjective logic. Fundamentally the neutral state keeps the

evidence distorted from certain spaces when trust propagates

from one entity to another. Thus, the 3VSL distinguishes the

posteriori and priori uncertainties existing in trust. Let 𝐴 =
(𝑏𝐴, 𝑑𝐴, 𝑛𝐴, 𝑒𝐴) be the trustworthiness vector of a request A,

where 𝑏𝐴, 𝑑𝐴, 𝑛𝐴, 𝑒𝐴 are, respectively, the belief, disbelief, the

posteriori and priori uncertainty. Using the trustworthiness

vector of requests, MuSeR assesses the session score using

3VSL aggregation and the distortion operators. Although the

3VSL operator captures the trust change over time, it is based

on the assumption of known trustworthiness criteria and does

not consider the malicious manipulation of trust. To overcome

such a shortcoming, we associate the trust/distrust according

to the data-driven evidence collected through the previously

presented multi-observable analysis. In the following, we

highlight how to use the aggregation and distortion operators

to monitor dependent and independent user’s requests as well

as mitigating possible manipulation of trust.

Trust Propagation over Dependent Requests: A trust

discounting operator captures the effect of request

dependency. Let 𝐴 and 𝐵 be two requests and there is a path

connecting A and B within the session’s trust network model.

Then, the trust discounting operation Δ(A, B) is carried out

as follows [17]:

Δ(A, B) = {

𝑏AB = 𝑏A × 𝑏B
𝑑AB = 𝑏A × 𝑑B
𝑒AB = 𝑒B

𝑛AB = 1 − 𝑏AB − 𝑑AB − 𝑒B

 (3)

Eq. (3) computes the session belief 𝑏AB, disbelief 𝑑AB,

posteriori uncertainty 𝑛AB, and priori uncertainty 𝑒AB. Clearly

the belief of a session is dependent on the belief of requests,

i.e., conditional probability of being benign; the session belief

will be the product of the belief of the requests,

i.e., equals (𝑏A × 𝑏B). The disbelief is conditional to the

disbelief in the new request (𝑑B) given the belief in the

previous request (A) or session score, is thus equal to (𝑏A ×
𝑑B). The session uncertainty, 𝑒AB, is due to the uncertainty on

request B. However, the posteriori uncertainty, 𝑛AB, that it is

initially zero will increase over time to capture the cumulative

uncertainties over the previous requests. This is captured by

subtracting the degree of belief, disbelief and uncertainty in

the current session score. This way the trust will decrease over

time because the posteriori uncertainty increases each time.

Thus, a user session is trusted by default; however such trust is

diminished with bad dependent requests, because we are

accumulating evidence and the distrust for each request is

added to the posteriori probability.

Similarly, it is important to mention that the posteriori

uncertainty exists because of evidence distortions, which is

initially equal to zero, for each path of dependent requests and

is later updated according to (3). According to the Δ(A, B)

operator, we have to evaluate the trustworthiness of the

sequence of requests (A  B) in terms of belief, disbelief,

priori and posteriori uncertainties. The belief constitutes

conditional probability that depends on certainty of both

requests. However, the priori uncertainty depends on the lack

of evidence, thus it depends on the uncertainty of B since the

uncertainty of the request A has been reinforced by the degree

of distrust on B. Thus, Δ(A, B) discounts 𝐵’s opinion to

obtain the trustworthiness of the sub-path (A-B), some certain

evidence from A will be distorted and will be reflected into the

posteriori uncertainty of the resulting opinion. However, the

priori evidence will keep reflecting the uncertainty in B.

http://www.google.com/
http://www.google.com/

Figure 6 illustrates the effect of Δ(A, B) using the

scores of the sequence of dependent requests in Table 1.

Basically, the distorted evidence is saved into the posteriori

uncertainty space and increases as the disbelief in subsequent

requests grows. The discounting operation is analogous to

electromagnetic wave propagation where the original signal is

distorted into a weak one at the receiving side. Since the

uncertainty determined by Δ(A, B) is distorted and captured

in the posteriori uncertainty space of B, the same joint

evidence (belief and disbelief) among all requests in the sub-

paths will be preserved. Therefore, for multi-request distortion

path, the resulting opinion of a discounting operation shares

exactly the same evidence space with the original opinion. It is

also important to note that the trust discounting operation is

associative but not commutative. This implies that the order of

execution of the distortion operation should reflect exactly the

order of issued requests.

Trust Aggregation of Independent Requests: Given the scores

for the dependent set of requests (path), MuSeR needs to

calculate the expected score for the session while also

considering independent requests. The introduction of neutral

state makes the operations in 3VSL different from subjective

logic, which makes the cumulative multi-source fusion

operator impractical [17]. Eq. (4) shows the aggregation

operator. The scores for the session are fused in real time as

the scores for the independent set of requests are accumulated

progressively given that the operator is associative and

commutative.

(𝐵,A) =

{

 𝑏 =

𝑒B∗𝑏A+𝑒A∗𝑏B

𝑒A+𝑒B−𝑒A∗𝑒B

𝑑 =
𝑒B∗𝑑A+𝑒A∗𝑑B

𝑒A+𝑒B−𝑒A∗𝑒B

𝑛 =
𝑒B∗𝑛A+𝑒A∗𝑛B

𝑒A+𝑒B−𝑒A∗𝑒B

𝑒 =
𝑒A∗𝑒B

𝑒A+𝑒B−𝑒A∗𝑒B

 (4)

According to Eq. (1), the expected score for the session that

consists of two independent requests A and B, is: 𝐸𝑠 =
 𝑏𝜃(𝜔𝐴,𝜔𝐵) + 𝑎 ∗ 𝑛𝜃(𝜔A,𝜔B). To find the belief, b, of the session

score, we accumulate the disjoint belief space of requests A

and B. This is achieved by considering the conditional

probability of the uncertainty of one request over the belief on

the other, as shown in Eq. (4). The disbelief, d, is similarly

computed. The priori and posteriori uncertainties reflect the

conditional probability of the uncertainty for both requests.

Countering Score Manipulation: Therefore, we conclude that

to assess session trust, the original request scores are

combined by merging the evidence they provide into the final

opinion. Although the aforementioned aggregation operator

considers the evidence of the independent requests scores, it

does not prevent malicious users from manipulating the

scoring by alternating patterns of good and bad requests to

neutralize the session scores. To illustrate, Figure 7 reflects the

result of the session score for the set of requests indicated in

Table 1, assuming that they are independent. It is important to

note that for the requests indicated in Table 1, the session is

classified as bad using the distortion operator of Eq. (3) with a

score of 0.1, while the aggregation operator of Eq. (4)

generates a score of 0.54, which implies a neutral session.

Table1: Example of fusing request scores within a session.

Score Request Trust Distrust Uncertainty

0.95 google.com 0.932 0.024 0.05

0.89 yahoo.com 0.866 0.09 0.044

0.37 subuys.com 0.354 0.608 0.039

0.36 subuys.com/6v5r7thh 0.345 0.616 0.039

To address the aforementioned shortcomings of the

aggregation operator, we will introduce a distortion factor 𝜇

following each occurrence of a bad request. Such a factor will

grow in significance as a function of the number of bad

requests. By introducing this factor, the objective is to impose

excessive penalties for users that frequently alternate good and

bad requests in order to hide the malicious characteristic of the

session. In fact, when we consider the set of requests as

dependent, we can discount the trust progressively as we have

more evidence of distrust. However, when we have a set of

independent requests, their evidence is considered equitably

when the requests do not have any new bad pattern. Therefore,

by applying the distortion factor 𝜇 each time a request is

classified as suspicious, the aggregator operator will be

inflicting a penalty that diminishes the trust. Example of 𝜇

settings could be:

 𝜇 = 𝛼, or 𝜇 = 𝑒−𝛼 where 𝛼 < 1

After the first application, 𝛼 could be decreased by a ratio 𝛽

(i.e., 𝛼 = 𝛼 𝛽), in order to grow the significance of the

distrust penalty. The penalty could be incorporated in the

aggregation operator in (4) as:

𝑏∗ = 𝑏𝐴𝐵 ∗ 𝜇,

Figure 7: Illustrating session trust evolution using trust aggregation

of our requests, namely, R1, R2, R3, and R4.

Figure 6: Illustrating the effect of applying a trust discount operator.

𝑑∗ = 𝑑𝐴𝐵 + 𝑏𝐴𝐵 ∗ (1 − 𝜇),
𝑒∗ = 𝑒𝐴𝐵 ,
𝑢∗ = 𝑢𝐴𝐵 ,

where 𝑏∗, 𝑑∗, 𝑒∗, 𝑢∗ are the session belief, disbelief priori and

posteriori uncertainties, respectively. It is important to note

that the distortion factor varies according to parameters 𝛼 and

𝛽, which are determined by the network/cloud administrator.

VI. PEFROMANCE VALIDATION

The effectiveness of MuSeR is validated through extensive

experimentation. This section discusses the setup,

performance metrics and results.

A. Simulation Environment and Performance Metrics

We gauge the effectiveness of MuSeR inter-observables

analysis using the following contemporary metrics: precision,

recall, F1-score, and Receiver Operating Characteristic

(ROC). Since initially we have binary classification, we track

the samples that get correctly predicted, denoted by true

positive (TP) and true negative (TN) for the benign or

malicious categories, respectively. Analogously, fault positive

(FP) and fault negative (FN) reflect wrongly classified

samples. The precision is defined TP/(TP+FP) and gauges the

classifier’s ability to avoid designating a malicious observable

as benign. Thus, the smaller the number of FP is, the higher

the precision becomes. The accuracy is the percentage of 𝑇𝑃
and 𝑇𝑁. On the other hand, the Recall (Sensitivity) metric

measures the proportion of benign observables that are

correctly identified, i.e., TP/(TP+FN). Hence, the smaller the

number of FN is, the higher the recall gets. The F1-score is

the harmonic mean of precision and sensitivity, and is

calculated as 2𝑇𝑃/(2𝑇𝑃+𝐹𝑁+𝐹𝑃). Meanwhile, the ROC curve

is constructed using the values of true positive rate (Recall)

and false positive rate. In a perfect scenario, the true positive

rate is close to one (no false negatives) and the false positive

rate is nearly a zero (no false positives). In the experiments,

we compare the performance of the following classifiers:

“Linear SVM”, “RBF SVM”, “Decision Tree”, “Neural Net”,

“AdaBoost”, and “Naive Bayes”. We compare the MuSeR’s

multi-observable analysis to contemporary single-observable

features used in the literature [52][61]-[64]. Using the

observable scores, we also have conducted validation of the

request and session scores. For that, we use MalRank [45] as a

baseline for comparison. MalRank employs a knowledge

graph to model the associations among observables and then

applies a graph-based inference algorithm to assess a node

maliciousness score based on its associations to other nodes

(observables) in the graph.

B. Experiment Setup and Results

We divide the analysis into two categories, namely, classifier

and the score effectiveness.

Classifier performance: The objective of these experiments is

to validate our proposed multi-observable analysis for

unknown IP, URL and Domains. We assess the effectiveness

of the classification compared to a single-observable analysis;

basically, we exclude any feature related to other observables.

Appendix A enumerates all considered features, and

distinguishes those used in the single-observable analysis. We

note that all listed features in the appendix are factored in

MuSeR’s multi-observable analysis, and not just those marked

(a)

(b)

(c)

Figure 8: Classifier effectiveness for (a) domains, (b) IP, and (c)

URL.

with “Multi”. We assess the classification performance using

the following three datasets, namely, A, B and C, for the three

set of observables domain, IP and URL, respectively. The

entries for the domain and the IP have been randomly picked

from Alexa and Virus Total [8], Talos [60] and DNSBL [61].

The entries in the URL set are randomly picked from Alexa

and from [49], and [50]. The features for each of those entries

(observables) are extracted from diverse data sources like

WHOIS, CYMUS, and passive DNS databases as explained in

detail in data collection (Section IV.A). We have selected the

aforementioned databases due to their reliability and

popularity so that the scores produced by MuSeR can be

validated. The overall dataset contains 7367 domains (Good=

5984, Bad=1383), 94447 IPs (50479 Good and 43968 Bad),

7496 URLs (Good= 2620, Bad= 4876). We have divided

randomly our dataset into 80% used as training data and 20%

that serves as test data.

Figure 8 shows the classifier performance results, where

we compare single- and multi-observable analysis. While we

have experimented with six classifiers, we are showing the

best performing four in each plot for clarity of the

presentation. When using the set A, we see over Figure 8(a)

that the best classifier for domains yields accuracy of 94%

under MuSeR, which surpasses the best results for a single-

attribute analysis, where “AdaBoost” provides an accuracy of

0.83. “Decision Tree” has provided 71% accuracy, which is

the worst for domains classification, and consequently

“Decision Tree” is not shown in Figure 8(a). For MuSeR, the

“Neural Net” and “Linear SVM” classifiers achieve the

highest precision and recall. To factor in the relation between

these two metrics, we illustrate the ROC curve in Figure 9(a).

Our evaluation shows that the TP rate jumps very quickly to

94%, which is close to the ideal scenario. The single-attribute

analysis has much inferior ROC results.

As indicated by the results for IP classification in Figure

8(b), the “AdaBoost” classifier leads the way with an accuracy

score of 86% and precision of 81%. The “Decision Tree”

classifier comes next in this case. Although the MuSeR’s

multi-observable approach slightly boosts accuracy for these

two classifiers compared to the single-observable analysis,

MuSeR significantly improves their precision; on the other

hand, both the accuracy and precision for the “Naïve Bayes”

and “Linear SVM” classifiers, have experienced major

improvements through MuSeR, as shown in Figure 8(b).

Unlike DNS, IP classification does not involve many multi-

observable features as evident from Appendix A. When

comparing the ROC results in Figure 9(b), we also observe

higher precision and recall values for “AdaBoost” and

“Decision Tree”, where the curve reaches close to 1 at low FP

rate, as indicated in Fig. 9(b). Note also that the multi-

observable analysis consistently improves the classification

performance. Even though the precision or recall measures are

high for some of single-observable classifiers, the

corresponding F1-score reflects imbalance between the

precision and recall values.

Meanwhile Figures 8(c) and 9(c) report the evaluation

results for the URL classification. For MuSeR, the highest

accuracy has been accomplished by “RBF SVM”, while

“Neural Net” follows very closely. The best ROC value

performance is achieved by “RBF SVM”. We can clearly see

the impact on using MuSeR as URL features are mainly

syntactical. Basically, the multi-observable analysis involves

more context for the names of domain and subdomains within

the URL. We note that MuSeR considers the results of the

various classifiers as evidence with some degree of

uncertainty and applies subjective logic to fuse these results to

assign a request score, as validated next.

Request score expressiveness: The objective of this

experiment is to validate the effectiveness of our request

scoring. The observables within the same request may have

conflicting scores according to the evidence and the

similarities of their features to known labeled observables

within their respective category. MuSeR factors in the degree

of evidence to come up with a consistent score for the entire

user request. To assess the expressiveness of request scoring,

we have performed experimentation over sample requests for

which we have manipulated the malicious characteristics of

some observables. For a given request within the sample, we

have varied the malicious behavior by switching the degree of

trust and distrust for one of the involved observables. In order

(a)

(b)

(c)

Figure 9: Receiver Operating Characteristics (ROC) for (a)

domains, (b) IP, and (c) URL.

to capture the effect of the degree of uncertainty, we have

manipulated the uncertainty of the malicious observable so

that it has the least, middle and most uncertainty in the

request. The results are reported in Figure 10, where three

levels of uncertainty are shown and compared to the “original”

non-manipulated score. Based on the results, we can note that

when the malicious observable has the highest degree of

evidence (least uncertainty) the request score drops

significantly. This is expected and is consistent with Lemma 1.

Session scoring analysis: To illustrate the efficiency of the

session scores, we have used a sample of good and bad

requests. We have studied the effect of alternating good and

bad requests on the session score. Basically, we vary the

number of occurrences of good requests following each bad

request, which not only captures the effect of frequency of

malicious requests but also how forgiving the trust assessment

is to suspicious activities. The objective is to show how

expressive the scores of MuSeR are and the effect of trust

distortion. We have experimented using two trust distortion

functions, namely multiplicative and exponential, as indicated

in Section V-B. Figures 11(a) and 11(b) show the results for

multiplicative and exponential distortion factors, respectively.

The value 𝛼 and 𝛽 are set to 0.8, and 0.7, respectively. The x-

axis reflects the number of good requests made after each bad

one. The figure shows how the belief increasingly gets

distorted based on the multiplicity of the bad requests in the

session. Figure 11(a) implies that the multiplicative function is

more tolerant to the first bad request and becomes more

penalizing with repeated occurrence. On the other hand, as

shown in Figure 11(b) the exponential function inflicts high

penalty on the first bad request in the session and slowly

grows the trust distortion level as more bad requests are made.

On the other hand, the baseline approach, MalRank, also

seems to decrease the scores significantly with high frequency

of bad requests. This is evident from Figure 11(c). However,

when the frequency of bad requests diminishes, the

performance of MalRank drops significantly, meaning that it

provides scores that do not much reflect suspicion in the

session. Thus, a misbehaving user can manipulate the session

by ensuring that the number of good requests consistently

exceeds the bad ones. In addition, MalRank does not reflect

the severity of the situation when the number of occurrences

varies; for example the MalRank score for a combination of 2

good and 1 bad requests is similar to having 4 good followed

by 2 bad ones. In summary, good requests in MalRank always

neutralize the bad ones in the same way, which introduces

vulnerability. Consequently, MalRank fails to make any

alarming observation and can be fooled. On the other hand,

given the evidence based trust assessment, MuSer session

scores stay indicative of the malicious activities even if the

attacker increases the number of good requests to evade

suspicion.

VII. CONCLUSION

In this paper, we have presented MuSeR, a novel approach for

user session reputation scoring. MuSeR factors in evidence

from known blacklists and suspicious use patterns of

observables to classify the user requests. In essence, MuSeR

assists a network/cloud administrator in determining the

(a)

 (b)

(c)

Figure 11: The effect of the distortion function on session scores

as a function of the frequency of bad requests, i.e., how many

good requests follow a bad request.

Figure 10: The request score diminishes the most when

associated with low uncertainty. The baseline is shown as

“Original”, and reflects the case where the malicious

characteristics of observables are not manipulated.

trustworthiness of a user session based on the navigation

pattern and the dynamic analysis of individual observables

involved within requests in that session. Specifically, MuSeR

employs a machine learning model using features that are

carefully chosen to factor in evidence provided by blacklists,

and access patterns of known attacks. To determine reputation

scores for observables, MuSeR maps the classifier

probabilities into subjective logic and then uses cumulative

fusion to calculate user request scores. Given the request

scores, MuSeR applies an adaptive version of three-valued

subjective logic to handle trust propagation and aggregation

over user requests. MuSeR has been subject to extensive

evaluation using data from existing databases. The evaluation

results have demonstrated that MuSeR provides high

accuracy, detects unknown malicious observables, and

outperforms competing approaches in the literature. In

addition, the utility of request and session scores is analyzed.

For the future work, we would like to extend MuSeR to alert

the presence of collusive malicious activities across multiple

user sessions. The idea is to subject sessions with low scores

to further analysis that correlates the involved observables and

checks whether there is coordination about the malicious

attempts of the involved users.

Acknowledgement: This work is supported by Cisco under

contract # 12430. The authors like to thank Dr. Yatish Joshi,

Mr. Pramod Chandrashekar of Cisco, as well as Dr. Karuna

Joshi, and Dr. Vandana Janeja of UMBC for their feedback

and fruitful discussion.

REFERENCES

[1] X. Han, N. Kheir, and D. Balzarotti. “The Role of Cloud Services in

Malicious Software: Trends and Insights,” in the Proceedings of the 12th
International Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment - Volume 9148 (DIMVA 2015), Magnus

Almgren, Vincenzo Gulisano, and Federico Maggi (Eds.), Vol. 9148.
Springer-Verlag, Berlin, Heidelberg, pp. 187-204, 2015.

[2] P. Schoo, V. Fusenig, V. Souza, M. Melo, P. Murray, H. Debar, H.

Medhioub, and D. Zeghlache, “Challenges for cloud networking
security,” HP Laboratories Technical Report, No. 137, pp. 1-17, 2010.

[3] D. Bestuzhev, “Financial data stealing malware now on amazon web

services cloud,” https://securelist.com/financial-data-stealing-malware-
now-on-amazon-web-services-cloud/30647/, 2011. [accessed Oct-10-

2018].

[4] R. Unuchek, “Gcm in malicious attachments,”
http://www.securelist.com/en/blog/8113/GCM_in_malicious_attachment,

2013. [Oct-10-2019].
[5] J. Vacca, “Managing Information Security, 2nd Edition,” Elsevier, USA,

2014.

[6] J. Nazario, and T. Holz, “As the net churns: Fast-flux botnet
observations,” in the Proceedings of the 3rd IEEE International

Conference on Malicious and Unwanted Software (MALWARE 2008),

Alexandria, Virginia, October 2008.
[7] WatchGuard - Reputation Authority -http://www.reputationauthority.org

[8] McAfee (Threat Intelligence -https://www.mcafee.com•IP-

ADDRESS.com -http://ip-address.com
[9] Virus Total -https://virustotal.com

[10] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation

systems for online service provision,” Decision Support Systems, Vol.
43, No. 2, pp. 618–644, 2007.

[11] M. Antonakakis, et al., “From Throw-Away Traffic to Bots: Detecting

the Rise of DGA-Based Malware,” in the Proceedings of the 21st
Usenix Security Symposium, Bellevue, WA, August 2012.

[12] L. Bilge, E. Kirda, C. kruegel, and M. Balduzzi, “Exposure: Finding

malicious domains using passive dns analysis,” in the Proceedings of the
18th Network and Distributed System Security Symposium (NDSS 2011),

San Diego, CA, February 2011.

[13] A. Jøsang. Subjective Logic: A formalism for reasoning under
uncertainty. Springer Verlag, Switzerland, 2016.

[14] G. Liu, Q. Yang, H. Wang, X. Lin, and M. Wittie. 2014. Assessment of

multi-hop interpersonal trust in social networks by three-valued

subjective logic. In Proceedings of the 33rd IEEE International

Conference on Computer Communications (INFOCOM). 1698--1706.
[15] J.-H. Cho, K. Chan, and S. Adali, “A Survey on Trust Modeling,” ACM

Computing Surveys (CSUR), Vol.48, No.2, pp.1-40, November 2015.

[16] D. Ciucci, and D. Dubois, “Three-Valued Logics, Uncertainty
Management and Rough Sets,” Transactions on Rough Sets XVII,

Lecture Notes in Computer Science. Volume 8375, pp 1-32, 2014.

[17] G. Liu, Q. Yang, H. Wang, X. Lin and M. P. Wittie, “Assessment of
multi-hop interpersonal trust in social networks by Three-Valued

Subjective Logic,” IEEE INFOCOM 2014 - IEEE Conference on

Computer Communications, Toronto, ON, 2014, pp. 1698-1706, doi:
10.1109/INFOCOM.2014.6848107.

[18] S. Sinha, M. Bailey, and F. Jahanian, “Shades of grey: On the

effectiveness of reputation-based blacklists,” in the Proceedings of the
3rd IEEE International Conference on Malicious and Unwanted

Software (MALWARE 2008), Alexandria, Virginia, October 2008.

[19] J. Zhang, P. Porra, and J. Ullrich, “Highly predictive blacklisting,” In in
the Proceedings of the 17th Usenix Security Symposium, San Jose, CA,

July 2008.

[20] K. Sato, K. Ishibashi, T. Toyono, and N. Miyake, “Extending black
domain name list by using co-occurrence relation between dns queries,”

in the Proceedings of the 3rd USENIX Workshop on Large-Scale Exploits

and Emergent Threats (LEET'10), San Jose, CA, April 2010.

[21] M. Felegyhazi, C. Keibich, and V. Paxson, “On the potential of

proactive domain blacklisting,” in the Proceedings of the 3rd USENIX

Workshop on Large-Scale Exploits and Emergent Threats (LEET'10),
San Jose, CA, April 2010.

[22] H. Choi, H. Lee, and H. Kim, “Botnet detection by monitoring group
activities in DNS Traffic,” in the Proceedings of the 7th IEEE

International Conference on Computer and Information Technologies,

Aizu-Wakamatsu, Fukushima, Japan, October 2007.
[23] R. Villamarn-Salomn, and J. C. Brustoloni, “Bayesian bot detection

based on DNS traffic similarity,” in the Proceedings of the ACM

symposium on Applied Computing (SAC’09), Honolulu, HI, March 2009.
[24] W. Li, J. Jin and J. Lee, “Analysis of Botnet Domain Names for IoT

Cybersecurity,” IEEE Access, vol. 7, pp. 94658-94665, 2019. doi:

10.1109/ACCESS.2019.292735.
[25] W. X. Zang, J. Gong, S. Mo, A. Jakalan and D. Ding, "Identifying Fast-

Flux Botnet With AGD Names at the Upper DNS Hierarchy," in IEEE

Access, vol. 6, pp. 69713-69727, 2018. doi:
10.1109/ACCESS.2018.2880884.

[26] S. Garera, N. Provos, M. Chew, and A. Rubin, “A framework for

detection and measurement of phishing attacks” in the Proceedings of
the ACM workshop on Recurring Malcode (WORM’07), Alexandria,

VA, November 2007.

[27] T. Holz, C. Gorecki, K. Rieck, F. C. Freiling, “Measuring and detecting
fast-flux service networks,” in the Proceedings of the 15th Network and

Distributed System Security Symposium (NDSS 2008), San Diego, CA,

February 2008.
[28] D. Anderson, C. Fleizach, S. Savage, and G. Voelker, “Spamscatter:

Characterizing internet scam hosting infrastructure,” in the Proceedings

of the 15th Usenix Security Symposium, Santa Clara, CA, June 2007.
[29] S. Hao, N. Syed, N. Feamster, A. Gray and S. Krasser, “Detecting

spammers with SNARE: Spatiotemporal network-level automatic

reputation engine,” in the Proceedings of the 17th Usenix Security
Symposium, San Diego, CA, June 2009.

[30] Z. Qian, Z. Mao, Y. Xie and F. Yu, “On network level clusters for spam

detection,” in the Proceedings of the 17th Network and Distributed
System Security Symposium (NDSS 2010), San Diego, CA, February

2008, 2010.

[31] E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi, “Fluxor:

Detecting and monitoring fast-flux service networks,” in the

Proceedings of The International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment (DIMVA 2008), D.
Zamboni (eds), Lecture Notes in Computer Science, Vol 5137. Springer,

Berlin, Heidelberg, 2008.

[32] N. Feamster, M. Konte, and J. Jung. “Fast Flux Service Networks:
Dynamics and Roles in Hosting Online Scams,” Technical Reports GT-

CS-08-07, School of Computer Science, Georgia Tech University, 2008.

[33] J. Ma, L. K. Saul, S. SAVAGE, and G. M. Voelker, “Beyond blacklists:
Learning to detect malicious web sites from suspicious urls,” in the

Proceedings of the SIGKDD Conference, Paris, France, June 2009.

[34] F. Weimer, “Passive DNS Replication,” in the Proceedings of 17th
Annual FIRST Conference, Singapore, 2005.

[35] K. Dan, N. Kitagawa, S. Sakuraba and N. Yamai, "Spam Domain

Detection Method Using Active DNS Data and E-Mail Reception Log,"
in the Proceedings of the IEEE 43rd Annual Computer Software and

Applications Conference (COMPSAC), Milwaukee, WI, pp. 896-899,

2019. 10.1109/COMPSAC.2019.00133.

[36] B. Zdrnja, N. Brownlee, and D. Wessels, “Passive Monitoring of DNS
Anomalies,” in the Proceedings of the 4th international conference on

Detection of Intrusions and Malware, and Vulnerability

Assessment (DIMVA '07), Bernhard Hämmerli and Robin Sommer
(Eds.). Springer-Verlag, Berlin, Heidelberg, 129-139. 2007.

[37] R. Perdisci, I. Corona, D. Dagon, and W. Lee, “Detecting Malicious

Flux Service Networks through Passive Analysis of Recursive DNS
Traces,” in the Proceedings of the 25th Annual Computer Security

Applications Conference (ACSAC’09), Honolulu, Hawaii, December

2009.
[38] M. Antonakakis, R. Perdisci, D., Dagon, W. Lee, W., and N. Feamster,

“Building a Dynamic Reputation System for DNS,” in the Proceedings

of the 19th Usenix Security Symposium, Washington, DC, August 2010.
[39] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, and D. Dagon,

“Detecting Malware Domains at the Upper DNS Hierarchy,” in the

Proceedings of the 20th Usenix Security Symposium, San Francisco, CA,
August 2011.

[40] S. Torabi, A. Boukhtouta, C. Assi and M. Debbabi, “Detecting Internet

Abuse by Analyzing Passive DNS Traffic: A Survey of Implemented
Systems,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4,

pp. 3389-3415, 4th Quarter, 2018. doi: 10.1109/COMST.2018.2849614.

[41] I. Khalil, T. Yu, and B. Guan, “Discovering malicious domains through

passive DNS data graph analysis,” in the Proceedings the 11th ACM on

Asia Conference on Computer and Communications Security (ASIA CCS

'16), pp. 663–674, Xi'an, China, May 2016.
[42] I. M Khalil, B. Guan, M. Nabeel, and T. Yu, “A Domain is only as Good

as its Buddies: Detecting Stealthy Malicious Domains via Graph
Inference,” in the Proceedings of the 8th ACM Conference on Data and

Application Security and Privacy (CODASPY '18), pp. 330–341, Tempe,

AZ, March 2018.
[43] P. Najafi, A. Sapegin, F. Cheng, and C. Meinel, “Guiltby-Association:

Detecting Malicious Entities via Graph Mining,” in the Proceedings of

the International Conference on Security and Privacy in Communication
Systems (SecureComm 2017), pp. 88–107, Niagara Falls, Canada, 2017.

[44] E. Choo, and M. Nabeel, M. Alsabah, I. Khalil, T. Yu, and W. Wang,

“DeviceWatch: Identifying Compromised Mobile Devices through
Network Traffic Analysis and Graph Inference,” arXiv:1911.12080v1,

2019.

[45] P. Najafi, A. Mühle, W. Pünter, F. Cheng, and C. Meinel, “MalRank: a
measure of maliciousness in SIEM-based knowledge graphs,” in the

Proceedings of the 35th Annual ACM Computer Security Applications

Conference (ACSAC’19), pp.417–429, San Juan, PR, December 2019.
[46] C. Peng, X. Yun, Y. Zhang, S. Li, and J. Xiao, “Discovering malicious

domains through alias-canonical graph,” in the Proceedings of the IEEE

Trustcom-BigDataSE-ICESS Conference, pp. 225–232, Sydney,
Australia, September 2017.

[47] L. Watkins, S. Beck, J. Zook, A. Buczak, J. Chavis, W. H. Robinson, J.

A Morales, and S. Mishra, “Using semi supervised machine learning to
address the Big Data problem in DNS networks,” in the Proceedings of

the 7th Annual IEEE Computing and Communication Workshop and

Conference (CCWC), Las Vegas, NV, March 2017.
[48] K. Lei, Q. Fu, J. Ni, F. Wang, M. Yang and K. Xu, "Detecting Malicious

Domains with Behavioral Modeling and Graph Embedding," in the

Proceedings of the IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), Dallas, TX, USA, 2019, pp. 601-611. doi:

10.1109/ICDCS.2019.00066.

[49] Z. Ma, Q. Li and X. Meng, “Discovering Suspicious APT Families
Through a Large-Scale Domain Graph in Information-Centric IoT,”

IEEE Access, vol. 7, pp. 13917-13926, 2019. doi:

10.1109/ACCESS.2019.2894509.

[50] Jeffrey Carr (2007-06-05). “Snort: Open Source Network Intrusion

Prevention”. Retrieved 2010-06-23.

[51] “RFC 8162 - Using Secure DNS to Associate Certificates with Domain
Names for S/MIME,” Internet Engineering Task Force. May 2017.

Retrieved 17 October 2018.

[52] H. Liu, X. Pan, Z. Qu, “Learning based Malicious Web Sites Detection
using Suspicious URLs,” in the Proceedings of the 34th International

Conference on Software Engineering, Zurich Switzerland, June 2012.

[53] Alexa Web Information Company. http://www.alexa.com/topsites/
[54] Google Safe Browsing,

http://www.google.com/tools/firefox/safebrowsing/

[55] https://github.com/stamparm/maltrail
[56] https://github.com/cbuijs/ut1

[57] RUS-CERT. DNS replication. http://cert.uni-stuttgart.de/dienste/ dns-

replication.html,2011.https://www.farsightsecurity.com/solutions/dnsdb/
[58] RFC1834, “Whois and Network Information Lookup Service,

Whois++,” 1995, http://www.faqs.org/rfcs/rfc1834.html.

[59] P. Albitz and C. Liu, DNS and BIND, 5th Edition. Nutshell Series,

O'Reilly and Associates, Inc., 2006.
[60] S. Hao, M. Thomas, V. Paxson, N. Feamster, C. Kreibich, C. Grier, and

S. Hollenbeck.. Understanding the domain registration behavior of

spammers,’ in the Proceedings of the 2013 conference on Internet
measurement conference (IMC '13), pp. 63-76. 2013,

DOI:https://doi.org/10.1145/2504730.2504753

[61] C. Zhou, K. Chen, X. Gong, P. Chen, and H. Ma, “Detection of fast-flux
domains based on passive DNS analysis,” Acta Scientiarum Naturalium

Universitatis Pekinensis, vol. 52, no. 3, pp. 396–402, 2016.

[62] L. Bilge, et al., “Exposure: a passive dns analysis service to detect and
report malicious domains,” ACM Transactions on Information and

System Security (TISSEC), Vol. 16, No. 4, #14, 2014.

[63] H. Liu, et al. “On the effects of registrar level intervention,” in the
Proceedings of the 4th USENIX Workshop on Large-Scale Exploits and

Emergent Threats, Boston, MA, March 2011.

[64] http://isc.sans.edu/api
[65] Team Cymru. IP to ASN mapping. http://www.team-cymru.org/

Services/ip-to-asn.html, 2011.

[66] https://www.talosintelligence.com/
[67] DNSBL - Spam Database Lookup. http://www.dnsbl.info/. 2010

[68] S. Kotz; N. Balakrishnan; N. L. Johnson, Continuous Multivariate

Distributions, Volume 1: Models and Applications. New York: Wiley.

ISBN 0-471-18387-3, 2019. (Chapter 49: Dirichlet and Inverted

Dirichlet Distributions).

APPENDIX A

DNS Features

- Single: Lifetime of the domain

- Single: Freshness of the domain requests

- Single: Idle time (Time from the last request)

- Single: Number of countries to which the ASN belongs

- Single: The TTL of the name server

- Single: The ratio of active name servers

- Single: The TTL of A and AAA records

- Single: The min, max and avg. TTL, serial, refresh,

retry, and “expire” of the individual SOA records

- Single: The number of CNAME records

- Single: The number of TXT records

- Single: NS check if valid name server

- Single: The number of NS records

- Single: The popularity rank of the domain

- Single: Country rank

- Multi: Number of IPs associated with the domain

- Multi: Number of blacklisted IPs within the domain

- Multi: Number of Popular IPs within the domain

- Multi: Max popularity/BGP ranking of IPs

- Multi: Min popularity ranking/BGP of IPs BGP

- Multi: AVG popularity ranking/BGP of IPs

- Multi: Number of ASNs

IP Features

- Single: Number of packet blocked for an IP

- Single: Number of unique destinations from an IP

- Single: Number of observed attacks using an IP

- Single: IP freshness (time since an IP was last seen)

- Single: Number of target addresses hit from an IP

- Single: Time since the last reported attack

- Single: Number of packets originating from an IP.

- Single: IP lifetime

- Single: Host ranking (Alexa popularity)

- Single: Rank of the country

- Single: City associated with geolocation of IP address

- Single: IP type (Organization/individual)

- Single: IP lifetime

- Multi: Size and BGP ranking of the associated ASN

- Multi: Registrar qualification (Suspicious or trusted)

http://www.faqs.org/rfcs/rfc1834.html
http://www.team-cymru.org/
http://www.dnsbl.info/

URL Features

- Single: URL length

- Single: Number of tokens in the URL

- Single: The occurrence of any IP

- Single: AVG token length of host, domain and path

- Single: MAX token length of host, domain and path

- Single: Presence of security sensitive words

- Single: Number of meaningful words

- Single: Safe-browsing lookup

- Multi: Domain popularity ranking

- Multi: Rank of the country

- Multi: ASN number rank

- Multi: IP address is associated with the hostname

	ScholarWorksCoverSheetCC
	COMNET_2020_Accepted (1)

