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Abstract— As a core mechanism for cybersecurity, the ability 
to detect cyber-attacks is increasingly critical nowadays. There 
have been many types of network intrusion detection approaches, 
such as flow-based and packet-based, targeting single attack and 
multistage attack detection. Each approach has its own 
advantages and disadvantages. In this paper, we design an organic 
combination of these types of efforts into one comprehensive 
system. Furthermore, to deal with increasing volumes of network 
traffic and improve full packet analysis efficiency, we employ 
Spark Streaming platform for parallel detection. 
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I. INTRODUCTION AND BACKGROUND 
Modern Intrusion Detection Systems (IDSs) analyze the 

content of network packets to predict attacks. The current 
approaches for intrusion detection and prediction of network 
traffic can be categorized differently based on different criteria. 
We have packet and flow detection based on the data content to 
be inspected, and single attack and multistage attack detection 
based on the nature of targeted attacks. We will briefly explain 
these approaches and try to build a new system combing these 
efforts. 

A. Flow-based and Packet-based Intrusion Detection 
The problem of intrusion detection and prediction has 

exacerbated with increasing volumes of network traffic and 
IDSs have a hard task analyzing network packets on the fly to 
provide timely prediction [1]. As a result, there have been 
attempts to investigate network flows which contain much less 
information (since it is in an aggregate form) compared to 
packets in order to predict attacks. The advantage of this 
approach is that processing smaller amount of information 
results in higher throughput and faster detection of attacks. On 
the other hand, its disadvantage is a lower degree of accuracy in 
detecting attacks due to the lack of payload information. 

Flow-based intrusion detection can identify a subset of 
cyber-attacks, including denial of service [2], scanning attacks 
[3], worms [4], and botnets [5]. There have been few machine 
learning techniques utilized in flow-based intrusion detection 
such as Hidden Markov Models [6] and Support Vector 
Machines [7] to detect SSH brute force attacks, and entropy [3] 
to identify anomalies. 

Our past work partially alleviates the accuracy problem and 
increases detection rate by using semantic information that is 

available in net flows, such as time, location, and other context-
related information that are present and links related alerts 
together. These links are represented in a Semantic Link 
Network (SLN) which is exploited through an inference process 
and enhances the detection rate [8].  

B. Single and Multistage Attack Detection  
While we can detect some types of attacks by only inspecting 

individual packets/flows, more serious or coordinated attacks 
might be detected by inspecting all packets/flows with some 
common features, such as originating from the same IP address,  
within a longer time period in the past. This type of attack, called 
multistage attack, refers to attacker activities that consist of 
multiple steps and occur in a certain time [9].  

Both flow-based and packet-based approaches have been 
used for multistage attack detection [10]. Our past work [8] has 
studied how to detect multistage attacks from sequences of IP 
flows by efficiently querying the relations produced via 
reasoning on SLNs. A flow can be predicted as a suspicious 
activity (that represents a step in a multi-step attack) or a benign 
activity. During multi-step attacks, several alerts are raised each 
one representing an indicator of an attack step. 

C. Our Approach 
In this work, we propose a system design that can support 

flow-based inspection as initial detection and full packet-based 
inspection only for quasi-suspicious flows that need further 
analysis. For full packet analysis, the system will check for both 
single attacks and multistage attacks. To efficiently process the 
large volumes of full packets, we employ a Spark platform for 
data parallelism and streaming data processing. The full packet 
detection results can be used to update SLNs dynamically. 
Further, the threshold for SLN-based classification can be 
automatically adjusted based on factors such as incoming traffic 
velocity and system workload. 

Our contributions include: 1) a hybrid approach that 
combines a flow-based and a packet-based inspection to detect 
intrusions; 2) parallel individual and multistage full packet 
inspection based on Spark Streaming framework; 3) interaction 
between flow-based and a packet-based inspection for dynamic 
SLN updates for newly identified attack types and system 
adaptation based on incoming traffic velocity and system 
workload. 



II. CYBER-ATTACK DETECTION VIA SEMANTIC LINK 
NETWORKS 

In the following we briefly provide an outline of identifying 
intrusions based on flows using SLNs. A more detailed 
explanation of flow-based intrusion detection using context is 
found in [8]. 

A Semantic Link Network (SLN) is a graph with nodes and 
edges which are used to infer semantic links [11].  The emphasis 
in this work is on context, which is used to assist in the process 
of identifying attacks.  Example contextual features of an entity 
are the time it occurs, its location, the events that target it, and 
its relationship to other entities [12].  The key idea is that the 
features which describe a context have a cause/effect 
relationship to the situation that a specific context may result 
into,  i.e.,  either an alert or a benign activity. 

Net Flows: We use the following definition of a flow 
structure:  (Isrc, Idst, Psrc, Pdst, Prot, Pckts, Octs, Tstart, Tend, 
Flags), where Isrc and Idst are the features that identify source 
and destination IP addresses; Psrc and Pdst are the source and 
destination ports; Prot is the protocol type; Pckts and Octs give 
the total number of packets and octets in the data exchange; 
Flags are the TCP header flags; Tstart and Tend denote the start 
and end time of the flow respectively.   

Constructing SLNs : The SLNs are constructed by generating 
weighted links among nodes (alert nodes and benign nodes) and 
then reasoning on such links to augment their semantics.  The 
SLNs are constructed in two major steps: weighted links are 
created among nodes using similarity; then, reasoning is 
performed on the links to augment the semantic relationships 
among nodes. The similarity among nodes is a measure of their 
co-occurrence. There are three categories of contextual features 
that have been utilized to calculate similarity. Time/location, 
numerical, and descriptive features. Time-based features are 
represented by the timestamp of each alert, the Tstart, Tend of 
the flows that contain them and the duration of such flows. 
Location-based features are represented by the source, 
destination IPs and port numbers (Isrc, Idst, Psrc, Pdst). These 
features indicate relations among nodes  based on source and 
target of attacks. Numerical features identify traffic statistics 
such as the number of packets, octets (Pckts, Octs). Descriptive 
or nominal features describe other flow characteristics such as 
the flags and protocol type (Prot, Flags), in addition to alert 
description. 

For semantic reasoning, initial weights on semantic links 
among nodes are assigned. The initial weight is the similarity 
value of time, location, numerical and/or descriptive features. 
The measures we use to calculate similarity between nodes are 
Pearson correlation and Anderberg similarity. After the 
similarity values are calculated, a similarity relationship matrix 
! is created  in modeling the similarity values among nodes.  

Flow Prediction Using SLNs: The attack prediction starts by 
investigating the features of an incoming flow to produce an 
initial prediction for each flow and pass it to SLNs. This initial 
prediction is passed to SLNs that expand it to include several 
other related predictions in the SLNs based on a threshold " 
which controls the scope of the expansion. 

Discarding Possible False Predictions:  It is possible to have 
a scenario where the set of predictions for a specific flow 
includes both suspicious and benign activities. It is then 
necessary to discard possible inaccurate predictions (i.e. false 
positives and false negatives). A second decision tree 
classification model is created to examine flow features to 
identify benign activities, resulting in a set of rule-based profile 
filters that define benign activities. These profile filters are only 
applied to flows for which the predictions produced include both 
suspicious and benign nodes, and the result is to identify and 
remove false positives and false negatives. 

III. HYBRID CYBER-ATTACK DETECTION 
This section discuss a novel hybrid approach that combines 

a flow-based and a packet-based inspection to detect intrusions. 
Flow-based intrusion detection is fast, yet not so accurate. 
Packet-based intrusion detection is resource consuming but 
more accurate. Therefore, a combination of the above 
techniques is a promising approach that utilizes the advantages 
of both flow-based and packet-based techniques. 

The main and novel idea of this approach consists of two 
layers: First, a flow-based approach is applied, where the 
incoming flows are analyzed based on the SLN technique 
described above and a prediction is made. If the prediction 
results in a benign flow, then it is allowed to pass into the 
network environment. Otherwise, the flow that has been 
characterized as suspicious is further analyzed based on the level 
of suspiciousness. That is, if the flow was deemed suspicious 
with a high probability then we follow the policy established for 
suspicious flows. Usually policies for suspicious flows include 
denial of entry into the organization’s network (reject), diversion 
into a closely watched subsystem (e.g., diversion to a honeypot), 
etc. 

Apart from these two clear cases, we may encounter flows 
with a probability of being suspicious in a medium range when 
we cannot fully identify them as benign or suspicious. For such 
cases, we delegate the flows into a further more detailed 
examination with more information from the individual and 
original packets that the flows were made from. These packets 
are passed to the second layer of our system, for payload 
examination. This more thorough investigation of a limited set 
of packets (just those that comprise the questionable flow) may 
predict more precisely the outcome of the flow.  

Advantages of the hybrid approach are: i) Flows that are 
predicted as benign or suspicious with high probability do not 
reach the second layer (packet examination) saving 
computational resources; ii) Only questionable flows are further 
examined at the packet level; iii) Accuracy of the prediction is 
expected to rise, since more information (payload) is available; 
iv) More attacks may be recognized (since there is access to 
payload, in addition to flow data); v) Compared to packet based 
approaches, our approach requires less computational resources. 

IV. FROM HYBRID DETECTION TO ADAPTIVE BIG DATA 
CYBER-ATTACK DETECTION 

A main disadvantage of last section’s hybrid approach is the 
payload examination maybe time consuming. To alleviate the 
problem, we are utilizing Spark Big Data platform for parallel 
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individual and multistage full-packet analysis. Further, we study 
how a flow-based component and a packet-based component 
can interact to achieve better overall performance.  

A. Parallel Straming Data Processing 
To perform packet-based intrusion detection and prediction 

for large-scale network traffic streaming data, our new design is 
on top of the Spark Streaming framework1. It is an extension of 
the core Spark API and enables scalable, high-throughput, fault-
tolerant stream processing of live data streams. Resilient 
Distributed Dataset (RDD) is a core abstraction of Spark, which 
is a collection of elements partitioned across the nodes of the 
cluster that can be operated on in parallel. A common RDD data 
type is key-value pair where ‘key’ is used for data partitioning, 
grouping and aggregation, ‘value’ contains the partitioned data 
associated with the key. RDD parallel operations include 

MapReduce [13], CoGroup, Join and others. Following 
functional programing principle [14], each RDD operation is a 
high-level function to run a user-defined function against each 
element of the dataset. On top of RDD, Spark Streaming 
provides another abstract called DStream which is a sequence of 
RDDs received within a certain time interval. So the incoming 
network traffic data can be modeled as continuous DStreams. 
DStream supports similar RDD operations to continuously 
process incoming data in parallel in a distributed environment. 
The main reason we choose Spark is its capability to seamlessly 
combine different types of data processing tasks, which is 
needed for our cyber-attack detection application. We can build 
our application using Spark to support real-time streaming 
process, database storage and machine learning tasks. Details of 
Spark and Spark Streaming framework can be found in [15]. 

 
Fig. 1: A Hybrid Big Data Cyber-attack Detection System. 

 

TABLE I.  FULL PACKET ANALYSIS ALGORITHM ON SPARK STREAM 

1: Create	a	Spark	streaming	context	with	batch	interval	as	n	second;	

2: Create	DStream	by	collecting	incoming	network	socket,	a	DStream	contains	all	packets	within	the	batch	interval	time	window;	

3: Apply	full	packet	analysis	function	for	each	packet	in	parallel	through	the	DStream’s	map	function,	output	each	suspicious	packet	and	
its	attackType	using	key-value	structure	<packetID,	<packet,	attackType>>;	

4: Report	all	newly	identified	attacks	to	update	SLN;	

5: Set	DStream	element’s	key	to	be	IP	address	in	parallel	through	DStream’s	map	function,	output	using	key-value	structure:	<ipAddress,	
<packet,	attackType>>;	

6: Save	suspicious	packets	into	a	NoSQL	database	using	key-value	structure:	<ipAddress,	<packet,	attackType>>;	

7: Load	 all	 historical	 packet	 contents	 from	 the	NoSQL	 database	 for	 each	 IP	 address	 in	 DStream	 element’s	 key	 in	 parallel	 through	
DStream’s	map	function,	output	using	key-value	structure:	<ipAddress,	{<packet1,	attackType1>,	<packet2,	attackType2>,	...}>;	

8: Apply	multistage	 packet	 analysis	 function	 for	 each	 DStream	 element	 in	 parallel	 through	 DStream’s	map	 function,	 output	 each	
suspicious	 multistage	 packets	 and	 its	 attackType:	 using	 key-value	 structure:	 <ipAddress,	 <packet1,	 packet2,	 ...>,	
multiStageAttackType}>;	 

 

B. Adaptive Big Data Cyber-attack Detection System Design 
As shown in Figure 1, our proposed design includes four 

parts: i) We first use SLN-based detection for all incoming 
packets and then perform full packet analysis only for the 
packets whose headers are classified as suspicious by the SLN 
detection. The hybrid detection can balance the efficiency using 
the SLN analysis and accuracy using full packet analysis. ii) We 
utilize Spark platform to achieve parallel full packet analysis 

                                                             
1 Spark Streaming framework, http://spark.apache.org/streaming/ 

since packets can be easily partitioned and analyzed in parallel 
within a distributed environment. Further, we separate analysis 
tasks for single attacks and multistage attacks. iii) New attacks 
identified by the parallel full packet analyses are incrementally 
added to the SLN graph. The updated new SLN graph can be 
instantly used for future detections. iv) To adapt the dynamic 
characteristics of incoming packets in terms of velocity, 
benign/suspicious packet ratio, we are designing an algorithm to 

Load based 
threshold adaptation

Header based 
classification

Parallel full 
packet analysis

Parallel multistage 
packet analysis

Spark Platform

Training 
Data

Real time 
incoming 
packets

SLN

Cassandra

Historical 
packets with 
the same IP

Full packets 
of suspicious 

headers

Suspicious 
packets

Suspicious 
packets

Incremental graph 
update for new attacks

SLN 
Construction  

and Reasoning



set the threshold for SLN-based classification dynamically. The 
goal is to perform more thorough and accurate detection when 
incoming packets are in low speed and more timely and swift 
detection when packets are arriving in high or increasing speed. 
The algorithm will consider the current load and latency of the 
full packet analysis, the changes of incoming packet speed and 
benign/suspicious packet ratio. 

Table I shows the main steps for full packet detection 
process. The basic data type is Spark DStream. We use Map 
function in Step 3 and 8 for parallel individual and multistage 
full packet analysis. Multistage full packet analysis needs not 
only the current packets, but also historical packets with the 
same IP address. So we use a NoSQL database [16], such as 
Cassandra  to store suspicious packets. We choose NoSQL 
database because it can store key-value data model directly and 
many NoSQL databases have good scalability in distributed 
environments. In Step 6, we use IP address as key to save all 
historical suspicious packets. Map function is used again in Step 
5 to shuffle data using IP addresses as keys, and in Step 7 to read 
historical packets from the NoSQL database. 

V. CONCLUSION 
In this work, we design a comprehensive system to combine 

different types of approaches for intrusion detection and 
prediction: including flow-based inspection, full packet-based 
single attacks and multistage attack detection. Our goal is to 
study how these approaches can work coherently, especially 
when they are integrated with Big Data platforms like Spark. We 
are currently working on the system’s implementation and 
evaluation. 
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