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Abstract

Predicting the Terminal Ballistics of Kinetic Energy Rods Using Artificial Neural
Networks

John Robert Auten Sr.

The U.S. Army requires the evaluation of new weapon and vehicle systems through
the use of experimental testing and Modeling & Simulation (M&S). Traditional M&S has
worked well over the years but can be a lengthy process and often cannot provide quick
results for studies involving new threats encountered in theater. So, there is increased focus
on rapid M&S efforts that can provide accurate and fast results.

Accurately modeling the penetration and residual properties of a ballistic threat as it
progresses through a target is an extremely important part of determining the effectiveness
of the threat against that target.

This dissertation presents research on the application of Artificial Neural Networks
(ANNs) to the prediction of the terminal ballistics of Kinetic Energy Projectiles (KEPs).
By shifting the computational complexity of the problem to the fitting (regression) phase
of the methodology, performance during analyses are improved when compared to other
terminal ballistic models for KEPs. Another improvement in performance can be realized
by removing the need for input preparation by a Subject Matter Expert (SME) prior to
using the methodology for an analysis.

This research shows that ANNs can be used to model the terminal ballistics of KEPs and
that they are capable of being used for single element and multiple element targets. It is also
shown that the runtimes of an ANN are drastically faster than the current state-of-the-art

model.

v



iv

Contents

List of Tables vii
List of Figures viii
Acronyms b'q
1 Introduction 1
1.1 Background . . . . . . . . ... ... 1
1.2 Problem Definition . . . . . . . ... ... ... 5
1.3 Objectives . . . . . . . . o )
1.4 Research Questions . . . . . . . . . . ... 5
1.5 Approach . . . . . . . . 7
1.5.1 Phases of Approach . . . . . .. ... ... . 7

1.5.2 Methods and Tools . . . . . . . . .. .. ..o 9

1.6 Chapter Summary . . . . . . . . ... 11
1.7 Roadmap . . . . . . . . . e 11

2 Literature Review 12
2.1 Vulnerability /Lethality (V/L) Modeling . . . . . ... ... .. ... .... 12
2.2 Terminal Ballistics Modeling . . . . .. .. ... ... ... ... .. .... 16
2.3 Kinetic Energy Projectiles . . . . . . . . . ... oL 17
2.3.1 Kinetic Energy Projectile Penetration Process. . . . . . . . ... .. 19

2.4 Kinetic Energy Projectile Terminal Ballistics Models . . . . . . . ... ... 21
2.4.1 Empirical Models . . . . . . ..o 22

2.4.2  Phenomenological Models . . . . . .. ... ... ... ... ..... 24

2.4.3 Generalization Methods for All Models . . . . . . .. ... ... ... 29

2.5 Artificial Neural Networks . . . . . . . . .. ... ... ... .. 33
2.5.1 Multi-Layered Perceptron . . . . . . . ... ... ... 35

2.5.2 Artificial Neural Network Characteristics . . . . . . ... ... ... 36

2.6 Applications of Artificial Neural Networks in the Field of Ballistics . . . . . 49
2.7 Deep Learning . . . . . . . . .. e 52
2.8 SUmMmary . . . ... e 53

3 Software Overview and Implementation Details 54
3.1 Software Overview . . . . . . . . . . e 54
3.1.1 Encog . . ... 54

3.1.2 PenDataModel . . . . .. ... ... 51§

3.1.3 PDMLEditor . . ... ... .. ... ... 56



3.1.4 BallisticsANN . . . . . . .

3.1.5 ANNPlotter . . . . . . . . . .
3.2 Implementation Details . . . . . . . . . .. ... .. ... .. ...
3.2.1 K-fold Cross-Validation . . . .. ... ... ... ... ........
3.2.2 Splitting of the data into datasets . . . . . . ... ... ... ....
3.2.3 Early Stopping Strategies . . . . . . . .. . ... L.
3.2.4 Back-Propagation Method . . . . . . . .. ... ... .. 0L
3.2.5 Global Optimization . . . . . . ... ... ... ... ...,
326 Cost Function. . . . ... ... ...
3.2.7 Topology Selection . . . . . . . . . ...
3.2.8 Data Quality and Cleaning . . . . . . ... ... ... .. ......
3.2.9 Analysis Methods . . . ... ... ... ... L.
3.3 Summary ... ..o

Experimental Test Data

4.1 Database Design . . . . . . . . . . ..
4.1.1 Test . . . o o e e e
4.1.2 SoUrce . . . . ..o e
4.1.3 Impact. . . . . . o o
4.1.4 Projectile . . . . . .
4.1.5 Target . . . . . . oL
4.1.6 Results . . . . . . e

4.2 Data Acquisition . . . . . . ... e

4.3 Data Preparation . . . . . . . ... L

4.4 Parameter Selection . . . . .. ...

4.5 Data Analysis . . . . . . . L

4.6 Summary . ... ..o e

MLP for Monolithic Metallic Armor

5.1 Methodology . . . . . . . . . e

5.2 Training Process Results . . . . . .. .. ... ... .. L.

5.3 Comparison to Segletes Model . . . . . . .. ... .. ... L.
5.3.1 Perforation Prediction Results . . . . ... ... ... ... .....
5.3.2 Residual Value Estimation Results . . . . . ... .. ... ... ...
5.3.3 Runtime Comparison . . . . . . . . . . ... oo

B.A  Summary . ... ..o e e

MLP for Multi-Layer Metallic Armor

6.1 Methodology . . . . . . . ..

6.2 Results. . . . . . . . e

6.3 Comparison to Segletes Model . . . . . . . .. .. .. ... oL
6.3.1 Perforation Prediction Results . . . . ... ... ... ... .....
6.3.2 Residual Value Estimation Results . . . . ... ... .. ... ....
6.3.3 Runtime Comparison. . . . . . . . . . . ..o

6.4 Summary . . .. ..

83
83
85
86
87
87
87
88
88
89
95
96
101

103
103
110
111
112
113
116
117



7 Conclusion
7.1 Revisit of Research Questions . . . . . . . ... ... ... .. ........
7.2 Summary of Contributions . . . . . . .. ... ...
7.2.1 Publications. . . . . . . . . ...
7.2.2 TImpact. . . . . . e
7.3 Discussion of Limitations . . . . . . . . . . ... ... ... ... ......
7.4 Future Work . . . . . . . e

8 References
9 Bibliography

Appendix A Vitae

Appendix B Penetration Database Markup Language

B.1 PDML Schema . . . ..
B.2 PDML Design Diagrams

vi

148
148
155
155
157
157
158

160

171

245



List of Tables

1.1

2.1

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2

6.1
6.2

Phases of approach . . . . . . . . ... ... .
Minimum and maximum bounds for normalization . . . . . . ... ... ..

Confusion matrix . . . . . . . . . . .
MPE and MAPE Example. . . . . . . .. ... . .o
MAPE and SMAPE Example . . . . . . . .. .. ... .. .. .. .. ...,

Database Hardness Columns . . . . . . . . . . . .. ... ... ... ....
Statistics for the input and output values of the ANN . . . ... ... ...
The normalization values used for the parameter box and whisker plots

Perforation Prediction Statistics for Monolithic Targets . . . . .. ... ..
Mean square error and symmetric mean absolute percentage error statistics
for residual value predictions of monolithic targets . . . . . .. .. ... ..

Perforation Prediction Statistics for Multiple Element Targets . . . . . . . .
Mean square error and symmetric mean absolute percentage error statistics
for residual value predictions of multiple element targets . . . . . . . .. ..

vii

39

72
75
76

91
97
102



List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Rod plastic zone entrainment in multiple elements . . . . .. ... ... ..

A Computer Aided Design (CAD) target model . . . . . .. ... ... ...
V/L taxonomy (Level 1 to Level 4) . . . . ... ... ... ... ... ....
A shotline through a target . . . . . . . .. ... ... .. .. ........
Types of Armor Piercing (AP) rounds . . . . .. ... ... ... .. ....
An Armor Piercing Fin Stabilized Discarding Sabot (APFSDS) round

Example of erosion during penetration of Tungsten Heavy Alloy and Depleted
Uranium . . . . . . . . . e e e e e
Finite element analysisof KEP . . . . .. ... ... ... ..........
Illustration of the difference between normal thickness and line-of-sight thick-
10T
Example topology of a Multi-Layered Perceptron (MLP) . . . . .. .. ...
Incorrect extrapolation predictions . . . . . .. ... ... ... ... ...,
Example of three activation functions . . . .. ... .. ... ... .....
Example of how a neuron’s output is effected by weight adjustment . . . . .
Example of how a neuron’s output is effected by bias adjustment . . . . . .
Example of the overfitting of data. . . . . . . .. ... ... ... .. ...,
3-Dimensional example of local and global optima . . . . . . .. ... ...

A screen capture of the PDMLEditor window . . . . . .. ... ... ....
Threading of ANNPerforation Project . . . . .. ... ... ... ... ...
A screen capture of the ANNPIlotter window . . . . . . ... ... ......
How the data was split apart during selection and training phases . . . . .
Scatter Plot of MAPE and SMAPE Example . . . ... ... ........
Example PDFs for explanationof SD. . . . . .. ... .. ... ... ...,
Example of first order SD (CDFs) . . .. .. ... ... ... ... .....
Example of second order SD . . . . . . .. ... .. ... L.
Example of third order SD. . . . . . . . . ... ... ... L.

Image of first group of binders . . . . . . ... ... ... ... ... ...
Image of second group of binders . . . . . .. ... ... ... ........
Image of third group of binders . . . . . . . . ... ... ... ... ...
Ordered scatter plots for some input parameters of model . . . . . .. ...
Ordered scatter plots for some input parameters of model . . . . . . . . ..
Ordered scatter plots for some input parameters of model . . . . . .. ...
Ordered scatter plots for some output parameters of model . . . . . . . ..
Box and Whisker Plots of Normalized Model Parameters . . . . . . . .. ..

viii

13
14
15
18
19

20
21



5.1
5.2
5.3
5.4
5.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14

6.1

6.2

6.3

6.4
6.5
6.6
6.7

6.8

6.9

6.10

6.11
6.12

B.1
B.2
B.3
B.4
B.5

Selected Topology for First Version of MLP . . . . . .. .. ... ... ... 107

Selection Phase Results . . . . . . .. ... ... L. 109
Selected Topology for Second Version of MLP . . . . . ... ... ... ... 110
Final Selected Topology of the MLP . . . . . . ... ... ... ... .... 111
Distributions of classification outcomes of the MLP and the Segletes model

for single element targets - Training Set . . . . . . .. .. .. ... ... .. 118
Distributions of classification outcomes of the MLP and the Segletes model

for single element targets - Validation Set . . . . . .. ... ... ... ... 119
Distributions of classification outcomes of the MLP and the Segletes model

for single element targets - Test Set . . . . . . . .. .. ... L. 120
Scatter Plot for Residual Velocity . . . . . . .. ... ... ... ... .. 121
Scatter Plot for Residual Mass . . . . . ... .. .. .. ... ... ... 121
Symmetric Percent Error for residual velocity . . . . . . . . ... ... ... 122
Symmetric Percent Error for residual mass. . . . . .. ... ... ... ... 122
First Order Stochastic Dominance - Cumulative Percent Error for Vr . . . . 123
First Order Stochastic Dominance - Cumulative Percent Error for Mr . . . 123
Runtimes . . . . . . . . 124

Distributions of classification outcomes of the MLP and the Segletes model

for multiple element targets - All Data . . . . . .. ... ... .. ... ... 136
Distributions of classification outcomes of the MLP and the Segletes model
for multiple element targets - Spaced Data . . . . . . . . ... ... ... .. 137
Distributions of classification outcomes of the MLP and the Segletes model
for multiple element targets - NonSpaced Data . . . . . . .. ... ... .. 138
Scatter plots of observed vs predicted values - All Data . . . .. ... ... 139
Scatter plots of observed vs predicted values - Spaced Data . . . . . . . .. 140
Scatter plots of observed vs predicted values - NonSpaced Data . . . . . . . 141
Scatter plots of observed vs predicted values, with false positives and false
negatives not plotted . . . . . . .. ..o 142
Histograms of percent error for MLP and the Segletes model predictions of
residual velocity and residual mass - All Data . . . . .. ... ... ..... 143
Histograms of percent error for MLP and the Segletes model predictions of
residual velocity and residual mass - Spaced Data . . . . . .. .. ... ... 144
Histograms of percent error for MLP and the Segletes model predictions of
residual velocity and residual mass - NonSpaced Data . . . . .. .. .. .. 145
First order stochastic dominance plots . . . . . ... ... .. .. ...... 146
Model runtimes for multiple element targets . . . . . . . . ... .. .. ... 147

A top level diagram of the Penetration Database Markup Language (PDML) 256

A diagram of the Impact element from the PDML . . . ... ... ... .. 257
A diagram of the Projectile element from the PDML . . . . .. ... .. .. 258
A diagram of the Target element from the PDML . . . . . ... ... .. .. 259
A diagram of the Results element from the PDML . . .. . ... ... ... 260

X



Acronyms

ACAT
AIC
AlICc
ANN
CFRP
AP
APCBC
APCNR
APCR
APDS
APE
APFSDS
APFSDS-T
ARL
BAD
BVLD
CAD
DNN
DoD

DU

EFP
FEA
FSP

Acquisition Category

Akaike Information Criterion

Akaike Information Criterion with Correction
Artificial Neural Network

Carbon Fiber Reinforced Composite

Armor Piercing

Armor Piercing Capped Ballistic Cap

Armor Piercing Composite Non-Rigid

Armor Piercing Composite Rigid

Armor Piercing Discarding Sabot

Absolute Percentage Error

Armor Piercing Fin Stabilized Discarding Sabot
Armor Piercing Fin Stabilized Discarding Sabot-Tracer
Army Research Laboratory

Behind Armor Debris

Ballistic Vulnerability /Lethality Division
Computer Aided Design

Deep Neural Network

Department of Defense

Depleted Uranium

Explosively Formed Penetrator

Finite Element Analysis

Fragment Simulating Projectile



GA
GPU
GUI
IUA
JAGA
JAXB
JGAP
JOONE
KE
KEP
LM
LFT&E
MAPE
MBT&E
MCC
MLP
MPE
M&S
MSE
NBC
OCR
PDML
PE
RBF
RHA
RNN
S4
SAPE
SCG

Genetic Algorithm

Graphics Processing Unit

Graphical User Interface

Individual Unit Action

Java API for Genetic Algorithms
Java Architecture for XML Binding
Java Genetic Algorithms Package
Java Object Oriented Neural Engine
Kinetic Energy

Kinetic Energy Projectile
Levenberg-Marquart

Live-Fire Test & Evaluation

Mean Absolute Percentage Error
Mission-Based Test and Evaluation
Matthews Correlation Coefficient
Multi-Layered Perceptron

Mean Percentage Error

Modeling & Simulation

Mean Squared Error

Nuclear, Biological, Chemical

Optical Character Recognition
Penetration Database Markup Language
Percentage Error

Radial Basis Function

Rolled Homogeneous Armor
Recurrent Neural Network
System-of-Systems Survivability Simulation
Symmetric Absolute Percentage Error

Scaled Conjugate Gradient

xi



SCJ Shaped Charged Jet
SD Stochastic Dominance
SLAD Survivability /Lethality Analysis Directorate

SMAPE Symmetric Mean Absolute Percentage Error

SME Subject Matter Expert

SoS System-of-Systems

SPE Symmetric Percentage Error
SVM Support Vector Machine
SwRI Southwest Research Institute
V/L Vulnerability /Lethality

VSL Visual Simulation Lab

WC Tungsten Carbide

WHA Tungsten Heavy Alloy

WMRD Weapons Material Research Directorate

XML Extensible Markup Language

xii



Chapter 1

Introduction

1.1 Background

When a U.S. Soldier takes a weapon system into the field for the first time, that Soldier
needs to know that the weapon system will perform as expected. In order to ensure that the
U.S. Department of Defense (DoD) acquires systems that are safe, effective, and perform as
expected; they test the system and use modeling and simulation to augment the results from
the tests. The U.S. DoD requires that Acquisition Category (ACAT) I systems undergo
Live-Fire Test & Evaluation (LFT&E) [1] to determine the Vulnerability/Lethality (V/L) of
that system. V/L simulation models are validated to those live-fire tests and then accredited
so that they can be used for future studies involving that system.

V/L simulation models are used to analyze the vulnerability of military systems against
the lethality of weapons systems. These models provide information that is critical to
protecting the lives of U.S. soldiers.. V/L model results are used as inputs in force-on-force
models [2,3]. U.S. Army force-on-force simulation models are used to simulate battlefield
scenarios that provide the U.S. Army with situational outcomes for planning purposes and
information that is used for making decisions about procurement in the acquisition life
cycle.

Both force-on-force and V/L models contain ballistics sub-models of varying types and
levels of fidelity. Ballistics is the science of mechanics that deals with the flight, behavior,

and effects of projectiles, bombs, rockets, or shells [4]. The projectile, or the projectiles



generated from a bomb or rocket warhead, could be further defined as fragments, Shaped
Charged Jets (SCJs), Explosively Formed Penetrators (EFPs), or Kinetic Energy Projectiles
(KEPs).

The field of ballistics is divided into several sub-fields: interior, intermediate, exterior,
and terminal. Interior ballistics is the study of the propulsion of a projectile from the
moment that the charge is ignited until the moment that it leaves the muzzle. Intermediate,
also known as transitional ballistics, is the study of a projectile’s behavior after it leaves
the muzzle until the moment that the pressure behind the projectile is equalized. Exterior
ballistics is the study of a projectile’s flight after the propulsive forces are no longer acting
on it. Terminal ballistics is the study of the impact of a projectile and another object [5,6].
There are simulation models used for all four of the sub-fields of ballistics, and they all vary
in their levels of fidelity.

Force-on-force and V /L models are primarily concerned with modeling exterior and ter-
minal ballistics. Terminal ballistics models are used to determine if a threat has perforated
a particular target and what the residual capability of that threat is after perforation. It
is the first step in determining the damage due to a target and threat interaction, and has
an impact on all of the results that are based on that damage outcome. Force-on-force and
V/L models typically use lower fidelity models because of the large scope of what they are
modeling. V/L models are used for full vehicles against thousands of impacts by threats,
so if the terminal ballistics model used is high fidelity, then typically it will take too long to
run. Many force-on-force models use a simple lookup value method using averaged proba-
bilities of kill for a given vehicle and threat pairing. Examples of such methods are the use
of lethal areas and Individual Unit Actions (IUAs) [7].

A lethal area is a measure of a projectile’s ability to incapacitate a target component
and can be used to generate estimates of the projectile’s ability to kill. Lethal areas take
into account the delivery accuracy of the projectile and the vulnerable areas of the target. A
vulnerable area (Ay ) is the summation of the probability of killing a target over a given area
in a particular attack direction to the target. Vulnerable areas are calculated by dividing
the plane of impact in a particular direction into a grid of equally sized cells. For each cell,

a probability of kill given a hit (Py,) is determined. The Py, is multiplied by the area of



the cell and then all the cells are summed together to generate the Ay. Ays can then be
used with the target presented area (Ap) to determine the Py, for the target at a specific
attack aspect [8].

IUAs are calculated for a particular aspect angle by summing up the likelihood of a
given aim dispersion randomly hitting each grid cell combined with the loss-of-function
associated with that grid cell. It represents the most probable loss-of-function for the
target at that aspect angle against that particular threat [9]. When given to force-on-force
models, many different aspect angles are provided to cover the many possible angles of
attack. As with lethal areas, Py, is an important part in calculating IUAs, because they
are used in determining the loss-of-function values used by IUAs. In order to calculate
each Py, terminal ballistics must be modeled for the determination of how far a ballistic
threat can penetrate into the interior of the target. The modeling of the terminal ballistics
in many cases is handled by empirical or semi-empirical models that have been fit using a
combination of experimental test data and Finite Element Analysis (FEA). In past efforts
it has taken too long to run a more detailed V/L model to determine the kill of a vehicle in
force-on-force models. If faster algorithms can be developed at the terminal ballistics level
of modeling then it may be possible to speed up the V/L models and allow for their use in
force-on-force models directly.

To summarize, terminal ballistics model results are rolled up into empirical models.
The terminal ballistics empirical model results are rolled up into vulnerable areas using
V/L models. The vulnerable area results are rolled up into lethal areas using effectiveness
models. Lastly, lethal areas are rolled up into a distribution of battle field scenario results
using force-on-force models. The fidelity of the inputs used in higher-level models is typically
sacrificed for the speed of calculation needed at that higher level. This may be changing
with the development of new models and methods in the U.S. Army Research Laboratory
(ARL), Survivability/Lethality Analysis Directorate (SLAD), such as System-of-Systems
Survivability Simulation (S4), MUVES-S2, and Visual Simulation Lab (VSL).

An agent-based modeling approach is used by the S4 to model the emergent behavior
of the System-of-Systems (SoS) on the battlefield. The intent is to model the survivability

of U.S. Army systems in the mission context [10]. The S4 currently uses Py, lookup



tables to determine if a target vehicle has been eliminated from the battlefield. There
have been attempts in the past to provide a V/L service that can run target and threat
interactions on-the-fly when S4 needs an interactions result. The most recent plan was
to use the next generation of V/L simulation that was being developed by the U.S. ARL,
SLAD, called MUVES 3. MUVES 3 was to serve as the primary code used within the SLAD
Ballistic Vulnerability /Lethality Division (BVLD) to conduct V/L analyses. MUVES 3 was
designed to be an integrated, collaborative work environment that would provide a wide
range of metrics to support Mission-Based Test and Evaluation (MBT&E) of networked
SoS. Those metrics could be provided to force-on-force models through the use of a V/L
service. MUVES 3 was to provide robust, on-demand V/L estimates to the S4 and other
force-level models [11]. However, the MUVES 3 program was shutdown in 2013 and the
proposed solutions are to be eventually migrated to the current V/L model, MUVES-S2.

There is still a strong desire within the U.S. Army to have high fidelity results within
force-on-force models such as S4. When that direct linkage happens, it will be possible
to provide more accurate results to the force-on-force model through the V/L model, but
the speed of the V/L model and its sub-models will still be a concern. If a sub-model in
a V/L model can improve on its speed of calculation while maintaining or improving its
accuracy, then it will have a positive impact on the overall speed of the V/L model and the
performance of the combined force-on-force and V/L models that could be using it. The
aim of this research was to develop a terminal ballistics sub-model that would provide an
improvement in runtime while maintaining or improving accuracy, when compared to the
current state-of-the-art model.

In addition to enabling a linkage of force-on-force and V/L models, such a model would
also benefit the VSL tool. VSL is being developed in response to the need for a tool
that can provide a rapid analytical response to problems that arise in the battlefield and
that can support LFT&E test shot selections. The development of VSL started off as
a dissertation research project showcasing the capability of processing Computer Aided
Design (CAD) model ray-tracing and V/L analysis on Graphics Processing Unit (GPU)
cores. The dissertation project was never completed, but the research was transitioned over

to the U.S. ARL, SLAD. VSL provides real-time manipulation and display of 3-dimensional



target CAD models, with limited V /L analysis capability. The current V/L capability of
VSL is limited to a terminal ballistic empirical model used for SCJs and a simple damage
model that calculates if a critical component has been perforated or hit [12]. An accurate
and fast terminal ballistic model for KEPs is needed by VSL and the aim of this research

was to provide a sub-model that can meet that need.

1.2 Problem Definition

Simulation modeling, V/L modeling in particular, is consistently battling with the trade-
off of speed and accuracy. Recent trends have required quick turn-around analyses to
support protecting U.S. soldiers in the battlefield, but the accuracy of the models is still
of importance. As a component of the V/L modeling process, the speed and accuracy of
terminal ballistics models are important. Two of the primary drivers of time for the models
are preparation of model inputs and model runtime. The problem is to find a model that
requires very little subject matter expertise for preparation, runs very fast, and is still
accurate. This research developed a model for predicting the terminal ballistics of KEPs

that can be used in a V/L model where speed and accuracy are both of importance.

1.3 Objectives

The objective of this research was to develop an accurate and generalized Artificial Neural
Network (ANN) based terminal ballistics model for KEPs that is usable in a V/L modeling

environment and provides improvements in speed while maintaining or improving accuracy.

1.4 Research Questions

There are numerous terminal ballistics models available to the ballistician; however, they
typically require too much time for preparation, have relatively long run times, or are not

accurate. The primary research question to be answered by this study was:



RQ1: Can an ANN, used to model the terminal ballistics of KEPs, be developed that is

both fast, accurate, and generalized?

The question was further broken down into sub-questions that addressed components of

the primary research question:

RQ1.1: What target or threat parameters have the most influence on terminal ballistics
results?
The determination of which parameters are important to the process of penetration is
important because it will directly influence the overall design of any ANNs that will

be developed.

RQ1.2: Can an ANN be used to produce a generalized, accurate model of the terminal
ballistics of a KEP against monolithic metallic targets?
This question is important because it is the first step in developing an expanded
capability for modeling real world target and threat interactions. The modeling of
penetration through a single plate of metal armor should not pose as many problems

as a complex target will.

RQ1.3: Can the ANN from RQ1.2 be used to model the terminal ballistics of a KEP against
multi-element metallic targets?
This question gets to the determination of usability in V /L models. Real world targets

have complex armor packages made of different metals and air gaps.

RQ1.4: How does the speed (execution time and elapsed time) of an ANN based terminal
ballistics model compare to the Segletes hybrid model of the Frank-Zook and Walker-
Anderson models?

This question gets to the speed of the model and looks at two ways of measuring it.
The execution time will address the speed of the algorithm itself and the elapsed time

will address the overall speed of the models.



RQ1.5: How does the accuracy of an ANN based terminal ballistics model compare to the
Segletes hybrid model of the Frank-Zook and Walker-Anderson models?
This question addresses the issue of accuracy of the model and how it compares to

other models currently in use.

1.5 Approach

The approach of this research was broken into four interdependent phases. The first phase
served to build a strong base of training data for use in the development of the ANN. The
following two phases were for iterative development of the ANN. The first of the two was
the simplest and the second one pushed the envelope a little farther by building on the work
from the previous phase. The last phase compared the performance of the ANN and the
best performing model that is currently used for modeling the terminal ballistics of KEPs.
Table 1.1 provides a breakdown of which research questions are answered by which phases
of this research.

Table 1.1: Phases of approach

Phase | Research Questions Addressed
1 | RQLIL
2 RQ1.2
3 | RQL3
4 | RQL4, RQLS

1.5.1 Phases of Approach
1.5.1.1 Phase 1: Collect and Document Experimental Test Data

This phase consisted of collecting all currently available test data and designing and imple-
menting a method of storage. Extensible Markup Language (XML) was used to store the
terminal ballistics test data for this research [13]. XML was used due to its simplicity and

ability to be accessed using Java, since the ANN was implemented using Java.



1.5.1.2 Phase 2: Implementation of an ANN to Model KEPs Against Mono-

lithic Metallic Armor

This phase consisted of designing and implementing an ANN that was capable of modeling
KEPs impacting monolithic armor. For this phase the ANN was limited to a single element
and only metallic materials. There are two primary types of test data for this scenario;
the first is an impact into a semi-infinite block of armor and the second is an impact into
a finite element of armor. The first type will typically contain results pertaining to depth
of penetration and possibly crater diameter and volume. The second type will typically
contain results pertaining to residual velocity, residual mass, residual length, and possibly

hole size.

1.5.1.3 Phase 3: Implementation of an ANN to Model KEPs Against Multi-

Layered Metallic Armor

This phase built on the work from the previous phase and added in the complexity of having
more than one element in the target array. As a KEP penetrates through a target array it
forms a zone of plastic deformation in front of it. As the KEP is penetrating, the material
in front of it is compressing out to a certain distance from the interface of the target and
penetrator. If the plastic zone extends across a plate boundary into another plate of a
different material, the rod will sense the resistance of current remaining material in the
plate it is in, but also the material from the other plate that is within the plastic zone
(see Figure 1.1). This adds a significant complication to modeling penetration through a
multi-element target. The method of iteratively applying the ANN designed in the previous

phase to each element was used in this research and was found to be effective.
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Figure 1.1: Rod plastic zone entrainment in multiple elements [14]

1.5.1.4 Phase 4: Comparison of ANN Model to Segletes Hybrid Rod Model

This phase compared the speed and accuracy of the developed model to a model that is
currently in use in a V/L model. The comparison of the two models examined not only the
accuracy and run-times, but also the time required for preparation of inputs for the models.
This comparison provided a clearer understanding of how successful the development of the

ANN was.

1.5.2 Methods and Tools

Phases two and three involved an iterative approach to development; the following steps

were performed in each of those phases [15]:

1. Data Preparation
The data were prepared for use in the ANN; this included the process of omitting

correlated inputs and normalizing of the inputs and outputs.

2. Design
Using the equations for approximating the number of hidden layers and hidden nodes,

initial designs were generated.
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3. Build and Test Prototype Designs
The prototype designs were constructed using the chosen software and were prepared
for training. They were trained using k-fold cross-validation methodology. The pro-
totype design with the best k-fold cross-validation error was selected for the final

training process.

4. Train and Validate Selected Prototype
The selected prototype was trained using the methods chosen during the design step.

A cross-validation set of data was used to stop training when overfitting was identified.

5. Optimimize Prototype
If the prototype was able to converge on a solution and the error was acceptable then

testing proceeded, otherwise the design step was revisited.

6. Test Prototype
During this step the trained prototype was tested against data that was not used
for training to determine how well it interpolated and extrapolated. If the error was

found to be acceptable then the proceeded, otherwise the design step was revisited.

7. Analyze Performance
During this step the run-time and accuracy of the ANN was analyzed over the entire

data set and compared to the current state-of-the-art model (the Segletes model).

8. Document Results
After each phase the results of the design, development, and analysis of the ANN were

documented.

The implementation of the ANN was done using Java, primarily because there were
a lot of open-source libraries available for use that could be leveraged for completion of
this research. After an initial search three possible libraries were found for implementing
ANNS; the first was the Java Object Oriented Neural Engine (JOONE), the second was
Neuroph, and the third was Encog. For the implementation of a Genetic Algorithm (GA),
two possible libraries were found; the first was Java Genetic Algorithms Package (JGAP)
and the second was Java API for Genetic Algorithms (JAGA).
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1.6 Chapter Summary

In summary, this dissertation developed an ANN to model KEPs against single element
targets and multiple element targets. The first phase of this research was to collect and
prepare the data and the following two phases were to implement the ANN for single element
targets and then multiple element targets. The last phase was to compare the performance
of the ANN against the model that is the current standard for modeling KEPs, the Segletes
model.

The work performed in the first phase, to collect and prepare the data for the ANN, will
have further impact at the U.S. ARL. The database will be available to other researchers,
within the U.S. ARL, to use for their research projects.

The ANN developed in this dissertation will provide other simulation models within
the U.S. ARL with a fast running and accurate model for predicting the terminal ballistics
of KEPs. The improvements provided by using the ANN, will help enable the use of V/L
simulation models in larger force-on-force models, providing better vulnerability information
to the decision makers of the U.S. Army which is critical to the survivability of our combat

forces.

1.7 Roadmap

This paper is organized into seven chapters, this chapter being the first. The second chapter
will provide background information into all of the key areas of this research, to include:
V /L modeling, terminal ballistics, ANNs, data quality issues, analysis methods, and the like.
The third chapter will provide an overview of the software that was developed and used
for this research. The fourth chapter will outline the effort that went into working on the
experimental test data for this research. The fifth chapter will provide details on the results
from developing a Multi-Layered Perceptron (MLP) for monolithic metallic armor. The
sixth chapter will provide details on the results from applying the developed MLP against
multi-element metallic armor. The seventh and final chapter will provide a summary of the

benefits and results from this research effort.
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Chapter 2

Literature Review

2.1 Vulnerability /Lethality (V /L) Modeling

Vulnerability /Lethality (V/L) simulation models are used to analyze the vulnerability of
military systems against the lethality of weapons systems. V/L models typically consist of a
Computer Aided Design (CAD) model (an example of a CAD model is shown in Figure 2.1)
of the target system, engineering definitions for the systems and sub-systems in the target,
engineering inputs for the probability of component dysfunction given a hit (P.qy) for
the target critical components, methodologies for determining system capabilities after a
ballistic event, and algorithms for modeling the physical interaction of the target and the
ballistic threat. For the purposes of this study, the ballistics of the physical interaction of
the threat and the target are of interest.

The V/L taxonomy is used to rationalize the process that occurs to a system during a
ballistic impact event. There are five levels in the taxonomy and each level represents the
state of the system at discrete moments during the ballistic event. The levels are mapped
together by operators that describe the transition from one state to the next. The five levels

of the taxonomy are listed below [3]:

Level 0 Threat-Launch Initial Conditions

This describes the initial conditions of the target prior to being fired upon.
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Figure 2.1: A CAD target model [16]

Level 1 Threat-Target Interaction Initial Conditions
This describes the initial conditions of the target and the threat prior to the threat

interacting with the target.

Level 2 Target Damaged Components
This describes what components of the target have been damaged due to the interac-

tion with the threat.

Level 3 Target Measures-of-Capability
This describes the capability of the target given the damage inflicted upon the critical

components.

Level 4 Target Measures-of-Effectiveness (Utility)

This describes how the target capability effects the mission.

Figure 2.2 shows how the V/L taxonomy operators map from levels 1 through 4. Of
particular interest is the operator that maps “Level 1”7 to “Level 2” in the taxonomy. That

operator (Oj2) defines how the threat physically interacts with the target to generate
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Figure 2.2: V/L taxonomy (Level 1 to Level 4)

damage on the target components. In V/L simulations the interaction of the target and
threat is modeled as a shotline going through the target. Operator O12 can consist of one
or many shotlines depending on the threat of interest. If the threat is a fragment, it could
fracture upon impact and separate into several shotlines of smaller fragments. Another
example would be a Shaped Charged Jet (SCJ) that impacts armor and generates Behind
Armor Debris (BAD) which could be thousands of fragments with each requiring its own
shotline. A single interaction could require many shotlines to fully analyze the ballistic
event.

Imagine a main battle tank with rough dimensions of 2.4m height, 3.7m width, and
9.8 m length. Breaking the presented area of the side of that tank into cells that are 50 mm
x b0mm could result in 7611 cells total. Doing the same for the front of the tank would
result in roughly 2854 total cells. Those two sets of cells are called views; averaging them
would give a rough approximation of how many cells to expect for any particular view. For
this simple example, a set of 26 views will be used. The azimuths of those views will start
at 0° and increment by 45° until 315°. Each of those azimuths will be combined with
an elevation from the following, -45°, 0°, and 45°. The remaining two views consist of
an azimuth and elevation of (0°, -90°) and (0°, 90°). Since the simulation is stochastic,
sampling is done within each cell of a view. So, in each cell the simulation could make 10
sample runs and in addition, each of those runs may need to call the penetration model
10 times. A total of 26 views with 5233 cells per view, 10 samples per cell, and 10 model

calls per sample amounts to 13 605800 total calls to the terminal ballistics model for this
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sample scenario run [7,8]. For each shotline in an analysis, system capability is determined
based on which components are damaged. Before that determination can be made, the
model must determine if the components were hit. Determination of a hit on a component

is performed by calculating how far the threat can penetrate into the target on the shotline.

Figure 2.3: A shotline through a target [17]

An example of a shotline going through a vehicle can be seen in Figure 2.3. The
components that intersect with the shotline are considered “threatened” and are highlighted
in the figure. They are, in order from front to back; glacis armor, armor piercing round,
armor piercing round, high explosive round, firewall, engine, starter, transmission sump,
fan, and rear armor. How far along the shotline the threat can penetrate will determine
which “threatened” components are actually hit. For example, the threat may be able to
perforate everything along the shotline until it reaches the engine block, therefore everything
after the engine block would not be hit.

Terminal ballistics models, also known as penetration models, are used to determine
how far a projectile travels on a shotline. Once the distance traveled is known, the critical
components that were hit by the projectile are also known. For all of the shotlines, the
penetration model needs to accurately determine the penetration of the threat for each
impact along a shotline. Due to the large number of shotlines and the need for accuracy,
the calculation speed and accuracy of a penetration model are important.

On a particular shotline there can be many objects in the path of the projectile, so
if the projectile perforates after impacting the first object on the shotline it may impact
another object. The projectile may encounter armor plating, structural material, target
components, ammunition, or personnel and for each of them a terminal ballistics model is

applied to determine if the projectile will perforate the object or be defeated [2]. The first



16

impact event will use the initial “Level 1” inputs for the terminal ballistics model, but each
time a terminal ballistics model is run for subsequent impact events along the shotline, the
results from the previous impact are used as inputs.

Some of the results from the terminal ballistics model may be used to determine the
damage on a critical component in the target. Typically the damage or dysfunction to a
critical component is determined using empirical models based on mass and velocity, hole
size (typically a function of projectile diameter), or energy deposited (a function of mass
and velocity). For each of those cases the residual parameters of the projectile after impact
are needed for determination of damage [2].

Not only is it important to be accurate in predicting perforation of components in
the target, but it is also important to be accurate in predicting the projectile’s residual
parameters since they are important to determining the damage inflicted to the target and

residual penetration capability.

2.2 Terminal Ballistics Modeling

Terminal ballistics models fall into three general categories [2]:

1. Empirical
Models that are derived from experimentation and observation rather than theory.

These models are typically simple functions that allow statistically good fits to data.

2. Analytical /Phenomenological
Analytical models are typically simple, closed-form phenomenological models. Phe-
nomenological models use basic physical principles and basic material properties to
simulate physical events. Some of these models could be considered semi-empirical
if the closed-form model by itself is inadequate to describe the phenomena without

parametric fitting.



17

3. Numerical/Phenomenological
Numerical models are typically complex phenomenological models. These types of
models are usually based on numerical approximations to the partial differential equa-

tions of fluid mechanics.

Each type of model has a place in a terminal ballistics modeling “toolbox”. Which type
of model to employ usually involves a trade-off of speed and accuracy. Numerical models
are normally very accurate, but require too much time and computational power for use in
V/L analyses. They are however, sometimes used to augment experimental test data for
fitting of empirical and semi-empirical models that are used in V/L analyses [2]. Analytical
models are normally built using assumptions about the physical processes that occur during
the penetration process. The physics-based equations that form the assumptions for the
analytical model are solved for, if possible, and are modeled using numerical integration if
needed. Analytical models are much faster than numerical models but are generally harder
to design effectively and require support from Subject Matter Experts (SMEs) in order to
run them accurately [2]. Empirical models are typically the simplest and therefore fastest
of the three but are normally the least accurate when trying to interpolate or extrapolate
from the data used for fitting. These models also require SME support for any applications
outside of the initial fitting. Regardless of which model is used, each implementation of
them is typically specific to a threat and target interaction and therefore not a generalized

solution.

2.3 Kinetic Energy Projectiles

The term Kinetic Energy Projectile (KEP) is generally applied to an Armor Piercing (AP)
projectile fired from a high-velocity rifle or cannon [6]. Figure 2.4 illustrates several cat-
egories of KEP rounds; Armor Piercing Capped Ballistic Cap (APCBC), Armor Pierc-
ing Composite Rigid (APCR), Armor Piercing Composite Non-Rigid (APCNR), Armor
Piercing Discarding Sabot (APDS), and Armor Piercing Fin Stabilized Discarding Sabot
(APFSDS).
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Figure 2.4: Types of AP rounds [18]

The data used for this research consisted of various types of KEPs, but the most preva-
lent type in the database was APFSDS. This is advantageous, because most modern large
caliber Kinetic Energy (KE) rounds are APFSDS rounds. What follows is a brief overview
of the APFSDS round.

The primary parts of an APFSDS round are the penetrator, ballistic cap, sabot, and fins
(See Figure 2.5). If the round also has a tracer component then it is designated as an Armor
Piercing Fin Stabilized Discarding Sabot-Tracer (APFSDS-T) round. The penetrator core
or rod of an APFSDS round is typically made of Depleted Uranium (DU) alloy, high-
strength steel, Tungsten Carbide (WC) composite, or Tungsten Heavy Alloy (WHA) [6].
The length of the penetrator is typically less than the length of the overall round; there are
two primary reasons for the difference. First, the fins typically extend past the end of the
penetrator slightly for APFSDS rounds and a distance of about one penetrator diameter
for APFSDS-T rounds. Second, in many designs the penetrator is shorter then the tip of
the ballistic cap, this means that the cap is normally hollow. Some experts propose an
estimated working length for the penetrator equal to the round length minus two times the
penetrator diameter [19]. The ballistic cap or windscreen is typically placed on the nose
of the round to provide a more streamlined shape for better aerodynamic characteristics.
Normally the ballistic cap will have very little influence on the penetration of the projectile;

however, it could effect the penetration if a strong material is used.
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Figure 2.5: An APFSDS round [20]

The penetrator is normally much smaller than the diameter of the gun bore, so something
is needed to seal the propulsive gases behind the penetrator to propel it down the barrel.
The sabot holds the penetrator by interfacing with ribs along the length of the penetrator
and filling in the “windage” (the gap between the projectile and the barrel). The sabot is
typically composed of two or three “petals” (sections) that break away from the penetrator
after exiting the gun barrel. APFSDS rounds are fired from smoothbore guns and therefore
do not spin due to rifling like APDS rounds. APFSDS rounds use fins made from light weight
materials like aluminum or titanium to provide stabilization during flight. For penetrators
that have a high aspect ratio (length divided by diameter) there is typically a “jacket” of
a lighter material, like steel or titanium, used to help absorb some of the elastic bending
vibrations present during flight. The jacket material also helps keep the penetrator core

from fracturing during the penetration of targets with air gaps [19].

2.3.1 Kinetic Energy Projectile Penetration Process

There are some penetrator types that rely on stored chemical energy to provide the energy
required for penetration, such as SCJs and Explosively Formed Penetrators (EFPs). KEPs
do not take any stored energy with them after launch; all of their energy comes from the
KE they have from being launched from a weapon system. KE is the movement energy of

an object and can be calculated using equation 2.1.

Ej =12-m 0> (2.1)
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Where:

Ej is the kinetic energy (J)
m is the mass (kg)

v is the velocity (m/s)

“The penetration of armor by a KE projectile converts the projectile’s energy into plastic
work (done to the target and penetrator material), usually in a process where the projectile
is inverted and eroded away while it opens and burrows a cavity in the armor material” [6].
Figure 2.6 provides a visual example of how two different materials behave during the
penetration process. The illustration on the left is an illustration of the erosion process for
a WHA projectile and the illustration on the right is for a DU projectile. As the projectile
starts the penetration process, both the target (not illustrated) and the KEP start a plastic
deformation process. Both the target and projectile materials begin to backflow behind the
interface of the penetration. For WHA projectiles there is a larger penetration tunnel due
to the material shearing late in the backflow process. For DU projectiles the shearing of
the material happens earlier in the the backflow process and leads to two important effects.
The first is a smaller diameter penetration tunnel and the second is a “sharpening” of the
projectile throughout the penetration process. Those two effects lead to better performance

for DU than a similar mass WHA.

Late Shear Early Shear
Localization + Discard Localization + Discard

Larger Diameter
. —
Penetration Tunnel

Smaller Diameter
Penetration Tunne

Tungsten Heavy Alloy Depleted Uranium

Figure 2.6: Example of erosion during penetration of Tungsten Heavy Alloy and Depleted
Uranium [21]
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The erosion of the rod and the target, as well as the backflow of those materials can
be seen in Figure 2.7. The figure is of a 2D image from a Eulerian ALE3D simulation
of a tungsten rod impacting an Rolled Homogeneous Armor (RHA) target (image and

information provided by Steve Schraml of the U.S. Army Research Laboratory (ARL)).
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Figure 2.7: Finite element analysis of KEP

2.4 Kinetic Energy Projectile Terminal Ballistics Models

As mentioned in the previous section, there are three primary types of models that are typ-
ically used for modeling terminal ballistics. In the following sections an overview of several
models that are currently used for modeling the terminal ballistics of KEPs are provided.
Due to the need for use in V/L simulations, these models must have fast runtimes. There-
fore, no numerical/phenomenological (i.e. hydrocode, Finite Element Analysis (FEA), and

the like) models are given; all of the models provided are either empirical or analytical/phe-

nomenological.
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2.4.1 Empirical Models
2.4.1.1 Lanz-Odermatt Model

The Lanz-Odermatt model is an empirical model designed for modeling tungsten, depleted
uranium, and steel long rod penetrators. The model has 3 coefficients of fit for tungsten, 3
for depleted uranium, and 4 for steel. There are an additional 3 coefficients of fit that are
material independent. The working length (L,,) of the penetrator is calculated by converting
the mass of the nose into an equal mass cylinder and adding that length to the length of
the penetrator. For a cylindrical rod the working length of the rod is equal to the length
of the rod. The equations of the Lanz-Odermatt model are provided in equations 2.2, 2.3,

and 2.4 [22-24].

2
P 1 =
— =a- — -cos"" 0 - <pP> et (2.2)
Ly, tanh (bo + by - ﬁw) T

\/(C°+61'BHNT)'BHNT if penetrator is tungsten or depleted uranium

s = rp (2.3)
i kY. n
\/ (co BHA;TI;) BHNp if penetrator is steel
YR _q 4 co-In (1 — d/dy,,)
. or (2.4)
TR (1 )~ (Y) — 5 — (Y )?
w
Where:
a is a coefficient of fit
bo is a coefficient of fit
by is a coefficient of fit

BHNp is the hardness of the penetrator (BHN)
BH Ny is the hardness of the target (BHN)
co is a coefficient of fit

c1 is a coefficient of fit
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Co is a coefficient of fit

c3 is a coefficient of fit

d is the thickness of the target (mm)

D is the penetrator diameter (mm)

dlim, is the limit thickness of penetrator (mm)
k is a coefficient of fit

Lgr is the residual length (mm)

L, is the working length (mm)

m is a coeflicient of fit

n is a coeflicient of fit

P is the penetration channel line of sight length (mm)
PP is the penetrator density (ks/m?3)

oT is the target density (kg/m3)

s is a coefficient of fit

0 is the angle of obliquity (°)

UR is the residual velocity (km/s)

vp is the impact velocity (km/s)

2.4.1.2 Konrad Frank Version of Lanz-Odermatt Model

One of the simplest empirical models used for KEPs is the Konrad Frank modified version
of the Lanz-Odermatt model [25]. The modified model equation (see 2.5) is fit to the
independent variable of vs and the dependent variable Pr/L. This model is fit to penetration
data from tests into semi-infinite targets and can be used to estimate the penetration of
a KEP at a given velocity. Saucier [26] documented the process for applying this model
iteratively for multi-element targets and derived the equations for residual velocity (see 2.6)

and residual length (see 2.7).
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Where:

a is a coefficient of fit
b is a coefficient of fit

is a coeflicient of fit

o

h
<

is the penetrator residual length

h
«

is the penetrator striking length
P is the penetration

Pr, is the penetration limit

v, is the residual velocity

vs 18 the striking velocity

The Konrad Frank modified version of the Lanz-Odermatt model is very effective at
predicting the penetration of KEPs against semi-infinite targets. However, it does not do
as well against multi-element targets and has difficulty predicting the residual velocity and
mass after a perforation of the target [13]. The model is also not generalized, it is fit to a
specific target-threat pairing and the coefficients of fit are only good for that pairing. This
means that when a new pairing needs to be modeled, new tests need to be performed to

provide data for fitting.

2.4.2 Phenomenological Models

The phenomenological models used for KEPs are all based on a modified version of Bernoulli’s

incompressible fluid flow equation (2.8) [27].

1
S0 (V=T = 2 p U2 (2.8)
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Where, the density of the penetrator is represented by p, and the density of the target
material is p;. V is the velocity of the rear of the penetrator and U is the penetration
velocity or the velocity of the front of the penetrator. Equation (2.8) defines the balance of
forces at the penetrator-target interface and is used to determine penetration. It assumes
that the impact velocities are very high, so that the strengths of the penetrator and target
are negligible compared to the hydrodynamic or inertial forces [6].

The Bernoulli equation has been modified further and expanded over the years and as
the equations in the phenomenological models have grown more complex they have also
become more difficult to solve. This has led to the necessary use of numerical integration to
solve for the equations and an increase in time to run the models. What follows in the next
five sections is a brief history of the modification and expansion of the Bernoulli equation

for use in modeling KEPs.

2.4.2.1 Alekseevski-Tate Model

The modified Bernoulli equation was extended independently by Alekseevskii [28] and
Tate [29] to account for material strengths. The Alekseevskii-Tate model incorporates
material strength effects by adding two new terms to (2.8) and is shown in (2.9). The
first term, Y represents the strength of the penetrator material, and the second term, R

represents the strength of the target material [6].

1 1
ipp(V—U)Q—FY:ithQ—i—R (2.9)

The Alekseevskii-Tate model is useful for roughly approximating depth of penetration,
but it tends to under-predict penetration because it assumes a uniform resistance through

the target [13].

2.4.2.2 Frank-Zook Model

Another modification was proposed in 1991 by Frank and Zook [30] to make the resistance
of the target a function of where in the target the interface was located. This modification

allowed the target to have an initial resistance value that either increased or decreased as
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penetration proceeded into the target. As the interface approached the rear of the target,
the resistance would either approach zero or that of the initial resistance of the next target
element. The model also incorporates an equation for the penetrator strength as a function
of the ratio of current length and initial length. The new model works very well if the
elements in the target array are of significant thickness; in other words, if the plastic zone
of deformation in front of the penetrator is confined to the current element and the next
element in the array. This is because the Frank-Zook model only looks at the resistance
of the current and next elements, therefore it is incapable of accounting for any resistance

after the next element [13].

2.4.2.3 FATEPEN Model

FATEPEN is a computer code developed by Applied Research Associates, Inc. (ARA)
for multiple sequential penetration calculations of complex targets comprised of spaced
elements. As such, FATEPEN penetration calculations are focused on predicting post-
perforation penetrator mass, velocity, and angular momentum vector for use in determining
the encounter conditions for the next impact. FATEPEN is comprised of a collection of
closed-form, analytical/empirical engineering models, for ideal penetrator and target im-
pact geometries (e.g., normal, unyawed impacts by compact or elongated penetrators, thin-
plate/thick-plate penetration mechanisms, etc.) supplemented by rational transition/in-
terpolation formulas and approximations to account for non-ideal encounter geometries
(e.g., yawed penetrators and oblique impacts). Together, these models enable FATEPEN
to select and/or transition (interpolate) between the relevant ideal penetration models in
accord with changes in the penetrator due to mass loss and orientation changes between
impacts. This approach enables FATEPEN to accomplish penetration calculations for a
wide variety of penetrator shapes and materials, while the user need only input the initial
description of the penetrator. FATEPEN handles KEPs based on length to diameter ratio
of the projectile. If the ratio is large than the model uses a highly modified version of the
Alekseevskii-Tate model. If the ratio drops during the penetration process it then transi-
tions to handling the penetrator as a fragment and uses penetration equations appropriate

for that application [31,32].
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2.4.2.4 Walker-Anderson Model

In 1995, Walker and Anderson [33] proposed a modification of the Alekseevskii-Tate model
to include three primary changes: (1) the addition of a constant crater radius and zone of
plastic deformation to calculate the velocity profile of the projectile in the target, (2) the
calculation of projectile deceleration by elastic waves, and (3) the determination of shear
behavior by using the shear stress gradient in terms of gradients of the velocity field and

the velocity flow field to evaluate the velocity gradient.

2.4.2.5 Segletes Model

In 2000, Segletes [34] proposed a hybrid version of the Frank-Zook and the Walker-Anderson
models that integrated the resistance of all elements of a target array that are entrained in
the plastic zone of deformation in front of the penetrating KEP. The new model, known
as the Segletes model, was specifically designed with the intent to model multiple element
targets effectively.

The Bernoulli equation was modified to account for the plastic zone of deformation in
the KEP and in the target (see 2.10). In the equation, variables with a dot above them (such
as §) represent a rate of change for that variable. A variable with a bar over them (such as
H) represent the “averaged” value of that variable across the plastic zone of deformation.
Along with the Segletes version of the Bernoulli equation, the model is based on three

simplified principles:

e The change in penetration (P) is equal to the penetration velocity (u) (see 2.11).

e The change in length of the penetrator (L) is equal to the difference of the penetrator

velocity (v) and the penetration velocity (u) (see 2.12).

e The change in velocity (0) is equal to the fraction of penetrator strength (Y) and
penetrator density (pp) times the difference of the length of the penetrator (L) and

the plastic zone in the penetrator (s) (see 2.13).
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is the extent of target-plastic zone in multiples of crater radii
is the target resistance

is the penetrator Bernoulli shape factor

is the target element Bernoulli shape factor
is the length of the penetrator

is the density of the penetrator

is the density of the target

is the crater radius

is the penetrator plastic zone extent

is the rate of penetration

is the penetrator velocity

is the penetrator strength

X, is a homogenized function for u

X, is a homogenized function for a

Xp is a homogenized function for R
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(2.10)

(2.11)

(2.12)

(2.13)
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The U.S. ARL performed a study in 2012 to determine which KEP ballistics model was
the most accurate, and the Segletes model was chosen out of a total of six models that were
compared [13]. In the report from the study, the Segletes model was noted for performing

very well at predicting terminal ballistics against multi-element targets.

2.4.3 Generalization Methods for All Models

Most models are not sophisticated enough to be used for all possible pairings of threat
and target types as well as impact conditions. This usually means that an initial fitting
of the model is done to a limited set of experimental test data and that sub-models are
used to extrapolate outside of that data. In most cases the sub-models are not designed to
specifically work with a given model and therefore inefficiencies exist when they are used
together.

The base case of experimental test data typically used to fit a model is for a given
threat versus a RHA steel target of a given thickness and at various velocities (the number
of which is usually limited by funding constraints). When a terminal ballistics model is
used in V/L modeling the threat may change, as it traverses through the target, but it is
a near certainty that more than one target material will be encountered at a large range
of velocities and orientations. Fitting a model to data that covers the possible range of
materials and encounter conditions is a more robust solution to generalization than using

sub-models that are not included in the fitting process.

2.4.3.1 Yaw Impact Scaling

One of the encounter conditions that has an effect on the capability of a projectile to
penetrate a target is the yaw of the projectile at impact. Total yaw is the angle between the
longitudinal axis of a penetrator and the velocity vector of the penetrator’s center of mass.
The total yaw is composed of two orthogonal angles called pitch, measured in the vertical
plane, and yaw, measured in the horizontal plane. Total yaw is commonly called yaw, so care
must be taken when using experimental test data for measured total yaw. Yaw is largely
ignored in V/L modeling, even though it can have a drastic affect on penetration. Methods

do exist for the modeling of the effect of total yaw on penetration. One example method
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to model yaw calculates a critical yaw for the given projectile and then scales penetration
based on the ratio of current yaw and critical yaw [35]. The equations for that process are

given in (2.14), (2.15), and (2.16).

Dy — D,

o) (2.14)

Yer = sin "L (

Dy, Vs v2
—_nh_q s 2.15
D, + 3000 + 8000000 ( )

1 if 7y < er
Y .
Yo = cos(—) if v > (2.16)
Yer
0 if 1 > 90°
Yer

~Yer is the critical yaw angle, at which yaw begins to effect penetration
Dy, is the penetration hole diameter

D, is the diameter of the penetrator

L is the striking length of the penetrator

vs s the striking velocity of the penetrator

~v is the total yaw of the penetrator

Yo 1s the amount to adjust penetration by to account for total yaw

2.4.3.2 Obliquity Adjustment

Another encounter condition that has an effect on the capability of a projectile to penetrate
a target is the obliquity of the impact. Obliquity is the measure of the angle of the velocity
vector of the penetrator and the surface of the target. Obliquity is modeled by increasing
the effective thickness of the armor to account for the increased line-of-sight thickness of the

target (the concept can be seen in Figure 2.8). If the shotline is thought of as the hypotenuse
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of a right triangle, the normal thickness of the target as one of the sides of the triangle, and
the obliquity angle as the angle between the hypotenuse and the adjacent normal thickness,

then (2.17) can be used to solve for the line-of-sight thickness of the target.

Armor Plate

Shotline
cos 6 =T/T,

Figure 2.8: Illustration of the difference between normal thickness and line-of-sight thickness

(2.17)

Where:

Tios is the line of sight thickness of the target
T  is the normal thickness of the target

0  is the obliquity of the target

This method of modeling obliquity is limited because it assumes that the only effect
obliquity has on penetration is to increase the thickness of the target. There are other
physical phenomena involved in the process (especially at higher obliquities), such as rico-

chet and deflection.

2.4.3.3 Density Scaling

One method that is used throughout V/L analyses to force a more generalized model, is
density scaling [26]. Density scaling is the process of scaling a predicted penetration into

steel by the ratio of the target density and density of steel and is given in (2.18). Steel
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is used as the reference material because most of the experimental test data available are
for projectiles fired into RHA (a type of steel). The effectiveness of density scaling is
questionable and although it forces a generalization for all target materials it does not

generalize for different threats.

TruA = T (2.18)

PRHA

Where:

Tria is the equivalent thickness of a RHA target
T is the thickness of the target
prHA is the density of RHA

1) is the density of the target

2.4.3.4 Mass Efficiency Scaling

Mass efficiency scaling uses the comparative penetration of a material of interest (P) and
that of RHA (Prpma) to scale the target thickness to an equivalent thickness of RHA. Mass
efficiency is calculated using (2.19). The target thickness is multiplied by the mass efficiency
and by the density ratio of the target material (p) and RHA (prga), resulting in an target
effective thickness [26]. The equation for target effective thickness is given in (2.20). Mass
efficiency is a more effective way of scaling from one material to another, but requires
experimental test data to fit each material type and is a function of the velocity and type

of the penetrator [36].

Prua - proa
= s s 2.19
Terr =e€m - -T 2.20
I " prEA ( )
Where:
em is the mass efficiency of the target

Prira is the penetration depth into RHA

prHA is the density of RHA
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P is the penetration depth into the target
1) is the density of of the target
Terp  is the effective thickness of RHA

2.5 Artificial Neural Networks

The basis for Artificial Neural Networks (ANNs), the artificial neuron, was proposed in
1943 by McCulloch and Pitts [37]. Throughout the 1950s artificial neurons were arranged
in layers to create perceptrons which were used for pattern recognition (see Figure 2.9). The
ANN in Figure 2.9 is an example of a fully connected Multi-Layered Perceptron (MLP).
In a fully connected MLP, each layer is fully connected with its adjacent layers and there
are no recurrent connections or connections to non-adjacent layers. For a layer to be fully
connected to another layer, each node in the first layer must have a connection to every node
in the second layer [38]. Early research on perceptrons concentrated on the implementation
of Boolean logic functions, which require the decision boundaries to discriminate perfectly
between the different classes. Following the 1960s, it became generally accepted that the
strength of neural networks was in their ability to analyze and recognize complex patterns
in real-world data. Real-world data is intrinsically noisy, meaning that the decision lines are
not clear because there will be some patterns that do not fall perfectly within the decision

boundaries creating regions of overlap [15].

> Output 1

Figure 2.9: Example topology of a MLP
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Tarassenko lists five key attributes of neural networks in the book “A Guide to Neural

Computing Applications” [15]:

e Learning from Experience
Neural networks are particularly suited to problems whose solution is complex and
difficult to specify, but which provide an abundance of data from which a response

can be learned.

e Generalizing from Examples
A vital attribute of any practical self-learning system is the ability to interpolate from
a previous learning ‘experience’. With careful design, a neural network can be trained
to give the correct response to data that it has not previously encountered (This is

often described as the ability to generalize on test data).

e Developing Solutions Faster with less Reliance on Subject Matter Expertise
Neural networks learn by example, and as long as examples are available and an
appropriate design is adopted, effective solutions can be constructed far more quickly
than is possible using traditional approaches, which are entirely reliant on experience
in a particular field. However, neural networks are not wholly independent of domain

expertise which can be invaluable in choosing the optimal neural network design.

e Computational Efficiency
Training a neural network is computationally intensive, but the computational re-
quirements of a fully trained neural network when it is used on test data can be
modest. For very large problems, speed can be gained through parallel processing, as

neural networks are intrinsically parallel structures.

e Non-Linearity
Many other processing techniques are based on the theory of linear systems. In
contrast, neural networks can be trained to generate non-linear mappings and this

often gives them an advantage for dealing with complex, real-world problems.



35

There exists a lot of publicly available data for penetration of KEPs into various ma-
terials that could be used to perform an intelligent generalized regression. However, the
determination of an equation to be used for a generalized fitting could be difficult to ascer-
tain. ANNs are a common tool for performing non-linear regression, especially when the
parametric form of the function is unknown and when the number of parameters is large [39].
A specific type of ANN called a Multi-Layered Perceptron (MLP) has been shown to be a
universal approximator, meaning it is capable of arbitrarily accurate approximation to an
arbitrary mapping, if there are enough hidden neurons in the hidden layer [40]. A MLP
should be able to accurately approximate the desired outputs, given that the appropriate
parameters are used. The parameters in question are the inputs to the model, the topology
of the MLP (to include the activation functions, number of layers, and number of neurons),

the error function, the training method, and the test data.

2.5.1 Multi-Layered Perceptron

The application of a MLP for this research was chosen based on the work of I. Gonzalez-
Carrasco, et al. [40], which found the application of MLPs to outperform Radial Basis
Function (RBF) networks, Support Vector Machines (SVMs), and Recurrent Neural Net-
works (RNNs) for predicting perforation of steel, DU, or WHA KEPs against aluminum,
steel or DU targets.

The structure of a MLP consists of a single input layer of neurons, a single output layer
of neurons, and a variable amount of hidden layers of neurons. In the example MLP shown
in Figure 2.9, there is one input layer containing two input neurons, two hidden layers with
three hidden layer neurons each, and one output layer with one output neuron. The count
of the number of layers of an MLP could have different values depending on which sources
are asked, but the prevailing definition counts all of the computational layers when counting
layers. This means that an MLP with an input layer, a hidden layer, and an output layer
is a 2-layer MLP, because the input layer does not perform computations. This paper uses

this definition when discussing the number of layers for an MLP.
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The number of neurons in the input layer is determined by the number of inputs to the
model, so for the example given there would be two inputs to the model. The number of
neurons in the output layer is determined by the number of outputs to be predicted by the
model, so for the example given there would be one output from the model.

The determination of the number of hidden layers and neurons contained in them is not
as succinctly explained. In many cases the determination of the structure of the hidden
layers is done by trial and error [41].

The number of hidden layers in a MLP affects complexity of the domain problem to be
solved. A MLP with no hidden layers can classify linearly separable input data. Increasing
to one hidden layer can create a hyperplane, two hidden layers combine hyperplanes to
form convex decision areas, and three hidden layers combine convex decision areas to form
convex decision areas that contain concave regions [42].

In general, increasing the number of hidden layers will improve the closeness-of-fit and
decreasing the number of hidden layers will improve the smoothness (extrapolation capa-
bility) of the MLP [43].

As with the number of hidden layers, there exist heuristics for selecting the number of
neurons in a hidden layer, but it is still done primarily by trail and error. In general, a
higher number of neurons will improve accuracy but also increase the training time required

for the MLP and could lead to over-fitting of the data [43,44].

2.5.2 Artificial Neural Network Characteristics
2.5.2.1 Data Requirements

Although the training data did not need to be prepared for use until the MLP was fully
designed and implemented, the collection of experimental test data was the first task per-
formed for this research. This is because the types, amount, and pedigree of experimental
test data available had implications on the design of the MLP.

An approximation of the number of training data points required for a given network
topology, or reciprocally the size limitation of a network topology due to the number of

training data points can be found in (2.21) and (2.22) [15]. In (2.21), n is the number of



37

training data and W is the total number of network parameters (the network parameters
are the weights associated with the connections between the nodes in the MLP) that must

be adjusted during training.

W <n<10W (2.21)

The parameter W can be obtained by using (2.22), where N is the number of layers in
the MLP topology and L; is the number of neurons in the it" layer.
1

=1

The effect that MLP complexity has on the amount of training data required can be
demonstrated by using (2.21) and (2.22). For example a simple 2-layer MLP with two input
neurons, two hidden neurons, and one output neuron, the recommended number of training
data fall between nine and ninety. For a more complex example, a 3-layer MLP with six
input neurons, seven hidden neurons in the first hidden layer, six hidden neurons in the
second hidden layer, and three output neurons, the recommended number of training data
fall between one hundred eighteen (118) and one thousand one hundred eighty (1180). The

more complex the MLP the more data are required for training. As Tarassenko states [15]:

Artificial Neural Network projects are data driven, therefore there is a need to
collect and analyze data as part of the design process and to train the neural
network. This task is often time-consuming and the effort, resources, and time

required are frequently underestimated.

In order to decrease the likelihood of poor predictions when extrapolating it is important
to use training data that covers the range of all possible inputs. Figure 2.10 shows an
example of what can happen if a region of the input space is omitted from the training
data. The square marks are the data points that were used for the non-linear regression, the
circular marks are the data points that were omitted, and the curved line shows the model
predictions. The model predicts the training data very well and interpolates between the

data points well, but because of the omitted data the wrong model was used for fitting, thus
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leading to poor extrapolation. The collection of experimental test data that is representative
of the large space of possible input patterns and that can be used for training, testing, and
validating the MLP, was one of the more difficult tasks involved in this research [45].
Therefore, a large part of the effort for this research was finding and documenting publicly

available experimental test data for KEPs.
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Figure 2.10: Incorrect extrapolation predictions

Experimental test data is inherently noisy, but hidden assumptions in the data collection
methods or data processing methods could cause major differences in the data. As an
example, suppose there are four reports containing experimental test data, and during the
test events for all of the reports the KEP fractured into smaller pieces as it perforated the
target. In report number 1, the residual mass is reported as the weight of the largest piece.
In report number 2, the residual mass is reported as the weight of all of the pieces. In report
3, x-ray is used to approximate the length and diameter of the largest few pieces, and then
the mass is calculated using the volume and density of the rod material. In report 4, a piece
of the KEP that was embedded in the target is included in the residual mass calculation.
Four similar test events, but with four different reported results.

The example given shows how important it was to find outliers in the training data and

attempt to track down the cause of the discrepancies so that they could be fixed or omitted.
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2.5.2.2 Normalization

The selected input parameters for this model where not all the same units and in some cases
differed by several orders of magnitude in value. So to make training easier for the MLP
the data were normalized by means of a linear transformation. Bishop wrote that, “Input
normalization ensures that all of the input and target variables are of order unity, in which
case we expect that the network weights should also be of order unity” [46]. In addition,
that basic assumption allows for a simpler approach for random weight initialization prior
to training of the MLP. The data used for this research were normalized according to the
values influenced by two factors. The first factor was to provide bounds where the model
could be expected to be used for realistic KEP analysis and the second factor was due to
limitations of the data currently available. The values used for normalizing the parameter

are provided in Table 2.1

Table 2.1: Minimum and maximum bounds for normalization

Parameter Minimum | Maximum | Minimum Maximum
Value Value Normalized | Normalized
Input Values
Striking Velocity (Vj) 0.0m/s 2000.0 m/s -1.0 1.0
Total Yaw () 0.0° 20.0° -1.0 1.0
Projectile Density(pp) 0.08/em? 20.08/m3 -1.0 1.0
Projectile Length (1) 0.0mm 225.0mm -1.0 1.0
Projectile Diameter(d) 0.0mm 15.0 mm -1.0 1.0
Projectile Hardness (BHN,) | 0.0 BHN 900.0 BHN -1.0 1.0
Target Density (p;) 0.0 8/cm3 8.08/m3 -1.0 1.0
Target Hardness (BH Ny) 0.0 BHN 700.0 BHN -1.0 1.0
Target Thickness(T") 0.0mm 160.0 mm -1.0 1.0
Target Young’s Modulus(F) 0.0 GPa 500.0 GPa -1.0 1.0
Target Obliquity (0) 0.0° 80.0° -1.0 1.0
Output Values
Perforation Outcome (P) Non-Perf Perf -0.9 0.9
Residual Velocity (V) 0.0m/s 1700.0 m/s -0.9 0.9
Residual Mass (M, ) 0.0g 120.0g -0.9 0.9
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2.5.2.3 Target Output Encoding

Target outputs were encoded to -0.9 and 0.9; this helps avoid saturating the sigmoid func-
tion. “If the targets were set to the asymptotes of the sigmoid it would tend to: a) drive
the weights to infinity, b) cause outlier data to produce very large gradients due to the
large weights, and c¢) produce binary outputs even when incorrect” [47]. Sigmoid activation
functions cannot reach the extremes of their bounds. For example the hyperbolic tangent
function will never be equal to -1.0 or 1.0, because it has asymptotes of -1.0 as x — —o0
and 1.0 as © — oo. This makes it very hard for an MLP to learn an output value of -1.0
or 1.0. To account for that difficulty the outputs for this model were encoded as a -0.9 for
a non-perforation and 0.9 for a perforation to improve the ability of the MLP to learn the

target outputs [48].

2.5.2.4 Activation Functions

The most common type of activation function used are the sigmoidal functions because
they are differentiable throughout the domain of the function. The two most common
sigmoidal functions used are the logistic function and hyperbolic tangent function. The
logistic function varies in range from 0.0 to 1.0 and the hyperbolic tangent function varies
in range from -1.0 to 1.0 [40,49,50]. Since the hyperbolic tangent function ranges in value
from negative and positive values, it provides faster training than functions that are all
positive, because of better numerical conditioning [49]. Another activation function is the
linear function; it is not typically used in the hidden layers of an MLP because a linear
function of linear functions is still a linear function and therefore the model would only be
able to learn linearly separable problems. However, the linear function is still commonly
used by the output layer neurons. An example of all three activation functions is provided
in Figure 2.11.

The activation function used in the output neurons is determined by the type of outputs
desired and the type of regression being done. If the outputs for the MLP will be scalar
and not bound then linear activation functions will be needed for the output neurons [49].

If the desired output type is boolean, then a sigmoid activation function may be desired.
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Activation Functions
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Figure 2.11: Example of three activation functions

If the output is not a linear regression problem, then the activation functions used in the
hidden layers of the MLP need to be non-linear in order to be fit to a non-linear problem.
The hyperbolic-sigmoid is the preferred activation function since its mean is centered on

zero and leads to faster convergence of the network [51].

2.5.2.5 Bias Neuron

The output of a neuron is computed by multiplying the input by the corresponding weight
and passing the result through the sigmoid activation function [46]. The effect can be seen
in Figure 2.12 for weights of 0.5, 1.0, 1.5, and 2.0.

If a bias neuron is used then the computation is modified to include the addition of the
bias value before passing the value through the sigmoid function. In effect the use of a bias
neuron allows for the shifting of the output of a neuron along the x-axis and can be seen in

Figure 2.13.



42

Effect of Weight on Hyperbolic Tangent
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Figure 2.12: Example of how a neuron’s output is effected by weight adjustment

2.5.2.6 Generalization Techniques

As mentioned earlier, it is important to this research for any model developed to be a gener-
alized solution. If non-representative data is used to train the MLP, then poor extrapolation
could occur. Even if the data used for training the model represents the broad range of
possible conditions that the model could be asked to predict from, there is still a concern
that the model will not be effective at predicting results that are not part of the training
data.

As an example, if the MLP is not properly designed then it could over-predict the
training data and not provide a smooth fitting of the training data. Figure 2.14 shows an
example of a model that has been overfit to the training data. The diagonal line represents
a good fit to the training data points, but the curved line represents a solution that could
come from a MLP if overfitting occurs.

There are techniques available to increase the likelihood of producing a generalized
solution and reduce the risk of overfitting. One methodology that can be used is weight
decay; it penalizes large weights in the network and causes the weights in the network to

converge to smaller absolute values. Excessively large weights in the network can lead to
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Figure 2.13: Example of how a neuron’s output is effected by bias adjustment
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excessive variance of the outputs from the network [49]. Another method for producing a

more generalized model is to use early stopping during the training process, by testing the

error of a validation set of data that is separate from the training group of data [40].

10 A

Figure 2.14: Example of the overfitting of data



44

2.5.2.7 Early Stopping Strategies

There are three concerns that can arise while training an MLP that can be addressed using
an early stopping strategy. One such concern is when the training error begins to oscillate
around a minimum error value; this can lead to extremely long runtimes and/or a non-
convergence. Another concern is when the training error is progressing but at a very low
rate. When this occurs it can again lead to very long runtimes or a non-convergence. The
last concern is model generalization. If a model is only trained to a minimal error on a
training set, then it is less likely to perform well on new data, because it will be over-fit to
the training data. One way to address that is by stopping training when a criteria, based
on a validation set, has been met. It is possible for the error to go up in the validation set,
but then go back down to a better error later on. This is important because if the training
is stopped too soon then the global solution may not be reached. However, letting it run

too long increases the runtime.

2.5.2.8 Back-Propagation Methods

An important step in defining the MLP involves picking an appropriate learning method
for the problem class being addressed [43]. The choice of learning method will determine
how well the MLP will learn the patterns that it is being taught and includes the learning
algorithm, error function, learning rate, and other optional methodologies. The optimiza-
tion algorithms used for learning fall into two categories: direct (gradient-free) methods or
gradient methods.

Direct methods use only the function values themselves to find the optima in question.
Examples of direct methods include simulated annealing, perturbation methods, or genetic
algorithms. The advantages of direct methods are that there is no need to derive or compute
gradients and that the methods can find a global optimum. The disadvantages are that they
can take too many iterations to converge to a solution and although they can come to a
solution close to a global optimum, there is no guarantee that they will come to that exact

solution.
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Gradient methods use the gradient of the function to determine the optima in question
and can be further defined as 1% or 2" order. Examples of gradient methods include
gradient descent, Newton method, Gauss-Newton method, and Levenberg-Marquart (LM)
method. The primary difference between a 1%t order and 2" order method is the required
number of iterations prior to convergence and speed of calculation. 1! order methods only
need to calculate the 1! derivative of a function which requires less calculation time, but
may take a less directed approach to finding the optimum. 2" order methods require
longer to calculate 2"¢ derivatives or the Hessian matrix, but take a more direct approach
to finding the optimum [52]. Any of the example optimization methods can be used to find
a minimum of an error function, however a global minimum for the error function is not

guaranteed. In their paper, Danaher et al. states [53]:

Non-convergence to a global minimum is improved both by keeping the complex-
ity of the network to a minimum, using improvements on the standard back-
propagation algorithm such as the inclusion of momentum or by using a second-
order solver such as the Levenberg-Marquart algorithm with multiple random

starting values.

2.5.2.9 Global Optimization

A function can have multiple optima; Figure 2.15 shows an example function that contains
four maximums and three minimums, but there is only one global (overall) maximum and
only one global minimum. An optimization function that does not guarantee the conver-
gence to a global optima could converge to a non-optimal solution if other methods are not
used.

There are several techniques available to increase the likelihood of finding the global
minimum for the error function. One technique that can be used is the method of momen-
tum; momentum is used to resist changes to the direction of the weight changes. The main
reason for using momentum is to reduce the chance of oscillating around a minimum; how-

ever there is a slight chance that since momentum can also speed up the weight adjustments
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it may skip over a small local minimum [54]. Momentum was not originally designed for
finding global minimums and its probability of skipping a local minimum is small, so other
techniques are better suited for this purpose.

Another technique that can be used is to sample several random potential weights for the
network and start with the one that has the lowest error. The random sampling technique
in no way guarantees a global minimum, but does help the learning process by allowing the
network to start the learning process as close to a minimum solution as possible and could
start the learning process close to a global minimum [55]. A disadvantage of this method is
that since it is truly random it is not a directed approach and is therefore inefficient when
compared to directed methods.

A technique that has gained popularity is to use a hybrid approach that attempts to
utilize the benefits of direct and gradient optimization methods together. Initially a direct
approach is used to get close to a global optimum because direct approaches are traditionally
better equipped to do this than gradient methods. Direct methods, however, are typically
inefficient in converging to the specific solution, so the next step is to apply a gradient
method to assist in the convergence.

An example of this technique is the use of Genetic Algorithms (GAs); they can be used
to determine starting weights for the network prior to the learning process beginning. Like
with random sampling, using a GA does not guarantee a global minimum, but does increase
the likelihood of finding it since it is a directed method and is more efficient than random
sampling [54]. Once a criteria has been met by the GA the learning process begins using a
gradient method for the determination of the required weights to reach the global minimum
of the error function.

Genetic algorithms are global search methods that are based on principles like selection,
crossover, and mutation [56]. Genetic algorithms are good at finding the approximate global
optimum, but are inefficient at finding the exact solution. It is more efficient to get close to
the global optimum solution using a genetic algorithm and then use a local search method

such as back-propagation [57].
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Figure 2.15: 3-Dimensional example of local and global optima [58]

2.5.2.10 Training, Validation, and Testing Sub-Data Sets

When developing a predictive model it is imperative that the model be tested with data on
which it has not been trained. For that reason, the database is divided into 2 subsets of
data, a training/validation set and a test set. From that point forward, the test set of data
is never used for training the model. After the training phase is completed the test set is

run through the model and the results are reviewed to gauge performance.

2.5.2.11 K-Fold Cross-Validation

K-fold cross-validation partitions the data into k nearly equal sized folds. There are k MLPs
that are trained on k — 1 folds of the data; for each MLP a different fold is left out. The fold
that was left out during training is used to calculate the error of that MLP. The approx-
imate generalized error of that MLP topology is the average of all ¥k MLPs and is defined
in (2.23) [59]. Using k-fold cross validation to determine the generalization error gives a

better prediction of how well a given topology will perform against new information [60].

E:

k
> E (2.23)

=

Where:

FE is the generalization error of the network topology

k is the number of folds of data
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E; is the error of the it* network

2.5.2.12 Cost Function

The cost function of a neural network, is a function that is used to measure how well the
neural network performed with respect to a given training sample and the corresponding
expected output. The cost function plays a significant role in the back-propagation process;
it is used to calculate the error of the output layer. T'wo of the more common cost functions
are the L1 norm (Manhattan metric) or the L2 norm (Euclidean norm). Use of the L2 norm
leads to the Mean Squared Error (MSE) criterion and is commonly used in regression and
classification problems. However, for cases where there are outlier data the L2 norm may
over value the errors of the outlier data. For those situations, the L1 norm may be preferred
because it weights the differences of the predicted and target values proportionally to their

magnitude [40].

2.5.2.13 ANN Topology Selection

An important step when designing an MLP is to determine the architecture of the net-
work [43]. The architecture consists of the number of input layer neurons, hidden layer
neurons, output layer neurons, number of hidden layers, and the activation functions that
are used on each of the neurons. The number of input neurons is normally known during
this phase because the data and problem space will dictate the inputs needed for the topol-
ogy. The determination of the number of hidden layer neurons is normally a process of trial

and error; however an approximation can be made using (2.24) [15].
J ~VIK (2.24)

Where:

J is the number of neurons in the hidden layer
I is the number of neurons in the input layer

K is the number of neurons in the output layer
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The output neurons will be governed by the desired regression outputs, however care
needs to be taken in selecting outputs that are not highly correlated. Having too many
output neurons adds to the complexity of the network, thus increasing the training data
required and the likelihood of a non-convergent network. The number of hidden layers is de-
termined by the complexity of the problem area being researched: “As the dimensionality
of the problem space increases, the number of hidden layers should increase correspond-
ingly” [43].

There is a trade-off between the smoothness and closeness-of-fit for a MLP when selecting
the number of hidden layers. If too many hidden layers are added to the topology of the
MLP there is an increased chance for over-fitting of the training data. Likewise, if too few
hidden layers are added to the topology then there is an increased chance for under-fitting

of the training data.

2.6 Applications of Artificial Neural Networks in the Field

of Ballistics

In the initial literature search eight references were found that were applications of ANNs to
terminal ballistics. Of those eight applications only two used actual experimental test data
for training the ANN; the rest used Finite Element Analysis (FEA) to generate the training
data. The two that used actual experimental test data were an application of Fragment
Simulating Projectiles (FSPs) versus Kevlar [61] and the other application was for SClJs
versus “sandwich packs” (packs of three materials layered together) [39].

KEPs are different than FSPs because the impact conditions and orientations are well
defined for KEPs. FSPs could be impacting a target in any possible orientation, but KEPs
will typically impact with their front forward and with minimal yaw. The amount of KE,
imparted on a target from a KEP, is also typically going to be larger than that for a FSP;
this is because there is typically more mass and in some cases more velocity at impact.
Kevlar behaves very differently than metal targets, so a ANN developed for Kevlar is not

likely to be usable for homogeneous metallic targets.
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SCJs are different in that they are formed by the process of detonating a high explosive
behind a liner material. Once the SCJ is formed from the liner material the velocity at
impact is generally much faster than that of a KEP (10000 m/s for SCJs vs. 1400 m/s for
KEPs). At higher velocities the penetration process becomes more simplified in that the
material hardnesses become less important and the primary material property driving the
penetration process becomes density. The “sandwich pack” approach is limited in that the
MLP requires three layers of materials, so a scenario of one, two, or more than three layers
is not possible.

Two of the applications that utilized FEA to generate training data were an ANN
for predicting spherical fragments against carbon fiber reinforced composite [62] and an
application for KEPs against ceramic armor backed with aluminum or steel [45]. Although
they do not represent the type of impact conditions that this research is trying to solve,
they do show how effective ANNs are at predicting terminal ballistic events.

The remaining four applications are similar to the domain that this research is propos-
ing; however there are some distinct differences that make this research effort unique. As
mentioned none of the four applications utilize experimental test data for training; in ad-
dition, each may offer one of the following features but not one of them provides all fea-

tures [40,50,53,63]:
1. Prediction of penetration, residual length, residual velocity, and residual mass
2. Generalized usage for all valid homogeneous metallic target and rod materials
3. Impact conditions where obliquity and yaw are non-zero
4. A broad range of impact velocities (200m/s < vy < 5000 m/s)
5. A broad range of diameters (1mm < D < 30 mm)
6. A broad range of lengths (1 mm < L < 400 mm)

7. A broad range of length/diameter ratios (1 < L/p < 40)
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The numbers provided in the list above are notional, but do give a rough idea of the
range of values desired for this research. As mentioned in previous sections, a training data
set that represents the broad spectrum of possible target/threat encounters is important to
the generalization of the MLP proposed in this research.

The four applications were trained using three types of materials for the projectile and
three for the target. Although the materials that were used are commonly used in real world
applications, they do not span the range of possible material types. The limited range of
materials used for training reduces the ability of the MLP to extrapolate and interpolate,
so generalization is reduced as well. The following list shows the range of the training data,
used in the eight references, for the characteristics of projectile material, target material,

striking velocity, projectile diameter, and projectile fineness (Z/D):

e Projectile Materials: SAE 1006 Steel, Depleted Uranium, Tungsten Alloy

Target Materials: SAE 1006 Steel, Aluminum, Depleted Uranium

Velocities: 420 m/s < vy < 1200 m/s

Diameters: 6 mm < D < 16 mm

Length/Diameter Ratios: 8 < L/p < 16

All of the ANNS that were applied to terminal ballistics analyses were designed for use in
predictions against targets consisting of a single element of armor, except for two cases. The
first case was a MLP that was designed for the very specific case of a plate® of ceramic backed
by a metallic plate. Generalization to a target consisting of one plate, more than two plates,
or a different ordering of ceramic and metal plates was not addressed [45]. The second case
was a MLP designed for modeling SCJs against “sandwich packs” of three materials [39].
As mentioned earlier, generalization to one, two, or more than three dependent plates is

not addressed.

*The term plate is used to describe a single element of armor. The term comes from the fact that in the
past a majority of armors were made from steel, or steel alloys, that are forged and not cast. The forging
process typically results in a flat “plate” of armor.
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Of particular interest from the second case is the application of the MLP iteratively for
multiple packs. For cases of more than one “sandwich pack”, the MLP is fed inputs for the
first pack and then the outputs for that pack are fed as inputs to another instance of the
MLP. This process of feeding outputs into the next network as inputs can be performed
for as many iterations as necessary. The iterative concept that they define as a “generic
cassette-network” showed promise as a potential method of implementation for the MLP
and was used in this research.

One of the applications uses an interesting approach for predicting residual values. In-
stead of using one MLP for determining perforation and residual values, the task was broken
up into a MLP for classification (perforation and non-perforation) and if perforation was
predicted, a second MLP for regression of the residual values [62]. The benefit of separat-
ing the two tasks is the reduction in complexity of the overall networks and therefore an

increase in the likelihood of faster convergence.

2.7 Deep Learning

There has been recent success with ANNs containing more than 2 hidden layers of neurons.
These types of networks are called Deep Neural Networks (DNNs) and they are capable of
learning very complex problems. The reason they are just now becoming popular is due
to recent advances in training techniques. Prior to the new training techniques, DNNs
were thought of as too difficult to train and prone to overfitting issues [64]. Many of the
early attempts at training DNNs using supervised learning and gradient descent resulted in
networks that performed worse than ANNs with one or two hidden layers [64].

In general, the new approach taken for training DNNs is to first perform “pre-training”
on each layer using unsupervised training techniques. This process is done to try and
extract useful information at each layer and to convert very specific input values into more
abstract concepts at subsequent layers [65]. After the initial “pre-training”, the network

is further trained using traditional supervised methods, such as gradient descent back-
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propagation. Several recent studies have strongly suggested that a compact DNN could
be used to represent a problem that a shallow ANN would require a very large number of
neurons to represent [65].

Given the positive results from using a MLP for this research, the benefits of using a

DNN was not investigated.

2.8 Summary

This chapter provided a brief overview of V/L modeling, KEP ballistics, terminal ballistic
models for KEPs, ANNs, and some applications of ANNs to ballistics. Of particular note
is the section on the Segletes model, which is the current standard for modeling KEPs.
The MLP developed in this research will be compared to the Segletes model to determine
performance. Also of importance is the section on applications of ANNs in ballistics, which
this research builds on. None of the applications of ANNs in ballistics utilized experimental
test data and provided enough range of target and threat materials to be generalized for

use in V/L simulation models.
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Chapter 3

Software Overview and

Implementation Details

This dissertation leveraged available software when available, but also included a lot of time
spent developing software to implement the database, Multi-Layered Perceptron (MLP),
and the data analysis tools. The following sections will briefly go over some of the software
developed and modified for this research, as well as the implemented design choices for the

MLP.

3.1 Software Overview

The software used for this research came from one open source library and four software
projects that were developed using Java. In total roughly 25 000 lines of code were developed

to support this research project.

3.1.1 Encog

The initial search to find an open source Java library, for implementing an Artificial Neural
Network (ANN), resulted in three libraries; Java Object Oriented Neural Engine (JOONE),
Neuroph, and Encog. A further search for an open-source Java library for Genetic Algorithm
(GA) implementation resulted in two libraries; Java Genetic Algorithms Package (JGAP)

and Java API for Genetic Algorithms (JAGA). A deeper look into the performance of all
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three ANN libraries discovered an article that that benchmarked the performance of all
three. The results of the benchmark were dramatically in favor of Encog. As summarized
in the article, “Encog pretty much decimated the competition here. Even when Encog is
forced to use a single thread, it beats the others by a huge mark. Encog is about 40 times
as fast as Neuroph and 17 times as fast as JOONE” [66]. The article also laid out the
features of each library, one of the features of Encog was that it could support both ANN
and GA implementations. Encog was also capable of being run multi-threaded to improve
on performance. Based on the positive reviews, excellent benchmark results, and feature
set, Encog was selected as the library for use. Below is a brief description of Encog from

the Encog website [67]:

Encog is an advanced machine learning framework that supports a variety of
advanced algorithms, as well as support classes to normalize and process data.
Machine learning algorithms such as Support Vector Machines, Artificial Neural
Networks, Bayesian Networks, Hidden Markov Models, Genetic Programming
and Genetic Algorithms are supported. Most Encog training algoritms are multi-
threaded and scale well to multicore hardware. Encog can also make use of a
GPU to further speed processing time. A GUI based workbench is also provided
to help model and train machine learning algorithms. Encog has been in active

development since 2008.

Where necessary, the code provided by Encog was extended, modified, or replaced with
code that would provide the needed capabilities for the selected MLP design considerations.
An example of this was the creation of the ImprovedStopTrainingStrategy class to incor-
porate all of the planned early stopping strategies for the MLP training process. Other
changes included the modification of three classes used for k-fold cross-validation, a class
used for handling the thread pools, a class for performing a selective pruning algorithm,

and a class used for the Scaled Conjugate Gradient (SCG) back-propagation.
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3.1.2 PenDataModel

The PenDataModel is the data model used to interface with the Penetration Database
Markup Language (PDML). Most of the code for this library is auto-generated from the
PDML schema using Java Architecture for XML Binding (JAXB). Some of the other
features that were implemented into the data model are; the ability to automatically mark
records as suspect if the parameters required for the MLP are missing, filter the database
based on passed parameters and then return an instance of the database that has been
filtered, and search the database for duplicate records.

The process used for finding duplicate records was based on a paper by Elmagarmid,
Ipeirotis, and Verykios [68]. It utilizes the Levenshtein distance (also known as edit distance)
of the attributes for two records to determine the similarity of those attributes. Each
attribute is given a score and all of the scores are averaged; a high score does not necessarily
mean that they are duplicate records but it does flag them for further scrutiny.

The PenDataModel accounts for 2572 lines of code developed and an additional 2373

lines of code generated using JAXB and the PDML schema.

3.1.3 PDMLEditor

The PDMLEditor was developed to provide a Graphical User Interface (GUI) to work with
the PDML. Once the PDML is loaded in the PDMLEditor, all of the records are populated
into a tree on the left hand side of the window. If a record is double clicked it opens up
an editor window for that record and from there changes can be made and saved for that
record. The PDMLEditor also provides some analysis capabilities by producing a matrix of
correlation plots for every attribute loaded in the program. It can also produce a correlation
matrix without the plots. It can export the data out to other formats for analysis, generate
a statistical analysis file, find duplicate records, list out all of the materials for the projectiles
and targets in the database, and can filter the database based on several input parameters.
An example of the PDMLEditor window can be seen in Figure 3.1. In total, there were

11600 lines of code developed for the PDMLEditor.
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Figure 3.1: A screen capture of the PDMLEditor window

3.1.4 BallisticsANN

The BallisticsANN was developed to enable the running of several different types of analysis;
first, a run for ANN topology selection; second, a run for ANN training; and, finally, a run
for comparison of the ANN to the Segletes model. When run for topology selection, there
are three methods that can be used; focused, growth, and pruning. When running focused,
the topologies of interest are passed to the program in an input file and each one is run to
determine the best topology for the MLP. The growth method (also called constructive)
starts with a minimal topology and then trains it until completion. When the topology
has completed training, another neuron is added and training continues. This process is
repeated until a set network size or if improvement in the network error does not meet a
set threshold [69]. The pruning takes an opposite approach from that of growth. Instead
of starting with a simple network it starts with a more complex network to begin training.
After training has completed, the neuron that is the least significant is removed from the
network and training then resumes. This is continued until as set number of neurons have

been removed or if the network error increases past a set threshold [70].



o8

The BallisticsANN was implemented to be multi-threaded to take advantage of the 24
cores that were present on the machine that was running it. The main class of Ballistic-
SsANN is ANNPerforation and in method main() a Runnable is created and placed in the
java.awt.EventQueue using the invokeLater() method. The Runnable creates an instance
of class AnnPerforation and then calls the runModel() method. The Runnable loads the
PDML database and creates an instance of ModelSelectionRunnable and calls the execute()
method. ModelSelectionRunnable is a extension of the SwingWorker class so when it ex-
ecutes it runs in a background thread. ModelSelectionRunnable calls the runFocused()
method which sets up a CachedThreadPool ExecutorService. If the user set the thread
pool size to 0, then the pool size is determined based on the number of cores available,
otherwise it is set to the user defined value. ModelSelectionRunnable then creates a new
Runnable for each network model that is to be trained and each one is added to the queue
for the ExectorService. As a thread in the pool becomes available, one of the Runnables
will be pulled off the queue and begin processing. Each of those Runnables will set up
another thread pool for the sub runs for that model. That thread pool is handled the same
way as the first. Figure 3.2 provides a visual of how the thread pools are setup in the
BallisticsANN.
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Figure 3.2: Threading of ANNPerforation Project

All of the user supplied inputs for BallisticsANN come from a properties file. Upon
starting the program, the properties file is loaded and the variables are set based on the

file’s contents. Examples of things set within the file are as follows:

Name The name of the network; this is used for saving or loading of a network.
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GUI A boolean value to turn on or off the GUI.

PDML A string representing the path to the PDML file.

Program An enumeration that sets the run as “Selection”, “Training”, or “Run”.
Sub_Runs Sets the number of random sample runs to do for a particular network topology.
Training Ratio Sets the ratio for the split of training data to test data.

K _Folds Sets the number of folds to use for the cross-validation.

Threads Sets the number of threads to use for the training thread pool. A value of 0, is

used to tell the system to determine the best number.

Minimum_Improvement This is used to stop training if the error has not improved by

this much.

Tolerated _Epochs This is used to stop training if the error hasn’t improved for this

number of epochs.

Alpha_Verification This is used to stop training if the generalization error worsens by

this percent.
Maximum_Iterations This stops training after this many epochs.
Seed Used to seed the random number generator.

Run_Type Sets the run type to use for the network. Valid values are “FOCUSED”,

“GROWTH”, or “PRUNING”.
GA _Pop This sets how large the GA population is.
GA _Iter This sets how many iterations of the GA will be run.

Network This value is set as four integers separated by commas “#,#.,#,#”. It sets the
input layer, hidden layer 1, hidden layer 2, and output layer neuron counts for the
network. If running “FOCUSED” this tag can be repeated for each topology to be

run.



60

The BallisticsANN project accounts for 9203 total lines of code developed. Even though
the number of lines of code is less than that for PDMLEditor, the BallisticsANN is much

more complex code than any of the other projects developed for this research.

3.1.5 ANNPIlotter

The final piece of software that was developed for this research was ANNPlotter. ANNPIot-
ter was designed to visually show the neurons and connections of a trained network in such
a way that one could easily see how much each neuron and connection were adding to the
network performance. Each neuron is colored based on how the average of all of its outgoing
connection weights (absolute value) compares to the other neurons in the same layer of the
network. Each connection is colored based on the value of its weight; blue for negative
and red for positive. The thickness of the connection corresponds to the magnitude of the
weight value. Figure 3.3 shows an example of a MLP that was trained for this research.
ANNPIlotter was a fairly simple software project and only required 1091 lines of code to

complete.

3.2 Implementation Details

This section will outline the design details that were implemented for the MLP in the
software developed for this research. For more general information on these topics see

Chapter 2.

3.2.1 K-fold Cross-Validation

K-fold cross-validation was used for cross-validating the MLP during the selection process
based on the work of Gonzalez-Carrasco et al. [40]. Their paper further found that 10-fold
cross-validation was a better choice than 5-fold cross-validation and leave-one-out cross-

validation. Based on their finding 10-fold cross-validation was used.
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Figure 3.3: A screen capture of the ANNPlotter window

3.2.2 Splitting of the data into data sets

The data for this research was split into training, validation, and test sets so that the
selected model could be trained, validated, and assessed. Figure 3.4 provides an illustrative
view of how the data was split into the various subsets. The top row labeled “Database”
represents the entire PDML database. The second row has two sets that represent the
initial split of the database into a training/validation set and a test set. The rest of the

sectioning of the data depends on the type of run being performed.

Topology Selection Run
If the run is for topology selection then the training/validation set is split into 10 equal sized
folds of data (fourth row). A network is trained on 9 out of 10 of those folds, with the last

fold being a validation fold. In Figure 3.4 network 1 is using the first fold as the validation
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fold and folds 2 through 10 are being used for training. For network 2 fold 2 is being used
for validation and folds 1 and 3 through 10 are being used for training. The validation fold
moves to the third, then fourth, fifth, sixth, seventh, eighth, ninth, and, finally, for the last

network it will be the tenth fold.

Training Run

For a training run the training/validation set is split into two subsets, a training set and a
validation set. The validation set is used during the training process to stop training of the
MLP before overfitting can occur. Although Figure 3.4 shows the validation set as being
the same as the tenth fold of data, in reality the splitting of the training/validation set is
completely random and is not guaranteed to contain the same data as any of the 10 folds

shown.

Database

Training/Validation Set

Final Training Dataset { Training Set Sl

10 Folds of Data

Validation || Training Training Training Training Training Training Training Training Training
Network 1 Set Set Set Set Set Set Set Set Set Set

Training | Validation | Training Training Training Training Training Training Training Training
Network 2 Set Set Set Set Set Set Set Set Set

Training Training Training Training Training Training Training Training Training Validation
Network k { Set Set Set Set Set Set Set Set Set Set

Figure 3.4: How the data was split apart during selection and training phases
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3.2.3 Early Stopping Strategies

Early stopping was accomplished by using a combination of three methods. The first method
was to stop the training process when an epoch limit was reached. The second method was
to stop if the error was not improving by some threshold for a set number of epochs. The
final method was to stop if the generalization loss was above a set value. The selection
phase used the first and second method. The training phase used all three methods. The
generalization loss method was only used during the training phase because of the use of
k fold cross-validation during the selection phase. Since there are 10 separate networks
being trained on different subsets of the data, the average error of those 10 networks could

fluctuate frequently, making the use of the generalization loss method problematic.

Total Iterations Limit

The total iterations limit is simply a limit on the total number of epochs. If at any point
during the training of the network the number of epochs is greater than the limit, training
is stopped. If total training time was not a issue, then the total iteration limit could be
omitted as a strategy. However, rarely is there a case where small improvement in error is
worth the time invested in letting the training run longer.

The main concern that led to the use of a limit for total iterations was that the MLPs
were batch run during training and it was thought that there could be a case where the
training of one MLP might hold up the completion and saving of the other MLPs. To
reduce the risk of this happening, a bound was placed on the total iterations for training
the MLPs. In practice, the limit was set at a large enough value (100000) that it was never

actually needed.

Stagnation

The stagnation approach is used to stop the training of the MLP when the improvement
in error is smaller than some threshold for a set number of epochs. After each epoch of
training the error from the last epoch is compared with the current error and if it is worse
than the threshold, a counter is incremented. If there is an improvement in error and it

was better than the threshold, then the counter is reset to 0. If at any point the counter
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is greater than the set number of tolerated epochs then training is stopped. The typical
values used during the training of MLPs for this research, was 0.000001 for the minimum

improvement criteria and 400 for the number of tolerated epochs.

Generalization Loss

The generalization loss method was implemented based on the work of Prechelt [71]. It
is calculated by checking the current error against the best error thus far in the training
process. The mathematical equation for generalization loss is provided in (3.1). During the

training phase an early stopping criteria of 7% was used for the generalization loss method.

GL(t) =100 - (g:;(é)) - 1) (3.1)

Where:

E,.(t) is the validation error of epoch ¢
Eopt(t) is the lowest validation set error obtained in epochs up to ¢

GL(t) 1is the generalization loss at epoch ¢

3.2.4 Back-Propagation Method

Instead of using Levenberg-Marquart (LM) for the back-propagation algorithm, the decision
was made to use the SCG algorithm. The SCG algorithm is also a second-order solver and
was already implemented in Encog, thus requiring no extra effort to implement. In addition,
in a paper by Batra it is shown that the SCG performs comparable to the LM method in

accuracy, but “faired better in terms of speed” [72].

3.2.5 Global Optimization

Due to difficulties implementing a genetic algorithm with k-fold cross-validation, a genetic
algorithm was not used during the topology selection phase. However, during the training

phase a genetic algorithm was used because k-fold cross-validation was no longer in use.
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Genetic Algorithms

The genetic algorithm cannot be run until completion, because it is only being trained on
the training set of data. If it was optimized only to the training data there would be a risk
of over-fitting. So the genetic algorithm was run for a reduced set of epochs to allow for
starting weights that are close to local or global minimums. To increase the likelihood of
finding the global minimum, multiple instances of the MLP were created and their weights
were assigned based on the results from running a genetic algorithm. The genetic algorithm
was used to provide a starting point for the weights that had a higher probability of being
close to the global optimum solution [73]. From that starting point a back-propagation
method was used to train the MLP and modify the weights to the optimal solution. Once
each instance was finished training, the instance with the best validation error was selected

as the final MLP model.

Sub-Sampling of Network Topology

Another method used, in a attempt to train the MLP to the global optimal solution, was
to train multiple network instances of the same topology. Each instance of the network was
seeded with different starting weights and training progressed separately from any other
instances of the network topology. By training more instances of the network topology with
each one starting with different random weights, there is a better probability that at least
one of those instances will be able to train to the global optimum solution. During the
selection phase, 3 instances were created per topology and during the training phase 20
instances were created and trained. For the selection phase the network with the best error
was then selected to move forward to the training phase. For the training phase the best

network was selected to move forward to the comparison phase with the Segletes model.

3.2.6 Cost Function

The cost function used for this research is the L2 norm or Euclidean norm. The L2 norm

was found to be the best to use for this type of problem [40].

S=> (i — fla:))? (3:2)
=1
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Where:
S is the sum of the square differences
Yi is the target value

f(x;) is the estimated value

n is the total number of values

3.2.7 Topology Selection

The topology selection process used for this research involved the selection of a subset
of topologies that would would be capable of accurately representing the problem being
modeled and not lead to overfitting. The topologies that were used during the selection
process were chosen based on the approximation equations published by Tarassenko [15];
they are provided in (3.3) and (3.4). In (3.3), n is the number of training data and W is
the total number of network parameters (the network parameters are the weights associated
with the connections between the nodes in the MLP) that must be adjusted during training.
The parameter W can be obtained by using (3.4), where N is the number of layers in the
MLP topology and L; is the number of neurons in the i*” layer. Prior to starting the selection
process the number of data points available for training was already known (1877), so a
matrix of scenarios of neuron counts for hidden layer 1 and hidden layer 2 was created
and a small subset of the topologies that would satisfy (3.3) and (3.4) were chosen for the

selection process.

W <n<10W (3.3)

-1
W =S (Li+1)Li (3.4)
i=1

Where:

W is the total number of network parameters
n is the number of training data

N is the number of layers in the ANN
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L; is the number of neurons in the i** layer

3.2.8 Data Quality and Cleaning

Typical problems with using large amounts of data include incorrect recording, incorrect
data entry, duplication, and missing parameters.

Data preparation was a large part of the effort for this research, partly because of how
important it is to have good data for any type of regression and partly because the data for
this research was in such poor condition. In order to fully understand the process used to
clean and prepare the data, one has to understand the problem itself. Hellerstein [74] lists
four typical types of errors that occur in a database: data entry errors, measurement errors,
distillation errors, and data integration errors. Data entry errors can be caused by keying,
selection, formatting, spurious data, or omission mistakes [75]. Measurement errors consist
of errors that occur during the process of measuring something that was then entered into
the database. Distillation errors come from the preprocessing of raw data before entry into
the database. For both of those errors the data was entered correctly, but the number being
entered had errors. Data integration errors come from the integration of data from various
sources or other databases when the assumptions associated with that data are not well
understood.

Oliveira, Rodrigues, and Henriques [76] break down data quality problems into what
level of information is needed to detect those problems. They break them into the following
groupings; “An Attribute Value of a Single Tuple”, “The Values of a Single Attribute”,
“The Attribute Values of a Single Tuple”, “The Attribute Values of Several Tuples”, “Rela-
tionships among Multiple Relations”, and “Multiple Data Sources”. Each one builds more
complexity onto the previous one and they can be used to detect errors in phases.

The first phase of cleaning involved checking each field value for errors. By analyzing
only the field values themselves ten data quality problems can be detected; they are provided

below [77]:

e Missing value — The field is empty and the data is missing.
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e Syntax violation — The format of the value in the field does not match that which

is defined for it.
e Outdated value — The value in the field is out of date.
e Interval violation — The value in the field is out of the defined bounds.

e Set violation — If the field is an enumerated field then the value is not a part of the

enumerated set.
e Misspelled error — There was a keying or wrong spelling entered during data entry.

e Inadequate value to the attribute context — The entry in the field should be in

another field.

e Value items beyond the attribute context — More than one entry is in the field

and part of it belongs in another field.

e Meaningless value — The entry in the field does not make sense for this field or any

other field in the record.

e Value with imprecise or doubtful meaning — Lose of precision in a field due to

abbreviations.

e Domain constraint violation — A violation of constraint related with the attribute,

inherent to the domain.

After all of the individual fields were checked for errors, the search was expanded to look
at the values for each particular attribute across all of the records. By analyzing the values
of a particular attribute across all of the records, two additional data quality problems can

be detected [77]:

e Uniqueness value violation — Two or more records representing different entities

have the same value in an attribute that is supposed to be unique.

e Synonyms existence — Arbitrary use of syntactically different values with the same

semantic meaning.
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After the attributes were checked for errors, the search was expanded to look at the
values for each attribute for each particular record. By analyzing the values of all of
the attributes across a particular record, two additional data quality problems can be de-

tected [77]:

e Semi-empty tuple — In this situation, a great number of tuple attributes are not
fulfilled. If a given threshold (user defined) is surpassed the tuple is classified as

semi-empty.

e Inconsistency among attribute values — There is a violation to an existing de-

pendence among values of the tuple attributes.

By analyzing the values of all of the attributes across all of the records, two additional

data quality problems can be detected [77]:

e Redundancy about an entity — The same entity is represented by an equal or

equivalent representation in more than one tuple.

e Inconsistency about an entity — There are inconsistencies or contradictions among

one or more attribute values of a same entity, represented in more than one tuple.

By analyzing the values of all of the attributes across all of the records and across

multiple relationships, five additional data quality problems can be detected [77]:

¢ Referential integrity violation — In a tuple attribute which is foreign key there is

a value that does not exist as primary key in the related relation.

e Outdated reference — In spite of referential integrity be respected, the foreign key

value of a tuple is not updated and does not correspond to the real situation.

e Syntax inconsistency — Depending on the relation, there are different representation

syntaxes among attributes whose type is the same.

e Inconsistency among related attribute values — There are inconsistencies among

attribute values from relations where a relationship exists between them.
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e Circularity among tuples in a self-relationship — It corresponds to cycle situa-
tions among two (direct circularity) or more (indirect circularity) related tuples in a

self/reflexive-relationship.

By analyzing the values of all of the attributes across all of the records, across mul-
tiple relationships, and multiple sources, eight additional data quality problems can be

detected [77]:

e Syntax inconsistency — Depending on the data source, there are different represen-

tation syntaxes among attributes whose type is the same.

e Different measure units — Depending on the data source, different measure units

are used in attributes that are related.

e Representation inconsistency — Different sets of values, from the same type or
not, are used in related attributes from distinct data sources to represent the same

situations.

e Different aggregation levels — The detail level presented in different data sources

by equivalent relations is not the same.

e Synonyms existence — Use of syntactically different values with the same semantic

meaning in related attributes from distinct data sources.

e Homonyms existence — Use of syntactically equal values but with different semantic

meaning in related attributes from distinct data sources.

e Redundancy about an entity — The same entity is represented by an equal or

equivalent representation in more than one tuple from different data sources.

e Inconsistency about an entity — There are inconsistencies or contradictions among
one or more attribute values of a same entity, represented in more than one tuple in

different data sources.
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3.2.9 Analysis Methods

The following subsections will detail the various methods used to analyze the results of the
MLP. It is important to realize that each of these methods look at different parts of the
performance of the model and that there is no single method that can determine the best
model by itself. The overall performance of the model is evaluated using a combination of

all of these methods.

Mean Squared Error
The first measure that will be used to compare the performance of the two models is the

Mean Squared Error (MSE), which is defined in (3.5).

Where:

A

Y; is a vector of n predictions
Y; is a vector of n observed values

n is the number of tested inputs with corresponding observations and predictions

Accuracy, Precision, False Positives, and False Negatives

One of the predictions that the MLP is expected to make is whether or not a perforation
occurs as a result of the ballistic interaction. That question is a classification problem and
what follows are measures that can be used to address performance of the MLP. Accuracy
(ACC) is used to measure the performance of a classifier and is defined as the number
of correctly classified items divided by the total number of items and is defined in (3.6).
The other measures are the false positive rate (FPR) provided in (3.7), the false negative
rate (FNR) provided in (3.8), the true positive rate (TPR) provided in (3.9), and the true
negative rate (TNR) provided in (3.10) [78].

a+d

ACC = T erd (3.6)

b

FPR =
a+b




c

FNR = 3.8
c+d (3.8)
PR~ ¢ (3.9)
Cd+e '
TNR = -4 (3.10)
Cd+c '

MCC = dxa-bxe (3.11)

V(d+Db)(d+c)(a+b)(a+c)

Where:

a is the number of true negatives
b is the number of false positives
¢ is the number of false negatives

d is the number of true positives

Table 3.1 provides a visual representation of the sets (a, b, ¢, d) of data. ACC is the
percent of test outcomes that were correctly predicted by the model. FPR is the percent of
non-perforation test outcomes that were incorrectly predicted by the model to be perfora-
tions. FNR is the percent of perforation test outcomes that were incorrectly predicted by
the model to be non-perforations. TPR is the percent of perforation test outcomes that were
correctly predicted by the model to be perforations. TNR is the percent of non-perforation
test outcomes that were correctly predicted by the model to be non-perforations. The pre-
vious measurements can give misleading results if the data or the model predictions are
skewed in one direction or another. The Matthews Correlation Coefficient (MCC) [79] is
generally regarded as being one of the best measures to use for describing the results from
a confusion matrix [80] and is provided in (3.11). The MCC varies from -1 (worst) to 1

(best).

Table 3.1: Confusion matrix

Model Outcome: Data
Non-Perf | Perf Result
(a) (b) | Non-Perf
(c) (d) Perf
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Data Point-by-Data Point Prediction Comparison
A comparison of both models for each test is performed by categorizing the outcome as one

of three choices:

MLP: This was used when the MLP performed better than the Segletes model.
Segletes: This was used when the Segletes model performed better than the MLP.
Same: This was used when both models performed the same.

A model was considered better if one of two things occurred. First, if it had predicted
the perforation correctly and the other model had not. Second, if it had a lower error,
when both models predicted perforation correctly. The models were considered to have
performed the same if one of two things occurred. First, if they both predicted perforation
incorrectly. Second, if they both predicted the same error, when both models predicted
perforation correctly.

Once each test was categorized, each category was tallied. The metric of interest was
the percent of tests that the MLP or the Segletes model performed as well or better than
the other model. So the tally for the particular model of interest is added to the tally for
the category “Same” and then divided by the total tally of all of the categories, to get the

percent of tests where that model did as well as the other model or better.

Error Analysis

The first type of error analysis performed is the Percentage Error (PE) (also written as
%Error) and it was calculated for each test using (3.12). The equation is undefined when,
O = 0. In an attempt to address this concern a few categories of outcomes were created. If
the observed outcome is a non-perforation then the values of M, and V. will be 0; this also
corresponds with the confusion matrix outcomes (Table 3.1) of (a) and (b). For the case
where the MLP predicted a non-perforation (case (a) from the matrix) the %Error is set
as 0% since the model was correct and there is no error in the prediction. However, if the
MLP predicted a perforation (case (b) from the matrix) then that data point is categorized
as an incorrect prediction of perforation (false positive). If nothing else was done to the

data this would skew the end results because nothing was done to address cases (¢) and (d)
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from the matrix. So, for a situation where the observed value is not 0, corresponding to a
perforation, and the MLP predicted a non-perforation (case (c) from the matrix) the data
point is categorized as an incorrect prediction of non-perforation (false negative). For the
last case where both observed and predicted are perforations (case (d) from the matrix),
%Error is calculated using (3.12). The mean of all of the calculated PEs is called the Mean
Percentage Error (MPE) and is provided in (3.13).

PE =100- <O(_)P> (3.12)

|0; — P

100 —
MPE:T~Z 5

i=1

(3.13)

Where:

n is the number of data points
is the observed value

is the 7" observed value

v O O

is the predicted value

v

is the it" predicted value

One of the problems with using the MPE is that negative errors can offset positive
errors in the result. Table 3.2 gives an example of two models, their predictions, and their
associated PEs. In this example the PEs for Model A are much larger in magnitude then
those for Model B. However if the MPE was the criteria for choosing the best model then
Model A would be the model selected since its MPE is 1.5% compared to 1.625% for Model
B.

To address the concern of the negative and positive values offsetting one another, the
absolute value of the error can be used. The Absolute Percentage Error (APE) is the result
of modifying (3.12) to use the absolute value and it is provided in (3.14). The mean of all of
the calculated APEs is called the Mean Absolute Percentage Error (MAPE) and is provided
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Table 3.2: MPE and MAPE Example

Observed Model A Model B | Model A  Model B
Prediction Prediction PE PE
122 97.6 125.66 20% -3%
70 59.5 65.1 15% 7%
156 121.68 149.76 22% 4%
153 107.1 154.53 30% -1%
146 197.1 148.92 -35% 2%
39 41.73 39.39 -7% -1%
36 40.32 34.56 -12% 4%
67 81.07 63.65 -21% 5%

MPE 1.5% 1.625%

MAPE | 20.25% 3.375%

in (3.15). For the example in Table 3.2 it is more clear looking at the MAPE that Model A
is not as good as Model B. MAPE is very popular as a measure for forecast accuracy, this

is due largely to its simplicity and ease of understanding [81].

APE =100 - ('O (_) P) (3.14)

|0; — B

o (3.15)

100 <«
MAPE = —— .
— >

=1

There is one very important issue that can arise from using MAPE in analysis, it is
asymmetric. For example, for cases where the observed value is low or near zero, the
percent error equations can return very large negative values if the predicted value is bigger
than the observed value. However for positive errors, it can never be larger than 100% error.
For example, imagine a case where the observed value is 0.2 g and the predicted value is
2 g, then the percent error is —900%. That error is very large even though a prediction
of residual mass of 2g for a Kinetic Energy Projectile (KEP) is pretty good when the
observed is 0.2g. If the values are flipped with the observed equal to 2g and predicted
equal to 0.2 g, then the percent error is 90%. That error is not that large when compared to
the earlier example of —900%. According to Kolassa and Martin, “one important problem

that has not received adequate attention which arises when MAPE is used as the basis for
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comparing different methods or systems: using the MAPE for comparisons rewards methods
that systematically under-forecast This problem is poorly understood both among academic
forecasters and practitioners in industry” [82].

Table 3.3: MAPE and SMAPE Example

ob d Model A Model B | Model A Model B | Model A Model B
SEVES | prediction  Prediction PE PE SAPE  SAPE
1 0.91 1.4 9% -40% 4.7% 16.7%
5 4.5 5.5 10% -10% 5.3% 4.8%
2 1.84 2.5 8% -25% 4.2% 11.1%
20 17.6 21 12% 5% 6.4% 2.4%
25 22.5 26.25 10% 5% 5.3% 2.4%
39 34.71 39.39 1% 1% 5.8% 0.5%
36 32.4 36.36 10% 1% 5.3% 0.5%
67 58.29 67.67 13% 1% 7% 0.5%
MAPE SMAPE
10.378% 1% 5.48% 4.86%
Scatter Plot of
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Figure 3.5: Scatter Plot of MAPE and SMAPE Example

The effect of asymmetry in MAPE can be seen in the example in Table 3.3. In the
example, Model A has a tendency to under predict by about 10% for all values of concern.

Model B has very large negative errors for cases where the observed value is small. For
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the case where the observed value is equal to 1, a PE of -40% appears to be very bad, but
amounts to a difference of only 0.4 from the observed value. The MAPE places too much
emphasis on low valued cases and prefers models that under predict [83,84]. This can be
seen in the MAPE values; Model A has a value of 10.375% and Model B had a value of 11%.
If MAPE was used to select the best model then the choice would be Model A. Figure 3.5 is
a scatter plot of the observed versus predicted values for Model A and Model B. In the plot
the diagonal dashed line represents a perfect prediction, so the closer to the line the better
the performance of a model. Model A has a tendency to under predict and the magnitude
of the error gets larger as the values get larger. Model B is very close to the line for all
of the values that are plotted. The MAPE scores Model A as better because of Model B’s
large percent error for the initial small values, but looking at the plot it should be evident
that Model B is the better model.

The concern of asymmetry in MAPE has led to the development of Symmetric Mean
Absolute Percentage Error (SMAPE). The version of SMAPE provided in (3.17) has a
lower bound of 0% and an upper bound of 100%, and “offers a well designed range to
judge the level of accuracy and should be influenced less by extremes” [81]. The equation is
undefined when both O = 0 and P = 0, so for those situations the value is set to 0% since
the prediction is correct. Unlike MAPE, SMAPE is defined for cases where only O = 0 or

P =0, and for those situations the equation sets the error percent to 100%.

P 0]
SAPE =100 - — 3.16
O] 1P (3.16)

100 ¢ [P =04
SMAPE = — . _— 3.17
0 2100 T IR (317

As mentioned before, the absolute value was added in to alleviate the issue of negative
values offsetting positive values in the calculation of the mean percentage error. However,
when looking only at the individual data points there is no concern of how the value will

aggregate. Removing the absolute value from the equation for the individual data points will
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allow for analysis of the type of error, over prediction or under prediction. For the purposes
of this paper, the newly modified equation is called Symmetric Percentage Error (SPE) and
is defined in (3.18).

(0-P)

SPE =100 ~~———
O] + P

(3.18)

Stochastic Dominance

Stochastic Dominance (SD) is a form of stochastic ordering. SD is used in decision analysis
to refer to situations where one prospect (a probability distribution over possible outcomes)
can be ranked as superior to another prospect. SD is based on preferences regarding out-
comes and the probability of those outcomes occurring [85,86]. The outcomes used in this
research are bins, ordered from lowest (left) to highest (right) absolute value percent error.
The worst case bin is located on the far right and represents cases where there were false
positives or false negatives. By ordering the bins in this fashion the preferred outcomes are
farthest to the left and the least preferred outcomes are on the far right of the probability

distribution.

Fu(:) = [ " fx(w)du (3.19)

The first-order SD is the Cumulative Distribution Function (CDF) and can be calculated
using (3.19), defined in terms of the Probability Density Function (PDF) f. Higher-order

dominance is defined using iterated integrals of the distribution given by the recursive

sequence D® for s = 1, 2, 3, ..., as shown in (3.20).
D(z) = F(x)
: ) : (3.20)
D?(z) = / DY (u) du = (1)'/ (z—w)* " f(u)du
—o0 S§—1)J-

The probability distributions being compared in this research are empirical and therefore
discrete. An equation is needed to approximate D? for sample datasets. The SD for a sample

datasets is calculated using (3.21), where x; is the i bin of the empirical PDF.
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e

DS (Xy) = > i (3.21)

Higher n-order SD values are calculated by integrating the PDF f over the bins and
weighting the bin values to the left more than those to the right on the x-axis. Once the SD
values are calculated, they need to be compared to determine which prospect is dominant.
For two prospects, A and B, we say that A dominates B at order s, if D% (2) is greater than
or equal to D%(z) for all possible values of z (see 3.22). In other words, the graph D% (2)
lies above or at the graph of D%(z). For first order SD, that would mean that the CDF

graph F4(z) lies above or at the CDF graph of Fp(z).

Vz, D% (2) — D5(2) > 0 (3.22)

By definition, if a prospect dominates at a lower order, then it will also dominate at
a higher order. This research compares the performance of the models by comparing each
models first order SD. If neither model is dominate at the first order, then a comparison
at the second order is done. This can be continued to n'* order, but general practice
typically does not go past third order and even the use of third order is limited (Personal
communication, Dr. Joseph Collins of U.S. Army Research Laboratory Statistics Analysis
Team, September 23, 2010). For comparing the models in this research, only first order
SD will be used. This research is concerned with obvious dominance of one model over the

other, so an ambiguous answer at the first order SD level will be recorded as such.

Stochastic Dominance Examples

SD provides a method for comparing PDFs and is especially useful when no PDF is clearly
better. Figure 3.6 provides an example of three possible PDF's for comparison. In the figure,
Option 2 starts off with a higher probability in the first bin than the other two options,
but then falls below Option 3 until the third bin. In this example, it is not clear which
option is providing the highest probability earliest in the bins or the most reward (higher

probability) for the lowest risk (earliest bins).
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Example Probability Distribution Function
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Figure 3.6: Example PDFs for explanation of SD

First order SD is equivalent to the CDF of a PDF. The first order SD for all three options
is plotted in Figure 3.7 and can be used to compare the three options in the example we
are examining. In the figure, it appears that Option 2 and Option 3 are better than Option
1, but it is still not clear since at some point (bin 7) Option 1 has a higher cumulative

probability than the other two.

Example of 1st Order Stochastic Dominance
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Figure 3.7: Example of first order SD (CDFs)

Since it is not clear which option is the best using first order SD, the next step is to use
second order SD. Figure 3.8 is a chart of second order SD for the example we are examining.

The second order SD figure confirms that Option 1 is not the best option because it never
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has a higher value than the other options. We now know that Option 2 and Option 3 are
better than Option 1, but unfortunately we still do not know if Option 2 or Option 3 is the

best option.

Example of 2nd Order Stochastic Dominance
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Figure 3.8: Example of second order SD

The final order of SD used for this example is the third order SD. Figure 3.9 is a chart
of the third order SD for this example. Finally, at the third order SD, Option 2 is equal to

or greater than the other options across all of the bins. Therefore, Option 2 has third-order

stochastic dominance over the other options.

Example of 3rd Order Stochastic Dominance
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Figure 3.9: Example of third order SD
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3.3 Summary

This chapter provided an overview of the software developed and modified for this research.
Due to the uniqueness of this research, much of the software used had to be developed; in
all there were roughly 25 000 lines of code developed for this research. That number doesn’t
even count the XML schema developed or the visual basic for applications (VBA) code used
in Excel for processing the data from the QBasic database.

Also presented in this chapter are the implemented design choices for the MLP and the
analysis methods used to compare the MLP and the Segletes model. Of particular note is
the use of SPE in the comparison of the two models; the traditional usage of PE is flawed,

in that it tends to favor models that under-predict [82].
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Chapter 4

Experimental Test Data

The most difficult and time consuming effort of this research was in the acquisition and
preparation of the experimental test data that was used to train, validate, and test the
Multi-Layered Perceptron (MLP). There simply was not enough publicly available ballistic
test data available to complete this research. Further work was needed to acquire limited
distribution experimental test data to fill in many of the data gaps. There also exists a large
amount of classified experimental test data available for future work that was not utilized
due to the risk of accidental classified data release.

This chapter will focus on the database design, data acquisition, and data preparation

performed for this research. The work detailed in this chapter was used to answer RQ1.1.

4.1 Database Design

When designing the database an attempt was made to allow for the storage of any informa-
tion that might be useful to future analyses. The database was designed using an Extensible
Markup Language (XML) schema (the schema is provided in Appendix B). The XML for-
mat that the schema defines is called the Penetration Database Markup Language (PDML).
The PDML root element is a PDML element tag, all of the Test elements fall under that
tag. Each Test element has five required and one optional sub-elements: Source, Impact,

Projectile, Target, Results, and Notes. The Notes element is used to record any qualitative
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information of interest for that particular test. The sections that follow will briefly describe
each of the sub-elements. A top level diagram of the PDML can be seen in Figure B.1 in
Appendix B.

Before discussing each of the top level elements of PDML, it is worth defining what a
Metric is in the PDML. The quantifiable data stored in the PDML is stored as a complex
data type called a Metric. A Metric has two attributes and the content of the element is
defined as a double value. The content is the value of the data it is storing (e.g. velocity,
pressure, mass, and the like). The first attribute is Units, it is used to store the units
associated with the content value. The second attribute is Pedigree, it is used to provide
information on the origination/legacy of the value that is stored. The Notes element for
the test can be used to provide further details about the pedigree. Pedigree is a string value

and is restricted to the values listed below:

e Reported

Converted

Estimated

Imputed
e Surrogated

e NA

PDML allows for a Metric to be of any type of unit. However, for simplicity of imple-
mentation during this research, all units were limited to those listed below. Conversion to
values of like units was handled inside of the software developed to run the MLP. The units

used within the PDML are:

Length — Millimeter (mm)

Hardness — Brinell Hardness (BHN)

Mass — Grams (g)

Time — Seconds (s)

Velocity — Meters per second (m/s)
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e Density — Grams per cubic centimeter (&/cm?)
e Angle — Degrees (°)

e Pressure — Gigapascals (GPa)

4.1.1 Test

The Test element contains three attributes: ID, Type, and Suspect. The ID attribute
contains a 6-digit unique key that identifies that particular test. The Type attribute defines
the type of test using a 3-character identifier. The Suspect attribute is a boolean value that
marks that test as a valid test or one that is suspect due to missing data, corrupt data, and
the like.

The experimental test data was categorized into three main types; semi-infinite, finite,
and limit test data. Semi-infinite test data comes from a penetration test into a material
that is of such thickness that the area of plastic deformation in front of the projectile is
not expected to reach the rear face of the target. By definition if it was not a semi-infinite
target then it was considered a finite target. Finite test data comes from a test where the
target material is of a finite thickness and under certain circumstances the projectile could
perforate the target. Limit test data comes from many finite test series to determine at
what velocity perforation would occur 50% of the time; this is known as the ballistic limit
or vsg. The tests were further broken down by the type of target that was used in the test.

The following are the classifications used to define a test type in the database:

SNI: Consists of a single target element, containing no air gaps, with the final element

having a semi-infinite target thickness

SNF: Consists of a single target element, containing no air gaps, with the final element

having a finite target thickness

MAI: Consists of multiple target elements, containing air gaps, with the final element

having a semi-infinite target thickness

MAF': Consists of multiple target elements, containing air gaps, with the final element

having a finite target thickness
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MNI: Consists of multiple target elements, containing no air gaps, with the final element

having a semi-infinite target thickness

MNPF: Consists of multiple target elements, containing no air gaps, with the final element

having a finite target thickness

The first letter signifies if the target in that particular test had a (S)ingle armor element
or (M)ultiple. The second letter signifies if the target for that particular test had an
(A)irgap or (N)o air gap. The last letter signifies if the last target element from that test

was semi-(I)nfinite or (F)inite.

4.1.2 Source

Within the Test element there must be one and only one Source element. The Source
element is used to store information about the source of the data, it contains four attributes
and one text content. The text content is typically the authors’ names and the year of
publication, for example “Allen and Rogers (1961)”. The first attribute is BibtexRefID, it
is a 9-character alphanumeric that identifies the source using a BIBTEX reference ID key.
The second attribute is TestNumber, it is a string value that can store any identifier that
the original author used to identify that test. The third attribute is Distribution, it is used

to store one of the following distribution categories:

e Unknown

e A. Approved for Public Release

e B. U.S. Government Agencies Only

e C. U.S. Government Agencies and Their Contractors
e D. DoD and DoD Contractors Only

e E. DoD Components Only

e F. Further Dissemination Only as Directed by the DoD Controlling Office or Higher
DoD Authority
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The fourth attribute is ExportControl, it is a boolean value that marks the source and
data as being export controlled or not. The Distribution and EzportControl attributes help

with the tracking of the releasability of the data used in this research.

4.1.3 Impact

Within the Test element there must be one and only one Impact element. The Impact
element is used to store data pertaining to the impact conditions of the test, it contains
four sub-elements. The sub-elements are Velocity, TotalYaw, Yaw, and Pitch. Each of those
elements are defined as a Metric data type. A diagram of the Impact element from the

PDML can be seen in Figure B.2 in Appendix B.

4.1.4 Projectile

Within the Test element there must be one and only one Projectile element. The Projec-
tile element is used to store data pertaining to the projectile used in the test, it contains
twenty four sub-elements. The sub-elements are Material, Hardness, Density, Ductility,
YoungsModulus, YieldStrength, UltimateTensileStrength, PoissonRatio, Toughness, Total-
Length, EffectiveLength, CoreLength, Core Diameter, Mass, Nose, Fineness, EffectiveFine-
ness, NoseLengthl, NoseConeAnglel, NoseDiameter, NoseLength2, NoseConeAngle2, CRH,
and NoseType. The first nine elements are used to define the material mechanical properties
of the projectile. The rest are used to define the dimensions of the projectile. A diagram

of the Projectile element from the PDML can be seen in Figure B.3 in Appendix B.

4.1.5 Target

Within the Test element there must be one and only one Target element. The Target
element is used to store data pertaining to the target used in the test, it contains one
attribute and one sub-element. The attribute is FElements and it is used to define how
many elements the target contains. The Test element contains one sub-element, which is
the Element element. Target must have one Element, but it can also contain many of them

as well.
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The Element element is used to store the specifics of each element that makes up the
target, it contains two attributes and eleven sub-elements. The first attribute is Number and
it is used to store an integer representing the element’s numerical order in the target. The
second attribute is Type and it is used to record a string representing the element type (e.g.
air, metallic, ceramic, or composite). The sub-elements are Thickness, Obliquity, Mate-
rial, Hardness, Density, Ductility, YoungsModulus, YieldStrength, Ultimate TensileStrength,
PoissonRatio, and Toughness.

A diagram of the Target and Element elements from the PDML can be seen in Figure B.4

in Appendix B.

4.1.6 Results

Within the Test element there must be one and only one Results element. The Results
element is used to store data pertaining to the results from the test, it contains seven sub-
elements. Those elements are Penetration, Residual Velocity, ResidualLength, ResidualMass,
CraterDiameter, CraterVolume, and Limit Velocity. A diagram of the Results element from

the PDML can be seen in Figure B.5 in Appendix B.

4.2 Data Acquisition

The initial population of data into the database came from a Southwest Research Institute
(SwRI) report [87]. The report was digitally scanned and then processed using Optical
Character Recognition (OCR). The data from the report were cleaned and formatted into
something that was readable by a Java program. The Java program then pulled the data
into the database and wrote it out in the PDML format. The record count in the database
after the initial population of data was 2227. The age of the data is older, but since the basic
design of Kinetic Energy Projectiles (KEPs) has changed relatively little over the years and
even for the slightly different designs, the basic process of penetration is the same, the data

is still relevant.
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Through extensive searching for test data in reports and journal articles, six more
sources [88-93] of data were found and entered by hand into the database. In total, those
six documents added 371 more records to the database, bringing the total to 2598. Out of
those 2598 records, there are 421 valid SNF test records and 19 valid MNF test records.

Through discussions with other Subject Matter Experts (SMEs) it was discovered that
there was an old QBasic database of KEP data that had become unusable due to lack of
support for QBasic and lack of maintenance of the database code. An offer was made to
repair the old database in exchange for access to the data for this research and a verbal
agreement was made. The old database was developed by the Weapons Material Research
Directorate (WMRD) back in 1980s for storing data from KEP test events. The database
was spread out over 306 QBasic binary files and the data was accessed using several different
QBasic program files.

The program files were studied to determine the structure of the data in the database
files. A file was written to read all 306 files and write their data out into a CSV file.
After pulling all of the data out into CSV files, the cleaning process began. The data was
corrupted in many places and suffered from data quality issues. Once the cleaning process
was complete the data was written out into the PDML format and added to the PDML
database. There are 7967 records in the QBasic database and at this time 2672 of those were
valid. After adding those records to the PDML the total count of records in the database

came to 5270.

4.3 Data Preparation

The WMRD database contained a lot of data, but most of the data suffered from data qual-
ity errors. The effort to detect and clean the errors in the database followed the techniques

detailed in Section 3.2.8. The overall process can be broken into roughly four phases.

First Phase
The first phase of detection and cleaning focused on checking the validity of the field values

and making sure they were correct. The QBasic database was designed so that the attributes
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stored in each column of data were different depending on the target type of that record.
So, if the record was defined as a “SIN” then it was a finite single element target and the
data stored in column 22 was the “Exit Hole Length”. If the record was a “DBL” then it
was a finite double element target and the data stored in column 22 was “Plug Velocity”.
A mistake when keying the record type could cause all kinds of errors for the database. So
before any of the field values could be checked, the record type first needed to be verified. To
add even more to the complexity of the problem, many of the fields used special numbers to
signify a special condition. As an example, the residual mass field would store a numerical
value that represented the mass of the projectile after the ballistic event; if it was equal to
“111” then it meant that the data was lost during the test, if it was equal to “222” then it
meant that the data represented a fragment of the projectile, and if it was equal to “0” then
it meant that it was a partial penetration. In some cases the person entering the data may
have thought that the code for fragment was “2222” so that was entered instead of “222”.
Very rarely did every field for a particular attribute follow the coding without deviation.
That example is actually one of the more simple examples of this occurrence.

Before the fields were checked all of the records were separated out into the four types
of targets; “SIN”, “DBL”, “TRI”, and “SI”. After the data was separated, each record
was checked to see if the target type was correct. One of the main ways that this was
accomplished was by checking the hardness column for that record. For reference, Table 4.1
shows the columns in the database that are associated with hardness for at least one of
the target types. If a record was a “SIN” target type then column 29 should have a value
in it that could be a reasonable BHN value for that target material. If after checking
that value it seems to be too low, it is possible that it is a typographical error or it could
be categorized incorrectly. If upon further inspection, columns 36, 37, and 38 all contain
values more appropriate for BHN values then it is possible that the record is a “TRI”
and not a “SIN”. Sometimes cross checking several different attributes was required before

determination could be made if the target type was correct.
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Table 4.1: Database Hardness Columns

Type | Column 5 Column 10 Column 15 Column 29 Column 36 Column 37 Column 38
SI Hardness Original Diameter Volume of Rise Ent Hole Length Alpha Beta Path Deviation
SIN Alpha Eta R Pen Depth Hardness # Pcs Residual Max Res Dia Eta P
DBL Alpha First Plate Hardness | Second Plate Hardness | Rotation Rate | # of Pcs After 1st P1 | # of Residual Pcs Cone Angle
TRI Alpha Eta 1 Alpha 2 Third MR 1 Hardness of Plate 1 | Hardness of Plate 2 | Hardness of Plate 3

Once the records were correctly classified for target type analysis was started to check
for possible outliers. Various analysis methods were used to expose outlier data and subject
that data to scrutiny. Some of those methods were; statistical analysis, clustering analysis,

pattern-based searches, and association rules [94].

Second Phase

The process of correcting errors during the first phase led to major change in the format of
the data spreadsheet. There was a lot of duplicate information in the database and many
times a correction in one place meant that it needed to be corrected in many places. This led
to the creation of a relationship based spreadsheet where the projectile material properties
and the target description information were both pulled out into their own separate tables.
Each record in those tables was given a unique key and the main data table used that key to
reference the appropriate data. This simplified the cleaning process for those two separate
tables of information dramatically. The other major modification to the data format was
to combine all of the separate data types together on one sheet. This was accomplished by
combining attributes that represented the same thing and keeping those that were unique
separate. Using the hardness example from before, instead of having seven different columns
to define up to three plates of armor hardness, they were combined into three columns. If
a record was a “SIN” target type, then the fields for the second and third plate hardness
were set to “N/A”.

After everything was combined the process of scrubbing the projectile materials and
target descriptions began. All of the projectile materials and target descriptions had a
description field and sometimes there would be information about the projectile or target
in that field. If the field contained information it was checked against the other appropriate
fields to make sure they matched. If those other fields were empty, then they were populated

with the appropriate values.
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Third Phase

Even after scrubbing the projectile and target sheets, they both had a significant amount
of fields that were empty. Through further discussions with the WMRD SMEs, it was
discovered that all of the raw data that the database was built from over the years were
contained in a large library of binders (well over several hundred). In order to try and fill in
the missing data in the database and correct some of the errors that were present, several

boxes of the binders were cataloged and scanned (see Figures 4.1, 4.2, and 4.3).

Figure 4.2: Image of second group of binders

In total, seventy-seven binders were cataloged, of those only twenty-five were completely
checked for data; the rest were only partially completed. The process involved cross checking
any of the test numbers or test series identifiers with those in the database. Once the binder

could be linked to a series of records in the database, the field values could be checked if
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Figure 4.3: Image of third group of binders

they were present in the binder. Likewise, each binder was checked for material property
information for the projectiles and the targets. If that information was found, it then had
to be linked to a test series if possible. There were some cases were material information
was found but there was no indication which tests used that particular projectile, so it could

not be corrected in the database.

Fourth Phase
The final phase of data preparation was focused on dealing with missing data. There is
no single solution to the problem of missing data, but through a combination of intelligent
replacement and imputation methods, suitable values can be placed into the missing data
locations with minimal detrimental effect to the ability of the MLP to learn the patterns in
the data [95].

One method of intelligent replacement is accomplished by making the common assump-
tion that the diameter of the KEP does not change during penetration and by using basic
geometric equations. Equation (4.1) can be used to solve for mass (m), density (p), diameter

(d), and length (1) as long as only one of the parameters are missing.

% = 7(d/2)2 (4.1)
Where:

p is the density of the projectile
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d is the diameter of the projectile
[ is the length of the projectile

m is the mass of the projectile

Likewise, in some records length or diameter will be missing and the fineness of a
projectile will be recorded. Fineness is defined in (4.2). If a record has fineness and diameter

or fineness and length, then the other value can be calculated.

r=- (42)
Where:

[ is the fineness of the projectile
[ is the length of the projectile

d is the diameter of the projectile

Another method of intelligent replacement that was used to fill missing data was to
compare similar records. For example, if one record is for a steel target with a BHN
hardness of 300 and another record is from the same test series with a steel target, but
hardness is missing. If both targets were of similar thickness, then the hardness of 300 was
used to fill in the missing value.

Surrogation was sometimes used to fill missing data when intelligent replacement could
not be used. For example if the projectile for a record was steel and the density was missing,
then the standard density of 7.858/cm3 was used for that missing value.

Imputation of a value using an average of similar records was sometimes used as means
to fill missing data when the other methods could not be used. Continuing the example
of the steel target that was missing a BHN hardness value, imagine if there were ten other
records that were from the same test series and they were all steel targets. If each one of
those records had BHN hardness values that ranged from 292 to 310, what value should be
used? In those types of situations an average of the similar records was used to impute a

value for the missing value.
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4.4 Parameter Selection

Once the experimental test data had been collected the next step in the process of defining
the MLP was the determination of inputs to use for the model. The number of inputs in
a MLP is limited by the number of available input parameters in the problem, but it is
possible that not all of the available input parameters should be utilized [41]. There is
often a desire to include too many inputs in the design of an MLP due to two common
misconceptions; (1) since MLPs learn, they will be able to determine what input variables
are important, and (2) like with expert systems, as much domain knowledge as possible
should be included into the system [43]. Determination of the input parameters to the
MLP is extremely important for two primary reasons. The first reason is that the required
number of data points increases with the number of input parameters. The second reason
is that including two inputs that are highly correlated introduces noise in the training data
which can lead to a loss of generalization and could cause a non-convergence of the MLP [55].

The inputs for the MLP were chosen based on discussions with KEP SMEs, limitations
in the data available, and reviewing current phenomenological models in use. The eleven

inputs that were selected for use in the MLP are:

e Striking Velocity

e Total Yaw

e Projectile Length

e Projectile Diameter
e Projectile Density
e Projectile Hardness
e Target Thickness

e Target Obliquity

e Target Hardness

e Target Density

e Target Young’s Modulus
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Three outputs were selected for the MLP: determination of perforation of the target,
residual velocity, and residual mass. These were selected because they are the three things
needed to determine if the projectile will continue into the target and for determination of

damage on components in Vulnerability /Lethality (V/L) models.

4.5 Data Analysis

Analysis of the data is important because the MLP can learn patterns in the data that may
not have been intended. As an example, early in this research there was a large percent
of data for tests that resulted in perforations (approximately 80%) and because of this
the MLP was predicting perforations at a very high rate. Once more data was added to
the training set that were from non-perforation tests the MLP was able to better predict
perforation outcomes without a bias toward perforation.

Analysis of the data is also important because we want the MLP to be trained on data
that has a range of values for each attribute and a good sampling inside of that range.
If those conditions are met, the MLP should be able to generalize over the broad set of
possible scenarios expected for an analysis.

First, a look at the entire database; after all of the data collection and data cleaning,
the PDML database contained 4854 test records. The distribution of those records is as
follows; 1463 SNI, 2758 SNF, 0 MAI, 571 MAF, 0 MNI, and 62 MNF.

Out of those 4854 records, 3034 were used with the MLP. One reason for the difference
is that some of the records in the PDML are marked as “suspect”, meaning there is concern
with the data for those records and they should not be used at this time. The other reason
for the difference is that SNI data was not needed for this analysis and therefore was not
used. The distribution of the records used with the MLP is; 0 SNI, 2455 SNF, 0 MAI, 556
MAF, 0 MNI, and 23 MNF.

Parameter Distributions
The distribution of the input and output parameters from the SNF data are provided in
Table 4.2.
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Table 4.2: Statistics for the input and output values of the ANN

Parameter Symbol Mean  Std Dev Minimum Q1 Median Q3 Maximum
Input Values
Striking Velocity (m/s) Vs 1232.8  205.7 361 1106 1243 1365 1841
Total Yaw (°) y 1 1.2 0 0.4 0.7 1.1 16.8
Projectile Density (&/cm?) Pp 16.6 34 7.7 173 177 186 19.3
Projectile Length (mm) l 102 32 27 779 101.9 123 195
Projectile Diameter (mm) d 7.7 2 3.9 6.6 7.7 8.1 15
Projectile Hardness (BHN) BHN, 4281 9738 233.3 379.5 398 443.3  869.1
Target Density (&/cm?3) Pt 7.6 1.2 2.7 7.9 7.9 7.9 7.9
Target Hardness (BHN) BHN; 3235 918 107 269 302 364 555
Target Thickness (mm) T 46.6 24.7 6.3 254 38.1 63.5 127
Target Young’s Modulus (GPa) E 199.9 314 70 207 207 207 210
Target Obliquity (°) 0 35.3 30.6 0 0 60 60 80
Output Values
Perforation (Binary) P 0.2 0.9 -0.9 -0.9 0.9 0.9 0.9
Residual Velocity (m/s) V. 359.1 403 0 0 247 625 1609
Residual Mass (g) M, 9.9 15.2 0 0 5.4 12.6  114.7

Ordered Scatter Plots

Ordered scatter plots are a good way to show the distribution of a particular parameter.
Figures 4.4, 4.5, 4.6, and 4.7 are ordered scatter plots of the various parameters used by the
MLP. Each plot is created by taking every value in the database for a particular parameter
and then sorting them in order. After they have been sorted, they are plotted in order
by value. This type of plot can be used to visually show the distribution of a particular
parameter. Striking velocity is shown in Figure 4.4a and the plot shows a good spread of
values for that parameter. Total yaw is shown in Figure 4.4b, it can be seen in the plot
that most of the values are below 5°. Although more values above 5° would be preferable,
most realistic ballistic impacts are going to occur below 5°, so the distribution is good.
The values for projectile length are shown in Figure 4.4c and although the distribution has
some very obvious discontinuities, it does cover a good range of values. The distribution
for projectile diameter shows that there may be a need to acquire more data with values
above 10 mm (see Figure 4.4d).

Figure 4.5a shows projectile density and a very clear gap in data for materials other
than steel (=~ 7.858/cm3), tungsten (=~ 17.0&/cm3), and depleted uranium (= 19.0&/cm?3).
The values for projectile hardness (see Figure 4.5b) cover a good range, but there is a gap
between ~ 600 BHN and ~ 800 BHN. The distribution for target thickness (see Figure 4.5¢)

is not continuous, but that is to be expected. The target plates are typically purchased in
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Figure 4.4: Ordered scatter plots for some input parameters of model

incremental thicknesses of 1/4in (6.35 mm), so the values are expected to appear as a step
function. The distribution for obliquity is shown in Figure 4.5d and almost all of the values
are shown to be equal to 0° or greater than or equal to 45°. Future work should try to get
more data with obliquity values that fall between 0° and 45 °.

Target hardness (see Figure 4.6a) has a good spread of values from ~ 100 BHN to
~ 550 BHN. Even though there is a good sampling of hardness values, Figure 4.6a shows
that most of the data is for steel (= 7.858/cm?3) or aluminum (~ 2.78/cm?) targets. This is
where the data is lacking the most; future work must try to find data for a more diverse set
of materials. If the data can not be found then attempts should be made to find funding
to perform experimental tests and gather the data. Figure 4.6¢ further shows the lack of

diversity for target materials; the target Young’s modulus values are for only two types of
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Figure 4.5: Ordered scatter plots for some input parameters of model

materials (steel and aluminum). Even though there is a strong desire to have data that
covers more than steel and aluminum target materials, it should be noted that for a realistic
encounter the two most likely materials to be used for armor are steel and aluminum.

The final set of ordered scatter plots (Figure 4.7) show the output parameters. In
Figure 4.7a (residual velocity) and Figure 4.7b (residual mass) the tests that resulted in
non-perforations can be seen as values of 0m/s or 0g, respectively. The values for residual
velocity cover a good range and are distributed well. The residual mass values show a
definite tendency to values below 20 g, the reason for this is not entirely clear but could be
due to the fact that many of these tests are performed when near the ballistic limit of a
threat. It is possible that most of these tests were near the ballistic limit due to reduction

in usable rod length (and therefore mass) as opposed to reduction in usable velocity.
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In order to show all of the parameters in one set of box and whisker plots, their values

were normalized based on the values in Table 4.3. The box and whisker plots are shown

in Figure 4.8. In the plots the tails mark the maximum and minimum values, the hollow

boxes mark the 1% quartile to 3"¢ quartile, the line in the middle marks the median value,

and the solid square box marks the average value. The plots clearly show the lack of spread

of values for target density and target youngs modulus. Not as clear is the gap in values

for target obliquity that was shown with the ordered scatter plots.
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Figure 4.7: Ordered scatter plots for some output parameters of model
4.6 Summary

The data collection and preparation process was the most difficult and time consuming part
of this research effort. The process of collecting data for this type of research is very likely
to continue long after this effort is complete. This is due in part to the gaps in the data
and the continuing push for use of new materials and new technology in KEPs.

There is a less than desirable spread of values in the data for the target and KEP
materials. There is also a lack of data with obliquities that fall between 0° and 45°. Future
work should, and most likely will, attempt to fill in those gaps. However, the data are
complete enough to accomplish the desired objectives of this research.

This work was able to determine the best input parameters to use in the model through
trial and error, discussion with KEP SMEs, and by researching other models. The output
parameters were selected based on the requirements for the problem space. The determi-
nation of the input and output parameters provided an answer to RQ1.1. The selected
parameters are: Striking Velocity, Total Yaw, Projectile Length, Projectile Diameter, Pro-
jectile Density, Projectile Hardness, Target Thickness, Target Obliquity, Target Hardness,

Target Density, Target Young’s Modulus, Perforation, Residual Velocity, and Residual Mass.



Table 4.3: The normalization values used for the parameter box and whisker plots

Parameter Minimum | Maximum | Minimum Maximum
Value Value Normalized | Normalized
Input Values
Vs 0.0m/s 2000.0 m/s -1.0 1.0
¥ 0.0° 25.0° -1.0 1.0
Pp 0.08/m? 20.0 8/m3 -1.0 1.0
l 0.0 mm 250.0 mm -1.0 1.0
d 0.0 mm 20.0 mm -1.0 1.0
BHN, 0.0 BHN 900.0 BHN -1.0 1.0
Pt 0.0 &/m3 20.0 8/m3 -1.0 1.0
BHN; 0.0 BHN 700.0 BHN -1.0 1.0
T 0.0 mm 250.0 mm -1.0 1.0
E 0.0GPa 500.0 GPa -1.0 1.0
0 0.0° 85.0° -1.0 1.0
Output Values
V. 0.0m/s 2000.0 m/s -1.0 1.0
M, 0.0g 150.0¢g -1.0 1.0
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Figure 4.8: Box and Whisker Plots of Normalized Model Parameters
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Chapter 5

MLP for Monolithic Metallic

Armor

The first Multi-Layered Perceptron (MLP) developed was for the simplified problem of pre-
diction of perforation against monolithic metallic armor. The next iteration of development
then added in the regression values of residual velocity and residual mass. The following
sections will provide the methodology of development, the training process results, the com-
parison against the Segletes model, and a summary. The work detailed in this chapter was

used to answer RQ1.2, RQ1.4, and RQ1.5.

5.1 Methodology

The process for developing the MLP consisted of three phases; topology selection phase,
training phase, and comparison phase. The following three sections will provide an overview

of how each of those phases were accomplished.

Topology Selection Phase

The topology selection phase was done as a focused search. That means that only the
topologies of interest were run and constructive and pruning methods were not used. The
topologies of interest were selected based on the process documented in Section 3.2.7. The

selection process started by normalizing all of the parameters being used by the MLP. After
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normalization, networks were created for each topology based on the user selected number
of subsamples. For example, if there were two topologies of interest and the user selected
to have 15 subsamples, then there would be a total of 30 networks created. All of those
created networks were then initialized with random weights. Additional networks were
created, because 10-fold cross validation was being used. For each network created because
of the subsampling number, 9 additional networks were created to make a total of 10. Each
of those 10 networks were fed different folds of the training data and the errors of those
10 networks were averaged to determine a generalization error for that network subsample.
Then the best generalization error of all of the subsamples was selected to represent the
result for that given topology. During the selection process for the final MLP design, 3
subsamples were used. Since each topology was sub-sampled 3 times the best generalization
error of those 3 networks was used for evaluation against the other topologies. The back-
propagation method used for training the networks was Scaled Conjugate Gradient (SCG).
For the early stopping strategies, a minimum improvement criteria of 0.000001 was used
with a tolerated epochs criteria of 400. The maximum number of epochs allowed was
100 000.

During the selection phase, the following steps were taken:

1. The Penetration Database Markup Language (PDML) database was loaded and the

records were prepared for use with the MLP.

2. 15% of the data was pulled aside for use as a test set of data when training was

completed.

3. The remaining 85% was split into 10 folds of data for use with the k-fold cross vali-

dation methodology.

4. 3 instances of each topology were created so that each could be trained on the folded

training data.

5. For each instance, 10 networks were created for the 10-fold cross-validation.
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6. The error for a given MLP instance was calculated by averaging the error over the 10
folds, this was done to get a better estimate of the generalization error of a particular

topology.
7. The best generalization error of the 3 instances for a topology was recorded.

8. Once all of the topologies had finished training the generalization errors were compared
to determine the topology that would provide the best generalization performance with

the lowest risk of over-fitting.

Training Phase

After a topology was chosen during the selection phase, the selected topology was used
during the training phase. As with the selection process, sub-sampling was used to increase
the chance of finding the global optimum solution. In addition to random sampling, a
genetic algorithm was also used. The genetic algorithm was run prior to training to allow
for starting weights that were close to the global minimum of the error function. To increase
the likelihood of finding the global minimum, 20 instances of the MLP were created and
their weights were assigned based on the results from running their own genetic algorithm.
After the genetic algorithm had completed, a back propagation method was used to train
the MLP and modify the weights to the optimal solution. Once each instance was finished
training, the instance with the best validation error was selected as the final MLP to use in
the comparison phase.

During the training phase, the following steps were taken:
1. The PDML database was loaded and the records were prepared for use with the MLP.

2. The same 15% of the data that was pulled aside during the selection phase, was again

pulled aside for use as a test set of data when training was completed.

3. Out of the remaining data, 10% was pulled aside for the validation set and 90% was

used for training the MLP.

4. 20 instances of the MLP were created so that each could be trained on the training

data.
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5. Prior to beginning the backpropagation training of each of the MLPs, they were all

trained using a genetic algorithm to give good starting weights.

6. During backpropagation training, the validation error was checked after each epoch
and if the error worsened by a certain percentage then training stopped and the

weights associated with the best error were used.

7. Once all of the MLPs had finished training the one with the best validation error was

selected as the best and was reported back with the correct weights for that MLP.

Comparison Phase

The comparison phase for monolithic targets consisted of simply running the MLP and the
Segletes model against the training, validation, and test sets of data. The results of both
models were written out to a file for further statistical analysis.

During the comparison phase, the following steps were taken:

1. The PDML database was loaded and the records were prepared for use with the MLP

and the Segletes model.

2. The same 15% of the data that was pulled aside during the selection and training

phases, was again pulled aside for use as a test set of data.

3. Out of the remaining data, 10% was pulled aside for the validation set and 90% was

used for the training set.

4. Each of the experimental test data in the three data sets were run with the MLP and

the Segletes model.

5. The results of both models were output to a file for analysis.

MLP Design Progression

The initial plan for implementing the MLP was to train two MLPs, one for prediction of
perforation and one for prediction of the residual values after perforation. The initial deci-
sion to do that was based on a paper by Fernndez-Fdz, Puente, and Zaera [62]. They used

an application of MLPs that broke the prediction of perforation and residual values into a
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two step process. Instead of using one MLP for determining perforation and residual val-
ues, the task was broken up into a MLP for classification (perforation and non-perforation)
and a second MLP for regression of the residual values, if perforation was predicted by the
previous MLP. The benefit of separating the two tasks is the reduction in complexity of
the overall networks and therefore an increase in the likelihood of faster convergence.

The classification MLP was developed and the results were published in [96]. While
developing the classification MLP, both the Akaike Information Criterion with Correction
(AICc) and k-fold cross validation were being used during the topology selection phase.
Those methods led to the selection of a MLP topology that was very simple in structure.
The topology that was selected for that MLP contained only four neurons in the first hidden
layer and one neuron in the second hidden layer (see Figure 5.1).

Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer

By

I

I

By
‘ 0,
Hy

Figure 5.1: Selected Topology for First Version of MLP

Early feedback from MLP Subject Matter Experts (SMEs), at the 2014 IEEE Sympo-
sium Series on Computational Intelligence, led to the removal of the AICc from the topology
selection process. The AICc attempts to account for complexity in the scoring by “taking
points off” for complexity. K-fold cross validation inherently accounts for overly complex

networks in the generalization error. In effect, the networks that were more complex were
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being penalized twice. The removal of the AICc led to more complex networks, but the con-
tinued use of k-fold cross validation and early stopping strategies ensured that over-fitting
was not a concern.

After training the regression MLP a problem of disconnect between the two networks was
discovered. There were some cases where the classification MLP would predict a projectile
would not perforate a target, but the regression MLP would predict residual values greater
than zero. There were other cases where the classification MLP would predict perforation,
but the regression MLP would predict residual values of zero. A decision was made to
combine both of the problems into one MLP so that the predictions could be tied together
more closely.

After the feedback from the conference and the dissconnect of the two MLP designs, the
process of redesigning the MLP was started. During the topology selection phase a total
of ninety topologies were run. The first eighty one topologies were setup with two layers
having neuron counts ranging from two to ten in both layers. The last nine topologies were
a single layer with neuron counts of two to ten. All of the topologies had three output
neurons; perforation, residual velocity, and residual mass. The selection process for this
MLP did not include the AICc; it was based only on the generalization error from k-fold
cross validation. However, for comparison the AICc scores and generalization errors will
both be provided. The AICc scores are shown in Figure 5.2a and the generalization errors
are shown in Figure 5.2b. Had the topology been selected based on the AICc scores and
not the generalization errors, then the topology that was selected would have consisted of
a single hidden layer with only two neurons.

Based on the generalization errors, the best performing topology consisted of eight
neurons in the first layer and ten neurons in the second layer (this topology can be seen in
Figure 5.3).

After the QBasic database (from the Weapons Material Research Directorate (WMRD))
was added to the PDML database there were 2068 new data points available for use in the

MLP. It was decided to perform another round of topology selection and training in order
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Figure 5.2: Selection Phase Results

to have the best possible solution for monolithic targets. The performance of the MLP
against monolithic targets was an extremely important factor in how well it would perform
against multi-element targets.

A total of 16 topologies were used during the selection process. Each of those networks
were sampled 3 times and were 10-fold cross-validated. The topology with the best 10-fold
cross-validated generalization error consisted of 11 input neurons, 16 hidden neurons in the
1%* hidden layer, 16 hidden neurons in the 2"? hidden layer, and 3 output neurons in the
output layer. Each layer, except the output layer, also had a bias neuron. The selected

topology can be seen in Figure 5.4.
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Figure 5.3: Selected Topology for Second Version of MLP

5.2 Training Process Results

The MLP was able to effectively learn the training data. Based on the Symmetric Absolute
Percentage Error (SAPE), there were 4 tests in the training set that the MLP had a %Error
worse than 80% that were not false positives or false negatives. There were 1877 total tests
in the training set so they account for only 0.4% of the data in the training set. For residual
mass there were 21 tests in the training set with %Error worse than 80% that were not false
positives or false negatives. There were 1877 total tests in the training set so they account
for only 1.1% of the data in the training set. For the training set the MLP had 596 true
negatives, 153 false positives, 120 false negatives, and 1008 true positives.

No immediate patterns could be found in the tests that would lead to a conclusion that
the MLP was having difficulty learning any particular type of projectiles or targets. The
most likely cause for the false positives, false negatives, and the few tests that had higher
than 80% SAPE is that those particular tests fall very close to the ballistic limit for their

particular projectile and target pairing.
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Figure 5.4: Final Selected Topology of the MLP

5.3 Comparison to Segletes Model

In this section the results will be presented for all three sets of data (training, validation,
and test) for completeness; however, the set that is the most important to the results of the

model is the test set.
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5.3.1 Perforation Prediction Results

The MLP performed better than the Segletes model for SNF targets in all three sets of data.
Table 5.1 provides some statistics on the perforation prediction capability of the MLP and
the Segletes model; for clarity, the better values are shown in bold. The MLP performed
better for for all three of the data sets for MSE, ACC, FPR, TNR, and MCC. The MLP
performs better for FNR and TPR for the training set, but not for the validation and test
sets. The MLP had four more false negatives for the validation set and three more false
negatives for the test set, than the Segletes model. Those slightly higher counts of false
negatives led to a higher (worse) score for FNR and lower (worse) score for TPR. For all
three data sets, the MSE for the MLP was nearly half of the value that the Segletes model

had.

Table 5.1: Perforation Prediction Statistics for Monolithic Targets

Training Set

MLP  Segletes

Mean Square Error (MSE) 0.4712  1.0737
Accuracy (ACC) 85.5%  66.9%
False Positive Rate (FPR) 20.4%  58.9%
False Negative Rate (FNR) 10.6%  16.0%
True Positive Rate (TPR) 89.4%  84.0%
True Negative Rate (TNR) 79.6% 41.1%

Matthews Correlation Coefficient (MCC)  0.69 0.28

Validation Set

MLP  Segletes

Mean Square Error (MSE) 0.6356  1.0077
Accuracy (ACC) 80.4%  68.9%
False Positive Rate (FPR) 17.9% 53.8%
False Negative Rate (FNR) 20.6%  17.6%
True Positive Rate (TPR) 79.4%  82.4%
True Negative Rate (TNR) 82.1%  46.2%
Matthews Correlation Coefficient (MCC) 0.6 0.31
Test Set

MLP  Segletes
Mean Square Error (MSE) 0.8078  1.2205
Accuracy (ACC) 75.1%  62.3%
False Positive Rate (FPR) 32.5% 64.9%
False Negative Rate (FNR) 19.5% 18.1%
True Positive Rate (TPR) 80.5%  81.9%
True Negative Rate (TNR) 67.5% 35.1%

Matthews Correlation Coefficient (MCC)  0.48 0.19
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Perforation Prediction Pie Charts

The pie charts in Figures 5.5, 5.6, and 5.7 show the distribution of classification outcomes for
the MLP and the Segletes model for the training, validation, and test sets for SNF targets
respectively. For the training set the MLP had 596 true negatives, 153 false positives, 120
false negatives, and 1008 true positives (the percentages are shown in Figure 5.5a). For
the same set of data, the Segletes model had 308 true negatives, 441 false positives, 181
false negatives, and 947 true positives (the percentages are shown in Figure 5.5b). For the
validation set the MLP had 64 true negatives, 14 false positives, 27 false negatives, and 104
true positives (the percentages are shown in Figure 5.6a). For the same set of data, the
Segletes model had 36 true negatives, 42 false positives, 23 false negatives, and 108 true
positives (the percentages are shown in Figure 5.6b). For the test set the MLP had 104 true
negatives, 50 false positives, 42 false negatives, and 173 true positives (the percentages are
shown in Figure 5.7a). For the same set of data, the Segletes model had 54 true negatives,
100 false positives, 39 false negatives, and 176 true positives (the percentages are shown in

Figure 5.7b).

5.3.2 Residual Value Estimation Results

The MLP significantly outperformed the Segletes model on prediction of residual values.
Table 5.2 lists the MSE for the MLP and the Segletes model for all three data sets. For
the test set, the MSE scores for residual velocity prediction by the MLP were roughly 70%
better than the Segletes model scores and roughly 80% better for residual mass predictions.
The Symmetric Mean Absolute Percentage Error (SMAPE) scores for the MLP were much
lower (better) than the Segletes model. The MLP had a SMAPE score of 33.4% compared
to the Segletes models score of 47.9% for residual velocity. For residual mass, the MLP had

a SMAPE score of 35.6% compared to the Segletes models score of 55.1%.

Residual Value Scatter Plots
In the scatter plots (Figures 5.8 and 5.9), observed values are along the z-axis and predicted
values are along the y-axis. If a model performed perfectly then the values would fall along

a line with slope equal to 1 and a y-intercept equal to 0. Cases of incorrect perforation
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Table 5.2: Mean square error and symmetric mean absolute percentage error statistics for
residual value predictions of monolithic targets

Training Data
MLP  Segletes
MSE for Residual Velocity 0.0491 0.2271
MSE for Residual Mass 0.0244 0.1174
SMAPE for Residual Velocity 24.6%  44.6%
SMAPE for Residual Mass 26.6% 51.7%

Validation Data
MLP  Segletes
MSE for Residual Velocity 0.0545 0.1993
MSE for Residual Mass 0.02 0.0986
SMAPE for Residual Velocity 28.6% 42%
SMAPE for Residual Mass 30.4% 49.2%

Test Data

MLP  Segletes
MSE for Residual Velocity 0.0726  0.2339
MSE for Residual Mass 0.0232 0.113
SMAPE for Residual Velocity 33.4%  47.9%
SMAPE for Residual Mass 35.6% 55.1%

prediction (false positives) can be seen plotted on the y-axis with a value of 0 for x. Cases
of incorrect non-perforation prediction (false negatives) can be seen plotted on the z-axis
with a value of 0 for y. Both of the scatter plots show the high number of false positives for
the Segletes model. In particular, the high predicted residual velocity values for those false
positives on the y-axis (Figures 5.8) Most of the false positives and false negatives for the
MLP were very values, meaning that when the MLP was wrong about prediction, it was

not very off on the residual value predictions.

Residual Value Percent Error

The Symmetric Percentage Error (SPE) histograms can be seen in Figures 5.10 and 5.11.
The false positives show up in the -100% bin on the far left of the plot and the false negatives
show up in the 100% bin on the far right of the plot. Due to how the SPE is calculated, if the
percent error is negative then that is indicative of an over estimation of the value observed
and if the percent error is positive then that is indicative of an under estimation of the value

observed. Overall, the MLP had lower percent errors for residual velocity (Figure 5.10) than
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the Segletes model and this can be seen in the combined higher percentage of tests that had
percent errors from -10% to 0% (Bin 0%) and 0% to 10% (Bin 10%). This trend continued
in the percent errors for residual mass (Figure 5.11) as well.

Based solely on Figures 5.12 and 5.13 and their associated values, it can be determined
that the MLP is first order stochastic dominate over the Segletes model for both residual

velocity and residual mass.

Data Point-by-Data Point Prediction Comparison

When comparing data from all three sets of data for monolithic targets (SNF) the MLP far
surpassed the predictive capabilities of the Segletes model for both the classification problem
of determination of perforation and the regression problem of predicting the residual velocity
and mass. For prediction of residual velocity the MLP performed better than the Segletes
model on 1146 data points and performed the same as the Segletes model on 604 data
points. That means that the MLP performed as well or better than the Segletes model for
1750 out of 2455 data points (71%). For prediction of residual mass the MLP performed
better than the Segletes model on 1379 data points and performed the same as the Segletes
model on 604 data points. That means that the MLP performed as well or better than the
Segletes model for 1990 out of 2455 data points (81%).

The most important set of data is the test set, so the following results are for that set of
data only. The MLP still far surpassed the predictive capabilities of the Segletes model for
both the classification problem of determination of perforation and the regression problem
of predicting the residual velocity and mass when only the test set of data is compared. For
prediction of residual velocity the MLP performed better than the Segletes model on 156
data points and performed the same as the Segletes model on 96 data points. That means
that the MLP performed as well or better than the Segletes model for 252 out of 369 data
points (68%). For prediction of residual mass the MLP performed better than the Segletes
model on 184 data points and performed the same as the Segletes model on 96 data points.
That means that the MLP performed as well or better than the Segletes model for 280 out

of 369 data points (76%).
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For those data points where the Segletes model performed better, there were 12 data
points that resulted in false positives for the MLP and 26 that resulted in false negatives.
There were 117 data points (32%) that the Segletes model did better than the MLP for
predicting residual velocity. The 12 false positive predictions by the MLP accounted for
10% and the 26 false negative predictions by the MLP accounted for 22% of the tests. The
remaining 79 data points were ones that the MLP correctly predicted perforation, of those
data points the lowest error for the MLP was 2%, the highest error was -60%, and the
average error was 21%. There were 89 data points (24%) that the Segletes model did better
than the MLP for predicting residual mass. The 12 false positive predictions by the MLP
accounted for 13% and the 26 false negative predictions by the MLP accounted for 29% of
the data points. The remaining 51 data points were ones that the MLP correctly predicted
perforation, of those data points the lowest error for the MLP was 1%, the highest error

was 69%, and the average error was 27%.

5.3.3 Runtime Comparison

No attempt was made to optimize either of the models for runtime, so the runtimes are
only comparable for the currently unoptimized state of both models. The Segletes model is
a phenomenological model that is numerically integrated, so the runtimes are expected to
be longer than that seen for the MLP. In Figure 5.14 the bins are runtime in milliseconds
and the frequency is the number of runs that had runtimes that fell into that bin. As an
example, in Figure 5.14 there were 2159 out of 2159 Artificial Neural Network (ANN) runs
that took less than 0.25 ms for a value of 100% and there were 75 out of 2442 Segletes model
runs that took between 0.25ms and 0.5ms for a value of 3%. The average runtime for the
MLP model against SNF targets was 0.06 ms. The average runtime for the Segletes model
against SNF targets was 1.61 ms. The overall difference in runtimes between the two models
amount to only a few milliseconds, but in a Vulnerability /Lethality (V /L) simulation it can
be expected that these models will be run millions of times. Therefore, a few milliseconds

difference in runtime could become an overall difference in simulation runtime of hours.
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5.4 Summary

This chapter provided results that can be used to answer RQ1.2, RQ1.4, and RQ1.5. The
MLP was able to model the terminal ballistics of Kinetic Energy Projectiles (KEPs) and
there were no systematic difficulties with predicting any of the experimental data presented
to it. The results clearly demonstrate that a MLP (a type of ANN) can be used model
the terminal ballistics of KEPs and do so in a manner that is generalized and accurate
(RQ1.2). The MLP was more accurate than the Segletes model in predicting perforation
for SNF targets. It also had better Mean Squared Error (MSE) and SMAPE scores than
the Segletes model when predicting residual values. The MLP performed better in the data
point-by-data point comparison. It performed better in almost every measure for prediction
and it did it with a 96% decrease in average runtime. The results also demonstrate that
the MLP is faster and more accurate than the Segletes model (RQ1.3 and RQ1.4). The
MLP is far superior to the Segletes model for prediction of perforation, residual velocity,

and residual mass against monolithic metallic targets.
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Figure 5.5: Distributions of classification outcomes of the MLP and the Segletes model for
single element targets - Training Set
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Figure 5.6: Distributions of classification outcomes of the MLP and the Segletes model for
single element targets - Validation Set
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MLP Predictions
SNF Test Target Data

True Negative

True Positive

False Positive

False Negative

(a)

Segletes Predictions
SNF Test Target Data

True Negative

True Positive

False Positive

False Negative

(b)

Figure 5.7: Distributions of classification outcomes of the MLP and the Segletes model for
single element targets - Test Set
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Figure 5.11: Symmetric Percent Error for residual mass
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Chapter 6

MLP for Multi-Layer Metallic

Armor

The Multi-Layered Perceptron (MLP) developed for monolithic metallic armor was used to
predict the ballistic results of a Kinetic Energy Projectile (KEP) against multiple element
targets by applying the MLP iteratively. This chapter will provide information on how it
was applied iteratively, the results of the iterative process, a comparison to the Segletes
model, and a summary. The work detailed in this chapter was used to answer RQ1.3,

RQ1.4, and RQL1.5.

6.1 Methodology

The process for applying the MLP against finite multiple element targets (MAF and MNF),
consisted of applying the MLP iteratively for each element. The iterative method was

performed as follows:

1. Run the MLP against the current element of the target (first element, if this is the

first iteration).
2. If the MLP predicted non-perforation then stop iterating.

3. If there are no more elements then stop iterating.
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4. Use the outputs of the MLP from the current element to determine the inputs for the

next element.
5. If the next element is air, skip that element and use the next element.

6. Start next iteration from Step 1 of this list.

Step 4 from the iterative method involves calculating the inputs for the next element
from the outputs from the previous element. The MLP was not trained to predict residual
length, however if the diameter of the projectile is assumed to stay constant an approxima-

tion can be calculated from (6.1).

(6.1)
Where:

[ is the length of a cylinder
m is the mass of a cylinder
d is the diameter of a cylinder

p is the density of a cylinder

6.2 Results

Based on the Symmetric Absolute Percentage Error (SAPE), there were 2 data points
in the multiple element targets (MAF and MNF) set where the MLP had percent errors
worse than 80%, that were not false positives or false negatives, when predicting residual
velocity. Both of those data points were negative percent errors, meaning that the MLP
overpredicted the residual velocity values for those data points. There were 579 total data
points in the multiple element target set so they account for only 0.3% of the data in that
set. For residual mass there were 5 data points in the multiple element targets set with
%Error worse than 80% that were not false positives or false negatives. There were 579

total data points in the multiple element target set so they account for only 0.9% of the
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data in the set. For the multiple element targets set the MLP had 57 true negatives, 182
false positives, 58 false negatives, and 282 true positives. The high number of false positives
shows that the MLP had a tendency to overpredict perforation.

When the MLP was trained it was trained on SNF targets that had air behind the target
element. If that target was then replicated multiple times it would consist of alternating
metallic elements and air elements. All of the MAF data that fit that criteria were defined
as a “spaced” target. Likewise, all MNF targets and any MAF target that had two metallic
elements without air between them was considered a non-spaced target. This division of
the data was done to see if the MLP performed better on multi-element targets that were
similar in makeup to the single element targets it was trained on. There were 541 “Spaced”
target data points and 38 “NonSpaced” target data points in the multiple element target
set.

The 2 data points with high %error for residual velocity and the 5 data points with high
%error for residual mass were against “Spaced” targets. The MLP had 182 over predictions
(false positives) and 58 under predictions (false negatives). All of the 182 data points with
over predictions were against “Spaced” targets and those data points amount to 34% (182
out of 541) of all of the “Spaced” target data points. Of the 58 data points with under
predictions, 34 were against “Spaced” targets and those data points amount to 6% (34
out of 541) of all of the “Spaced” target data points. The remaining 24 data points were
“NonSpaced” targets and those data points amount to 63% (24 out of 38) of all of the
“NonSpaced” target data points.

The results for the “NonSpaced” target data points show a definite tendency to under
predict perforation for the MLP. This is most likely due to the MLP being applied in an
iterative fashion. In essence, the iterative method is assuming independence for interaction
at each element. However, they are not independent for any multiple element targets, but it
is especially true for “NonSpaced” targets. As the projectile is penetrating an element there
are effects already occurring in the elements proceeding it if the plastic zone of deformation
has reached those elements. Similarly, when a projectile first strikes a target element it
takes time for the plastic zone to form and for the materials to start flowing, but when it is

moving from one element to the next and there is no air gap between them, the materials
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are already flowing and continue to flow. Since the MLP was trained on SNF targets, it is
likely that the early process of plastic fluid flow formation was inherently learned by the
model. By applying the MLP iteratively, we are over estimating the resistance of the target
to the projectile which is leading to a high number of false negatives.

Since the MLP was trained against SNF data it is possible that it may have learned
some of the back of the element effects (i.e. spalling, plugging, and the like). What it cannot
account for is the effect of the air gap on degradation of the projectile. This should lead
to an over-prediction of residual velocity for spaced targets. The results for the “Spaced”
target data points show a definite tendency to over predict perforation for the MLP. This
is most likely due to the MLP not being trained on MAF targets. When a projectile exits
a target element into an air element there are forces that act upon it that degrade its
performance slightly and in some circumstances can cause the projectile to fracture. The
MLP would have no way of predicting those cases since it was never trained on data that

contained those cases.

6.3 Comparison to Segletes Model

6.3.1 Perforation Prediction Results

The MLP performed comparable to the Segletes model for MAF and MNF targets (see
Table 6.1). The Mean Squared Error (MSE) for both models were very close, their scores
for ACC and MCC were also very close. The MLP had a higher FPR and the Segletes model
had a higher FNR. That generally means that when the MLP was wrong it was typically
because it predicted perforation when the data point had a result of non-perforation and that
when the Segletes model was wrong it was typically because it predicted non-perforation
when the data point had a result of perforation. Those results continued for the subset of
“Spaced” target data points, with a slight improvement for the MLP. The “NonSpaced”
target data points show where the MLP really struggled to predict perforation outcomes.
The MLP had a FNR of 70.6%. It also appears that the Segletes model performs better for
modeling “NonSpaced” targets, since the ACC was 71.1% and the MCC was 0.42 compared

to 56.4% and 0.12 for “Spaced” targets.
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Table 6.1: Perforation Prediction Statistics for Multiple Element Targets

All Multiple Element Targets
MLP  Segletes

Mean Square Error (MSE) 1.343  1.3822
Accuracy (ACC) 58.5%  57.3%
False Positive Rate (FPR) 76.2%  45.2%
False Negative Rate (FNR) 17.1%  40.9%
True Positive Rate (TPR) 82.9%  59.1%
True Negative Rate (TNR) 23.8%  54.8%

Matthews Correlation Coefficient (MCC)  0.08 0.14

Spaced Targets Subset

MLP  Segletes

Mean Square Error (MSE) 1.2936 1.4134
Accuracy (ACC) 60.1%  56.4%
False Positive Rate (FPR) 77.4%  46.0%
False Negative Rate (FNR) 11.1%  41.8%
True Positive Rate (TPR) 88.9%  58.2%
True Negative Rate (TNR) 22.6%  54.0%

Matthews Correlation Coefficient (MCC)  0.15 0.12

NonSpaced Targets Subset
MLP  Segletes

Mean Square Error (MSE) 2.0463 0.9379
Accuracy (ACC) 36.8%  7T1.1%
False Positive Rate (FPR) 0.0% 0.0%

False Negative Rate (FNR) 70.6%  32.4%
True Positive Rate (TPR) 29.4%  67.6%
True Negative Rate (TNR) 100.0% 100.0%
Matthews Correlation Coefficient (MCC) 0.2 0.42

Perforation Prediction Pie Charts
The pie charts in Figures 6.1, 6.2, and 6.3 show the distribution of classification outcomes
for the MLP and the Segletes model for the set of all MAF and MNF data as well as the

two subsets of that data (Spaced and NonSpaced). For all of the multiple element target

data the MLP had 57 true negatives, 182 false positives, 58 false negatives, and 282 true
positives (the percentages are shown in Figure 6.1a). For the same set of data, the Segletes
model had 131 true negatives, 108 false positives, 139 false negatives, and 201 true positives
(the percentages are shown in Figure 6.1b). For the Spaced set, the MLP had 53 true

negatives, 182 false positives, 34 false negatives, and 272 true positives (the percentages are
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shown in Figure 6.2a). For the same set of data, the Segletes model had 127 true negatives,
108 false positives, 128 false negatives, and 178 true positives (the percentages are shown
in Figure 6.2b). For the NonSpaced set, the MLP had 4 true negatives, 0 false positives,
24 false negatives, and 10 true positives (the percentages are shown in Figure 6.3a). For
the same set of data, the Segletes model had 4 true negatives, 0 false positives, 11 false

negatives, and 23 true positives (the percentages are shown in Figure 6.3b).

6.3.2 Residual Value Estimation Results

Both models struggled to predict residual values for multiple element targets. Table 6.2 lists
the MSE for the MLP and the Segletes model for all three data sets. The MSE scores for
residual velocity prediction by the Segletes model were roughly 47% better than the MLP
scores. However, the MSE scores for residual mass prediction by the MLP were roughly
28% better than the Segletes model scores. The Symmetric Mean Absolute Percentage
Error (SMAPE) scores were nearly identical to the Segletes model. The MLP had a SMAPE
score of 51.8% compared to the Segletes models score of 49.5% for residual velocity. For
residual mass, the MLP had a SMAPE score of 58.8% compared to the Segletes models score
of 57.7%. The scores for the “Spaced” and “NonSpaced” targets are provided to further

show the difference in how the MLP performed against the two different types of targets.

Residual Value Scatter Plots

In the scatter plots (Figures 6.4, 6.5, and 6.6), observed values are along the x-axis and
predicted values are along the y-axis. If a model performed perfectly then the values would
fall perfectly along a line with slope equal to 1 and a y-intercept equal to 0. Cases of
incorrect perforation prediction (false positives) can be seen plotted on the y-axis with a
value of 0 for x. Cases of incorrect non-perforation prediction (false negatives) can be
seen plotted on the z-axis with a value of 0 for y. The tendency of the MLP to over
predict can be seen on the y-axis in Figures 6.4a and 6.4b. The MLP has 182 points on
the y-axis and 58 on the z-axis. In those same figures the incorrect predictions for the
Segletes model are shown to be more balanced; there are 108 on the y-axis and 139 on the

z-axis. For those data points where perforation was predicted correctly, the MLP tends
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Table 6.2: Mean square error and symmetric mean absolute percentage error statistics for
residual value predictions of multiple element targets

All Multiple Element Targets
MLP  Segletes
MSE for Residual Velocity 0.2998 0.1587
MSE for Residual Mass 0.0886 0.1226
SMAPE for Residual Velocity 51.8%  49.5%
SMAPE for Residual Mass 58.8%  B7.7%

Spaced Targets

MLP  Segletes
MSE for Residual Velocity 0.2813 0.1616
MSE for Residual Mass 0.0864 0.1247
SMAPE for Residual Velocity 50.2%  50.5%
SMAPE for Residual Mass 58.3%  59.3%

NonSpaced Targets
MLP  Segletes

MSE for Residual Velocity 0.5632 0.1173
MSE for Residual Mass 0.1191 0.0927
SMAPE for Residual Velocity 75.4%  34.8%
SMAPE for Residual Mass 66% 34.7%

to be better balanced between over and under estimations for residual velocity than the
Segletes model. For residual mass, the MLP performed better than the Segletes model, but
it appears to under estimate for residual masses that are large. This could be due to the
lack of large valued residual masses in the training data. Out of 1877 total data points
in the training set, 89 of them (less than 5%) contained residual masses greater than 40 g.
For “NonSpaced” targets (Figures 6.6a and 6.6b) the MLP did poorly, primarily because of
the high percentage of under predictions. For the MLP, under predictions accounted for 24
out of 38 of the data points (63%). For those data points where perforation was predicted
correctly the MLP actually performed fairly well, but with the already mentioned slight
tendency to under predict residual mass for large masses.

In order to get a better view of how well the two models performed predicting residual
values the following scatter plots (Figures 6.7a and 6.7b) were created. They are the same
as those just shown (Figures 6.4a and 6.4b), but with all cases of false positives and false

negatives removed. Looking at Figure 6.7a it becomes a little clearer that for those data
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points where the MLP correctly predicted perforation, it has a better correlation then the
Segletes model in predicting residual velocity. In other words the errors are slightly larger
but are better centered around the true values. The Segletes model tends to slightly under-
predict at larger residual velocity values. For residual mass (Figure 6.7b) the MLP has
better prediction for residual masses less than 20 g, slightly under-predicts for values larger
than 40 g, and severely under-predicts for values larger than 100g. It appears that for the
cases where the residual mass is greater than 100 g that there may be something wrong with

the data because both models drastically under-predict for those data points.

Residual Value Percent Error
The Symmetric Percentage Error (SPE) histograms can be seen in Figures 6.8, 6.9, and 6.10.
The false positives show up in the -100% bin on the far left of the plot and the false negatives
show up in the 100% bin on the far right of the plot. Due to how the SPE is calculated,
if the percent error is negative then that is indicative of an over estimation of the value
observed and if the percent error is positive then that is indicative of an under estimation
of the value observed. Overall, the MLP performed comparable to the Segletes model. For
residual velocity (Figure 6.8a), the Segletes model tended to under predict perforation and
under estimate residual values. The MLP tended to over predict perforation, but was fairly
balanced in the estimation of residual values. For residual mass (Figure 6.8b), again both
models performed similarly. The Segletes model did have a higher percent of false negatives
than the MLP, but the MLP had a higher percent of false positives than the Segletes model.
The “Spaced” targets and “NonSpaced” targets data are presented to again show how
the MLP performed differently for those two types of targets. The “Spaced” targets can
be seen in Figures 6.9a and 6.9b and since the “Spaced” targets accounted for most of the
multiple element targets, the results are similar to the larger data set. For the “NonSpaced”
targets there was a very high percent of false negatives, but both models performed well for
those data points with correct perforation predictions. For residual velocity (Figure 6.10a)
and residual mass (Figure 6.10b) most of the data points, where perforation was correctly

predicted, resulted in percent errors in the range of -30% to 30%.
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The cumulative distribution plots in Figure 6.11 show that the Segletes model has a
slightly better performance than the MLP for multiple element targets (MAF and MNF).
This is due in large part to the number of non-perforations that the Segletes model correctly
predicted and how many the MLP incorrectly predicted. Those cases show up as 0% error
in the plots and gives the Segletes model an immediate advantage. The performance of both
models is strikingly similar, with only a sight edge given to the Segletes model. However,
it is not definitive that the Segletes model is the better model because it is not first order
stochastic dominant. Neither model is first order stochastically dominate over the other, so

no definite claim of superiority can be made for either.

Data Point-by-Data Point Prediction Comparison

For multiple element targets (MAF and MNF) the MLP performed on par with the predic-
tive capabilities of the Segletes model for both the classification problem of determination
of perforation and the regression problem of predicting the residual velocity and mass. For
prediction of residual velocity the MLP performed better than the Segletes model on 217
data points and performed the same as the Segletes model on 195 data points. That means
that the MLP performed as well or better than the Segletes model for 412 out of 579 data
points (71%).

For prediction of residual mass the MLP performed better than the Segletes model on
252 data points and performed the same as the Segletes model on 195 data points. That
means that the MLP performed as well or better than the Segletes model for 447 out of 579
data points (77%).

Out of all of the data points where the Segletes model performed better, there were
78 data points that resulted in false positives for the MLP and 20 that resulted in false
negatives. There were 167 data points (29%) that the Segletes model did better than
the MLP for predicting residual velocity. The 78 false positive predictions by the MLP
accounted for 47% and the 20 false negative predictions by the MLP accounted for 12% of
the data points. The remaining 69 data points were ones that the MLP correctly predicted
perforation, of those data points the lowest error for the MLP was -3%, the highest error

was -91%, and the average error (SMAPE) was 29%.
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There were 132 data points (23%) that the Segletes model did better than the MLP for
predicting residual mass. The 78 false positive predictions by the MLP accounted for 59%
and the 20 false negative predictions by the MLP accounted for 15% of the data points.
The remaining 34 data points were ones that the MLP correctly predicted perforation, of
those data points the lowest error for the MLP was 1%, the highest error was -97%, and
the average error (SMAPE) was 34%.

6.3.3 Runtime Comparison

Although the MLP did not perform as well on multiple element targets as it did on single
element targets, it did manage to perform at least as well as the Segletes model for multiple
element targets. Where the true benefit of the MLP shows is in the runtimes for the multiple
element targets. As mentioned in the previous chapter, no attempt was made to optimize
either of the models for runtime, so the runtimes are only comparable for the currently
unoptimized state of both models.

In Figure 6.12 the bins are runtime in milliseconds and the percentage is the percent of
runs that had runtimes that fell into that bin. As an example, in Figure 6.12a there were
343 out of 579 MLP runs that took less than 0.25ms for a value of 59% and there were 62
out of 2442 Segletes model runs that took between 1.75ms and 1.0ms for a value of 11%.
The average runtime for the MLP model against MAF and MNF targets was 1.46 ms and
the average runtime for the Segletes model was 6.78 ms. Figure 6.12b provides the MAF
and MNF runtimes averaged by the number of elements in the target. The average runtime
per target element for the MLLP model against MAF and MNF targets was 0.49 ms and the

average runtime for the Segletes model was 2.26 ms.

6.4 Summary

This chapter provided results that can be used to answer RQ1.3, RQ1.4, and RQ1.5. By
applying the MLP iteratively it was possible for the MLP to model the terminal ballistics

of KEPs against multiple element targets. The model did well against targets with air gaps
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between plates (“Spaced” targets) but did not do as well on those that had no air gaps
between plates (“NonSpaced” targets). Overall, the MLP performed well and can be used
for modeling of KEPs against multiple element targets (RQ1.3).

The MLP performed slightly better than the Segletes model at predicting perforation
of multiple element targets. The MLP predicted perforation correctly 58.5% of the time
and the Segletes model was correct 57.3% of the time. The MLP was slightly better at
predicting residual mass than the Segletes model, but the Segletes model was slightly bet-
ter at predicting residual velocity. The MLP was better at making predictions for multiple
element targets that were “Spaced”, but the Segletes model was better at making predic-
tions for “NonSpaced” targets. Overall, both models had areas of strength and weakness,
but overall they both performed about the same on multiple element targets. The MLP
performed similar to the Segletes model in accuracy (RQ1.4).

The MLP performed as well as the Segletes model at predicting perforation and residual,
but it did it with a 78% decrease in runtime. Given the similar prediction performance of
both models and the drastic reduction in runtime of the MLP, the MLP is the better model
to use for multiple element targets. The MLP was drastically faster than the Segletes model

when predicting the terminal ballistics of KEPs against multiple element targets (RQ1.5).
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Figure 6.1: Distributions of classification outcomes of the MLP and the Segletes model for
multiple element targets - All Data
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Figure 6.2: Distributions of classification outcomes of the MLP and the Segletes model for
multiple element targets - Spaced Data
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MLP Predictions
MAF & MNF NonSpaced Target Data
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Figure 6.3: Distributions of classification outcomes of the MLP and the Segletes model for
multiple element targets - NonSpaced Data
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Figure 6.8: Histograms of percent error for MLP and the Segletes model predictions of
residual velocity and residual mass - All Data
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Figure 6.9: Histograms of percent error for MLP and the Segletes model predictions of
residual velocity and residual mass - Spaced Data
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Histogram of %Error for Residual Velocity
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Figure 6.10: Histograms of percent error for MLP and the Segletes model predictions of
residual velocity and residual mass - NonSpaced Data



146

First Order Stochastic Dominance
Data for MAF and MNF Targets
%Error for Residual Velocity
100%[ T
90%| /
80%| /

60% 1‘1;‘:‘,1_;—-4—4—1&— >
B = )
Y e

Percentage
oun
o
X

e®p MLP (Solid)
v¥vy Segletes (Dashed) |1

First Order Stochastic Dominance
Data for MAF and MNF Targets
%IErqur‘fqr IRlesliclluaI‘ Mass

100% ;
90%| /
v 80%| /
D 70%
S 60% e eae—vt
S 50% e o
O 40%} T
O 30%| g ov-vTE
Q- 20%fF = ®%e MLP (Solid)
10%}—* v¥v Segletes (Dashed)
0% ———————
~~ MMFIFANCONNBODHO S
VVL’{I:’WI:’VVVVVI/I/VVVVVVVV;‘!
v
% Error
(b)
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Chapter 7

Conclusion

At the very beginning of this research, when the use of an Artificial Neural Network (ANN)
to model the terminal ballistics of a Kinetic Energy Projectile (KEP) was being proposed,
it was not clear if it would be effective. This led to the primary research question of: RQ1:
Can an ANN, used to model the terminal ballistics of KEPs, be developed that is both fast,

accurate, and generalized?

The following section will answer RQ1, by addressing each of the subquestions that
define the primary research question. The answers to the subquestions will support the final

answer of yes, an ANN can be used to model the terminal ballistics of a KEP effectively.

7.1 Revisit of Research Questions

RQ 1.1 — What target or threat parameters have the most influence on terminal
ballistics results?

Through lengthy discussions with ballistics experts of the U.S. Army Research Laboratory
(ARL) and trial and error during the early designs for the Multi-Layered Perceptron (MLP),
11 parameters were selected for use with the MLP. What follows is a brief account of why

those parameters are important.
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Through basic physics analysis, we know that at high velocities (/= 10km/s) the dominate
material property for the projectile and the target is density [6]. As the velocities drop down
lower (=~ 2km/s) other material properties begin to become important (i.e. hardness, tensile
strength, etc...). Obviously, since the importance of the material properties are dependent
on velocity, the striking velocity of the projectile was a very important parameter. The total
yaw of the projectile was an important parameter because it could be used to capture the
drop off in penetration capability as the yaw increased beyond the theoretical critical yaw
angle. The projectile length is important because it represents how much of the projectile
is available for erosion during the penetration process. The length in conjunction with the
diameter also provides information about the presented area of the projectile making contact
with the target. The target thickness in conjunction with obliquity provides information
on how much target material is available to resist the penetration of the projectile. The
Young’s Modulus provides information on the target’s ability to resist compressive forces
during the penetration process. The final list of parameters selected for use, because they

have the most influence on the terminal ballistics results, are provided below:

e Striking Velocity

e Total Yaw

e Projectile Length

e Projectile Diameter
e Projectile Density
e Projectile Hardness
e Target Thickness

e Target Obliquity

e Target Hardness

e Target Density

e Target Young’s Modulus

RQ 1.2 — Can an ANN be used to produce a generalized, accurate model of the
terminal ballistics of a KEP against monolithic metallic targets?

The implementation of an MLP (a type of ANN) for prediction of terminal ballistics of
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a KEP against monolithic metallic targets is documented in Chapter 5. In summary, the

MLP performed exceptionally well at predicting perforation, residual velocity, and residual

mass against monolithic metallic targets. The input parameters in the training data set

have a good spread over the values for where this model could be expected to be used. And

the input parameters in the test data set also have a good spread over the values for where

this model could be expected to be used, so the model has demonstrated that it is able

to generalize over all of the 11 parameters. When the MLP was compared to the Segletes

model (the current state-of-the-art model) it beat it in nearly every category. Here is a

recap of the various statistics for the two models:

e Perforation prediction statistics

The MLP had a better Mean Squared Error (MSE) than the Segletes model,
0.8078 compared to 1.2205.

The MLP had a better accuracy than the Segletes model, 75.1% compared to
62.3%.

The MLP had a better false positive rate than the Segletes model, 32.5% com-
pared to 64.9%.

The MLP had a better true negative rate than the Segletes model, 67.5% com-
pared to 35.1%.

The MLP had a better Matthews Correlation Coefficient (MCC) than the Segletes

model, 0.48 compared to 0.19.

e Residual prediction statistics

The MLP had a better MSE than the Segletes model for residual velocity, 0.0726
compared to 0.2339.

The MLP had a better MSE than the Segletes model for residual mass, 0.0232
compared to 0.113.

The MLP had a better Symmetric Mean Absolute Percentage Error (SMAPE)
than the Segletes model for residual velocity, 33.4% compared to 47.9%.

The MLP had a better SMAPE than the Segletes model for residual mass, 35.6%

compared to 55.1%.
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The MLP was clearly the better model than the Segletes model for use against monolithic
metallic targets. The MLP is generalized and accurate, and can be used to effectively model

the terminal ballistics of a KEP against monolithic metallic targets.

RQ 1.3 — Can the ANN from RQ1.2 be used to model the terminal ballistics of
a KEP against multi-element metallic targets?

The application of the MLP from RQ 1.2 for prediction of terminal ballistics of a KEP
against multi-element metallic targets is documented in Chapter 6. When the MLP was
compared to the Segletes model (the current state-of-the-art model) for predictions against
multiple element targets, it beat it in several categories. Here is a recap of the various

statistics for the two models:
e Perforation prediction statistics

— The MLP had a better MSE than the Segletes model, 1.343 compared to 1.3822.

The MLP had a better accuracy than the Segletes model, 58.5% compared to

57.3%.

The MLP had a better false negative rate than the Segletes model, 17.1% com-
pared to 40.9%.
— The MLP had a better true positive rate than the Segletes model, 82.9% com-
pared to 59.1%.

e Residual prediction statistics

— The MLP had a better MSE than the Segletes model for residual mass, 0.0886
compared to 0.1226.

— The MLP had a comparable SMAPE to the Segletes model for residual velocity,
51.8% compared to 49.5%.

— The MLP had a comparable SMAPE to the Segletes model for residual mass,
58.8% compared to 57.7%.
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In summary, the MLP performed as well as (and sometimes better than) the current
state-of-the-art model at predicting perforation, residual velocity, and residual mass against
multi-element metallic targets. Therefore, the MLP can be used to model the terminal

ballistics of a KEP against multi-element metallic targets.

RQ 1.4 — How does the speed (execution time and elapsed time) of an ANN
based terminal ballistics model compare to the Segletes model?

The average runtime of the MLP for monolithic targets was 0.06 ms and for the Segletes
model the average runtime was 1.61 ms. The MLP takes on average 96% less time than
the Segletes model to calculate the results of a single element target. This also means that
the MLP is roughly 27 times faster than the Segletes model for single element targets. For
multiple element targets the average runtime per element of the MLP was 0.49 ms and for
the Segletes model it was 2.26 ms. The MLP takes on average 78% less time than the
Segletes model to calculate the results of one element of a multiple element target. This
also means that the MLP is roughly 5 times faster than the Segletes model for multiple
element targets. The difference in runtime for monolithic targets means that the MLP
finishes roughly 1.55ms sooner than the Segletes model and for multiple element targets
the MLP finished each element roughly 1.77 ms sooner.

An example Vulnerability /Lethality (V/L) analysis will be used to demonstrate the
dramatic impact of the difference in runtimes. Imagine a main battle tank with rough
dimensions of 2.4 m height, 3.7 m width, and 9.8 m length. Breaking the presented area of
the side of that tank into cells that are 50 mm x 50 mm could result in a total of 7611 cells
total. Doing the same for the front of the tank would result in roughly 2854 total cells.
Those two sets of cells are called views; averaging them would give a rough approximation
of how many cells to expect for any particular view. Assume that in each cell the simulation
will make 10 sample runs and that each one of those runs may need to call the penetration
model 10 times. The final assumption to be made is the number of views that will be run
for the analysis; this assumption will be 109 total views. The azimuths for those view start
at 0° and increment by 30° until 330°. When an analysis is requested the requirements

for the views can change based on the planned use for the results; here the assumption



153

will be that the results will be used in a force on force model and some encounters could
happen at higher elevation angles and in some cases even negative angles. For that type of
requirement the following angles could be ran to meet those needs; start at -45° elevation
and increment by 15° until 75° elevation. That results in 108 total views, and with the
addition of a final view of 0° azimuth and 90° elevation, the total comes to 109 views.
The average runtime for the MLP per element of a target was 0.142 ms and for the Segletes
model it was 1.73ms. A total of 109 views with 5232 cells per view, 10 samples per cell,
and 10 model calls per sample amounts to 57028 800 total calls per model for this sample
scenario run. That amounts to 2.25h total for the MLP and 27.47 h for the Segletes model.
Those totals are for just one sample run of the simulation; many times an analyst will not
catch an error in their inputs and the simulation can run for most of the required time
before a problem is noted. This leads to an analyst rerunning the analysis multiple times
so those runtime totals may be multiplied by any number of times for debugging purposes.
In the end this can amount to a savings of days for an analyst.

The other time saving benefit of the MLP is that because it is generalized it does not
require Subject Matter Expert (SME) fitting prior to an analyst using it in a V/L model
run. The only part an SME may be involved in is checking that the model is predicting
accurately for materials not seen before, which could lead to a retraining of the model
at some point. Other models in use require ballistic SMEs to fit a new KEP threat to
whatever material of is required (typically Rolled Homogeneous Armor (RHA) steel) and
then for other materials the thicknesses are scaled based on density. The time required for
SME work on input files for V/L analyses can vary from days to weeks, but a fair assumption
is typically 2 to 3 weeks. That can add a significant amount of time to the completion of a
V/L analysis.

In summary, the MLP execution time is extremely fast, performing 27 times faster than
the Segletes model for single element targets and 5 times faster than the Segletes model
for multiple element targets. The elapsed time for the MLP is also faster than the Segletes

model because it requires less fitting by SMEs prior to use.
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RQ 1.5 — How does the accuracy of an ANN based terminal ballistics model
compare to the Segletes model?

For monolithic targets (SNF) the MLP far surpassed the predictive capabilities of the
Segletes model for both the classification problem of determination of perforation and the
regression problem of predicting the residual velocity and mass. For perforation prediction
the MLP had better scores than the Segletes model for MSE, ACC, FPR, TNR, and MCC.
For both residual velocity and residual mass the MLP had better MSE scores than the
Segletes model. The MSE scores for the MLP were 0.0726 for V,. and 0.0232 for M,. For
the Segletes model they were 0.2339 for V,. and 0.113 for M,.. For both residual velocity and
residual mass the MLP had better SMAPE scores than the Segletes model. The SMAPE
scores for the MLP were 33.4% for V. and 35.6% for M,. For the Segletes model they were
47.9% for V,. and 55.1% for M,.. In test by test comparison the MLP was as good or better
than the Segletes model for 68% of the tests for residual velocity and 76% of the tests for
residual mass. The MLP was also first order stochastic dominate to the Segletes model for
both residual velocity and mass.

The results for multiple element targets (MAF and MNF) were a little more ambiguous
than those for single element targets. The MLP had a better MSE for perforation prediction
and residual mass, but not residual velocity. The MLP had a better ACC score and TPR
score, but not FPR, FNR, TNR, or MCC. The SMAPE scores for the MLP were nearly
identical to that of the Segletes model. The SMAPE scores for the MLP were 51.8% for V.
and 58.8% for M,. For the Segletes model they were 49.5% for V,. and 57.7% for M,. For
residual velocity, the MLP had more spread in the distribution of percent errors, but they
were more balanced than the Segletes model. The Segletes model tended to under predict
both perforations and residual estimates. The MLP was unbalanced in the prediction
of perforation though, there were more false positives than false negatives. For residual
mass, both models were skewed to negative percent errors (over predictions) and performed

similarly.
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Even though the Segletes model performed better in some areas (such as MSE scores)
for multiple element targets, there were areas were the MLP also performed better (such
as test-by-test comparison). Overall, the errors that the MLP had were comparable to
the Segletes model and are acceptable because of the planned use for the MLP and the
drastically better runtimes provided by using it.

In summary, the accuracy of the MLP is significantly superior to the Segletes model for

single element targets and is similar to the Segletes model for multiple element targets.

7.2 Summary of Contributions

7.2.1 Publications

There were a total of four papers written and accepted for publication during the span of

time of this research project:

e “Predicting the Terminal Ballistics of Kinetic Energy Projectiles Using Artificial Neu-
ral Networks”, Journal of Information Systems Applied Research, Volume 7, Issue 1,

February 2014. [97]

The first publication was originally published and presented at the 2013 Conference on
Information Systems Applied Research (CONISAR) and was selected for subsequent
inclusion in the above journal. At the time of the conference, this research was in the
first phase of the approach (see Section 1.5) and was focused on dealing with data.
The key topic of the conference was “Big Data”, so the conference presented a great
opportunity to publish the current work related to data and to get good feedback on

how to handle the data issues that were present at that time.

e “Predicting the Perforation of Kinetic Energy Projectiles using Artificial Neural Net-
works”, 2014 IEEE Symposium on Computational Intelligence for Engineering Solu-
tions (CIES 2014), Volume 1, 2014. [96]

The second publication was written for the 2014 IEEE Symposium on Computational
Intelligence for Engineering Solutions (CIES). At the time of that conference, the

research was in the very beginning of the second phase of the approach (see Sec-
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tion 1.5) and there were many questions about how to properly set up the MLP.
This conference presented a great opportunity to get feedback from experts in the
field of computational intelligence, as well as present the current progress of the MLP
implementation. A paper was also written for a doctoral consortium at that confer-
ence. Participation in the consortium proved valuable because some feedback from

attendees led to important changes in the approach of topology selection.

e “Comparing the Prediction Capabilities of an Artificial Neural Network vs a Phe-
nomenological Model for Predicting the Terminal Ballistics of Kinetic Energy Pro-
jectiles”, Proceedings of the Conference on Information Systems Applied Research

(CONISAR), 2015. [98]

The third paper was presented at the 2015 Conference on Information Systems Applied
Research (CONISAR). That conference was selected because it posed an opportunity
to present the results from comparing the MLP to the Segletes model and to get
feedback from some of the same people that had seen the early research publication

from that conference in 2013.

e “Comparing the Iterative Application of an Artificial Neural Network vs. a Phe-
nomenological Model for Predicting the Terminal Ballistics of Kinetic Energy Pro-
jectiles Against Multiple Element Targets”, Submitted for publication to 2017 IEEFE

Computing Conference. [99]

The fourth paper was submitted and accepted (acceptance notification received on
October 3, 2016) to the 2017 IEEE Computing Conference. The conference is an
international conference and has an “Intelligent Systems” track; the conference will

provide a great venue to present the final results of this research.

In addition to the aforementioned publications, this research was also presented at two
events. The first was at the Towson University Computer Sciences Department 30" An-

niversary celebration. The second was at the 21%Y Annual United States Military Academy



157

and U.S. Army Research Laboratory Symposium (AUTS). The presentation at the AUTS
was a great opportunity to present this research to military and ballistics SMEs providing

information about this research and receiving valuable feedback for experts in the field.

7.2.2 Impact

The work to collect and clean the terminal ballistics data for KEPs is of such importance
that there are already opportunities being presented to receive funding to complete the
cleaning and preparation of the QBasic database for inclusion in the Penetration Database
Markup Language (PDML) database. The PDML database will be able to serve as a
foundation for many other research projects in the U.S. ARL.

The results from this research can provide programs like MUVES-S2, Visual Simulation
Lab (VSL), and System-of-Systems Survivability Simulation (S4) with an accurate and fast
model for modeling KEPs. In particular, the MLP should allow VSL to model KEPs in
real-time as a vehicle geometry is rotated on the screen. With the MLP VSL will be able
to provide real-time information on vulnerability of a vehicle to KEPs. The benefit to
MUVES-S2 will be faster overall runtimes, but the bigger impact will be in the end-to-end
analysis time. There is a lot of time spent preparing inputs for KEP models and the use
of the MLP will drastically reduce the time spent waiting on inputs from SMEs. All of
those improvements enable the use of MUVES-S2 in larger force-on-force models such as
S4, providing better vulnerability information to the decision makers of the U.S. Army

which is critical to the survivability of our combat forces.

7.3 Discussion of Limitations

The MLP was only trained on SNF targets, which had air behind the only target element.
So the effect of the plasticly deformed volume in the target reaching the back of the target
element should be inherently modeled. This leads to a couple of limitations for the MLP.
The first limitation is that the MLP does not know how the KEP will behave when impacting
another target element after leaving an air gap. The second limitation is that the MLP also

does not know how to handle two target elements that do not have an air gap between
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them. Those limitations were known while doing this research, but it was of interest to
understand how the MLP would perform against those types of targets anyway. Given
those limitations, the iterative approach still performed well.

The MLP is limited to use with KEPs that are static and solid. So specialized KEP
designs such as telescoping and segmented Kinetic Energy (KE) rods were not tested and
the performance of the MLP for those designs is unknown. As with any empirical model
great care should be taken when attempting to use data that falls outside of the bounds of
the data used for training. A lot of effort went into making sure the MLP did not overfit
the data, but extrapolating outside of the bounds of the data could lead to unforeseen
results. Nose shape was not used in the MLP in any other way than to add an approximate
equivalent mass cylinder to the length of the KEPs. So any effects that would occur from
interaction of the nose of the projectile and the target at higher obliquities is likely not
captured. Pitch and yaw were not recorded in all of the experimental test data used so
total yaw was used instead. That means that for any interactions that had pitch or yaw
that would “turn” the projectile into the target at obliquity is also not captured. Any
experimental tests that resulted in ricochet or severe shattering of the projectile were not
included in the test data because there were not enough of them to properly represent the
phenomena.

Even though the data used in this research was sufficient for answering the research
questions, there were still gaps in the data. Another limitation of the MLP is the need for
more data and data with a broader range of values. The MLP is highly dependent on good
data and the database was lacking data for target materials other than steel and aluminum

as well as for projectile materials other than steel, tungsten, and depleted uranium.

7.4 Future Work

As noted earlier, the MLP is limited by the fact that it was only trained on SNF data. More
research can be done to improve the performance of the MLP for multiple element target
data by leveraging the work by Gruss and Hirsch [39]. They have an approach that may
allow for the MLP to be trained on SNF, MNF, and MAF data. In addition to that approach,
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future work may involve designing the MLP as a Recurrent Neural Network (RNN) so that
later elements in the target can feedback into the calculation of earlier elements. Another
potential design would allow for more input parameters, where the additional parameters
would be the additional elements in the target. Work will need to be done to determine the
best approach to ensure good fitment to the data.

Future work will need to be done to further develop the ballistics database to cover a
broader scope of values for the MLP’s parameters. By doing that the MLP will be able to
generalize better over the full range of possible input values. The data for this research was
unclassified, since it was being used for dissertation research. The results have shown that
a MLP can be used to model KEPs, so further work can now be done at the U.S. ARL
using classified test data

Many scientists and analysts like to be able to see an easy to understand equation when
using models, so it is possible that a move from using an ANN to the use of symbolic

regression using genetic programming may provide value in future research.
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Appendix B

Penetration Database Markup

Language

B.

[

1 PDML Schema

<?xml version="1.0" encoding="UTF-8" 7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema” xmlns:jxb="http://java.
sun.com/xml/ns/jaxb” jxb:version="2.0">
<xsd:annotation>
<xsd:documentation>
Description: Generated for PDML
Owner: John R Auten Sr.
Date: 2013—07—-01
Current Version: 0.11

Version: 0.11

—Changed reported boolean to a ENUM

Version: 0.10

—Added element for ogive nose CRH value

Version: 0.9

—Added releasability information for source data
Version: 0.8

—Added extensive nose characterization elements
Version: 0.7

—Added UTS as a element and made units an optional attribute
Version: 0.6

—Removed required value for velocity since limit velocity test do not need it
Version: 0.5

—Added three new test types: SNL, MNL MAL

Version: 0.4

—Added suspect attribute to test

Version: 0.3

—Corrected elements and attribute types

Version: 0.2

—Corrected elements and attribute requirement status
Version: 0.1

—Initial version
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</xsd:documentation>
</xsd:annotation>
<xsd:element name="PDML">
<xsd:annotation>
<xsd:documentation>Penetration Database Markup Language</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Test” minOccurs="1" maxOccurs="unbounded”>
<xsd:annotation>
<xsd:documentation>This element represents a ballistic test event.</xsd:
documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Source” minOccurs="1" maxOccurs="1">
<xsd:annotation>
<xsd:documentation>This element represents the source for the test event
data.</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string”>
<xsd:attribute name="BibtexReflD” type="xsd:string” use="required”>
<xsd:annotation>
<xsd:documentation>RefID used in Bibtex to reference this source.</
xsd :documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="TestNumber” type="xsd:string” use="optional”>
<xsd:annotation>
<xsd:documentation>Test number used in the source document.</xsd:
documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name=" Distribution” use="required”>
<xsd:annotation>
<xsd:documentation>What is the releasability (Public, Limited, etc
...) < /xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string”>
<xsd:enumeration value="Unknown” />
<xsd:enumeration value="A. Approved for Public Release” />
<xsd:enumeration value="B. U.S. Government Agencies Only” />
<xsd:enumeration value="C. U.S. Government Agencies and Their
Contractors” />
<xsd:enumeration value="D. DoD and DoD Contractors Only” />
<xsd:enumeration value="E. DoD Components Only” />
<xsd:enumeration value="F. Further Dissemination Only as Directed
by the DoD Controlling Office or Higher DoD Authority” />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name=" ExportControl” type="xsd:boolean” use="required”>
<xsd:annotation>
<xsd:documentation>Is the document export controlled?</xsd:
documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
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</xsd:element>
<xsd:element name="Impact” minOccurs="1" maxOccurs="1">
<xsd:annotation>
<xsd:documentation>This element defines the conditions at impact.</xsd:
documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=" Velocity” minOccurs="0"” maxOccurs="1" type="Metric”>
<xsd:annotation>
<xsd:documentation>Striking velocity of projectile.</xsd:
documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="TotalYaw” minOccurs="0" maxOccurs="1" type="Metric”>
<xsd:annotation>
<xsd:documentation>Yaw of projectile at impact.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="Yaw” minOccurs="0" maxOccurs="1" type="Metric”>
<xsd:annotation>
<xsd:documentation>Yaw of projectile.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="Pitch” minOccurs="0" maxOccurs="1" type="Metric”>
<xsd:annotation>
<xsd:documentation>Pitch of projectile.</xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Projectile” minOccurs="1" maxOccurs="1">
<xsd:annotation>
<xsd:documentation>This element defines the properties of the projectile
in this test event.</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base=" MaterialProperties”>
<xsd:sequence>
<xsd:element name="TotalLength” minOccurs="0" maxOccurs="1" type="

Metric” />

<xsd:element name=" EffectiveLength” minOccurs="0" maxOccurs="1" type=
”Metric” />

<xsd:element name=" CoreLength” minOccurs="0" maxOccurs="1" type="
Metric” />

<xsd:element name="CoreDiameter” minOccurs="0" maxOccurs="1" type="
Metric” />

<xsd:element name="Mass” minOccurs="0” maxOccurs="1" type="Metric” />

<xsd:element name="Nose” minOccurs="0" maxOccurs="1" type="xsd:string
” />

<xsd:element name="Fineness” minOccurs="0" maxOccurs="1" type="Metric
” />

<xsd:element name=" EffectiveFineness” minOccurs="0" maxOccurs="1"
type="Metric” />

<xsd:element name="NoseLengthl” minOccurs="0" maxOccurs="1" type="

Metric” />

<xsd:element name="NoseConeAnglel” minOccurs="0" maxOccurs="1" type="
Metric” />

<xsd:element name="NoseDiameter” minOccurs="0" maxOccurs="1" type="
Metric” />

<xsd:element name="NoseLength2” minOccurs="0" maxOccurs="1" type="
Metric” />
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<xsd:element name="NoseConeAngle2” minOccurs="0" maxOccurs="1" type="
Metric” />
<xsd:element name="CRH” minOccurs="0" maxOccurs="1” type="Metric” />
<xsd:element name="NoseType” minOccurs="0" maxOccurs="1">
<xsd:simpleType>
<xsd:restriction base="xsd:string”>
<xsd:enumeration value="Flat” />
<xsd:enumeration value="Conical” />
<xsd:enumeration value="Bi—Conic” />
<xsd:enumeration value="Frustrum” />
<xsd:enumeration value="Blunt” />
<xsd:enumeration value="Ogive” />
<xsd:enumeration value="Hemispherical” />
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="Target” minOccurs="1" maxOccurs="1">
<xsd:annotation>
<xsd:documentation>This element defines the target array.</xsd:
documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Element” minOccurs="1" maxOccurs=" unbounded”>
<xsd:annotation>
<xsd:documentation>Defines the individual elements in the target
array .</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base=" MaterialProperties”>
<xsd:sequence>
<xsd:element name=" Thickness” minOccurs="1" maxOccurs="1" type="

Metric” />
<xsd:element name=" Obliquity” minOccurs="1" maxOccurs="1" type="
Metric” />

</xsd:sequence>
<xsd:attribute name="Number” type="xsd:int” use="required”>
<xsd:annotation>
<xsd:documentation>Which element in the array is this (starts at
1 and goes up)?</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="Type” type="xsd:string” use="required”>
<xsd:annotation>
<xsd:documentation>What type of material is this element (Ceramic
, Metallic, Composite)?</xsd:documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="Elements” type="xsd:int” use="required”>
<xsd:annotation>
<xsd:documentation>How many elements are in this target array?</xsd:
documentation>
</xsd:annotation>
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</xsd:attribute>
</xsd:complexType>
</xsd:element>
<xsd:element name="Results” minOccurs="1" maxOccurs="1">
<xsd:annotation>
<xsd:documentation>This element defines the results from the test event.
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=" Penetration” minOccurs="0" maxOccurs="1" type="
Metric”>
<xsd:annotation>
<xsd:documentation>Defines the total penetration of the projectile
through the entire target array.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name=" ResidualVelocity” minOccurs="0" maxOccurs="1" type="
Metric”>
<xsd:annotation>
<xsd:documentation>Defines the final residual velocity of the
projectile after perforating the entire target array.</xsd:
documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name=" ResiduallLength” minOccurs="0" maxOccurs="1" type="
Metric”>
<xsd:annotation>
<xsd:documentation>Defines the final residual length of the
projectile after perforating the entire target array.</xsd:
documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name=" ResidualMass” minOccurs="0" maxOccurs="1" type="
Metric”>
<xsd:annotation>
<xsd:documentation>Defines the final residual mass of the projectile
after perforating the entire target array.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name=" CraterDiameter” minOccurs="0" maxOccurs="1" type="
Metric”>
<xsd:annotation>
<xsd:documentation>Defines the diameter of the crater in the target
after penetration of the projectile.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name="CraterVolume” minOccurs="0" maxOccurs="1" type="
Metric”>
<xsd:annotation>
<xsd:documentation>Defines the volume of the crater in the target
after penetration of the projectile.</xsd:documentation>
</xsd:annotation>
</xsd:element>
<xsd:element name=" LimitVelocity” minOccurs="0" maxOccurs="1" type="
Metric”>
<xsd:annotation>
<xsd:documentation>Defines the limit velocity of the projectile
against the target.</xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
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<xsd:element name="Notes” minOccurs="0" maxOccurs="1"
<xsd:annotation>
<xsd:documentation>Use this element to document any important notes
about this test event data.</xsd:documentation>
</xsd:annotation>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="1D"”
<xsd:annotation>
<xsd:documentation>This is the identifier for this Test.</xsd:
documentation>
</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="Type”
<xsd:annotation>
<xsd:documentation>This defines the type of test that this is.</xsd:
documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string”>

type="xsd:string”>

type="xsd:string” use="required”>

use="required”>

<xsd:enumeration value="SNI” />
<xsd:enumeration value="SNF” />
<xsd:enumeration value="MAI" />
<xsd:enumeration value="MAF" />
<xsd:enumeration value="MNI" />
<xsd:enumeration value="MNF" />
<xsd:enumeration value="SNL” />
<xsd:enumeration value="MNL” />
<xsd:enumeration value="MAL" />
</xsd:restriction>

</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="Suspect”
<xsd:annotation>
<xsd:documentation>This is used to mark the test as a suspect.</xsd:
documentation>
</xsd:annotation>
</xsd:attribute>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<!—— Parent complexTypes —>
<xsd:complexType name=" MaterialProperties”>
<xsd:sequence>

type="xsd:boolean” use="required”>

<xsd:element name="Material” minOccurs="1" maxOccurs="1" type="xsd:string” />
<xsd:element name="Hardness” minOccurs="0" maxOccurs="1" type="Metric” />
<xsd:element name="Density” minOccurs="1" maxOccurs="1" type="Metric” />
<xsd:element name="Ductility” minOccurs="0" maxOccurs="1" type="Metric” />
<xsd:element name="YoungsModulus” minOccurs="0" maxOccurs="1" type="Metric” />
<xsd:element name="YieldStrength” minOccurs="0" maxOccurs="1" type="Metric” />
<xsd:element name=" UltimateTensileStrength” minOccurs="0" maxOccurs="1" type="
Metric” />

<xsd:element name="PoissonRatio” minOccurs="0" maxOccurs="1" type="Metric” />
<xsd:element name="Toughness” minOccurs="0" maxOccurs="1" type="Metric” />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Metric”>
<xsd:simpleContent>
<xsd:extension base="xsd:double”>
<xsd:attribute name="Units” type="xsd:string”
<xsd:annotation>
<xsd:documentation>Units of measure for metric.</xsd:documentation>

use="optional”>
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</xsd:annotation>
</xsd:attribute>
<xsd:attribute name="Pedigree” use="required”>
<xsd:annotation>
<xsd:documentation>What is the pedigree of the data metric (As Reported,
Unit Conversion, etc...)?</xsd:documentation>
</xsd:annotation>
<xsd:simpleType>
<xsd:restriction base="xsd:string”>
<xsd:enumeration value="Reported” />
<xsd:enumeration value="Converted” />
<xsd:enumeration value="Estimated” />
<xsd:enumeration value="Imputed” />
<xsd:enumeration value="Surrogated” />
<xsd:enumeration value="NA” />
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:schema>
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B.2 PDML Design Diagrams

Penetration Database
Markup Language

This element
represents a ballistic
test event.
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represents the source
for the test event data.

E

This element defines
the conditions at
impact.

Projectile
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projectile in this test
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Target ]

This element defines
the target array.
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This element defines
the results from the
test event.

Use this element to
document any
important notes about
this test event data.

Figure B.1: A top level diagram of the PDML
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Figure B.2: A diagram of the Impact element from the PDML
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Projectile []

Figure B.3: A diagram of the Projectile element from the PDML
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Figure B.4: A diagram of the Target element from the PDML
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Figure B.5: A diagram of the Results element from the PDML
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