
Toque: Designing a Cooking-Based Programming
Language For and With Children

Sureyya Tarkan1,2, Vibha Sazawal1,2, Allison Druin1,2, Evan Golub1,2, Elizabeth M. Bonsignore2,
Greg Walsh2, Zeina Atrash3

1Department of Computer Science
University of Maryland

College Park, MD 20742 USA
sureyya@cs.umd.edu

2Human-Computer Interaction Lab
University of Maryland

College Park, MD 20742 USA

3Center for Technology &
Social Behavior

Northwestern University
Evanston, IL 60201 USA

ABSTRACT
An intergenerational design team of children (ages 7-11
years old) along with graduate students and faculty in
computer science and information studies developed a
programming language for children, Toque. Concrete real-
world cooking scenarios were used as programming
metaphors to support an accessible programming learning
experience. The Wiimote and Nunchuk were used as
physical programming input devices. The programs that
were created were pictorial recipes which dynamically
controlled animations of an on-screen chef preparing virtual
dishes in a graphical kitchen environment. Through
multiple design sessions, programming strategies were
explored, cooking metaphors were developed and,
prototypes of the Toque environment were iterated. Results
of these design experiences have shown us the importance
of pair-programming, programming by storytelling, parallel
programming, function-argument relationships, and the role
of tangibility in overcoming challenges with constraints
imposed by the system design.

Author Keywords
Tangible UIs, education, children, design, programming
languages.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User
Interfaces – User-centered design.

General Terms
Design, Human Factors, Languages

INTRODUCTION
In today’s increasingly technological society, people of all
ages can benefit from understanding computational thinking
and problem solving [1]. This knowledge helps people

comprehend how and why technology works. While there
are numerous ways to equip people with problem-solving
skills, teaching computer programming is a well-established
educational approach that not only presents computational
thinking but also empowers users to design and modify
software to suit their own needs [24]. Although
programming skills can provide extensive benefits to
learners throughout life, from strengthening vocabulary
development to higher cognitive skills such as planning
abilities and experience with problem-solving heuristics [3],
the experience necessary to acquire these programming
skills have become harder to find due to a lack of emphasis
in recent years on programming in our mathematics
curricula on all levels [20].

Figure 1. 8-year old boy using a Wiimote and Nunchuk to
create an animation of on-screen chef preparing a virtual

baked cheese and tomato sandwich and the equivalent recipe
instructions in icon-based form.

To explore ways in which to provide children with more
programming experiences and skills, we worked with an
intergenerational design team composed of children (ages
7-11) and adults (computer and information scientists) to
design a new visual and tangible programming environment
for children called Toque (Figure 1). In this paper, we
describe how we evolved the design of Toque, in which
children can instruct an on-screen chef how to make a
virtual dish. This iterative design work centered around
programming a baked tomato and cheese sandwich recipe.
This paper reports on design sessions that investigated the
relationship between various tangible interactions and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10-15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-246-7/09/04...$10.00

2417

Fernaeus et al. [6] developed a tangible programming space
that enables children to collaboratively program play-
worlds on a computer screen using physical objects. In
construction mode, tangible objects can be programmed
with behaviors by placing tokens onto a physical grid space.
During the execution mode, the corresponding virtual
picture acts according to the tokens. Tern [9] is a tangible
programming language that enables students to create
programs with passive blocks shaped like puzzle pieces that
have no embedded electronics or power supplies. After a
“writing” step, children “camera compile” their code to run
physical or virtual robots. Both of these systems have two
modes of interaction, which assumes the ability to design
algorithmically in offline settings.

However, Montemayor et al. [19] found that switching
between modes can be confusing to young children (5-9
years old). In their system, StoryRooms, a Physical
Programming environment, the researchers developed
computationally enhanced, tangible toys that can be used to
program an entire room or any physical interactive space. In
programming mode, children create stories, and in use
mode, the stories are “executed” (played like a live-action
movie). The lessons learned by Montemayor et al. need to
be more widely considered by designers of tangible
programming environments. Modes confuse children and
better modeless metaphors are needed.

Games
Another area that inspired our research is children’s games
that have cooking themes. One such game is Cooking
Mama [5], developed for the Nintendo Wii. Cooking Mama
is a cooking simulation in which dishes are prepared by
completing steps in the meal preparation process. Similarly,
Cooking Star [7] is a mini-game application for the Apple
iPhone. It lets the user tilt, touch, flick, and flip to cook
meals using the iPhone’s accelerometer capabilities. Yet
another game is Pizza Palace [23], a Webkinz offering that
can be played online. In Pizza Palace, the player attempts to
serve customers of a pizza shop who custom order pizzas
and the player can purchase equipment along the way to
make the job easier. As more cooking-centric entertainment
games emerge, this suggests a motivating framework with
which to teach programming [26].

OUR WORK
Although there have been attempts to bring together child
programmers via online communities [15], we wanted to
understand how programming can be done in a social way
with face-to-face, collocated context. Our focus therefore,
has been on exploring new design directions for
computational languages that can potentially support
children who are not necessarily mathematically-able or
explicitly interested in programming, but who do have
access to digital technology. We look to support those
children who may not naturally want to sit alone, silently
and stationary in front of a computer screen and keyboard,
for an extended period of time.

computational thinking skills. We found that the cooking
domain revealed several new, interesting findings about
computational thinking with respect to programming by
storytelling, pair-programming, parallel programming, the
importance of order in command structure, and the role of
tangibility in overcoming challenges with constraints
imposed by the system design.

RELATED WORK
Several relevant areas of research inspired our work. These
areas include visual programming languages, tangible
programming systems, and games.

Visual Programming Languages
There is a rich history of research on visual programming
languages as reported by Kelleher and Pausch [12]. An
example, Alice [2], helps novice programmers learn
programming by building 3D virtual worlds. Storytelling
Alice [13] includes additional features to attract children
that prefer a storytelling style of programming. Another
example, Scratch [15] is a graphical programming
environment that young people can use to create interactive
stories, games, music, and art by snapping together building
blocks. While these programming environments have been
used by a large community, the relationship to tangible
input devices have not been a focus.

ToonTalk [11], Hands [21], and Kodu [14]
are programming environments that children can
specifically use to make games. ToonTalk and Hands
both present fanciful worlds in which the program is
written in cartoon-like thought bubbles. Inside these worlds,
elements such as birds, nests, and playing cards
represent programming concepts or constructs. Kodu
supplements this line of game-creation tools with Xbox
features so programming can be done with a game
controller. All three of these tools support rule-based
programming languages that are natural for games (e.g.,
“when the dog eats the biscuit, give the dog an extra life”).
While these programming languages have gathered a
following, especially for solo individuals, tangible
programming has been successful in fostering and
reinforcing motivation to learn programming through social
relationships [6].

Tangible Programming Systems
As McNerney [18] reports, there is considerable work in the
area of physical systems for programming. Here, we report
those that are specifically for young learners. Electronic
Blocks [29] are tangible programming elements that young
children can stack together to form robots that crash into
each other, or lights that flash with a clap. Later,
Zuckerman et al. [30] introduced the classification of
Montessori-inspired Manipulatives (MiMs) that foster
modeling of conceptual and abstract mathematic structures.
Examples of this concept include computationally enhanced
building blocks, MiMs: SystemBlocks that can simulate
dynamic behavior, and FlowBlocks that can simulate
abstract structures of dynamic processes.

2418

Figure 2. The robotic chef idea designed by children that
guided Toque’s implementation.

We designed physical gestures, which could be recognized
via the Wiimote, for a set of common cooking actions such
as cut and put. Although the Toque language is being
designed with the long-term goal of having multiple cooks
in the kitchen, the initial prototype supported only one
Wiimote and thus one cook. A large-screen display was
used to project the computer’s output and the Wiimote was
connected to a computer via Bluetooth [27] so the children
would be able to perform gestures in free space without a
tangle of wires. We also used the Wiimote to control the
mouse pointer at times and to provide a way to issue an
“undo” command.

The Wiimote gestures were used to control a cook,
displayed on-screen via an animated virtual kitchen
environment (see Figure 3a). To help provide feedback the
system generated a visual representation of their cooking
instructions. This visual representation made use of an icon-
based language (see Figure 3b). To implement the virtual
kitchen, the software was built upon a modified version of
Alice 2.0 [2], along with some models built using
SmoothTeddy [10].

Figure 3a. The frame of the Toque application showing the
graphical simulation of the kitchen space.

To do this, we worked with children (ages 7-11) as co-
designers in our lab to explore prototype directions, refine
design ideas, and better understand new possibilities [4].
This work is a part of our ongoing design partnerships with
children at the University of Maryland. Since 1998, we
have been working with children using design methods to
bring together the ideas of children and adults.

In the remainder of this paper, we present how we worked
with our intergenerational design team to design Toque. We
will also discuss implications of the children’s design
suggestions.

Design Process
In developing the Toque prototype, children did not merely
use, test, or inform the design; they actively helped create
it. These children (ages 7-11) came from the local Maryland
area and half attended private schools and half public. Only
one had prior programming experience. There were three
African-American children, three children of Asian decent,
and four Caucasian children. Five were girls and four were
boys. These children were part of an existing research team
that meets twice a week after school and two weeks over
the summer to develop new technologies that range from
mobile technologies to digital libraries. Children on the
team stay an average of two years, but some have stayed as
long as 5 years.

The team uses a variety of low-tech prototyping methods
[4] using art supplies to sketch and model ideas. We also
used these methods to refine specific aspects of the system.
The low-tech prototypes are not end products themselves,
but rather a means to generate design discussion, new ideas,
and directions. To discover approaches for a new
programming language, adults and children worked
together on developing the framework for, and intermediate
prototypes of, the Toque system.

The Evolution of the Toque Prototype
We began the design sessions in summer 2008 with the idea
that we wanted to create an accessible programming
environment for children [26]. Our design discussions
started by asking the team to “program” a robot, played by
one of the adults. The “programming” moved from verbal
commands to simple words and images. We also explored
what we wanted our “robot” to do. Computer games,
petting, and cooking (see Figure 2) were among the most
popular ideas. In our second session that summer, we asked
our child co-designers to make virtual hot chocolate using
our wizard-of-oz tangible prototype. From our discussions,
cooking emerged as a useful metaphor that appealed to both
males and females in our group. Ultimately, it was decided
that an on-screen robotic chef would be programmed to
cook virtual food using tangible objects. By summer 2009,
an initial cooking prototype was built and ready to be used
in the lab. It enabled a child to use a Wiimote to program a
recipe to cook, which is illustrated in detail in the next
subsection.

2419

Figure 3b. The frame of the Toque application showing the
actions that had been taken, using an icon-based language.

Figure 4. Baked cheese and tomato sandwich recipe presented
in textual form.

To facilitate the exploration of different tangible means, we
worked on a single recipe for a baked cheese and tomato
sandwich. Because we did not build models for all possible
items and ingredients that could reside in a kitchen
environment, the initial Toque prototype only supported the
creation of one class of programs related to cooking this
recipe, but a variety of programs are possible using these
basic objects and functions. When the time comes for more
formal evaluations, it is our intention that users will be able
to create programs with or without written instructions but
in our design sessions, each team member received a paper
handout which contained a written recipe both in a pictorial
(Figure 3b) and a textual (Figure 4) forms. The pictorial
version used our icon-based language. By asking our child

co-designers to replicate this concrete example using our
interface, we were able to explore their design ideas for the
interface and metaphor.

Programming a Recipe to Cook
Toque currently incorporates programming concepts such
as events, objects, primitives, methods, arguments, and
loops. The formal specification of Toque’s language is
reported elsewhere [25]. To illustrate how the system
works, consider the following example of cutting one slice
of bread on a plate with a knife. The first step to expressing
this instruction is to perform a cut gesture with the
Wiimote. As soon as the physical action is captured by the
system, the animated cook responds with the question
“What should I cut?” in her thought bubble. This requests
the first argument to the function, i.e. bread. Once the user
selects the bread, a dialog box presents a question about the
unit of quantity that will be used: “Is it in slices?” which the
user confirms by clicking “Yes” in the dialog box. Next, the
actual quantity is obtained via another dialog box: “How
many slices should I cut?” whose value should (in this case)
be 1. After these responses have been processed, the cook
asks, “Where should I cut the bread?” the answer to which
is the plate object. The final question is as follows “What
should I use to cut with?”, and the user provides the knife
object.

At this time, one line of icon-based code gets added to the
program and the cook performs the instruction. The
animation begins with the cook moving the plate, knife and
bread to be in front of her. She then performs a cutting
gesture using these items. This causes a slice of bread to
become visible on the plate. Lastly, she moves the plate
(along with the slice), knife, and bread back to their initial
location and stops the animation to wait for another
instruction.

Figure 5 depicts how the child’s physical actions tie into the
virtual world. Every function has a number of arguments,
each of which has an associated type. The arguments can
either be objects (ingredients, kitchen items such as a knife
or spatula) or primitives (integers, booleans). Depending on
the argument type, the user either enters a value by pressing
the Wiimote’s +/- buttons or moves the Wiimote as a
mouse cursor to point at objects. To confirm the selection,
the user has to “click” via the A button of the Wiimote.

The system requires all of the arguments to be entered
correctly; otherwise, the cook complains in the thought
bubble used to allow the chef to “talk” to the child (as seen
in Figure 5, items 1 and 5). For example, if the user has
picked a tomato (of type ingredient object) when the cook
was expecting a knife (of type kitchen item object) to cut
with, the cook replies, “That can’t cut!” If the user tries to
bake a sandwich in the oven without preheating the oven
beforehand, the cook says, “Not heated!” Successful
completion leads the cook to perform the indicated actions,
displayed via animation and a line of icon-based code

2420

Figure 5. Usage scenario diagram for the Toque system. By
executing steps 1 through 6 above, user finishes a single line of

input for Toque to simultaneously convert this given
information into an animation and icon-based representation.

Design Iterations
With this prototype, the team then explored various design
directions for Toque. Half of the team played at a time with
the interactive version of Toque. After they used the
prototype, likes and dislikes were written on sticky notes
(one idea per note). These notes were gathered on a white
board and a frequency analysis was done to look for
challenges and affordances of the system. One area that was
of concern for the children on the team was the ability to
point at objects using an absolute positioning system, built
with Wiimote’s IR tracking capabilities and Wii Sensor
Bar. Children’s hands would shake and the objects and
buttons on the screen were not big enough for this type of
interaction. Entering numbers by pressing Wiimote buttons
was overwhelming.

While this design work was occurring the other half of the
team, who had no experience with the prototype, developed
new design ideas for a cooking system that involved a
Wiimote as a controller. In a low-tech prototyping session,
the group designed add-ons and gestures for cooking
instructions and measurements (see Figure 6). In their
designs, all tools were attached to the Wiimote and they

mapped each newly designed input devise with a motion
that could be performed after the selection of the specific
item. It seemed that the physical input device really defined
the interaction.

Figure 6. All Wiimote designs from the low-tech prototyping
session.

Modifying the Interaction
After the design exploration was accomplished (see
previous subsection) the following week was spent
developing a new iteration of Toque based upon the design
ideas that were generated for the physical input devices and
the programming language.

Figure 7. Additions to Wiimote and Nunchuk suggested by
design team.

One change that was quickly implemented was enabling the
programmer to use the Wii Nunchuck as a mouse rather
than using the Wiimote for that purpose. This was done
because the Nunchuk had an analog stick which could be
used for relative pointing. We came to understand that
younger team members found it far too challenging to point
at objects precisely with the Wiimote. Based on the low-
tech controller prototypes designed with the children
(shown in Figure 6) we added utensil selection “accessory”
extensions to the Wiimote. We attached a toy spatula,
spoon, and knife to the Wiimote with hook-and-loop
fasteners (see Figure 7). We expected these tools might be
selected for use in combination with the gestures.

As suggested, we also incorporated an extra knob
implemented with a Phidgets rotation sensor [8] into our
design to help users input numeric values (Figure 8). We
also updated the software based on team-generated ideas so
that Toque will infer measurement values and units in
certain scenarios, such as “1 slice” being automatically
assigned as the measurement associated with cutting

added to the recipe displayed on the right-hand side of the
visual environment (as previously seen in Figure 4b). Both
the animation and icon-based representation are
dynamically interpreted rather than being compiled and
executed, i.e. the children neither used a compiler nor
produced an executable.

2421

Figure 8. Control knob built based on design team suggestion
for setting numeric values (0, 1, 2, …, 498, 499, 500).

SECOND DESIGN SESSION DIRECTIONS
The following week this revised prototype was brought
back to the design team to again make cheese and tomato
sandwiches. This time the issue concerning making
multiple sandwiches (loops) was also explored.

In this section, we report on four of the key lessons learned.
These lessons could also be applied to a variety of
programming systems, not only Toque.

“Computer, understand our intent”: The Ordering of
Actions and Objects
During the second session, part of the design team
identified potential revisions to Toque’s icon-based
language. Team members prepared a recipe to make French
Toast using pictorial “programming cards” as part of a low-
tech prototyping session. In order to facilitate the code
writing process a large supply of cards were prepared, each
had either a cooking-related icon or word. There were also
blank cards provided, on which team members could write
their own customized keywords or draw additional “key
pictures” not included in the existing icon library.

As Figure 9 shows, the team members worked together and
wrote a very detailed and structured program. Since we
were interested in learning more about how the children
would think about constructing a program, we encouraged
team members think and create without being constrained
by Toque’s language definition on a table rather than in a
fixed structure.

During this experience, team members became annoyed
because utensils had to be washed every time there was a
new instruction. Rather than waste time washing, they
picked up another clean item each time. The model of
cleaning utensils and reusing them was useful from the
perspective of designing the virtual kitchen and keeping
track of ingredients and items. However, it was not intuitive
for the children and did not match how they would cook in
their own kitchen. Children said they would probably not
clean a knife that had been used during the recipe but would
instead use another clean knife in real life. They explained

cleaning is the last step of their meal preparation process
and wanted to omit this final step altogether from their
programs. Team members did not like that utensils changed
state from clean to dirty, but they did understand the notion
of ingredients changing states (e.g. eggs changing their state
from “whole” to the “cracked” eggs in bowl). It was not
simply a matter of not adapting to virtual objects changing
states; it was that the constraints of the environment did not
match their own real-world expectations.

Figure 9. Children are programming French Toast recipe with
cards to suggest revisions to the icon-based language.

In addition, we also found issues with the syntactic ordering
of cooking actions. To write individual programming
instructions, members arranged icon cards and text cards.
Different members of the design team members preferred to
arrange cards in different ways. Some used an action-object
ordering for which others used an object-action ordering.
This is in contrast to the traditional single-dispatch OO
syntax, which requires the receiver first, then the method
name, and then arguments in a specific order. Figure 10
presents an example of a full “line of code”. Here, the
object whisk came before the mix action; in typical OO
programming, mix would be a function of Cook that took a
Whisk as an argument. In this instance, mix was treated as
an object that determined the type of action.

Figure 10. An example of an instruction where the object is
prior to the action.

When using the interactive prototype, team members also
wanted to enter instructions using various orders for actions
and objects. Team members would sometimes feel that
selecting the arguments first was more intuitive than
choosing the action so often they wanted to write an
instruction in which they started by selecting an object.

 ingredients. However, if the measurement is variable, the
cook asks users to enter it (e.g. the number of degrees to
preheat the oven).

2422

and close a loop body, but in Toque, it is difficult to
insert/modify parts of the code already executed unless
numerous undo commands are issued or the user starts
again from the beginning.

Figure 11. The annotations on the printed Baked Cheese and
Tomato Sandwich recipe to implement loops.

Figure 12. Children “programming” a human cook to prepare
four make-believe baked cheese and tomato sandwiches.

The second sub-group of the team approached looping from
a slightly different direction. As can be seen in Figure 13,
they decided to add an argument to a function that served
the same purpose as creating a loop. In this particular case,
cracking two eggs were combined into a single instruction
rather than repeating a single instruction twice.

Since our prototype did not support interchange of
arguments with actions, young team members were either
confused or frustrated that their input was not accepted by
Toque (the cook did not ask questions contrary to their
expectations). They would try entering the same instruction
a few more times until they were assisted by one of the
adult partners and encouraged to think about actions first. In
future work, we intend for all plausible orderings to be
accepted by Toque.

“Confusing and boring”: Loops
One aspect the team focused on in the second session was
the use of a loop. We asked our young design team
members to program a recipe that would lead to making
four baked cheese and tomato sandwiches. Toque’s initial
implementation for iteration consists of a do-while
construct. The Wiimote’s up button is used to open the loop
and the down button is used to close the loop. The loop
count could be entered either with the knob device or the
Wiimote’s + and - buttons. To explore this concept from
both the interface and the language perspectives, we
divided into two subgroups. While the first sub-group of the
team was using Toque, the second sub-group worked with
the programming cards. The first sub-group discussed
which instructions were related to sandwich-making and
thus were necessary to repeat when they program in Toque.
As can be seen in Figure 11, by drawing on the paper
handouts and doing a little math, our young partners were
able to decide which instructions needed to be repeated, and
how many times.

During iterative programming, the children in the team
were turning their heads away from the handouts,
concentrating on things unrelated to the task, putting very
little effort on the math calculations, giving incorrect
answers to questions without thinking, and expecting to
finish before all the instructions were considered. It was far
from easy for them even with adult guidance. Since we
were doing low-tech prototyping, we decided to not be
constrained by the existing Toque language. Therefore we
shifted to live role-playing with a human cook (see Figure
12) instead of using the live Toque system or even the icon-
based language.

The children guided the human cook to prepare four make-
believe sandwiches out of paper and plastic materials, using
the Wiimote and the Nunchuk as props. The children told
the cook to remember which instructions she had to learn
(opening the loop body) so that she could repeat them once
told to do so (closing the loop body). Within this setting,
children appeared better able to grasp the idea of iteration.
With the aid of the more relaxed constraints and no need for
precision with the controls, the children were able to
prepare their four sandwiches. When building a loop
construct on the interactive tangible system, the children
seemed to struggle with the start and end of a loop, and how
many times to repeat the body. With text-based programs, it
is easy to insert and modify previously written code to open

2423

Figure 13. An example of an instruction where the loop is
added as an argument to the function.

This raised the possibility that loops should be able to refer
to a block of instructions. It is possible that children might
prefer a function that takes an ordered list of instructions
(block) that should be repeated a number of times. This
alternative approach to iteration is similar to how the Loop
construct is used in the Alice programming language [2].
On the other hand, Hands [21] avoided iteration altogether
by using set notation.

“Let’s program together”: Sharing the Wiimote and
Nunchuk
With the addition of the use of the Nunchuk as mouse
controller in the second session, two children working as
partners would spontaneously share the Nunchuk and
Wiimote while programming the loop, as shown in Figure
13. The children explained that pairing with another person
was more comfortable than using both controllers on their
own. When one child used both, it was inconvenient to
constantly switch hands or to use only the dominant hand to
carry both. Having “enough hands” was even more of an
issue while carrying the paper handouts containing the
target recipe. Hands were not big enough to carry
everything together.

As a result of this tie between pairs of children, our young
designers were discussing with each other about what to do
next and how to do it. They also decided to carry the recipe
handout based on controller use. While the pairs of children
sometimes switched who held which controller, whoever
was holding the Nunchuk would take and hold the recipe
sheet in the other hand. One possible explanation for why
they switched the handout along with controllers is that
performing the coding gestures with the Wiimote was a
more involved activity than pointing at objects with the
Nunchuk.

“I want to tell my story”: Cooking Stories over Chef
Controls
When a virtual chef needed more information, it would ask
first-person questions, such as “What should I cut?” Some
of the children on the design team quickly criticized this
initial design choice. Instead of telling the cook what to do,
they preferred to think of their program as a story about the
cook. The cook had his/her own destiny, and they were just
relating/retelling the cook’s personal story.

When using the programming cards during brainstorming,
this preference for story narratives became clearer. Some of
the children added keywords for things unrelated to cooking
such as eating the meal. One child even wanted to add rat
poison to a French toast recipe (!) because he thought that it
would make a more interesting story. Some of the children

were concerned if their story was unfinished; one child
even went back to the programming cards later, after the
activity was over, to append a set of final instructions, such
as to turn off the oven used by the cook and to eat the
sandwich (as shown in Figure 14).

Figure 14. Code appended by a child member to the end of
French Toast recipe for turning the oven off.

While the team was working with the programming cards,
one of the children spontaneously began writing an English
version of the “French Toast” program on a separate piece
of paper (Figure 15). She indicated that she wanted to
present the code in a more explicit storytelling style. Most
of her verbs had an “-s” suffix (third person), which
matches the previously indicated perspective of telling the
cook’s story. Storytelling Alice [13] has been similarly well
received by children, who want to tell stories with
computing, and in future Toque prototypes, we should
adhere to their design criteria.

Figure 15. French Toast program in verbal English written by
a young design team member.

We asked two of our child team members how they
compared programming with Toque as opposed to sitting in
their school classes. Both children replied that math was
boring, but that cooking was fun! Later in the week we
asked all of the children whether they had ever done any
computer programming. With the exception of one child,

2424

such as blocks. Alternatively, in a storytelling setting it may
make more sense to replace iteration with concurrency.

Flexible Ordering of Actions and Objects
While most programming languages impose a strict
ordering for objects and actions, we found that in our
design sessions the children used a variety of orders.
Research by Pane et al. [22] confirms this; in their work,
novices writing instructions to make a game would write
instruction components in various orders. Some children
assumed that an object knows how to behave (a typical OO
design); an example is the instruction the ghost will turn
colors. However, others used a more imperative ordering,
e.g., change the ghosts from original color to blue.

With our design team, instead of expressing an instruction
to whisk eggs, cook mixes the eggs with whisk, children felt
that cook uses the whisk to mix eggs was more natural.
Other ways of conveying the same idea include cook makes
the eggs by mixing with whisk, eggs get mixed by the cook
using whisk, or whisk does mixing of the eggs for cook. All
these forms emphasize a different locus of behavioral
control, but the meaning of all of them is the same to
children. As discussed in our formal language specification
[25], our attempts to formally define a precise but complete
cooking domain highly constrained our language (including
the action/object issues). Our child co-designers also did
not seem to try to use it in a way outside the scope
envisioned in our specification.

CONCLUSION
In this paper, we discussed our intergenerational design
process, which supported the iterative development of a
visual and physical programming experience for children.
As a result, we came to understand the importance of pair
programming with the Wiimote and Nunchuck, an order-
independent view to function-argument relationships, and a
storytelling approach to programming. In our sessions,
while searching for tangible ways to create an engaging
programming environment to teach computational thinking
to young children, we found many similarities in the history
of visual systems for the same purpose. Because the
introduction of physical systems have been recent and have
not been extensively explored, we invite future researchers
working in the area of tangible systems to consider visual
programming languages.

In future work, we will expand the capabilities of the Toque
prototype to support multiple cooks (threads), recipes with
branches, flexible orderings for objects and actions, and
extended storytelling support. Empirically, we would like to
compare “tangible solo programming” to “tangible pair
programming” and the orderings of objects and actions that
children actually use.

ACKNOWLEDGMENTS
We thank all of our child co-designers who partnered with
us in our sessions. And we are grateful to Andy Ko and

they said that they had not. We take this to mean that they
did not consider their experience with Toque as
programming. This could prove to be a useful perception,
since from previous conversations they thought
programming (whatever it was) was boring. It could be that
because none of the children had prior programming
experience, they did not generally recognize or identify
their work in Toque as programming even though they
wrote and/or implemented very detailed instructions
throughout both design sessions.

LESSONS LEARNED FOR FUTURE DESIGN
In this section, we discuss some general implications of our
results and relate them to existing work. This discussion
suggests design guidelines for those who work on
programming systems similar to Toque.

Pair Programming with Wiimote and Nunchuck
A pair of children sharing the Wiimote and Nunchuk
provides a convenient way to support collaboration
naturally. In this children’s version of Pair Programming
(PP), the Wiimote holder is the driver and the Nunchuck
holder is the (recipe directions) navigator. In our design
sessions when the children were exploring the
programming tools, we found that the children naturally
whispered among each other, they thought aloud, and
decided together about the next instruction to execute, and
corrected the partner’s errors. Occasionally, children
switched roles by changing the controllers (along with the
paper handout). How the children naturally explored the
programming environment confirmed the literature on the
PP model and how effective it is for novice student
programmers in introductory programming courses [17,28].

Complexity for Children: Iteration versus Concurrency
Although iteration is an essential construct in programming,
our young designers had trouble with the design of loops.
Pane et al. [22] found that children tend to describe iteration
as operations on sets of objects. We found that this
generalized to programming a virtual chef to cook.

Because the children in our team found loops “boring,” we
asked their opinions about what they would add to our
system to make it more exciting. Their first suggestion was
adding more cooks. They could quickly comprehend the
differences and similarities between each cook preparing
different dishes and all cooks collaborating on a single dish,
although it was not implemented in the Toque prototype
and was never mentioned throughout the sessions. These
are means for concurrent programming, and so another
possibility is that children prefer parallelism to iteration,
which is the same finding that Pane found in his study.

Our young design team members preferred a third-person,
storytelling perspective. However, researchers found fewer
loops in Storytelling Alice programs than regular Alice
programs [13]. Given our experience, we propose that the
loop construct is not well matched to storytelling, but that
iteration may still be possible by using a different approach

2425

1. Bransford, J., Sherwood, R., Vye, N., and Rieser, J.
Teaching Thinking and Problem Solving: Research
Foundations. American Psychologist 41, 10 (1986),
1078-1089.

2. Cooper, S., Dann, W., and Pausch, R. 2000. Alice: A 3-
D Tool for Introductory Programming Concepts. J.
Comput. Small Coll. 15, 5 (2000), 107-116.

3. Dalbey, J. and Linn, M.C. The Demands and
Requirements of Computer Programming: A Literature
Review. Journal of Educational Commuting Research 1,
3 (1985), 253-274.

4. Druin, A. The Role of Children in the Design of New
Technology. Behaviour and Information Technology 21,
1 (2002), 1-25.

5. Nintendo. http://www.cookingmamacookoff.com/

6. Fernaeus, Y. and Tholander, J. Finding Design Qualities
in a Tangible Programming Space. In Proc. CHI 2006,
ACM Press (2006), 447-456.

7. Glu Cooking star. http://www.cookingstargame.com/.

8. Greenberg, S., Fitchett, C. Phidgets: Easy Development
of Physical Interfaces through Physical Widgets. In
Proc. UIST 2001, ACM Press (2001), 209-218.

9. Horn, M.S. and Jacob, R.J.K. Tangible Programming in
the Classroom with Tern. Ext. Abstracts CHI 2007,
ACM Press (2007), 1965-1970.

10. Igarashi, T. and Hughes, J.F. Smooth Meshes for
Sketch-Based Freeform Modeling. In Proc. I3D 2003,
ACM Press (2003), 139-142.

11. Kahn, K. Drawings on Napkins, Video-Game
Animation, and Other Ways to Program Computers.
Commun. ACM 39, 8 (1996), 49-59.

12. Kelleher, C. and Pausch, R. Lowering the Barriers to
Programming: A Taxonomy of Programming
Environments and Languages for Novice Programmers.
ACM Comput. Surv. 37, 2(2005), 83-137.

13. Kelleher, C., Pausch, R., and Kiesler, S. Storytelling
Alice Motivates Middle School Girls to Learn Computer
Programming. In Proc. CHI 2007, ACM Press (2007),
1455-1464.

14. MacLaurin, M. Kodu: End-User Programming and
Design for Games. In Proc. FDG 2009, ACM Press
(2009), xviii-xix.

15. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman,
B., and Resnick, M. Scratch: A Sneak Preview. In Proc.
C5 2004, IEEE (2004), 104-109.

16. Martin, F., Mikhak, B., Resnick, M., Silverman, B., and
Berg, R. To Mindstorms and Beyond: Evolution of a
Construction Kit for Magical Machines. Robots for kids:
exploring new technologies for learning (2000), 9-33.

17. McDowell, C., Werner, L., Bullock, H.E., and Fernald,
J. The Impact of Pair Programming on Student
Performance, Perception and Persistence. In Proc. ICSE
2003, IEEE (2003), 602–607.

18. McNerney, T.S. From Turtles to Tangible Programming
Bricks: Explorations in Physical Language Design.
Personal Ubiquitous Comput. 8, 5 (2004), 326-337.

19. Montemayor, J., Druin, A., Farber, A., Simms, S.,
Churaman, W., and D’Amour, A. Physical
Programming: Designing Tools for Children to Create
Physical Interactive Environments. In Proc. CHI 2002,
ACM Press (2002), 299-306.

20. National Research Council. Being Fluent with
Information Technology. National Academy Press,
Washington, DC, 1999.

21. Pane, J.F. and Myers, B.A. The Impact of Human-
Centered Features on the Usability of a Programming
System for Children. Ext. Abstracts CHI 2002, ACM
Press (2002), 684-685.

22. Pane, J.F., Myers, B.A., and Ratanamahatana, C.A.
Studying the Language and Structure in Non-
Programmers’ Solutions to Programming Problems. Int.
J. Hum.-Comput. Stud. 54, 2 (2001), 237-264.

23. Pizza Palace, Webkinz. http://webkinztown.com/.

24. Swan, K. and Black, J.B. Results of Four studies on
Logo Programming, Problem Solving, and Knowledge-
Based Instructional Design. In The International
Conference on Technology and Education, March 1990.

25. Tarkan, S. The Formal Specification of a Kitchen
Environment. Master’s Thesis, U. of Maryland, 2009.

26. Tarkan, S., Sazawal, V., Druin, A., Foss, E., Golub, E.,
Hatley, L., Khatri, T., Massey, S., Walsh, G., Torres, G.
Designing a Novice Programming Environment with
Children. Technical Report 2009-03, HCIL, Jan 2009.

27. WiiRemoteJ, http://www.wiili.com/wiiremotej-f68.html

28. Williams, L. and Upchurch, R.L. In Support of Student
Pair-Programming. In Proc. SIGCSE 2001, ACM Press
(2001), 327-331.

29. Wyeth, P. and Purchase, H.C. Tangible Programming
Elements for Young Children. Ext. Abstracts CHI 2002,
ACM Press (2002), 774-775.

30. Zuckerman, O., Arida, S., and Resnick, M. Extending
Tangible Interfaces for Education: Digital Montessori-
Inspired Manipulatives. In Proc. CHI 2005, ACM Press
(2005), 859-868.

Kori Inkpen for their untiring feedback and guidance in
paper revisions.

REFERENCES

2426

