
Towards Adaptive Big Data Cyber-attack Detection
via Semantic Link Networks

George Karabatis1, Jianwu Wang1, Ahmed AlEroud2

1 Department of Information Systems, University of Maryland, Baltimore County (UMBC), Baltimore, MD, USA

2 Department of Computer Information Systems, Yarmouk University, Irbid, Jordan
{georgek, jianwu, ahmed21}@umbc.edu

Abstract— As a core mechanism for cybersecurity, the ability
to detect cyber-attacks is increasingly critical nowadays. There
have been many types of network intrusion detection approaches,
such as flow-based and packet-based, targeting single attack and
multistage attack detection. Each approach has its own
advantages and disadvantages. In this paper, we design an organic
combination of these types of efforts into one comprehensive
system. Furthermore, to deal with increasing volumes of network
traffic and improve full packet analysis efficiency, we employ
Spark Streaming platform for parallel detection.

Keywords— Adaptive Cyber-attack Detection; Semantic Link
Network; Big Data Platform; Streaming Data Analysis

I. INTRODUCTION AND BACKGROUND
Modern Intrusion Detection Systems (IDSs) analyze the

content of network packets to predict attacks. The current
approaches for intrusion detection and prediction of network
traffic can be categorized differently based on different criteria.
We have packet and flow detection based on the data content to
be inspected, and single attack and multistage attack detection
based on the nature of targeted attacks. We will briefly explain
these approaches and try to build a new system combing these
efforts.

A. Flow-based and Packet-based Intrusion Detection
The problem of intrusion detection and prediction has

exacerbated with increasing volumes of network traffic and
IDSs have a hard task analyzing network packets on the fly to
provide timely prediction [1]. As a result, there have been
attempts to investigate network flows which contain much less
information (since it is in an aggregate form) compared to
packets in order to predict attacks. The advantage of this
approach is that processing smaller amount of information
results in higher throughput and faster detection of attacks. On
the other hand, its disadvantage is a lower degree of accuracy in
detecting attacks due to the lack of payload information.

Flow-based intrusion detection can identify a subset of
cyber-attacks, including denial of service [2], scanning attacks
[3], worms [4], and botnets [5]. There have been few machine
learning techniques utilized in flow-based intrusion detection
such as Hidden Markov Models [6] and Support Vector
Machines [7] to detect SSH brute force attacks, and entropy [3]
to identify anomalies.

Our past work partially alleviates the accuracy problem and
increases detection rate by using semantic information that is

available in net flows, such as time, location, and other context-
related information that are present and links related alerts
together. These links are represented in a Semantic Link
Network (SLN) which is exploited through an inference process
and enhances the detection rate [8].

B. Single and Multistage Attack Detection
While we can detect some types of attacks by only inspecting

individual packets/flows, more serious or coordinated attacks
might be detected by inspecting all packets/flows with some
common features, such as originating from the same IP address,
within a longer time period in the past. This type of attack, called
multistage attack, refers to attacker activities that consist of
multiple steps and occur in a certain time [9].

Both flow-based and packet-based approaches have been
used for multistage attack detection [10]. Our past work [8] has
studied how to detect multistage attacks from sequences of IP
flows by efficiently querying the relations produced via
reasoning on SLNs. A flow can be predicted as a suspicious
activity (that represents a step in a multi-step attack) or a benign
activity. During multi-step attacks, several alerts are raised each
one representing an indicator of an attack step.

C. Our Approach
In this work, we propose a system design that can support

flow-based inspection as initial detection and full packet-based
inspection only for quasi-suspicious flows that need further
analysis. For full packet analysis, the system will check for both
single attacks and multistage attacks. To efficiently process the
large volumes of full packets, we employ a Spark platform for
data parallelism and streaming data processing. The full packet
detection results can be used to update SLNs dynamically.
Further, the threshold for SLN-based classification can be
automatically adjusted based on factors such as incoming traffic
velocity and system workload.

Our contributions include: 1) a hybrid approach that
combines a flow-based and a packet-based inspection to detect
intrusions; 2) parallel individual and multistage full packet
inspection based on Spark Streaming framework; 3) interaction
between flow-based and a packet-based inspection for dynamic
SLN updates for newly identified attack types and system
adaptation based on incoming traffic velocity and system
workload.

II. CYBER-ATTACK DETECTION VIA SEMANTIC LINK
NETWORKS

In the following we briefly provide an outline of identifying
intrusions based on flows using SLNs. A more detailed
explanation of flow-based intrusion detection using context is
found in [8].

A Semantic Link Network (SLN) is a graph with nodes and
edges which are used to infer semantic links [11]. The emphasis
in this work is on context, which is used to assist in the process
of identifying attacks. Example contextual features of an entity
are the time it occurs, its location, the events that target it, and
its relationship to other entities [12]. The key idea is that the
features which describe a context have a cause/effect
relationship to the situation that a specific context may result
into, i.e., either an alert or a benign activity.

Net Flows: We use the following definition of a flow
structure: (Isrc, Idst, Psrc, Pdst, Prot, Pckts, Octs, Tstart, Tend,
Flags), where Isrc and Idst are the features that identify source
and destination IP addresses; Psrc and Pdst are the source and
destination ports; Prot is the protocol type; Pckts and Octs give
the total number of packets and octets in the data exchange;
Flags are the TCP header flags; Tstart and Tend denote the start
and end time of the flow respectively.

Constructing SLNs : The SLNs are constructed by generating
weighted links among nodes (alert nodes and benign nodes) and
then reasoning on such links to augment their semantics. The
SLNs are constructed in two major steps: weighted links are
created among nodes using similarity; then, reasoning is
performed on the links to augment the semantic relationships
among nodes. The similarity among nodes is a measure of their
co-occurrence. There are three categories of contextual features
that have been utilized to calculate similarity. Time/location,
numerical, and descriptive features. Time-based features are
represented by the timestamp of each alert, the Tstart, Tend of
the flows that contain them and the duration of such flows.
Location-based features are represented by the source,
destination IPs and port numbers (Isrc, Idst, Psrc, Pdst). These
features indicate relations among nodes based on source and
target of attacks. Numerical features identify traffic statistics
such as the number of packets, octets (Pckts, Octs). Descriptive
or nominal features describe other flow characteristics such as
the flags and protocol type (Prot, Flags), in addition to alert
description.

For semantic reasoning, initial weights on semantic links
among nodes are assigned. The initial weight is the similarity
value of time, location, numerical and/or descriptive features.
The measures we use to calculate similarity between nodes are
Pearson correlation and Anderberg similarity. After the
similarity values are calculated, a similarity relationship matrix
! is created in modeling the similarity values among nodes.

Flow Prediction Using SLNs: The attack prediction starts by
investigating the features of an incoming flow to produce an
initial prediction for each flow and pass it to SLNs. This initial
prediction is passed to SLNs that expand it to include several
other related predictions in the SLNs based on a threshold "
which controls the scope of the expansion.

Discarding Possible False Predictions: It is possible to have
a scenario where the set of predictions for a specific flow
includes both suspicious and benign activities. It is then
necessary to discard possible inaccurate predictions (i.e. false
positives and false negatives). A second decision tree
classification model is created to examine flow features to
identify benign activities, resulting in a set of rule-based profile
filters that define benign activities. These profile filters are only
applied to flows for which the predictions produced include both
suspicious and benign nodes, and the result is to identify and
remove false positives and false negatives.

III. HYBRID CYBER-ATTACK DETECTION
This section discuss a novel hybrid approach that combines

a flow-based and a packet-based inspection to detect intrusions.
Flow-based intrusion detection is fast, yet not so accurate.
Packet-based intrusion detection is resource consuming but
more accurate. Therefore, a combination of the above
techniques is a promising approach that utilizes the advantages
of both flow-based and packet-based techniques.

The main and novel idea of this approach consists of two
layers: First, a flow-based approach is applied, where the
incoming flows are analyzed based on the SLN technique
described above and a prediction is made. If the prediction
results in a benign flow, then it is allowed to pass into the
network environment. Otherwise, the flow that has been
characterized as suspicious is further analyzed based on the level
of suspiciousness. That is, if the flow was deemed suspicious
with a high probability then we follow the policy established for
suspicious flows. Usually policies for suspicious flows include
denial of entry into the organization’s network (reject), diversion
into a closely watched subsystem (e.g., diversion to a honeypot),
etc.

Apart from these two clear cases, we may encounter flows
with a probability of being suspicious in a medium range when
we cannot fully identify them as benign or suspicious. For such
cases, we delegate the flows into a further more detailed
examination with more information from the individual and
original packets that the flows were made from. These packets
are passed to the second layer of our system, for payload
examination. This more thorough investigation of a limited set
of packets (just those that comprise the questionable flow) may
predict more precisely the outcome of the flow.

Advantages of the hybrid approach are: i) Flows that are
predicted as benign or suspicious with high probability do not
reach the second layer (packet examination) saving
computational resources; ii) Only questionable flows are further
examined at the packet level; iii) Accuracy of the prediction is
expected to rise, since more information (payload) is available;
iv) More attacks may be recognized (since there is access to
payload, in addition to flow data); v) Compared to packet based
approaches, our approach requires less computational resources.

IV. FROM HYBRID DETECTION TO ADAPTIVE BIG DATA
CYBER-ATTACK DETECTION

A main disadvantage of last section’s hybrid approach is the
payload examination maybe time consuming. To alleviate the
problem, we are utilizing Spark Big Data platform for parallel

jianwu

individual and multistage full-packet analysis. Further, we study
how a flow-based component and a packet-based component
can interact to achieve better overall performance.

A. Parallel Straming Data Processing
To perform packet-based intrusion detection and prediction

for large-scale network traffic streaming data, our new design is
on top of the Spark Streaming framework1. It is an extension of
the core Spark API and enables scalable, high-throughput, fault-
tolerant stream processing of live data streams. Resilient
Distributed Dataset (RDD) is a core abstraction of Spark, which
is a collection of elements partitioned across the nodes of the
cluster that can be operated on in parallel. A common RDD data
type is key-value pair where ‘key’ is used for data partitioning,
grouping and aggregation, ‘value’ contains the partitioned data
associated with the key. RDD parallel operations include

MapReduce [13], CoGroup, Join and others. Following
functional programing principle [14], each RDD operation is a
high-level function to run a user-defined function against each
element of the dataset. On top of RDD, Spark Streaming
provides another abstract called DStream which is a sequence of
RDDs received within a certain time interval. So the incoming
network traffic data can be modeled as continuous DStreams.
DStream supports similar RDD operations to continuously
process incoming data in parallel in a distributed environment.
The main reason we choose Spark is its capability to seamlessly
combine different types of data processing tasks, which is
needed for our cyber-attack detection application. We can build
our application using Spark to support real-time streaming
process, database storage and machine learning tasks. Details of
Spark and Spark Streaming framework can be found in [15].

Fig. 1: A Hybrid Big Data Cyber-attack Detection System.

TABLE I. FULL PACKET ANALYSIS ALGORITHM ON SPARK STREAM

1: Create	a	Spark	streaming	context	with	batch	interval	as	n	second;	

2: Create	DStream	by	collecting	incoming	network	socket,	a	DStream	contains	all	packets	within	the	batch	interval	time	window;	

3: Apply	full	packet	analysis	function	for	each	packet	in	parallel	through	the	DStream’s	map	function,	output	each	suspicious	packet	and	
its	attackType	using	key-value	structure	<packetID,	<packet,	attackType>>;	

4: Report	all	newly	identified	attacks	to	update	SLN;	

5: Set	DStream	element’s	key	to	be	IP	address	in	parallel	through	DStream’s	map	function,	output	using	key-value	structure:	<ipAddress,	
<packet,	attackType>>;	

6: Save	suspicious	packets	into	a	NoSQL	database	using	key-value	structure:	<ipAddress,	<packet,	attackType>>;	

7: Load	 all	 historical	 packet	 contents	 from	 the	NoSQL	 database	 for	 each	 IP	 address	 in	 DStream	 element’s	 key	 in	 parallel	 through	
DStream’s	map	function,	output	using	key-value	structure:	<ipAddress,	{<packet1,	attackType1>,	<packet2,	attackType2>,	...}>;	

8: Apply	multistage	 packet	 analysis	 function	 for	 each	 DStream	 element	 in	 parallel	 through	 DStream’s	map	 function,	 output	 each	
suspicious	 multistage	 packets	 and	 its	 attackType:	 using	 key-value	 structure:	 <ipAddress,	 <packet1,	 packet2,	 ...>,	
multiStageAttackType}>;	

B. Adaptive Big Data Cyber-attack Detection System Design
As shown in Figure 1, our proposed design includes four

parts: i) We first use SLN-based detection for all incoming
packets and then perform full packet analysis only for the
packets whose headers are classified as suspicious by the SLN
detection. The hybrid detection can balance the efficiency using
the SLN analysis and accuracy using full packet analysis. ii) We
utilize Spark platform to achieve parallel full packet analysis

1 Spark Streaming framework, http://spark.apache.org/streaming/

since packets can be easily partitioned and analyzed in parallel
within a distributed environment. Further, we separate analysis
tasks for single attacks and multistage attacks. iii) New attacks
identified by the parallel full packet analyses are incrementally
added to the SLN graph. The updated new SLN graph can be
instantly used for future detections. iv) To adapt the dynamic
characteristics of incoming packets in terms of velocity,
benign/suspicious packet ratio, we are designing an algorithm to

Load based
threshold adaptation

Header based
classification

Parallel full
packet analysis

Parallel multistage
packet analysis

Spark Platform

Training
Data

Real time
incoming
packets

SLN

Cassandra

Historical
packets with
the same IP

Full packets
of suspicious

headers

Suspicious
packets

Suspicious
packets

Incremental graph
update for new attacks

SLN
Construction

and Reasoning

set the threshold for SLN-based classification dynamically. The
goal is to perform more thorough and accurate detection when
incoming packets are in low speed and more timely and swift
detection when packets are arriving in high or increasing speed.
The algorithm will consider the current load and latency of the
full packet analysis, the changes of incoming packet speed and
benign/suspicious packet ratio.

Table I shows the main steps for full packet detection
process. The basic data type is Spark DStream. We use Map
function in Step 3 and 8 for parallel individual and multistage
full packet analysis. Multistage full packet analysis needs not
only the current packets, but also historical packets with the
same IP address. So we use a NoSQL database [16], such as
Cassandra to store suspicious packets. We choose NoSQL
database because it can store key-value data model directly and
many NoSQL databases have good scalability in distributed
environments. In Step 6, we use IP address as key to save all
historical suspicious packets. Map function is used again in Step
5 to shuffle data using IP addresses as keys, and in Step 7 to read
historical packets from the NoSQL database.

V. CONCLUSION
In this work, we design a comprehensive system to combine

different types of approaches for intrusion detection and
prediction: including flow-based inspection, full packet-based
single attacks and multistage attack detection. Our goal is to
study how these approaches can work coherently, especially
when they are integrated with Big Data platforms like Spark. We
are currently working on the system’s implementation and
evaluation.

REFERENCES
[1] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,

"An Overview of IP Flow-Based Intrusion Detection," IEEE
Communications Surveys & Tutorials, vol. 12, no. 3, pp. 343-356, 2010.

[2] B. Claise. (2008, 24/11/2013). Specification of the Ip Flow Information
Export (Ipfix) Protocol for the Exchange of Ip Traffic Flow Information.
Available: http://www.ietf.org/rfc/rfc5101.txt

[3] A. Wagner and B. Plattner, "Entropy Based Worm and Anomaly
Detection in Fast IP Networks," in 14th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprise.,
Modena, Italy, 2005, pp. 172-177.

[4] F. Dressler, W. Jaegers, and R. German, "Flow-Based Worm Detection
Using Correlated Honeypot Logs," in ITG-GI Conference on
Communication in Distributed Systems(KiVS), 2007, pp. 1-6.

[5] G. Gu, R. Perdisci, J. Zhang, and W. Lee, "Botminer: Clustering Analysis
of Network Traffic for Protocol-and Structure-Independent Botnet
Detection," in Proceedings of the 17th conference on
Security(USENIX'08), San Jose, CA, 2008, pp. 139-154.

[6] A. Sperotto, R. Sadre, P. Boer, and A. Pras, "Hidden Markov Model
Modeling of Ssh Brute-Force Attacks," in Proceedings of the 20th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM '09), Venice, Italy, 2009, pp. 164-176.

[7] P. Winter, E. Hermann, and M. Zeilinger, "Inductive Intrusion Detection
in Flow-Based Network Data Using One-Class Support Vector
Machines," in 4th IFIP International Conference on New Technologies,
Mobility and Security (NTMS'11), Dubai, UAE, 2011, pp. 1-5.

[8] A. AlEroud, G Karabatis. “Context Infusion in Semantic Link Networks
to Detect Cyber-attacks: A Flow-Based Detection Approach” IEEE
International Conference on Semantic Computing (ICSC) 2014, pp. 175-
182.

[9] Alserhani, F., Akhlaq, M., Awan, I.U., Cullen, A.J. and Mirchandani, P.,
2010, April. MARS: multi-stage attack recognition system. In Advanced
Information Networking and Applications (AINA), 2010 24th IEEE
International Conference on (pp. 753-759). IEEE.

[10] Zhou, C.V., Leckie, C. and Karunasekera, S., 2010. A survey of
coordinated attacks and collaborative intrusion detection. Computers &
Security, 29(1), pp.124-140.

[11] Z. Hai, S. Yunchuan, and Z. Junsheng, "Schema Theory for Semantic
Link Network," in Fourth International Conference on Semantics,
Knowledge and Grid(SKG'08), Beijing, 2008, pp. 189-196.

[12] A. Zimmermann, A. Lorenz, and R. Oppermann, "An Operational
Definition of Context," in Proceedings of the 6th International and
Interdisciplinary Conference on Modeling and Using Context
(Context'07), Roskilde University, Denmark, 2007, pp. 558-571.

[13] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107–113.

[14] P. Wadler, The essence of functional programming. In Proceedings of the
19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (pp. 1-14), 1992, ACM.

[15] Karau, H., Konwinski, A., Wendell, P. and Zaharia, M., 2015. Learning
Spark: Lightning-Fast Big Data Analysis. O'Reilly Media, Inc.

[16] R. Cattell, Scalable SQL and NoSQL data stores. ACM SIGMOD Record,
39(4), pp.12-27, 2011.

View publication statsView publication stats

https://www.researchgate.net/publication/311949274

