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Multimodal time series signals are generated by different sensors such as accelerometers,

magnetometers, gyroscopes and heart rate monitors, where each sensor usually has various

number of input channels and sampling rates. Different signal processing techniques such

as feature extraction and classification are employed to process the data generated by each

sensor modality which: 1) can lead to a long design time, 2) requires expert knowledge

in designing the features, and 3) is unscalable when adding new sensors. Moreover, with

recent advances in Internet of Things (IoT) and wearable devices, a major challenge is

the ability to efficiently deploy the multimodal signal processing techniques in embedded,

resource-bound settings that have strict power and area budgets.

In this dissertation we target the previously mentioned challenges. In the first contribution,

we propose “SensorNet” which is a scalable deep convolutional neural network designed to

classify multimodal time series signals. The raw time series signals generated by different



sensor modalities with different sampling rates are first fused into images; then, a Deep

Convolutional Neural Network (DCNN) is utilized to automatically learn shared features

in the images and perform the classification. SensorNet: (1) is scalable as it can process

different types of time series data with variety of input channels and sampling rates. (2)

does not need to employ separate signal processing techniques for processing the data

generated by each sensor modality. (3) does not require expert knowledge for extracting

features for each sensor data. (4) makes it easy and fast to adapt to new sensor modalities

with a different sampling rate. (5) achieves very high detection accuracy for different case

studies. (6) has a very efficient architecture which makes it suitable to be employed at IoTs

and wearable devices.

In the second contribution, we propose a custom low power hardware architecture for

the efficient deployment of SensorNet at resource-limited embedded devices, which

can perform the entire SensorNet signal processing in real-time with minimal energy

consumption. The proposed architecture is fully reconfigurable for different applications

with various requirements.

Finally, we propose a stand-alone dual-mode Tongue Drive System (sdTDS) which

employs SensorNet to perform all required multimodal signal processing in real-time.

sdTDS is a wireless wearable headset and individuals with severe disabilities can use it to

potentially control their environment such as computer, smartphone and wheelchair using

their voluntary tongue and head movements.

SensorNet performance is evaluated using three different case studies including Physical



Activity Monitoring, sdTDS and Stress Detection and it achieves an average detection

accuracy of 98%, 96.2% and 94% for each case study, respectively. Furthermore, we

implement SensorNet using our custom hardware architecture on Xilinx FPGA (Artix-7)

which consumes 17 mJ, 9 mJ and 3.5 mJ energy for Physical Activity Monitoring, sdTDS

and Stress Detection case studies, respectively. To further reduce the power consumption,

SensorNet is implemented using ASIC at the post layout level in 65-nm CMOS technology

which consumes approximately 7× lower power compared to the FPGA implementation.

Additionally, SensorNet is implemented on NVIDIA Jetson TX2 SoC (CPU+GPU) which

is an embedded commercial off-the-shelf platform. Compared to TX2 single-core CPU

and GPU implementations, FPGA-based SensorNet obtains 8× and 12× improvement in

power consumption, and 71× and 3× improvement in energy consumption. Furthermore,

SensorNet achieves 200×, 63×, 27× lower energy consumption compared to previous

related work.

SensorNet is considered as a generic deep neural network that can accommodates a wide

range of applications with minimal effort.
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Chapter 1

INTRODUCTION

1.1 Motivation and Problem Statement

Time series data is a generalized form of data that is gathered in different kinds of

domains from healthcare [Kampouraki, Manis, & Nikou] where one can track a patient’s

vital signs (heart rate, blood pressure), to fitness and wellness where one can monitor

a person’s activity [Reiss & Stricker2011], to engines in cars and power plants [Yan &

Yu2015] using sensors. Modeling and classifying time series thus has a wide range of

applications. All these datasets are represented by a time series which is univariate or

multivariate depending on the number of sensor modalities being measured. Multivariate

(Multimodal) signals are generated by different sensors usually with different sampling

frequencies such as accelerometers, magnetometers, gyroscopes and heart rate monitors.

Traditionally, time series classification problems have been solved with approaches

like Dynamic Time Warping (DTW) [Batista, Wang, & Keogh2011, Seto, Zhang, &

Zhou2015] and k-nearest neighbor (k-NN) [Ding et al.2008]. These methods or a

combination of them provide a benchmark for current time series classification research

[Chen et al.2015]. Different signal processing techniques such as feature extraction and
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classification are employed to process the data generated by each sensor modality which:

1) can lead to a long design time, 2) requires expert knowledge in designing the features,

3) requires new algorithm development and implementation if new sensors are employed,

which is tedious, 4) needs extensive signal pre-processing, and 5) is unscalable for different

real-time applications.

Deep Convolutional Neural Networks (DCNN) have become extremely popular over

the last few years after their success during the Imagenet challenge [Krizhevsky, Sutskever,

& Hinton2012]. Supervised CNNs are used to perform a large number of tasks such as

object detection [Krizhevsky, Sutskever, & Hinton2012], image segmentation [Girshick

et al.2014], and are combined with Recurrent Neural Networks (RNN) to generate

captions for images [Xu et al.2015] as well as to recognize speech [Graves, Mohamed,

& Hinton2013]. Inspired by these developments, deep networks are applied to classify

time series data, perform event detection and engineer features from the input data [Zheng

et al.2014, Wang & Oates2015, Ordóñez & Roggen2016, Vepakomma et al.2015, Li et

al.2017,Yao et al.2017,Guan & Ploetz2017,Jiang & Yin2015,Rajpurkar et al.2017,Yan &

Yu2015]. However, these solutions encounter various challenges such as: Low detection

accuracy, high latency, large and power-hungry architectures when deployed at Internet of

Things (IoT) and wearable devices.



3

Time-series Image Deep Neural Network

Raw Time-series DataOn-body Wearable Sensors

Probability distribution of labels

0.2

0.4

0.6

0.8

1

Cleaning

Sitting

Lying StandingCyclingRunning

SensorNet

FIG. 1.1. SensorNet high-level diagram

1.2 Contributions

In this dissertation, SensorNet shown in Figure 1.1 is proposed which is a scalable

Deep Convolutional Neural Network (DCNN) designed to classify multimodal time series

signals in embedded, resource-bound settings that have strict power and area budgets. The

time-series signals generated by different sensor modalities with different sampling rates

are first fused into images and then a Deep Convolutional Neural Network is utilized to

model the time series data while it learns to correlate the information in the signals from

different sensor modalities, simultaneously. SensorNet: (1) is scalable as it can process

different types of time series data with variety of input channels and sampling rates. (2)

does not need to employ a separate signal processing techniques for processing the data

generated by each sensor modality. (3) does not require expert knowledge for extracting

features for each sensor data. (4) makes it easy and fast to adapt to new sensor modalities

with a different sampling rate. (5) achieves very high detection accuracy for different case

studies. (6) has a very efficient architecture which makes it suitable to be employed in low
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power and resource-bound embedded devices.

Furthermore, we propose a custom hardware architecture for an efficient deployment

of SensorNet on low power and resource-limited embedded devices, which can perform the

entire SensorNet signal processing in real-time.

Also, we propose a stand-alone dual-mode Tongue Drive System (sdTDS) which uses

SensorNet to perform all required signal processing in real-time. sdTDS is a wireless

wearable headset and individuals with severe disabilities can use it to potentially control

their environment such as computer, smartphone and wheelchair using their voluntary

tongue and head movements.

We evaluate the SensorNet performance for three different case studies including

Physical Activity Monitoring, sdTDS and Stress Detection on different embedded settings

such as FPGAs, ASICs and NVIDIA Jetson TX2 SoC (CPU+GPU). To summarize, the

dissertation provides the following key contributions:

• Propose SensorNet which is scalable Deep Convolutional Neural Networ to classify

multimodal time series signals

• Perform extensive hyperparameter optimization for SensorNet with the goal of

reducing memory requirements, hardware complexity and power consumption while

achieving high detection accuracy

• Propose a custom hardware architecture for an efficient deployment of SensorNet

on low power and resource-limited embedded devices, which can perform the entire
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SensorNet signal processing in real-time

• Develop and build sdTDS, a wireless assistive technology which employes SensorNet

for it's multi-modal signal classification. Individuals with severe disabilities can use

sdTDS to potentially control their environment using their voluntary tongue and head

movements

• Evaluate SensorNet in terms of detection accurcay, memory requirements and

number of computations using three real-world case studies including Physical

Activity Monitoring, dual-mode Tongue Drive System and Stress Detection

• Implement SensorNet on low power FPGAs and also ASIC through full place and

route flow in 65-nm CMOS technology and provide results and analysis in terms of

power consumption, latency and resource utilization

• Implement SensorNet on NVIDIA Jetson SoC TX2 commercial platform and

provides comparisons with FPGAs and ASIC performance results

1.3 Organization of Dissertation

The dissertation consists of the following chapters as an approach to the contributions

and objectives stated above.

• Chapter 2 introduces state-of-the-art for multimodal data classifications using different

deep neural networks. Also, it provides related prior work for hardware implementations
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of deep neural networks on embedded platforms.

• Chapter 3 describes the proposed SensorNet architecture and discuss all the required

neural network layers.

• Chapter 4 provides SensorNet experimental results when it is applied to three

different real-world case studies. Also, different deep neural network hyperparameter

optimizations are explored in this section.

• Chapter 5 discusses the proposed hardware architecture for SensorNet in details.

Furthermore, employed hardware optimization techniques are discussed in this

chapter.

• Chapter 6 provides SensorNet hardware implementation results on FPGA and ASIC

platforms targeting three case studies and compared against different off-shelf

platforms.

• Chapter 7 finally concludes and provides paths for future work to extend upon this

dissertation.
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Chapter 2

BACKGROUND

2.1 Overview

In recent years, several multimodal data classification approaches have been proposed

which are discussed in this section. These approaches have been proposed for different

applications such as Human Activity Recognition, Congestive Heart Failure Detection,

Mobile Sensing Data Processing. Furthermore, a number of solutions on deep convolutional

neural network for low power embedded settings have been proposed which will be

discussed in this section.

2.2 Related Prior Work

2.2.1 Multimodal Data Classification

[Wang & Oates2015] uses standard CNN architectures like Tiled Convolutional

Neural Networks by first converting a time series into an image before using a CNN

to classify it. The authors convert the time series into an image using two types of



8

representations, i.e., Grammian Angular Fields (GAF) and Markov Transition Fields

(MTF). The above mentioned architectures either model each variable separately before

correlating them or require preprocessing the stream into an image. In [Zheng et

al.2014] authors proposed an architecture which employs a CNN per modality (variable)

that processes each variable separately and then correlates them using a fully (dense)

connected layer. They tested their network on two different datasets including Physical

Activity Monitoring and Congestive Heart Failure Detection and they achieved a detection

accuracy of 93% and 94%, respectively. [Ordóñez & Roggen2016] proposed a generic

deep framework for activity recognition based on convolutional and LSTM recurrent units

and evaluated their framework on the Opportunity and the Skoda datasets. They showed

they achieved better accurcay results compared to baseline CNN mdoel. [Vepakomma

et al.2015] proposed A-Wristocracy, a Deep Learning Neural Network-based framework

for recognizing in-home activities of human users with wrist-worn device sensing. They

validated 22 daily activities with average test accuracy of 90%. Their network consists two

hidden layers. Their proposed network is designed specifically for their sensing system.

Authors in [Li et al.2017] introduced a system that recognizes concurrent activities from

real-world data captured by multiple sensors of different types using 7 layers CNN that

extracts spatial features, followed by a long-short term memory network that extracts

temporal information in the sensory data. They tested their system with three datasets.

Their proposed network has 27M model weights which requires a large memory for saving

on an embedded system. In [Yao et al.2017] authors proposed DeepSense which is a deep
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learning framework for time series mobile sensing data Processing. DeepSense integrates

convolutional and RNN to exploit and merge local interactions among similar mobile

sensors and extract temporal relationships to model signal dynamics. They deployed

DeepSense on Nexus5 and Intel Edison and reported latency and power consumption

results. [Guan & Ploetz2017] proposed Ensembles of deep LSTM learners for Activity

Recognition using Wearables. They tested their approach on three different datasets

including Opportunity, PAMAP2 and Skoda. [Jiang & Yin2015] proposed an approach

for the activity recognition task that, first assembles signal sequences of accelerometers

and gyroscopes into a novel activity image. Then 2D Discrete Fourier Transform is applied

to the signal image and its magnitude is chosen as their activity image and as input to the

DCNN. [Rajpurkar et al.2017] proposed a Cardiologist-Level Arrhythmia Detectiona using

a 34-layer CNN and they exceed the average cardiologist performance in both sensitivity

and precision.

2.2.2 Deep Neural Networks

In recent years, Deep Neural Networks (DNNs) have become extremely popular

because of their outstanding results in the areas such as computer vision [Krizhevsky,

Sutskever, & Hinton2012], voice recognition [Hinton & others2012], natural language

processing [Collobert & Weston2008], robotics [Hwu & others2017] and time series data

classification [Zheng et al.2014]. However, due to intensive computations and large

memory requirements, implementing deep neural networks on resource limited and low
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power embedded platforms is challenging, specially when dealing with a network with

many fully connected or convolution layers [Page & others2017]. Also, performance

becomes limited by memory bandwidth to access the training weights saved usually

in off-the-chip memory. Several methods have been proposed to address efficient

training and inference in deep neural networks [Rastegari & others2016]: Shallow

networks [Dauphin & Bengio2013], quantizing parameters [Gong & others2014], network

binarization [Courbariaux & others2015] and compressing pre-trained deep networks [Han,

Mao, & Dally2015]. These methods improve the efficiency of DNNs for implementing

on low-power embedded platforms, however, even by employing these methods, an

off-the-chip memory is usually required to save the model weights. Moreover, power

consumption is still high due to the need of accessing off-the-chip memory constantly.

For wearable devices and Internet of Things (IoT) platforms, the power consumption,

size and real-time requirements are even more restricted. In 2016, [Courbariaux et

al.2016] proposed Binarized Neural Networks (BNNs) to address the previously mentioned

challenges. BNN has a great compact representation of network weights and activation

values compared to a standard DNN by constraining each value to either +1 or -1 (binary).

During the forward pass BNNs: 1) Drastically reduce the memory requirements since

the model weights can be stored in one single bit (-1 can be stored as 0 and +1 stored

as 1). 2) Eliminate the need of using off-the-chip memory in some popular networks.

3) Replace multiply operations with bit-wise operations (mostly XNOR) which improves

power efficiency. Since 2016, different works [Courbariaux & others2015, Rastegari &
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others2016] have shown that BNNs can achieve comparable accuracies to full-precision

DNNs for some popular datasets such as MNIST, CIFAR10 and ImageNet. [Zhao &

others2017, Umuroglu & others2017, Nurvitadhi & others2016] have proposed BNN

hardware accelerators on CPU, GPU, FPGA and ASIC. Although BNNs are very efficient

to be employed in low power and resource-limited embedded devices, they have not shown

high detection accuracy for multimodal time series data classifications yet.

In summary, most of the previous work do not propose a real-time hardware solution

or general-purpose processors have been used [Radu et al.2016, Yao et al.2017] which

results in high power consumption. Also, the architecture developed in previous work are

not efficient for hardware deployment at IoT and wearable devices [Zheng et al.2014,Guan

& Ploetz2017]. Furthermore, some of the previous related work require expert knowledge

in designing the features which results in a long design time [Li et al.2010] and those work

are not usually scalable.
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Chapter 3

PROPOSED SENSORNET

3.1 Deep Neural Networks Overview

In most of the deep neural networks, there are large variety of layers including

Convolutional, Fully-connected, Pooling, Batch normalization layers. Also, there are

activation functions such as Sigmoid, Tanh, and ReLU, which can be considered as

separate layers. Among the neural network layers, fully-connected and convolutional

layers are often the most highly utilized and contain the majority of the complexity in

the form of computation and memory requirements. In the following section, we provide

a brief explanation about the most commonly used layers including their mathematical

formulation and complexity requirements in terms of computation and memory.

3.1.1 Convolutional Layers

Convolutional layers are the core building block of a convolutional neural network.

The layers consist of learnable filters banks (sets), which have a small receptive field that
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FIG. 3.1. (A) An example of convolving a 3x3 image by a 2x2 filter, (B) A
hardware schematic which demonstrates one single convolution operation.

extend through the full depth of the input. During the forward pass, each filter is convolved

across the width and height of the input, computing the dot product between the entries

of the filter and the input and producing a feature map of that filter. Feature maps for all

filters along the depth dimension of the input data, form the full output of the convolution

layer. Figure 3.4 shows convolution operation for a 3x3 image by a 2x2 filter followed by

an activation function. A hardware schematic which demonstrates one single operation is

also depicted. The convolutional layers use a non-linear activation function which will be

discussed later.

For a 1-D input XM,Cin
of length M and with input channels Cin, a 1-D convolutional

layer with stride S, filter length F , weight WCout,Cin,F , feature maps Cout, an output signal

YN,Cout with length N = 1+b(M − F )/Sc and output channels Cout, the output of a single

element of a feature channel is computed by:
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(3.1) Yi,j =

Cin∑
c=1

(
F∑

f=1

(Xf+iS,cWj,c,f )

)
for i = 0..N − 1, j = 1..Cout

The total amount of memory requirements by the layer corresponds to the number of

weights for all of the filters which is CoutCinF . The total computation required for the

layer is 2FCinCoutN .

3.1.2 Pooling Layers

Pooling layers are usually used immediately after convolutional layers and perform

dimensionality reduction. These layers also referred to as downsampling layers. What the

pooling layers do is simplify the information in the output from the convolutional layer.

There are different pooling layers such as max-pooling and average-pooling. Max-pooling

reduces the size of the image and and also helps the network to learn abstract features in

the signal by maximizing the value across the pooling window. The pooling layers are

usually applied independently to each input channel. Given a 1-D input XM,Cin
of length

M and with Cin input channels, a 1-D pooling layer with stride S and pooling length P will

produce an output signal YN,Cin
with length N = 1 + b(M − P )/Sc. This layer does not

requires any memory and significantly less computation compared to convolution layers

because it is applied independently to each input channel.
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FIG. 3.2. Max-pooling and average-pooling examples with a 2x2 window and
stride = 2.

3.1.3 Fully-connected Layers

The fully-connected layer is a traditional Multi Layer Perceptron (MLP) that connects

every neuron in the previous layer to every neuron on the next layer. Their activations

can thus be computed with a matrix multiplication followed by a bias offset. The main

issue with fully-connected layers is that the layer requires significant amount of memory

and computation complexity. Given a 1-D input XM of length M , a fully-connected layer

with N neurons, weight WN,M and a 1-D output YN with length N , the output for a single

neuron is computed by:

(3.2) Yj =
M∑

m=1

(XmWj,m) for j = 1..N
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FIG. 3.3. Fully-connected Layer.

The total amount of memory required for the layer corresponds to the total number of

weights, NM , and the total computation is approximately 2MN . Therefore, the memory

and computation contribute equally in terms of complexity.

Usually, after several convolutional and max-pooling layers, the high-level reasoning

in the neural network is performed through fully-connected layers. Also, a fully-connected

layer with Softmax activation function is used in the output layer for the final classification.

3.1.4 Activation Functions

In biologically inspired neural networks, the activation function is usually an abstraction

representing the rate of action potential firing of the cell. Activation functions play an

important role in the Artificial Neural Network to learn and make sense of Non-linear

complex functional mappings between the inputs and response variables and ability to
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FIG. 3.4. Some common activation functions used in neural networks.

satisfy the profound universal approximation theorem. Figure 3.4 shows some common

activation functions used in the Neural Networks including Rectified Linear Unit (ReLU),

Hyperbolic tangent (Tanh) and Sigmoid. Convolutional and fully-connected layers use

non-linear activation functions. Recently, the most common activation functions are

ReLUs which have shown to provide better performance compared to others. A ReLU

is represented with the following function:

f(x) =


x x > 0

0 x ≤ 0

In the ReLUs, the activation is linear when the output is positive and hence does not

suffer from a vanishing gradient problem. Also, ReLUs are very efficient for hardware

implementation because they require few logics and operations to perform.
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3.2 SensorNet Signal Pre-processing

Consider a given time series that consists of M modalities/variables with same or

different sampling frequency. Prior to training, each variable is independently normalized

using the l2 norm. To generate an image from the normalized variables, a sliding window

of size W and step-size S is passed through all variables, thus creating a set of images of

shape 1×W ×M (single channel image). The label associated with this image depends on

the dataset. The datasets used to test SensorNet contain a label for every time step. Since a

single label is assigned to each image, the label of the current time step is taken as the label

of the image (and the label that needs to be predicted subsequently while testing). A given

image generated at time-step It has the prior states of each variable from (t −W + 1)...t.

Thus, the network can look back W prior states of each variable and given the current state

of each variable, predicts the label.

3.3 SensorNet Architecture

Fig. 3.5 shows SensorNet architecture. It consists of 5 convolutional layers, 1 fully

connected and a softmax layer that is equivalent in size to the number of class labels

(depending on the case study). In the pre-processing stage, SensorNet takes the input time

series data and fuses them into images. Then, the images are passed into the convolutional

layers and some features which are shared across multiple modalities are generated using

a set of local filters. Then, these features are fed into the fully-connected and the softmax
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FIG. 3.5. The proposed Sensornet architecture which consists of
Convolutional, Fully-connected (Dense) and Softmax layers.

layers. SensorNet architecture, the number of layers and filters and also the filter size

for each layer are chosen based on an extensive hyperparameter optimization process. In

Chapter 4 Section 4.4 we will discuss the optimization process.

The first, second, third, fourth and fifth convolutional layers contain 32, 16, 16, 8 and

8 filter sets, respectively. The convolution filters have a height of either M or 1, because

it’s assumed that there are no spatial correlations between the variables. Also, the ordering

of variables prior to generating images doesn’t affect the ability of the network to perform

classification. A filter of height n or 1 remains unaffected by the ordering of the variables.

Therefore, the filter size for the first convolutional laye is M × 5 and 1× 5 for other layers,

where M is number of input modalities.

Max-pooling is applied thrice, once after the second convolutional layer, then after the

fourth convolutional layer and the last one after the fifth convolutional layer. A max-norm

regularization of 1 is used to constrain the final activation output. The pooling size for all
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max-pooling layers is 1 × 2. Once the convolution operations have been performed, the

image is flattened into a single vector so that a fully connected layer can be added.

Two fully connected layers are employed in SensorNet which the first one has a size

of 64 nodes and use a Sigmoid as the activation function and the second one has a size

equivalent to the number of class labels with Softmax activation. All the layers of the

network have their weights initialized from a normal distribution. A learning rate of 0.0001

is used to train the network.
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Chapter 4

SENSORNET EVALUATION USING THREE CASE

STUDIES

In this chapter, SensorNet is evaluated using three real-world case studies including

Physical Activity Monitoring [Reiss & Stricker2012], stand-alone dual-mode Tongue Drive

system [Jafari et al.2017] and Stress Detection [Birjandtalab et al.2016] and in depth

analysis and experimental results are provided. First, we provide a description for each case

study and then we explore the experimental results in terms of detection accuracy, memory

requirements and number of operations. Also, we explore different hyperparameter

optimization techniques and discuss how these techniques affect SensorNet performance.

The information for all the case studies are shown in Table 4.1. As it can be seen from

the Table, the sampling rates of the sensors for each case study are different in range of 1 Hz

to 100 Hz. Also, the sensors are placed in variety of spots on human body including Chest,

Arm, Ankle, Head and hand fingers. The number of channels for each case study refers

to the number of input time series signal which are received simultaneously by SensorNet.
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Table 4.1. Information for three different case studies including Physical Activity
Monitoring, sdTDS and Stress Detection

Application # Activity Sensors Position Sampling Rate (Hz) # Subjects # Channels

Physical Activity 12 Chest & Arm & Ankle 100 & 9 8 40

sdTDS 12 Headset 50 2 24

Stress Detection 4 Wrist & Finger 8 & 1 20 7

Physical Activity Monitoring, sdTDS and Stress Detection case studies can be considered

to generate large, medium and small size datasets.

For all the case studies, SensorNet is trained using Keras [Chollet & others2015] with

the TensorFlow as backend on a NVIDIA 1070 GPU with 1664 cores, 1050 MHz clock

speed and 8 GB RAM. Models are trained in a fully-supervised way, backpropagating the

gradients from the Softmax layer through to the convolutional layers.

4.1 Case Study 1: Physical Activity Monitoring

4.1.1 Dataset Description

Physical Activity Monitoring dataset (PAMAP2) [Reiss & Stricker2012] records 12

physical activities performed by 9 subjects. The physical activities are, for instance:

standing, walking, lying and sitting. Three IMUs (inertial measurement units) and one heart

rate monitor are placed on chest, arm and ankle as shown in Figure 4.1 to record the data.

The sampling frequency of the IMU sensors is 100 Hz and the heart rate monitor sensor

has a sampling frequency of 9 Hz. In total, the dataset includes 52 channels of data but 40
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IMU on arm 
100 Hz

IMU on chest 
100 Hz

IMU on ankle 
100 Hz

 Heart rate 
chest strap
9 Hz

FIG. 4.1. Placement of on-body heart rate monitor and inertial measurements
units (IMU) used in the PAMAP2 dataset. Each IMU includes a 3D
Accelerometer, Magnetometers, Gyroscope.

of them are valid according to [Reiss & Stricker2012]. Also, out of 9 subjects the data of 8

subjects are used, as subject 9 has a very small number of samples.

Figure. 4.2 shows the class distributions for the PAMAP2 which shows that PAMAP2

is a dataset that was recorded in a constrained manner which results in a well balanced class

distribution [Guan & Ploetz2017].
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Rope jumping (2.54%)
Lying (9.9%)
Sitting (9.53%)
Standing (9.77%)
Walking (12.2%)
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Vacuum cleaning (9.02%)
Ironing (12.2%)

FIG. 4.2. Class distributions of the PAMAP2 dataset used for experimental
evaluation.

4.1.2 Data Visualization

In this section we visualize some of the input images, filters and output feature maps.

As it was mentioned earlier in this chapter, in the pre-processing stage, SensorNet receives

the input time series data and fuses them into images. Then, the images are passed into

the convolutional layers and some features which are shared across multiple modalities

are generated using a set of local filters. Figure 4.3 show 4 different input images which

correspond to four different PAMAP2 activities including Laying, Sitting, Vacuum cleaning

and Playing soccer. As it can bee seen from the figure, the images for different activities

look totally different. Also, the size of the images are 40×64 because the PAMAP2 dataset

has 40 input channels (variables) and the sliding window for this experiment is 64.

Figure 4.4 depicts one set of filters for the second convolutional layer which contains

16 filters. As is shown, each filter has a size of 1× 5.
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Lying Si'ng

Vacuum	cleaning Playing	soccer

FIG. 4.3. Samples of SensorNet input images for four different activities
including Lying, Sitting, Vacuum Cleaning and Playing soccer. Raw input
time series data are fuses into these images.

FIG. 4.4. One filter set of SensorNet which contains 16 filters with size of
1× 5.
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After convolving input images with filters, the output feature maps are generated.

Figure 4.5 demonstrates the output feature maps of the convolutional layer after the

max-pooling. As it can be seen from the figure, the size of the output feature map is

32 rather than 64 because of the max-pooling layer. Max-pooling layers reduce dimension

of the feature maps which reduces the computations and also memory requirements for the

fully-connected layer.

4.1.3 Experiment Setup

As we mentioned in Chapter 3 Section 3.3, SensorNet utilizes 5 convolutional layers,

followed by 2 fully-connected layers. First convolutional layer has 32 filter sets and each

filter size is 40 × 5. Other convolutional layers have 16, 16, 8 and 8 filter sets with a size

of 1 × 5. For this experiment, 80%, 10% and 10% of the entire data for each subject is

chosen randomly as the training, validation and testing set, respectively. To determine the

number of required epochs for the training, we train SensorNet for 150 epochs and plot

validation and training loss and accuracy results. As it can be seen from Figure 4.6, after

100 epochs the validation loss and accuracy are stable and satisfactory. Therefore, for all

the experiments for this dataset we train SensorNet with 100 epochs.

4.1.4 Experiment Results

After training SensorNet, we evaluate the trained model to determine the detection

accuracy. Figure. 4.7 shows the classification accuracy of SensorNet for the Physical
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FIG. 4.5. 16 output images of the second convolutional layer after the
max-pooling operation.



28

Epochs
0 50 100 150

Er
ro
r

0
0.5
1

1.5
2

2.5
3

Train
Validate

Epochs
0 50 100 150

A
cc
ur
ac
y

0.2

0.4

0.6

0.8

1

FIG. 4.6. Error and accuracy of the training and validation sets for Physical
Activity Monitoring case study over 150 epochs. The vertical dashed line
indicates the determined epoch.
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FIG. 4.7. Comparison of SensorNet classification accuracy for Physical
Activity Monitoring case study. The results are for different subjects with a
sliding window of size 64 samples and step-size (SZ) of 1-16-32-64.

Activity Monitoring case study for different subjects with a sliding window of size 64

samples and step-size of 1-16-32-64. As can be seen from the figure, all subjects with

step-size 1 achieve a high detection accuracy. However, as the step-size increases from 1 to

64 the detection accuracy decreases. The average accuracy of all subjects with step-sizes

of 1, 16, 32 and 64 are 98%, 94%, 93% and 86%, respectively.

4.1.5 Performance Comparison

Table 4.2 compares SensorNet performance results with state-of-the-art for Physical

Activity Monitoring. [Zheng et al.2014] proposed an architecture which employs a CNN
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per modality (variable) that processes each variable separately and then correlates them

using a fully-connected layer. [Guan & Ploetz2017] proposed an architecture for Activity

Recognition which uses 3 convolutional layers and instead of a fully-connected layer, they

use a LSTM (Long Short Term Memory) layer and finally a softmax layer. SensorNet

achieves the highest detection accuracy compared to other works for the PAMAP2 dataset.

SensorNet detection accuracy is around 97.9% while [Zheng et al.2014] and [Guan &

Ploetz2017] report 93.3% and 85.4%, respectively.

Table 4.2. SensorNet performance results comparison with existing works for Physical
Activity Monitoring

Specifications [Zheng et al.2014] [Guan & Ploetz2017] This work

Year 2014 2016 2017

Method Multi-channel DCNN Deep LSTM SensorNet

# Subjects 7 8 8

# Activity 4 12 12

Detection Accuracy (%) 93.3 85.4% 97.9
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FIG. 4.8. sdTDS prototype placed on a headset which includes a low
power FPGA, four acceleration and magnetic sensors, a Bluetooth low energy
transceiver, a battery and a magnetic tracer which is glued to the user's tongue.

4.2 Case Study 2: Stand-alone Dual-mode Tongue Drive System

4.2.1 Overview

In this section, we propose a stand-alone dual-mode Tongue Drive System (sdTDS)

shown in Figure 4.8 which uses SensorNet. sdTDS is a wireless wearable headset and

individuals with severe disabilities can use it to potentially control their environment such

as computer, smartphone and wheelchair using their voluntary tongue and head movements.

SensorNet is employed in the sdTDS to perform the entire signal processing to convert raw

Magnetometer and Accelerometer sensors signals to user-defined commands, on the sdTDS

wearable headset, rather than sending all raw data out to a PC or smartphone.
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FIG. 4.9. Block diagram of the proposed sdTDS containing SPI interface, SensorNet and
Bluetooth Low Energy

Fig. 4.8 shows the sdTDS prototype which includes a local processor, four magnetic

and acceleration sensors, a BLE transceiver, a battery and a magnetic tracer which is glued

to the user’s tongue. Two magnetic and acceleration sensors are placed on each side of

the headset and the processor is placed on a box at backside of the headset. Also, the box

is used for placing a battery. The box is designed using 3D printing technology and the

weight of the box is around 0.14 lb.

In order to generate user-defined commands, the user should move his/her tongue to

6 specific teeth or move his/her head to 4 different directions. Any of these movements

will be sensed by the sdTDS headset. Then the raw data generated by 4 magnetometers

and accelerometers are transferred into SensorNet. The entire signal processing including

feature extraction and classification is performed by SensorNet which can detect the

user-defined commands. Figure 4.9 shows block diagram of the proposed sdTDS

containing SPI interface, SensorNet and Bluetooth Low Energy
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4.2.2 Motivation

Assistive Technologies (ATs) help people with severe disabilities to perform many

daily activities with minimal or no assistance and increase their independence [Alam

& Hamida2014, O’Brien & Ruairi2009, Kowtko2012, Genari et al.2013, Pawluk, Adams,

& Kitada2015, Ross2001, Sarji2008, Sartori et al.2012, Seelye et al.2012, Leonardis et

al.2015, Cook et al.2005, Matsubara et al.2015, Van Erp, Lotte, & Tangermann2012, Horki

et al.2015, Caltenco et al.2012, Mekhalfi et al.2015]. These systems allow the users to

send commands to an external device, such as a motorized chair, smart phone or computer.

In order to allow those with severe disabilities to interact with the environment around

them, different ATs have been developed that use different sensor modalities such as

electroencephalogram (EEG) [isc, McFarland & others2008] and electrooculogram (EOG)

[Wolpaw & others2002], eye movements [Barea & others2002], head motion [Pereira &

others2009], and facial muscle activity [Huang & others2006].

Paralyzed individuals with severe physical disabilities, such as those with spinal cord

injury (SCI), traumatic brain injuries (TBI), and some type of stroke, who suffer from

tetraplegia, a condition in which all four limbs are paralyzed, heavily rely on ATs to

enhance their quality of life and to live more productively and independently [Carlson &

Ehrlich2005].

Because of following reasons, the tongue is an ideal source of volitional commands

for developing a wearable AT system for people with severe paralysis [Kandel &
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others2000]: 1) Sophisticated motor control capability evident in speech and ingestion,

2) Fast movement with many degrees of freedom and very flexible, 3) It is connected to

the brain by a cranial nerve: it escapes even high level spinal cord injuries, 4) Noninvasive

access to tongue is possible, 5) it is not afflicted by repetitive motion disorders, 6) it does

not fatigue easily [Krishnamurthy & Ghovanloo2006], 7) It is all inside the mouth and it

has privacy advantage, 8) it is not influenced by the position of the rest of the body [Viseh,

Ghovanloo, & Mohsenin2015].

Several tongue-computer interfaces have been proposed in recent years [Lau &

OLeary1993,Struijk2006,Lund & others2009,NS Andreasen Struijk & others2016,Nam &

others2012, Saponas & others2009, Zhang & others2015, Huo, Wang, & Ghovanloo2008,

Yousefi et al.2012, Huo et al.2013]. Typically, these systems capture signals from analog

sensors, digitize them after signal conditioning and send all the raw data through a wireless

transmitter to a receiver platform for further processing, such as feature extraction and

classification. The receiver platform can be a computer or smart phone. In the case of

TDS, assuming Analog Front End (AFE) takes at least 50 samples per second [Zhang &

others2015] for each of the four sensors and each sample has X, Y, and Z data which

is 16 bits each, the transmitter needs to send 9.6 kbit/s to the receiver side. Therefore,

the drawback of this type of system is that constantly transmitting this amount of raw data

using a transmitter such as Bluetooth Low Energy (BLE) results in high power consumption

[Jafari et al.2015].
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4.2.3 Related Work

In recent years, several wearable tongue drive ATs for people with severe disabilities

have been developed which are discussed in this section. In [Huo & others2007] authors

proposed a TDS for controlling a mouse. In their work, External Magnetic Interference

(EMI) effects have been reduced to an acceptable level by adding a reference 3-D compass.

Principal component analysis (PCA) and k-Nearest Neighbor (KNN) algorithms are used

to associate the magnetic field sensor outputs to 6 different direct mouse commands.

In [Yousefi et al.2012] authors evaluated a tongue operated AT as a switch-based pointing

device with four directional commands for computer access and achieved an accuracy of

94.7%. Zhang et al. [Zhang & others2015] presented a new rehabilitation robot, called

Hand Mentor (HM) ProTM, which reads its pressure and joint angle sensors, combined

with control commands from the TDS to enable both isometric and isotonic target-tracking

tasks in a coordinated tongue-hand rehabilitation paradigm. In [Huo et al.2013, Sahadat

& others2015] authors introduced a multi-modal version of TDS, which takes different

sensor modalities such as tongue motion, speech and head tracking. They used the

system for controlling a mouse, typing and sending an email. [Huo et al.2013] reported

an overall 85.1% ± 8.8% recognition accuracy. In all these works, raw data needs to be

transmitted wirelessly to a receiver platform for further processing, which results in high

power consumption. Also, they depend on the receiver platform to run a software for

signal processing, such as MATLAB and LabVIEW. In [Saponas & others2009], authors
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presented an optical tongue drive system with an accuracy of 92%. Their proposed

prototype is wired, which is not convenient for a paralyzed patient. In their work, each

gesture takes 1.5 seconds on average to perform and recognize which is a high latency for

real-time applications such as wheelchair driving. Authors in [Nam & others2012] present

a tongue machine interface based on using Glossokinetic potentials (GKPs) which are

electric potential responses generated by tongue movement. They use the proposed system

for controlling a wheelchair. Their system requires the users to carry a scalp on their head

in order to record EEG signals and only detects and uses three commands for wheelchair

control. In [Viseh, Ghovanloo, & Mohsenin2015], authors proposed a TDS local processor

with an accuracy of 93.3% which performs all signal processing on the sensor side and send

out only the detected commands. The results were based on Verilog simulations and actual

hardware was not built and tested. KNN was used as a machine learning classifier which

consumes high energy due to requiring many computations and a large on-chip memory to

store the classifier's training data. Authors in [Lund & others2009, NS Andreasen Struijk

& others2016] present a wireless, intraoral and inductive tongue computer interface to

type using the keypad and mouse pad area. Their proposed system, does not need

a receiver platform such as computer/smartphone to run a software for processing. It

is worth mentioning that, the intraoral [Lund & others2009, NS Andreasen Struijk &

others2016] and the headset [Huo et al.2013,Sadeghian, Huo, & Ghovanloo2011] versions

of a tongue-operated AT each have their pros and cons. Therefore, the ultimate choice

depends on the preference of the end user, i.e. whether they prefer comfort over aesthetics
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or vice versa. In fact, their preference might even depend on the environment that they

are in. For instance, they might choose to use the headset version at home, but wear the

intraoral version outside or in social events. Nonetheless, both versions will immensely

benefit from conducting the classification on the sensor side.

Compared to the previous works, in [Jafari et al.2017], we developed a stand-alone

Tongue Drive System (sdTDS) which performs the entire signal processing at the sensor

node which is a light-weight headset and only sends out the final decision (3 bits) through

a BLE. The BLE doesn’t need to be active at all, as it sends these 3 bits through advertising

packet [Gomez, Oller, & Paradells2012]. Therefore, the power consumption due to the

wireless transmission is reduced significantly. Furthermore, the proposed system does

not depend on a receiver platform to run a software for processing, such as MATLAB

and LabVIEW. Hence, a user does not need to have another device other than a headset

which makes the user more independent. Also, employing the proposed stand-alone

system reduces the cost and system failure rate due to having multiple processing units.

Figure. 4.10 shows a comparison between the power consumption of TDS when sending all

raw data out versus preforming the processing locally and sending out only the decisions.

As it can be seen from the figure, the power consumption of sTDS is significantly lower

than TDS. TDS consumes around 21.6 mW power for receiving and sending 9.6 kbit/s raw

sensor data, whereas sTDS consumes 8.8 mW power for receiving, processing and issuing

detected commands. Also, the proposed system is not dependent on a receiver platform to

run a software for processing, such as MATLAB and LabVIEW. Therefore, a user does not
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FIG. 4.10. a) TDS: Sending all raw data out. b) sTDS: performing all
processing locally and sending out the decision. The transmission power is
reduced significantly by performing all signal processing locally on the sensor
side. Measured power consumption numbers are shown separately for 1) AFE
which generates 9.6 kbit/s raw magnetic data, 2) Local DSP processor on a low
power FPGA and 3) Bluetooth low energy.

need to have another device other than a headset which makes the user more independent.

In [Jafari et al.2017], to validate functionality of sTDS in the testing phase, a

computer-based Maze navigation game is designed and tested. Fig. 4.11 presents a GUI

which shows the Maze game, elapsed time of the game, command positions on mouth [Huo

et al.2013] and different buttons which are controlled by sTDS. A user should navigate the

Maze using the commands generated by their tongue. The goal is to move from the start

to the end point, which is a star. In order to generate the commands, the user should move

his/her tongue to the specific teeth which they used previously in the training phase. The
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Elapsed Time (s) 0

FIG. 4.11. Maze navigation game GUI with a start and end location. During the experiment
a small mouse automatically moves to start location. User starts to move mouse using 4
different tongue commands (left, right, up and down) to navigate from start to end.

goal of the experiment is to finish the game as fast as possible from start to end using the

sTDS. Four users (age: 26-37, 3 male and 1 female, experienced-familiar) played the Maze

game five times. The results showed that all users finished each round of the game in less

than two minutes.

4.2.4 Experimental Setup and Results

The front end of the system is composed of four magnetic and acceleration sensors

(LSM303D), which have onboard 3D compasses that are used to monitor the magnetic

field generated by a magnet tracer which is glued to user's tongue [Mimche et al.2016]

and the same time head movement. Each sensor is configured to provide a magnetic field

full-scale of +/- 8 Gauss. The interface to the AFE uses two SPI buses, one for the left
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two sensors and one for the right two sensors. Each sensor can be configured to use one of

two possible slave addresses, allowing two sensors on the same bus. In order to minimize

the device utilization needed for the interface, only one instance of the SPI bus master was

instantiated and it is used to read each of the sensors one at a time. Each sensor provides

a 16-bit two’s complement reading for each of its three axes. Once all four sensors have

been read, the interface then passes the data to SensorNet.

Several different data sets are captured using sdTDS for training and testing purpose.

sdTDS generates 24 channels of time series data that corresponds to tongue and head

movements. As it was mentioned in Chapter 3 Section 3.3, SensorNet utilizes 5

convolutional layers, followed by 2 fully-connected layers. For the sdTDS, first convolutional

layer has 32 filter banks and each filter size is 24× 5. Other convolutional layers have 16,

16, 8 and 8 filter banks with a size of 1 × 5. For this experiment, 80%, 10% and 10% of

the entire data for each trivial is chosen randomly as the training, validation and testing set,

respectively. We train SensorNet for 100 epochs.

After training SensorNet using sdTDS dataset, we evaluate the trained model to

determine the detection accuracy. Based on previous experiments, we train and test the

sdTDS with a sliding window of size 64 samples and step-size of 1, as the step-size of 1

gives better detection accuracy, consistently. SensorNet detection accuracy for the sdTDS

is 96.2%.
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4.2.5 Performance Comparison

Table 4.3 compares SensorNet performance results with state-of-the-art for Tongue

Drive Systems. As we explained earlier, in [Jafari et al.2017] we proposed a single-mode

stand-alone Tongue Drive System which only detect the tongue movement. We designed an

External Magnetic Interference (EMI) attenuation algorithm to attenuate the effect of the

external magnetic interference on the raw data and also we used Logistic Regression (LR)

for classification. The sTDS detection accuracy is around 96.9%. In [Jafari, Ghovanloo,

& Mohsenin2017], we proposed a dual-mode Tongue Drive System which can detects

user’s tongue motion using a magnetic tracer placed on tongue and an array of magnetic

sensors embedded in a wireless headset and at the same time it can capture the user’s

voice using a small microphone embedded in the same headset. We used EMI and LR

for the tongue movement detection and Cross-correlation for Speech Recognition. The

detection accuracy is 96.6% for tongue motion, and 97.5% for speech recognition. In this

dissertation, SensorNet is employed to detect the tongue and head movements. Although

the number of input channels and activities are higher in this work, SensorNet achieves

similar accuracy compared to [Jafari et al.2017, Jafari, Ghovanloo, & Mohsenin2017]

which is around 96.2%.
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Table 4.3. SensorNet performance results comparison with existing works for sdTDS

Specifications [Jafari et al.2017] [Jafari, Ghovanloo, & Mohsenin2017] This work

Year 2017 2017 2017

Modality Tongue Tongue & Voice Head & Tongue

# Data Channels 12 13 24

# Activity 7 11 12

Assistive Technology sTDS sdTDS sdTDS

Technique EMI & Logistic Regression EMI & Logistic Regression & SensorNet
Cross-correlation

Detection Accuracy (%) 96.9 96.9 & 97.5% 96.2
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4.3 Case Study 3: Stress Detection

4.3.1 Dataset Description

This database contains non-EEG physiological signals used to infer the neurological

status including physical stress, cognitive stress, emotional stress and relaxation of 20

subjects. The dataset was collected using non-invasive wrist worn biosensors. A wrist

worn Affectiva collects electrodermal activity (EDA), temperature and acceleration (3D);

and a Nonin 3150 wireless wristOx2 collects heart rate (HR) and arterial oxygen level

(SpO2) data [Birjandtalab et al.2016]. Therefore, in total the dataset includes 7 channels of

data. The sampling frequency of wrist worn Affectiva is 8 Hz and wristOx2 has a sampling

frequency of 1 Hz.

4.3.2 Experiment Setup

As it was discussed in Chapter 3 Section 3.3, the SensorNet utilizes 5 convolutional

layers, followed by 2 fully-connected layers. First convolutional layer has 32 filter sets

and each filter size is 7 × 5. Other convolutional layers have 16, 16, 8 and 8 filter

sets with a size of 1 × 5. Similar to Physical Activity Monitoring case study, for this

experiment 80%, 10% and 10% of the entire data for each subject is chosen randomly as

the training, validation and testing set, respectively. To determine the number of required

epochs for the training, we train SensorNet for 150 epochs and plot validation and training

loss and accuracy results. After 100 epochs the validation loss and accuracy are stable and
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FIG. 4.12. SensorNet classification accuracy for Stress Detection case study.
The results are for 20 different subjects and average accuracy over all 20

subjects is around 94%.

satisfactory. Therefore, for all the experiments for this dataset we train SensorNet with 100

epochs.

4.3.3 Experiment Results

Fig. 4.12 shows the classification accuracy of SensorNet for Stress Detection case

study for 20 different subjects. As is shown in the figure, most of the subjects have

a high detection accuracy more than 90%. The average accuracy of all 20 subjects is

approximately 94%.
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4.3.4 Performance Comparison

Table 4.4 compares SensorNet performance results with state-of-the-art for Stress

Detection case study. [Birjandtalab et al.2016] proposed an architecture which employs

Gaussian Mixture Model (GMM) which is an unsupervised clustering technique. They

could separate different neurological status with an accuracy of approximately 85%.

Compared to [Birjandtalab et al.2016], SensorNet achieves 9% higher detection accuracy.

Table 4.4. SensorNet performance results comparison with existing works for Stress
Detection

Design [Birjandtalab et al.2016] This work

Year 2016 2017

Technique Gaussian Mixture model SensorNet

# Subjects 20 20

# Activity 4 4

Detection Accuracy (%) 84.6 94
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4.4 SensorNet Optimization Evaluation

As it was discussed in Chapter 3 Section 3.3, SensorNet utilizes 5 convolutional layers,

followed by 2 fully-connected layers. First convolutional layer has 32 filter sets and each

filter size is M × 5, where M is the number of input channels. Other convolutional layers

have 16, 16, 8 and 8 filter banks with a size of 1× 5. The first fully-connected layer has 64

nodes and the number of nodes in the last one is equivalent to the number of labels for any

specific application. In this section, we explain the logic behind of choosing the SensorNet

architecture and parameters.

One of the primary objective of this dissertation is to be able to efficiently deploy

SensorNet in embedded and resource-bound settings which is very challenging because

of strict power and area budgets in these settings. Therefore, we perform extensive

hyperparameter optimization for SensorNet with the goal of reducing memory requirements,

hardware complexity and power consumption while achieving high detection accuracy.

In this section, we specifically explore the impact of changing the following parameters

or configurations on SensorNet performance: 1) Number of convolutional layers, 2)

Number of filters, 3) Filter sizes, 4) Input zero-padding, 5) Activation functions, and 6)

Pooling layers
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4.4.1 Number of Convolutional Layers

In this experiment, we compare six SensorNet designs with an increasing number

of convolutional layers, for the three different case studies. These 6 configurations are

depicted in Figure 4.13. The comparison has been made in terms of detection accuracy,

number of convolutional operations, number of parameters (model weights) and memory

requirements. 64-bit resolution is used to calculate the memory requirements.

Figure 4.14 shows the impact of increasing the number of convolutional layers on

detection accuracy. As it can be seen from the figure, if the neural network is too shallow

high-level features can not be learned, therefore the detection accuracy is low. However,

the results show that, by increasing the number of convolutional layers detection accuracy

increases but up to 5 convolutional layers. After that, for Activity Monitoring and sdTDS

case studies the accuracy improves slightly but for the Stress Detection reduces because the

useful features may be filtered out during the convolutional and max-pooling processes.

Figure 4.15 depicts the impact of increasing the number of convolutional layers

on the number of model parameters and memory requirements. As is shown in the

figure, by increasing the number of convolutional layers, the number of model parameters

and memory requirements decrease which is desired. The reason is that we use three

max-pooling layers after the convolutional layers, therefore by adding more convolutional

layers the size of the time series images shrink and the fully-connected layer needs to

process less number of data and thus requires less memory. However, by adding additional
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FIG. 4.13. A comparison of number of required parameters (model weights)
for different SensorNet configurations for Physical Activity Monitoring
application. Each configuration has different number of convolutional layers
and consequently different model size. Model weights includes the parameters
for convolutional, fully-connected and Softmax layers. 64-bit resolution is
used to calculate the memory requirements. Configuration 5 has the minimum
number of model weights.
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FIG. 4.14. Impact of increasing the number of convolutional layers on
SensorNet detection accuracy for Physical Activity Monitoring , sdTDS and

Stress Detection case studies.

convolutional layer the number of floating-point operations to finish a classification task

increases slightly which is shown in Figure 4.16. This analysis results show that a

SensorNet with 5 convolutional layers is the best candidate with regards to detection

accuracy, number of convolutional operations and memory requirements.

4.4.2 Number of Filters

The number of filters (weights) are another important hyperparameter for implementing

SensorNet on a low-power and resource-limited embedded device because the number

of model weights affect the memory requirements and also the number of required

computations to finish a classification task. The number of required computations has
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FIG. 4.16. Impact of increasing the number of convolutional layers on
floating-point operations for Physical Activity Monitoring, sdTDS and Stress
Detection case studies. By adding additional convolutional layer the
floating-point operations increases slightly.
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a direct effect on energy consumption. In this experiment, we keep the number of

convolutional layers fix (5 layers) and increase the number of filters for each layer as

is shown in Figure 4.17. The goal of this experiment is to find the impact of the

number of filters on the detection accuracy, number of convolutional operations, number of

parameters (model weights) and memory requirements for Physical Activity Monitoring,

sdTDS and Stress Detection case studies. Therefore, SensorNet is trained and tested using

four different configurations with different number of filter sizes. Figure 4.18 shows

a comparison of number of required parameters (model weights) for different trained

models. Model weights includes the parameters for convolution, fully-connected and

softmax layers. As is shown in the figure, as we increase the number of filters for each

layer, the detection accuracy improves. However, the number of operations, memory

requirements and the number of model parameters increase which is not desire for hardware

implementation in a resource limited embedded platform. For example, for the Physical

Activity Monitoring, Set 1, Set 2, Set 3 and Set 4 need 1.4 MB, 2.88 MB, 6 MB and 7.8

MB memory to save model weights with a detection accuracy of 97.9%, 99%, 99.2% and

99.45%, respectively. Based on the results, all the configurations achieve similar detection

accuracy but Set 1 needs much lower number of parameters. and therefore Set 1 is chosen

to be implemented on hardware.
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FIG. 4.17. A comparison of number of required parameters (model weights)
for different trained models when we increase the number of filters for each
layer, for Physical Activity Monitoring case study. Model weights includes the
parameters for convolutional, fully connected and Softmax layers. Set 1 has
the minimum number of model weights.

4.4.3 Shape of Filters

Another important parameter for implementing SensorNet on an low-power embedded

platform is the filter shape. As it was explained in Chapter 3 the idea is to generate some

shared features across different input modalities. Therefore, we choose to have the filters

with size M × 5, where M is the number of input modalities, for the first convolutional

layer. For other convolutional layers the filters are 1 × 5. By employing this size of filter

without zero padding the outputs of the first layer are 1-D vectors and the following layers

also will be 1-D vectors. This will improve the memory requirements on an embedded

platform drastically; because the feature maps will be 1-D signal which compared to an

image is much smaller. Also, smaller number of model weights are needed as the dense
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layer takes 1-D vectors rather than images. Furthermore, it reduces the the number of

operations which this affects directly on energy consumption of the framework when is

implemented on an embedded platform.

In this experiment we change the filters size for the first convolutional layer to 5× 5,

3×3 and 1×5 for Physical Activity Monitoring, sdTDS and Stress Detection case studies.

Based on the results, filter size of M ×5 (M is the number of input modalities) gives better

detection accuracy compared to 5× 5, 3× 3 and 1× 5 filter sizes. This is shown in Figure

4.19. Also, another interesting finding is that, for the dataset with more number of input

channels, choosing M × 5 filter size give better accuracy compared to smaller datasets.

Because, the small size filters can cover most of the input channels in the smaller dataset

but not in the dataset with many input channels.

4.4.4 Zero-padding

In this experiment we explore the impact of input data zero-padding in the first

convolutional layer on detection accuracy, for Physical Activity Monitoring, dTDS and

Stress Detection applications. Input zero-padding makes the output of the convolutional

layer to be similar or same as the input to the layer. Based on the results shown in Figure

4.20, zero-padding the input data helps with accuracy, although it increases the number

of parameters and memory requirement. As it can be seen from the figure, by applying

the zero-padding, the detection Accuracy increases by 4.6%, 3.4% and 3.8% for Physical

Activity Monitoring, sdTDS and Stress Detection case studies, respectively.
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FIG. 4.19. Comparison of SensorNet detection accuracy using four different
filter sizes.
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FIG. 4.20. Impact of zero-padding on SensorNet detection accuracy for
Physical Activity Monitoring, sdTDS and Stress Detection case studies,

respectively.
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4.4.5 Activation Functions

In Chapter 3 Section 3.1, we mentioned that ReLU activation function is efficient

because they require few operations to perform. Therefore, it reduces the hardware

complexity on a hardware embedded setting. In all the convolutional layers we use

ReLU as the activation function. Typically Sigmoid is used as the activation function

for the fully-connected layer. However, Sigmoid introduces hardware complexity to

the design which is not desired. Thus, in this section, we explore SensorNet detection

accuracy by employing different activation functions in the fully-connected layer. In this

experiment, we train the SensorNet for stand-alone dual-mode Tongue Drive System case

study using ReLU as the activation function for all the convolutional layers and using three

activation functions including Sigmoid, Tanh and ReLU for the fully-connected layer. The

performance results in terms of training accuracy during 100 epochs is shown in Figure

4.21. As it can be seen from the figure, SensorNet using any of Sigmoid, Tanh and ReLU

activation functions achieves similar accuracies eventually and using different activations

function does not affect what SensorNet can learn. Therefore, we choose ReLU as the

activation function for all the layers because it has less hardware complexity compared to

other activation functions and achieves comparable detection accuracy.
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FIG. 4.21. Impact of different activation functions including Sigmoid, Tanh
and ReLU in the fully-connected layer on the SensorNet detection accuracy.
The results are based on the Tongue Drive System case study.



59

Chapter 5

PROPOSED HARDWARE ARCHITECTURE

Another major contribution of this dissertation is the development of a hardware

architecture for efficient deployment of SensorNet on IoT and wearable devices which

need to work in real-time, must consume low power and are resource-limited. Following

are the main objectives for the hardware architecture design:

• Consumes minimal power

• Meets latency requirement of an application

• Occupies small area

• Needs to be fully reconfigurable

• Requires low memory
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5.1 Design Methodology

We propose a fully serial hardware architecture for SensorNet. A serial architecture

will consume the least amount of power. However, the challenge is the latency to

perform all the required computations to finish a classification task. We don’t need a high

throughput for SensorNet as the input data are time series and the sampling frequencies

are not high usually, but it has to meet a minimum deadline which we assume a user

issues one command every 1 second. Therefore, we design SensorNet to have very low

power consumption at expense of throughput and latency. Also, we design SensorNet

hardware architecture to be reconfigurable, because different applications have different

requirements. Parameters such as filter sizes in the convolutional layers, zero-padding,

sizes of the fully-connected and softmax layers are configurable. Another challenge is

convolutional layer memory management. To save resources such as memory, we design

convolutional module to read from the memory and write back the results into the same

memory cell. This will save memory requirement drastically.

5.2 Optimal Fixed-Point Format width

Another important consideration in SensorNet hardware architecture design is to

find optimum level of precision for the weights. This will affect both on memory

requirements and also on power consumption. We model a custom fixed-point SensorNet

design to find optimum weights length. To quantify performance gap between floating
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FIG. 5.1. Hardware accuracy of SensorNet with respect to number of
fixed-point bits used to represent the filters.

point Keras implementations and proposed fixed-point architectures, we calculate average

accuracy from the estimated signal obtained from Python software solution and hardware

implementations. Figure 5.1 shows accuracy of SensorNet computation signal is dependent

on number of fixed-point bits used to represent the weights. Based on the results, 3.13-bit

fixed-point format gives hardware accuracy of 100% with an error of 2ˆ13. Therefor, all

SensorNet filters are converted to 3.13-bit (16-bit) fixed-point format and saved in the

memory.

5.3 Hardware Architecture

Implementing hardware architecture for SensorNet faces several challenges such

as buffering of the input data, computational model implementation and managing
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memory transfers. Figure 5.2 depicts SensorNet hardware architecture with circuit-level

implementation details. The main components of SensorNet on hardware consists of the

following:

SensorNet Control Logic

Fully-connected Control Logic

Feature Maps

Filters

SoftMax

Clk Clk

S1

1

0

Labels

S2

ReLU

Max-pooling Control Logic

Feature Maps 

Clk
Feature Maps   

Clk

Comparator

Main 
Feature Map 

Memory  

Main Filter 
Memory

16b

16b

16b

16b

13b

(C) Fully-connected

(B) Max-pooling

30b

Max	16b

31b

Feature
maps

16b

8b

Convolution Control Logic
Filters

Clk Clk

S1

1

0Input Image
Cache

ReLU

Feature Map
Cache

Filter
Cache

13b

16b

(A) Convolution

16b

30b

Max	16b

31b

PE1

PE2
PEn

FIG. 5.2. Block diagram of SensorNet hardware architecture which includes convolution,
max-pooling and fully-connected blocks and also a top-level state-machine which controls all the
blocks. PE refers to convolution Processing Engine (PE)

(A) Convolutional Performs convolutional layer operations. Also, this block includes

ReLU activation logic. PE refers to convolution Processing Engine (PE).

(B) Max-pooling Performs max-pooling operations.
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(C) Fully-connected Performs fully-connected layer operations. The fully-connected

block includes ReLU and SoftMax activations functions. ReLU will be used as the

activation for the first fully-connected layer and SoftMax will be used for the last

fully-connected layer and will perform classification task.

Fig. 5.2-A shows convolution block. As is shown, convolution block contains one

multiplier, one adder/subtractor, one cache for saving filters, input feature maps and output

feature maps, a multiplexers, a few registers, and a state machine block. When the

convolution operations are done for all the input feature maps, the output feature maps will

be saved into the main feature map memory. The input data coming from the sensors are

16-bit two’s complement. Also, the filters are considered to be 16-bit two’s complement.

After performing the convolution, the data will pass to ReLU activation function. The

output of ReLU is truncated to 16 bits and saved in feature map memory. A fixed-point

analysis is performed to find out the best number of bit representation in each stage of

the hardware architecture design which will be discussed at the end of this chapter. An

offline training is performed to obtain model weights using keras. The model weights

are converted to fixed-point format and are represented by 16 bits. The floating-point

arithmetic is complex and requires more area, therefore use of fixed point arithmetic will

avoid complex multipliers. The input to the max-pool is feature maps data, which is formed

by convolution block. The max-pool block contains some registers and a comparator. 5.2-C

shows the a fully-connected block. As is shown, the architecture consists of a serial dot
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product engine, a state machine for controlling all sub-blocks. Also, the fully-connected

block has both ReLU and Softmax activations functionality. Depends on the layer either

one can be used.

5.4 Exploiting Efficient Parallelism

As we mentioned in previous section, we primary target a fully serial hardware

architecture for SensorNet. However, we design SensorNet hardware architecture to

be configured to perform convolution operation in parallel if it is needed. In deep

convolutional neural networks, convolutional layers dominate the computation complexity

and consequently affects on the latency and throughput. Therefore, for the applications

with many input modalities or the applications that need to issue a command very fast, we

must exploit efficient forms of parallelism that exist within convolutional layers. In [Page

& others2017] we explored three main forms of parallelism methods, that can be employed

in convolutional layers. The basic process for the three tiling methods are shown in Figure

5.3. The first method, we will refer to as input channel tiling, is to convolve multiple

input feature channels concurrently for a given feature map. The second method, output

channel tiling, performs convolution across multiple output channels for a given input

channel, simultaneously. The third method, which we refer to as image patch tiling, is

to break a given input feature channel into patches and perform convolution on the patches

concurrently. [Zhang et al.2015] analyzed these three tiling methods using the rooftop

model to determine what method provides the best throughput in FPGA fabric. There
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(c) Image Patch Tiling(a) Input Channel Tiling (b) Output Channel Tiling

FIG. 5.3. Comparison of different parallel tiling techniques for convolutional
layers. Output channel tiling has the least communication contention and

inter-core dependency.

findings confirm that output channel tiling provides the best form of parallelism when

taking into account I/O memory bandwidth and computational load using the computation

to communication (CTC) ratio. Therefore, we primarily exploit output channel tiling

due to the high parallelism, minimal dependency among the parallel cores and minimal

communication contention.
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Chapter 6

HARDWARE IMPLEMENTATION RESULTS

In this chapter, SensorNet implementations results on both FPGA and ASIC, for

Physical Activity Monitoring, sdTDS and Stress Detection case studies are presented.

Also, we provide the SensorNet implementations results on NVIDIA TX2 SoC and make

a comparison between the results of FPGA, ASIC and TX2 platforms.

6.1 FPGA Implementation Results and Analysis

The complete proposed SensorNet which includes convolution, max-pooling, fully

connected and activation functions are implemented on an Xilinx Artix-7 FPGA at clock

frequency of 50 MHz. Verilog HDL is used to describe architecture and hardware of the

SensorNet.
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FIG. 6.1. Serial implementation power results on FPGA, for Physical Activity
Monitoring, sdTDS and Stress Detection case studies.

6.1.1 Power Consumption Results and Analysis

Figure 6.2 shows power consumption breakdown of post-place and route implementation

on the FPGA, which is obtained by using Vivado Power tool. As it can be seen from

the table, average device static and Block RAMs power consumption of FPGA is around

69% and 23% of entire power which is very large compared to the power consumption

of SensorNet logic. However, overall the power consumption is small and is suitable for

battery-powered wearable ATs.

6.1.2 Resource Utilization Analysis

Table 6.1 show the device utilization of SensorNet on Xilinx FPGA for Physical

Activity Monitoring, sdTDS and Stress Detection case studies. We use different packages

of Xilinx FPGA Artix-7 for different applications. Small package is enough for small

applications such as Stress Detection. As it can be seen from the table, SensorNet logic

only utilizes small portion of the FPGA fabric but on average 70% of memory (BRAMs)
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Table 6.1. Implementation results of the proposed SensorNet on FPGA. The Results
obtained at clock frequency of 50 MHz

Applica'on	 Physical	Ac'vity	Monitoring	 Tongue	Drive	System		 Stress	Detec'on	

Device	 Xilinx	Ar-x-7	(XC7A200T)	 Xilinx	Ar-x-7	(XC7A75T)	 Xilinx	Ar-x-7	(XC7A35T)		

Resource	 Used	(#)	 Available	
(#)	

U-liza-on	
(%)	

Used	
(#)	

Available	
(#)	

U-liza-on	
(%)	

Used	
(#)	

Available	
(#)	

U-liza-on	
(%)	

DSP	Slices	 3	 740	 <1	 3	 180	 <1	 3	 90	 3.3	

BRAM	 176	 365	 50	 96	 105	 92	 32	 50	 64	

Slice	 525	
	

33650	
	

<1	 96	 15850	 <1	 295	 8150	 3.6	

Slice	LUT	 1285	 134600	 <1	 927	 47200	 2	 631	 20800	 3	

Slice	
Registers	

420	 269200	 <1	 399	 94400	 <1	 412	 41600	 1	

are utilized for filters and feature maps.

6.1.3 Parallel Implementation Results

Scalability is one of the key features of the proposed SensorNet on hardware.

Although we proposed a fully serial architecture for SensorNet, the architecture is

configurable and can be parallelized based on any application specifications. In this

section, we evaluate the impact of increasing the number of convolutional processing

engines (PE) on classification throughput, energy, and area utilization. Each PE contains

one convolutional block with ReLU activation function. Table 6.2 provides SensorNet

performance results for different architectures, including serial, semi-serial and fully-parallel

designs. Also, Figure 6.3 demonstrates the impact of increasing the number of PEs for three

different case studies. As is shown, for a given network increasing the amount of PEs can
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Table 6.2. Implementation results of the proposed SensorNet on FPGA. The Results
obtained at clock frequency of 50 MHz

Specifications/Case Studies Physical Activity Monitoring Tongue Drive System Stress Detection

Serial
Semi

Parallel
Fully

Parallel Serial
Semi

Parallel
Fully

Parallel Serial
Semi

Parallel
Fully

Parallel

# Used PE 1 4 8 1 4 8 1 4 8

latency (S) 659 168 85 444 113 57 225 56 28

Throughput (label/S) 1.4 5.4 10.6 2 8 16 4 16 31.4

Dynamic Power (mW) 51 60 72 51 60 72 25 34 46

Static Power (mW) 124 124 124 88 88 88 71 71 71

Total Power (mW) 175 184 196 139 148 160 96 105 117

Total Energy (mJ) 115 30 16.8 62 16 9 21 6 3.5

improve both throughput and energy consumption. Therefore, if an application needs to

perform a classification task very fast, parallelism is necessary.

6.1.4 Impact of Zero-padding on FPGA Results

As we discussed before, performing zero-padding on input data, improves detection

accuracy however it increases: the number of parameters and memory requirement by 9×,

power consumption by 1.7×, latency by 42× and energy by 68×.
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FIG. 6.2. Impact of # PEs on power consumption, energy consumption,
latency and throughput for Physical Activity Monitoring, sdTDS and Stress

Detection case studies.
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FIG. 6.4. ASIC implementation results at Operating frequency of 50 MHz.

6.2 ASIC Implementation Results and Analysis

To reduce the overall power consumption, a standard-cell register-transfer level (RTL)

to Graphic Data System (GDSII) flow using synthesis and automatic place and route is

used. The proposed SensorNet including convolution, max-pooling, fully-connected with

activation functions is implemented using Verilog to describe the architecture, synthesized

with Synopsys Design Compiler, and place and routed using Cadence SOC Encounter. The

ASIC layout is shown in Figure 6.4. The results are provided in table 6.3. The SensorNet

is able to operate at 540 MHz clock frequency. However, the clock frequency has been

reduced to 50 MHz to reduce the power consumption. The ASIC implementation reduces

the processor power consumption by a factor of 7.
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Table 6.3. SensorNet ASIC implementation results at operating frequency of 50 MHz.
CMOS fabrication process is 65 nm with 1 V Power Supply

Metrics	 Stress		
Detec+on	

Design	 Fully-serial	

Place	&	route	area	u4liza4on	(%)	 90	

Opera4ng	frequency	(MHz)	 50	

Maximum	clock	frequency	(MHz)	 540	

Core	area	(mm^2)	 0.7	

Latency	(mS)	 225	

Leakage	power	(mW)	 10.3	

Dynamic	power	(mW)	 3	

Total	power	(mW)	 13.3	

Energy	(mJ)	 3	
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6.3 Off-the-shelf Targeted Platforms

The proposed SensorNet is built and implemented on the NVIDIA Jetson TX2

platform using the TensorFlow framework. Table 6.4 shows the real-time implementation

results in terms of execution time, energy consumption, throughput and energy efficiency,

for Physical Activity Monitoring case study. The TX2 base refers to using a single CPU

core running at the lowest clock frequency of 345 MHz, without using the GPU. As can be

seen from the table, on the base setting the energy consumption of the proposed processor is

1139 mJ. Also, it takes 699 mS to finish all the necessary computations and the throughput

is 1.4 Window/S. (40 channels of data with a window of 64 samples per each channel).

For the same input data, when the GPU is enabled and processing is performed on the

GPU with a clock frequency of 1.3 GHz and all CPU cores are on, running at 345 MHz,

the energy consumption is 25 mJ, the execution time is 7.7 mS and the throughput is 130

Window/S which shows an improvement of 46×, 91× and 93× compared to the TX2 base

setting, respectively.

Table 6.4. Real-time SensorNet implementation results on NVIDIA Jetson TX2 SoC
(CPU+GPU). The TX2 base refers to using a single CPU core running at the lowest clock
freq. of 345 MHz with GPU disabled.

Specifications/Platform NVIDIA TX2 NVIDIA TX2 Improvement

(Base) With GPU over Base

Execution time (mS) 699 7.7 91×

Energy consumption (mJ) 1139 25 46×

Throughput (Window/s) 1.4 130 93×

Energy efficiency (Window/s/W) 1.06 50.84 48X
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Fig. 6.5 and 6.6 provide insight into the performance of the proposed processor

implemented on the NVIDIA Jetson TX2. Each bar represents a different configuration

of active CPUs for TX2. Fig. 6.5 provides specific results for CPU only while Fig. 6.6

provides the results of exploiting the GPU.

Fig. 6.5 part (a) is the energy consumption of the proposed MDCNN processor only

on the CPU cores. The lowest energy consumption is 96 mJ using all 6 CPU cores clocked

at 1113 MHz. Similarly, Fig. 6.6 part (a) shows the energy consumption of using the GPU

for feature extraction and classification. The best energy consumption out of all possible

configurations is 25 mJ, which is achieved using all CPUs cores configured at a frequency

of 345 MHz and the GPU clocked at 1.3 GHz.

Figure. 6.5 part (b) and 6.6 part (b) demonstrate the ability to decrease the execution

time when moving from the base single TX2 ARM A57 core to other configurations.

The CPU configurations benefit first from increasing the clock speed and then from

enabling more cores. When only utilizing the CPU, the best configuration is achieved

with increasing the number of active ARM A57 cores and setting the core speed to

2035 MHz providing the minimum execution time of 14 mS. For the GPU, the best possible

configuration is to have all CPU cores on, running at a frequency of 345 MHz with the GPU

clocked at 1.3 GHz, which provides an execution time of 7.7 mS.

Figure. 6.5 part (c) and 6.6 part (c) compare the throughput of the proposed processor

in different configurations. The base configuration has a throughput of approximately 1.4

Window/second. By configuring all CPU cores at a frequency of 2035 MHz with the GPU
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FIG. 6.5. Comparison of the performance of the proposed SensorNet processor in terms of
(a) Energy consumption, (b) Execution time, and (c) Throughput when implemented using
only ARM Cortex-A57 and Denver 2 CPU cores at different clock frequencies. In this
experiment the GPU is not used and therefore disabled.

disabled, the throughput jumps to almost 71 Window/second. The best configuration of the

TX2 with GPU enabled is 130 Window/S, with all CPU cores running at 345 MHz and the

GPU clocked at 1.3 GHz.
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FIG. 6.6. Comparison of the performance of the proposed SensorNet in terms of (a) Energy
consumption, (b) Execution time, and (c) Throughput when implemented using the GPU at
different clock frequencies. In this experiment, ARM Cortex-A57 and Denver 2 CPU cores
are running at lowest frequency of 345 MHz.
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6.4 Comparison of SensorNet performance on Different Embedded Platforms

Table 6.5. SensorNet Implementation results on FPGA, CPU and GPU platforms in terms
of power consumption, throughput, energy and execution time, for the Physical Activity
Monitoring case study.

Platform NVIDIA TX2 NVIDIA TX2 FPGA FPGA

(Base) With GPU Fully-serial Fully-parallel

Operating frequency (MHz) 350 140 50 50

Latency (mS) 699 20 659 85

Throughput (Window/s) 1.4 50 1.5 12

Power consumption (mW) 1630 2365 175 196

Energy consumption (mJ) 1139 48 115 16

Energy efficiency (Window/s/W) 1.22 21 13 61

Table 6.5 shows a comparison between our implementation on different embedded

platforms including FPGA and NVIDIA TX2 SoC. The TX2 base refers to using a single

CPU core running at the lowest clock freq. of 345 MHz. The TX2 with GPU is configured

when the processing is performed on the GPU with a clock frequency of 140 MHz and a

single CPU core is on, running at 345 MHz. For the FPGA-based SensorNet we include

both fully-serial and fully-parallel architecture when implemented on Artix-7 platform.

6.5 Comparison with Existing Work

Table 6.6 shows a comparison of the proposed SensorNet hardware implementation

results with existing multimodal deep learning solutions on embedded devices. When

SensorNet is deployed on Xilinx FPGA platform in a full-parallel way and running at 50
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MHz, it consumes 3.5 mJ energy which is 200×, 63×, 27× lower compared to the prior

proposed embedded implementation [Yao et al.2017] and [Radu et al.2016], respectively.

To have a fair comparison, we provide Stress Detection results as it has similar number of

input channels compared to [Yao et al.2017] and [Radu et al.2016]

Table 6.6. Comparison of the SensorNet performance with related works when evaluated
on real-time embedded settings.

Metrics [Yao et al.2017] [Yao et al.2017] [Radu et al.2016] This work

Application Human activity Human activity Activity Stress
recognition recognition recognition detection

# Input channels 6 6 6 7

Technique DeepSense DeepSense Multimodal RBM SensorNet

Platform Intel Edison Nexus 5 Qualcomm Snapdragon Xilinx FPGA

Latency (mS) 105 38 50 28

Energy consumption (mJ) 700 220 96 3.5
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this dissertation we proposed contributions in three key enterprises to enable

deploying multimodal data classification using deep neural networks in low power and

resource-bound embedded settings. In the first enterprise, we proposed the SensorNet

which is a scalable deep convolutional neural network designed to classify multimodal

time series signals. The raw time series signals generated by different sensor modalities

with different sampling rates are first fused into images; then, a Deep Convolutional

Neural Network (DCNN) is utilized to automatically learn shared features in the images

and perform the classification. Proposing SensorNet has the following advantages: 1)

SensorNet is scalable as it can process different types of time series data with variety

of input channels and sampling rates. 2) there is no need to employ separate signal

processing techniques for processing the data generated by each sensor modality. 3) an

expert knowledge for extracting features for each sensor data is not required. 4) is easy
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and fast for SensorNet to adapt to new sensor modalities with a different sampling rate.

(5) very high detection accuracies for different case studies are achieved. (6) SensorNet

has a very efficient architecture which makes it suitable to be deployed in a low-power

and resource-limited embedded platform. SensorNet performance is evaluated using three

different case studies including Physical Activity Monitoring, sdTDS and Stress Detection

and it achieves an average detection accuracy of 98%, 96.2% and 94% for each case study,

respectively.

In the second enterprise, we proposed and designed a custom hardware architecture for the

efficient deployment of SensorNet on low-power and resource-limited embedded settings

such as FPGAs and ASICs, which can perform the entire SensorNet signal processing

in real-time. We implemented SensorNet using our custom hardware architecture on

Xilinx FPGA and it consumes 176 mW, 140 mW and 96 mW power for Physical Activity

Monitoring, sdTDS and Stress Detection case studies, respectively. To further reduce

the power consumption, SensorNet is implemented using ASIC at the post layout level

in 65-nm CMOS technology which consumes approximately 7× lower power compared

to the FPGA implementation. Additionally, SensorNet is implemented on NVIDIA

Jetson TX2 SoC (CPU+GPU) which is an embedded commercial off-the-shelf platform.

Compared to TX2 single-core CPU and GPU implementations, FPGA-based SensorNet

obtains 8× and 12× improvement in power consumption, and 71× and 3× improvement

in energy consumption. Furthermore, SensorNet achieves 200×, 63×, 27× lower energy

consumption compared to previous related work. In the third enterprise, we proposed
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and developed a stand-alone dual-mode Tongue Drive System (sdTDS) which employs

SensorNet to perform all required multimodal signal processing in real-time. sdTDS

is a wireless wearable headset and individuals with severe disabilities can use it to

potentially control their environment such as computer, smartphone and wheelchair using

their voluntary tongue and head movements.

It is worth mentioning that, SensorNet is considered as a generic deep neural network that

can accommodates a wide range of applications with minimal effort.

7.2 Future Work

Going forward there exists a number of possible directions to further improve upon

all of the three enterprises. For the SensorNet architecture, there is potential to employ

Long Short Term Memory (LSTM). LSTMs are a special kind of Recurrent Neural

Network(RNN), capable of learning long-term dependencies. LSTMs have shown great

success for time series data classifications. Also, LSTMs can be joined with convolutional

layers to form a network for multimodal data classification. In terms of SensorNet hardware

architecture, one direction is looking to exploit other forms of parallelization. In addition,

to parallelizing across output channels SensorNet could also be targeted to parallelize by

patches within a channel. Finally for the sdTDS, there is a potential to add more sensor

modalities to the headset. Adding a microphone to the headset makes the user more

independent.
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