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ABSTRACT 
An intergenerational design team of children (ages 7-11 
years old) along with graduate students and faculty in 
computer science and information studies developed a 
programming language for children, Toque. Concrete real-
world cooking scenarios were used as programming 
metaphors to support an accessible programming learning 
experience. The Wiimote and Nunchuk were used as 
physical programming input devices. The programs that 
were created were pictorial recipes which dynamically 
controlled animations of an on-screen chef preparing virtual 
dishes in a graphical kitchen environment. Through 
multiple design sessions, programming strategies were 
explored, cooking metaphors were developed and, 
prototypes of the Toque environment were iterated. Results 
of these design experiences have shown us the importance 
of pair-programming, programming by storytelling, parallel 
programming, function-argument relationships, and the role 
of tangibility in overcoming challenges with constraints 
imposed by the system design. 
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INTRODUCTION 
In today’s increasingly technological society, people of all 
ages can benefit from understanding computational thinking 
and problem solving [1]. This knowledge helps people 

comprehend how and why technology works. While there 
are numerous ways to equip people with problem-solving 
skills, teaching computer programming is a well-established 
educational approach that not only presents computational 
thinking but also empowers users to design and modify 
software to suit their own needs [24]. Although 
programming skills can provide extensive benefits to 
learners throughout life, from strengthening vocabulary 
development to higher cognitive skills such as planning 
abilities and experience with problem-solving heuristics [3], 
the experience necessary to acquire these programming 
skills have become harder to find due to a lack of emphasis 
in recent years on programming in our mathematics 
curricula on all levels [20]. 

Figure 1. 8-year old boy using a Wiimote and Nunchuk to 
create an animation of on-screen chef preparing a virtual 

baked cheese and tomato sandwich and the equivalent recipe 
instructions in icon-based form. 

To explore ways in which to provide children with more 
programming experiences and skills, we worked with an 
intergenerational design team composed of children (ages 
7-11) and adults (computer and information scientists) to
design a new visual and tangible programming environment
for children called Toque (Figure 1). In this paper, we
describe how we evolved the design of Toque, in which
children can instruct an on-screen chef how to make a
virtual dish. This iterative design work centered around
programming a baked tomato and cheese sandwich recipe.
This paper reports on design sessions that investigated the
relationship between various tangible interactions and
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Fernaeus et al. [6] developed a tangible programming space 
that enables children to collaboratively program play-
worlds on a computer screen using physical objects. In 
construction mode, tangible objects can be programmed 
with behaviors by placing tokens onto a physical grid space. 
During the execution mode, the corresponding virtual 
picture acts according to the tokens. Tern [9] is a tangible 
programming language that enables students to create 
programs with passive blocks shaped like puzzle pieces that 
have no embedded electronics or power supplies. After a 
“writing” step, children “camera compile” their code to run 
physical or virtual robots. Both of these systems have two 
modes of interaction, which assumes the ability to design 
algorithmically in offline settings. 

However, Montemayor et al. [19] found that switching 
between modes can be confusing to young children (5-9 
years old). In their system, StoryRooms, a Physical 
Programming environment, the researchers developed 
computationally enhanced, tangible toys that can be used to 
program an entire room or any physical interactive space. In 
programming mode, children create stories, and in use 
mode, the stories are “executed” (played like a live-action 
movie). The lessons learned by Montemayor et al. need to 
be more widely considered by designers of tangible 
programming environments. Modes confuse children and 
better modeless metaphors are needed. 

Games 
Another area that inspired our research is children’s games 
that have cooking themes. One such game is Cooking 
Mama [5], developed for the Nintendo Wii. Cooking Mama 
is a cooking simulation in which dishes are prepared by 
completing steps in the meal preparation process. Similarly, 
Cooking Star [7] is a mini-game application for the Apple 
iPhone. It lets the user tilt, touch, flick, and flip to cook 
meals using the iPhone’s accelerometer capabilities. Yet 
another game is Pizza Palace [23], a Webkinz offering that 
can be played online. In Pizza Palace, the player attempts to 
serve customers of a pizza shop who custom order pizzas 
and the player can purchase equipment along the way to 
make the job easier. As more cooking-centric entertainment 
games emerge, this suggests a motivating framework with 
which to teach programming [26]. 

OUR WORK 
Although there have been attempts to bring together child 
programmers via online communities [15], we wanted to 
understand how programming can be done in a social way 
with face-to-face, collocated context. Our focus therefore, 
has been on exploring new design directions for 
computational languages that can potentially support 
children who are not necessarily mathematically-able or 
explicitly interested in programming, but who do have 
access to digital technology. We look to support those 
children who may not naturally want to sit alone, silently 
and stationary in front of a computer screen and keyboard, 
for an extended period of time. 

    
computational thinking skills. We found that the cooking 
domain revealed several new, interesting findings about 
computational thinking with respect to programming by 
storytelling, pair-programming, parallel programming, the 
importance of order in command structure, and the role of 
tangibility in overcoming challenges with constraints 
imposed by the system design. 

RELATED WORK 
Several relevant areas of research inspired our work. These 
areas include visual programming languages, tangible 
programming systems, and games. 

Visual Programming Languages 
There is a rich history of research on visual programming 
languages as reported by Kelleher and Pausch [12]. An 
example, Alice [2], helps novice programmers learn 
programming by building 3D virtual worlds. Storytelling 
Alice [13] includes additional features to attract children 
that prefer a storytelling style of programming. Another 
example, Scratch [15] is a graphical programming 
environment that young people can use to create interactive 
stories, games, music, and art by snapping together building 
blocks. While these programming environments have been 
used by a large community, the relationship to tangible 
input devices have not been a focus. 

ToonTalk [11],  Hands [21], and  Kodu [14] 
are  programming environments that children can 
specifically use to make games. ToonTalk and Hands 
both present fanciful worlds in which the program is 
written in cartoon-like thought bubbles. Inside these worlds, 
elements such as birds, nests, and playing cards 
represent programming concepts or constructs. Kodu 
supplements this line of game-creation tools with Xbox 
features  so programming  can be done with a game 
controller. All three of these tools support rule-based 
programming languages that are natural for games (e.g., 
“when the dog eats the biscuit, give the dog an extra life”). 
While these programming languages have gathered a 
following, especially for solo individuals, tangible 
programming has been successful in fostering and 
reinforcing motivation to learn programming through social 
relationships [6]. 

Tangible Programming Systems 
As McNerney [18] reports, there is considerable work in the 
area of physical systems for programming. Here, we report 
those that are specifically for young learners. Electronic 
Blocks [29] are tangible programming elements that young 
children can stack together to form robots that crash into 
each other, or lights that flash with a clap. Later, 
Zuckerman et al. [30] introduced the classification of  
Montessori-inspired Manipulatives (MiMs) that foster 
modeling of conceptual and abstract mathematic structures. 
Examples of this concept include computationally enhanced 
building blocks, MiMs: SystemBlocks that can simulate 
dynamic behavior, and FlowBlocks that can simulate 
abstract structures of dynamic processes. 
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Figure 2. The robotic chef idea designed by children that 
guided Toque’s implementation. 

We designed physical gestures, which could be recognized 
via the Wiimote, for a set of common cooking actions such 
as cut and put. Although the Toque language is being 
designed with the long-term goal of having multiple cooks 
in the kitchen, the initial prototype supported only one 
Wiimote and thus one cook. A large-screen display was 
used to project the computer’s output and the Wiimote was 
connected to a computer via Bluetooth [27] so the children 
would be able to perform gestures in free space without a 
tangle of wires. We also used the Wiimote to control the 
mouse pointer at times and to provide a way to issue an 
“undo” command. 

The Wiimote gestures were used to control a cook, 
displayed on-screen via an animated virtual kitchen 
environment (see Figure 3a). To help provide feedback the 
system generated a visual representation of their cooking 
instructions. This visual representation made use of an icon-
based language (see Figure 3b). To implement the virtual 
kitchen, the software was built upon a modified version of 
Alice 2.0 [2], along with some models built using 
SmoothTeddy [10]. 

Figure 3a. The frame of the Toque application showing the 
graphical simulation of the kitchen space. 

To do this, we worked with children (ages 7-11) as co-
designers in our lab to explore prototype directions, refine 
design ideas, and better understand new possibilities [4]. 
This work is a part of our ongoing design partnerships with 
children at the University of Maryland. Since 1998, we  
have been working with children using design methods to 
bring together the ideas of children and adults. 

In the remainder of this paper, we present how we worked 
with our intergenerational design team to design Toque. We 
will also discuss implications of the children’s design 
suggestions. 

Design Process 
In developing the Toque prototype, children did not merely 
use, test, or inform the design; they actively helped create 
it. These children (ages 7-11) came from the local Maryland 
area and half attended private schools and half public. Only 
one had prior programming experience. There were three 
African-American children, three children of Asian decent, 
and four Caucasian children. Five were girls and four were 
boys. These children were part of an existing research team 
that meets twice a week after school and two weeks over 
the summer to develop new technologies that range from 
mobile technologies to digital libraries. Children on the 
team stay an average of two years, but some have stayed as 
long as 5 years. 

The team uses a variety of low-tech prototyping methods 
[4] using art supplies to sketch and model ideas. We also 
used these methods to refine specific aspects of the system. 
The low-tech prototypes are not end products themselves, 
but rather a means to generate design discussion, new ideas, 
and directions. To discover approaches for a new 
programming language, adults and children worked 
together on developing the framework for, and intermediate 
prototypes of, the Toque system.

The Evolution of the Toque Prototype 
We began the design sessions in summer 2008 with the idea 
that we wanted to create an accessible programming 
environment for children [26]. Our design discussions 
started by asking the team to “program” a robot, played by 
one of the adults. The “programming” moved from verbal 
commands to simple words and images. We also explored 
what we wanted our “robot” to do. Computer games, 
petting, and cooking (see Figure 2) were among the most 
popular ideas. In our second session that summer, we asked 
our child co-designers to make virtual hot chocolate using 
our wizard-of-oz tangible prototype. From our discussions, 
cooking emerged as a useful metaphor that appealed to both 
males and females in our group. Ultimately, it was decided 
that an on-screen robotic chef would be programmed to 
cook virtual food using tangible objects. By summer 2009, 
an initial cooking prototype was built and ready to be used 
in the lab. It enabled a child to use a Wiimote to program a 
recipe to cook, which is illustrated in detail in the next 
subsection. 
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Figure 3b.  The frame of the Toque application showing the 
actions that had been taken, using an icon-based language. 

Figure 4. Baked cheese and tomato sandwich recipe presented 
in textual form. 

To facilitate the exploration of different tangible means, we 
worked on a single recipe for a baked cheese and tomato 
sandwich. Because we did not build models for all possible 
items and ingredients that could reside in a kitchen 
environment, the initial Toque prototype only supported the 
creation of one class of programs related to cooking this 
recipe, but a variety of programs are possible using these 
basic objects and functions. When the time comes for more 
formal evaluations, it is our intention that users will be able 
to create programs with or without written instructions but 
in our design sessions, each team member received a paper 
handout which contained a written recipe both in a pictorial 
(Figure 3b) and a textual (Figure 4) forms. The pictorial 
version used our icon-based language. By asking our child 

co-designers to replicate this concrete example using our 
interface, we were able to explore their design ideas for the 
interface and metaphor. 

Programming a Recipe to Cook 
Toque currently incorporates programming concepts such 
as events, objects, primitives, methods, arguments, and 
loops. The formal specification of Toque’s language is 
reported elsewhere [25]. To illustrate how the system 
works, consider the following example of cutting one slice 
of bread on a plate with a knife. The first step to expressing 
this instruction is to perform a cut gesture with the 
Wiimote. As soon as the physical action is captured by the 
system, the animated cook responds with the question 
“What should I cut?” in her thought bubble. This requests 
the first argument to the function, i.e. bread. Once the user 
selects the bread, a dialog box presents a question about the 
unit of quantity that will be used: “Is it in slices?” which the 
user confirms by clicking “Yes” in the dialog box. Next, the 
actual quantity is obtained via another dialog box: “How 
many slices should I cut?” whose value should (in this case) 
be 1. After these responses have been processed, the cook 
asks, “Where should I cut the bread?” the answer to which 
is the plate object. The final question is as follows “What 
should I use to cut with?”, and the user provides the knife 
object.  

At this time, one line of icon-based code gets added to the 
program and the cook performs the instruction. The 
animation begins with the cook moving the plate, knife and 
bread to be in front of her. She then performs a cutting 
gesture using these items. This causes a slice of bread to 
become visible on the plate. Lastly, she moves the plate 
(along with the slice), knife, and bread back to their initial 
location and stops the animation to wait for another 
instruction. 

Figure 5 depicts how the child’s physical actions tie into the 
virtual world. Every function has a number of arguments, 
each of which has an associated type. The arguments can 
either be objects (ingredients, kitchen items such as a knife 
or spatula) or primitives (integers, booleans). Depending on 
the argument type, the user either enters a value by pressing 
the Wiimote’s +/- buttons or moves the Wiimote as a 
mouse cursor to point at objects. To confirm the selection, 
the user has to “click” via the A button of the Wiimote. 

The system requires all of the arguments to be entered 
correctly; otherwise, the cook complains in the thought 
bubble used to allow the chef to “talk” to the child (as seen 
in Figure 5, items 1 and 5). For example, if the user has 
picked a tomato (of type ingredient object) when the cook 
was expecting a knife (of type kitchen item object) to cut 
with, the cook replies, “That can’t cut!”  If the user tries to 
bake a sandwich in the oven without preheating the oven 
beforehand, the cook says, “Not heated!” Successful 
completion leads the cook to perform the indicated actions, 
displayed via animation and a line of icon-based code 
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Figure 5. Usage scenario diagram for the Toque system. By 
executing steps 1 through 6 above, user finishes a single line of 

input for Toque to simultaneously convert this given 
information into an animation and icon-based representation. 

Design Iterations 
With this prototype, the team then explored various design 
directions for Toque. Half of the team played at a time with 
the interactive version of Toque. After they used the 
prototype, likes and dislikes were written on sticky notes 
(one idea per note). These notes were gathered on a white 
board and a frequency analysis was done to look for 
challenges and affordances of the system. One area that was 
of concern for the children on the team was the ability to 
point at objects using an absolute positioning system, built 
with Wiimote’s IR tracking capabilities and Wii Sensor 
Bar. Children’s hands would shake and the objects and 
buttons on the screen were not big enough for this type of 
interaction. Entering numbers by pressing Wiimote buttons 
was overwhelming. 

While this design work was occurring the other half of the 
team, who had no experience with the prototype, developed 
new design ideas for a cooking system that involved a 
Wiimote as a controller. In a low-tech prototyping session, 
the group designed add-ons and gestures for cooking 
instructions and measurements (see Figure 6). In their 
designs, all tools were attached to the Wiimote and they 

mapped each newly designed input devise with a motion 
that could be performed after the selection of the specific 
item. It seemed that the physical input device really defined 
the interaction. 

Figure 6. All Wiimote designs from the low-tech prototyping 
session. 

Modifying the Interaction 
After the design exploration was accomplished (see 
previous subsection) the following week was spent 
developing a new iteration of Toque based upon the design 
ideas that were generated for the physical input devices and 
the programming language. 

Figure 7. Additions to Wiimote and Nunchuk suggested by 
design team. 

One change that was quickly implemented was enabling the 
programmer to use the Wii Nunchuck as a mouse rather 
than using the Wiimote for that purpose. This was done 
because the Nunchuk had an analog stick which could be 
used for relative pointing. We came to understand that 
younger team members found it far too challenging to point 
at objects precisely with the Wiimote. Based on the low-
tech controller prototypes designed with the children 
(shown in Figure 6) we added utensil selection “accessory” 
extensions to the Wiimote. We attached a toy spatula, 
spoon, and knife to the Wiimote with hook-and-loop 
fasteners (see Figure 7). We expected these tools might be 
selected for use in combination with the gestures. 

As suggested, we also incorporated an extra knob 
implemented with a Phidgets rotation sensor [8] into our 
design to help users input numeric values (Figure 8). We 
also updated the software based on team-generated ideas so 
that Toque will infer measurement values and units in 
certain scenarios, such as “1 slice” being automatically 
assigned as the measurement associated with cutting 

added to the recipe displayed on the right-hand side of the 
visual environment (as previously seen in Figure 4b). Both 
the animation and icon-based representation are 
dynamically interpreted rather than being compiled and 
executed, i.e. the children neither used a compiler nor  
produced an executable. 
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Figure 8. Control knob built based on design team suggestion 
for setting numeric values (0, 1, 2, …, 498, 499, 500). 

SECOND DESIGN SESSION DIRECTIONS 
The following week this revised prototype was brought 
back to the design team to again make cheese and tomato 
sandwiches. This time the issue concerning making 
multiple sandwiches (loops) was also explored. 

In this section, we report on four of the key lessons learned. 
These lessons could also be applied to a variety of 
programming systems, not only Toque. 

“Computer, understand our intent”: The Ordering of 
Actions and Objects 
During the second session, part of the design team 
identified potential revisions to Toque’s icon-based 
language. Team members prepared a recipe to make French 
Toast using pictorial “programming cards” as part of a low-
tech prototyping session. In order to facilitate the code 
writing process a large supply of cards were prepared, each 
had either a cooking-related icon or word. There were also 
blank cards provided, on which team members could write 
their own customized keywords or draw additional “key 
pictures” not included in the existing icon library. 

As Figure 9 shows, the team members worked together and 
wrote a very detailed and structured program. Since we 
were interested in learning more about how the children 
would think about constructing a program, we encouraged 
team members think and create without being constrained 
by Toque’s language definition on a table rather than in a 
fixed structure.  

During this experience, team members became annoyed 
because utensils had to be washed every time there was a 
new instruction. Rather than waste time washing, they 
picked up another clean item each time. The model of 
cleaning utensils and reusing them was useful from the 
perspective of designing the virtual kitchen and keeping 
track of ingredients and items. However, it was not intuitive 
for the children and did not match how they would cook in 
their own kitchen. Children said they would probably not 
clean a knife that had been used during the recipe but would 
instead use another clean knife in real life. They explained 

cleaning is the last step of their meal preparation process 
and wanted to omit this final step altogether from their 
programs. Team members did not like that utensils changed 
state from clean to dirty, but they did understand the notion 
of ingredients changing states (e.g. eggs changing their state 
from “whole” to the “cracked” eggs in bowl). It was not 
simply a matter of not adapting to virtual objects changing 
states; it was that the constraints of the environment did not 
match their own real-world expectations. 

Figure 9. Children are programming French Toast recipe with 
cards to suggest revisions to the icon-based language. 

In addition, we also found issues with the syntactic ordering 
of cooking actions. To write individual programming 
instructions, members arranged icon cards and text cards. 
Different members of the design team members preferred to 
arrange cards in different ways. Some used an action-object 
ordering for which others used an object-action ordering. 
This is in contrast to the traditional single-dispatch OO 
syntax, which requires the receiver first, then the method 
name, and then arguments in a specific order. Figure 10 
presents an example of a full “line of code”. Here, the 
object whisk came before the mix action; in typical OO 
programming, mix would be a function of Cook that took a 
Whisk as an argument. In this instance, mix was treated as 
an object that determined the type of action. 

Figure 10. An example of an instruction where the object is 
prior to the action. 

When using the interactive prototype, team members also 
wanted to enter instructions using various orders for actions 
and objects. Team members would sometimes feel that 
selecting the arguments first was more intuitive than 
choosing the action so often they wanted to write an 
instruction in which they started by selecting an object. 

 ingredients. However, if the measurement is variable, the 
cook asks users to enter it (e.g. the number of degrees to 
preheat the oven). 
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and close a loop body, but in Toque, it is difficult to 
insert/modify parts of the code already executed unless 
numerous undo commands are issued or the user starts 
again from the beginning. 

Figure 11. The annotations on the printed Baked Cheese and 
Tomato Sandwich recipe to implement loops. 

Figure 12. Children “programming” a human cook to prepare 
four make-believe baked cheese and tomato sandwiches. 

The second sub-group of the team approached looping from 
a slightly different direction. As can be seen in Figure 13, 
they decided to add an argument to a function that served 
the same purpose as creating a loop. In this particular case, 
cracking two eggs were combined into a single instruction 
rather than repeating a single instruction twice. 

Since our prototype did not support interchange of 
arguments with actions, young team members were either 
confused or frustrated that their input was not accepted by 
Toque (the cook did not ask questions contrary to their 
expectations). They would try entering the same instruction 
a few more times until they were assisted by one of the 
adult partners and encouraged to think about actions first. In 
future work, we intend for all plausible orderings to be 
accepted by Toque. 

“Confusing and boring”: Loops 
One aspect the team focused on in the second session was 
the use of a loop. We asked our young design team 
members to program a recipe that would lead to making 
four baked cheese and tomato sandwiches. Toque’s initial 
implementation for iteration consists of a do-while 
construct. The Wiimote’s up button is used to open the loop 
and the down button is used to close the loop. The loop 
count could be entered either with the knob device or the 
Wiimote’s + and - buttons. To explore this concept from 
both the interface and the language perspectives, we 
divided into two subgroups. While the first sub-group of the 
team was using Toque, the second sub-group worked with 
the programming cards. The first sub-group discussed 
which instructions were related to sandwich-making and 
thus were necessary to repeat when they program in Toque. 
As can be seen in Figure 11, by drawing on the paper 
handouts and doing a little math, our young partners were 
able to decide which instructions needed to be repeated, and 
how many times. 

During iterative programming, the children in the team 
were turning their heads away from the handouts, 
concentrating on things unrelated to the task, putting very 
little effort on the math calculations, giving incorrect 
answers to questions without thinking, and expecting to 
finish before all the instructions were considered. It was far 
from easy for them even with adult guidance. Since we 
were doing low-tech prototyping, we decided to not be 
constrained by the existing Toque language. Therefore we 
shifted to live role-playing with a human cook (see Figure 
12) instead of using the live Toque system or even the icon-
based language.

The children guided the human cook to prepare four make-
believe sandwiches out of paper and plastic materials, using 
the Wiimote and the Nunchuk as props. The children told 
the cook to remember which instructions she had to learn 
(opening the loop body) so that she could repeat them once 
told to do so (closing the loop body). Within this setting, 
children appeared better able to grasp the idea of iteration. 
With the aid of the more relaxed constraints and no need for 
precision with the controls, the children were able to 
prepare their four sandwiches. When building a loop 
construct on the interactive tangible system, the children 
seemed to struggle with the start and end of a loop, and how 
many times to repeat the body. With text-based programs, it 
is easy to insert and modify previously written code to open 
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Figure 13. An example of an instruction where the loop is 
added as an argument to the function. 

This raised the possibility that loops should be able to refer 
to a block of instructions. It is possible that children might 
prefer a function that takes an ordered list of instructions 
(block) that should be repeated a number of times. This 
alternative approach to iteration is similar to how the Loop 
construct is used in the Alice programming language [2]. 
On the other hand, Hands [21] avoided iteration altogether 
by using set notation. 

“Let’s program together”: Sharing the Wiimote and 
Nunchuk 
With the addition of the use of the Nunchuk as mouse 
controller in the second session, two children working as 
partners would spontaneously share the Nunchuk and 
Wiimote while programming the loop, as shown in Figure 
13. The children explained that pairing with another person
was more comfortable than using both controllers on their
own. When one child used both, it was inconvenient to
constantly switch hands or to use only the dominant hand to
carry both. Having “enough hands” was even more of an
issue while carrying the paper handouts containing the
target recipe. Hands were not big enough to carry
everything together.

As a result of this tie between pairs of children, our young 
designers were discussing with each other about what to do 
next and how to do it. They also decided to carry the recipe 
handout based on controller use. While the pairs of children 
sometimes switched who held which controller, whoever 
was holding the Nunchuk would take and hold the recipe 
sheet in the other hand. One possible explanation for why 
they switched the handout along with controllers is that 
performing the coding gestures with the Wiimote was a 
more involved activity than pointing at objects with the 
Nunchuk. 

“I want to tell my story”: Cooking Stories over Chef 
Controls 
When a virtual chef needed more information, it would ask 
first-person questions, such as “What should I cut?” Some 
of the children on the design team quickly criticized this 
initial design choice. Instead of telling the cook what to do, 
they preferred to think of their program as a story about the 
cook. The cook had his/her own destiny, and they were just 
relating/retelling the cook’s personal story. 

When using the programming cards during brainstorming, 
this preference for story narratives became clearer. Some of 
the children added keywords for things unrelated to cooking 
such as eating the meal. One child even wanted to add rat 
poison to a French toast recipe (!) because he thought that it 
would make a more interesting story. Some of the children 

were concerned if their story was unfinished; one child 
even went back to the programming cards later, after the 
activity was over, to append a set of final instructions, such 
as to turn off the oven used by the cook and to eat the 
sandwich (as shown in Figure 14). 

Figure 14. Code appended by a child member to the end of 
French Toast recipe for turning the oven off. 

While the team was working with the programming cards, 
one of the children spontaneously began writing an English 
version of the “French Toast” program on a separate piece 
of paper (Figure 15). She indicated that she wanted to 
present the code in a more explicit storytelling style. Most 
of her verbs had an “-s” suffix (third person), which 
matches the previously indicated perspective of telling the 
cook’s story. Storytelling Alice [13] has been similarly well 
received by children, who want to tell stories with 
computing, and in future Toque prototypes, we should 
adhere to their design criteria. 

Figure 15. French Toast program in verbal English written by 
a young design team member. 

We asked two of our child team members how they 
compared programming with Toque as opposed to sitting in 
their school classes. Both children replied that math was 
boring, but that cooking was fun! Later in the week we 
asked all of the children whether they had ever done any 
computer programming. With the exception of one child, 
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such as blocks. Alternatively, in a storytelling setting it may 
make more sense to replace iteration with concurrency. 

Flexible Ordering of Actions and Objects 
While most programming languages impose a strict 
ordering for objects and actions, we found that in our 
design sessions the children used a variety of orders. 
Research by Pane et al. [22] confirms this; in their work, 
novices writing instructions to make a game would write 
instruction components in various orders. Some children 
assumed that an object knows how to behave (a typical OO 
design); an example is the instruction the ghost will turn 
colors. However, others used a more imperative ordering, 
e.g., change the ghosts from original color to blue.

With our design team, instead of expressing an instruction 
to whisk eggs, cook mixes the eggs with whisk, children felt 
that cook uses the whisk to mix eggs was more natural. 
Other ways of conveying the same idea include cook makes 
the eggs by mixing with whisk, eggs get mixed by the cook 
using whisk, or whisk does mixing of the eggs for cook. All 
these forms emphasize a different locus of behavioral 
control, but the meaning of all of them is the same to 
children. As discussed in our formal language specification 
[25], our attempts to formally define a precise but complete 
cooking domain highly constrained our language (including 
the action/object issues). Our child co-designers also did 
not seem to try to use it in a way outside the scope 
envisioned in our specification. 

CONCLUSION 
In this paper, we discussed our intergenerational design 
process, which supported the iterative development of a 
visual and physical programming experience for children. 
As a result, we came to understand the importance of pair 
programming with the Wiimote and Nunchuck, an order-
independent view to function-argument relationships, and a 
storytelling approach to programming. In our sessions, 
while searching for tangible ways to create an engaging 
programming environment to teach computational thinking 
to young children, we found many similarities in the history 
of visual systems for the same purpose. Because the 
introduction of physical systems have been recent and have 
not been extensively explored, we invite future researchers 
working in the area of tangible systems to consider visual 
programming languages. 

In future work, we will expand the capabilities of the Toque 
prototype to support multiple cooks (threads), recipes with 
branches, flexible orderings for objects and actions, and 
extended storytelling support. Empirically, we would like to 
compare “tangible solo programming” to “tangible pair 
programming” and the orderings of objects and actions that 
children actually use. 
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they said that they had not. We take this to mean that they 
did not consider their experience with Toque as 
programming. This could prove to be a useful perception, 
since from previous conversations they thought 
programming (whatever it was) was boring. It could be that 
because none of the children had prior programming 
experience, they did not generally recognize or identify 
their work in Toque as programming even though they 
wrote and/or implemented very detailed instructions 
throughout both design sessions. 

LESSONS LEARNED FOR FUTURE DESIGN 
In this section, we discuss some general implications of our 
results and relate them to existing work. This discussion 
suggests design guidelines for those who work on 
programming systems similar to Toque. 

Pair Programming with Wiimote and Nunchuck 
A pair of children sharing the Wiimote and Nunchuk 
provides a convenient way to support collaboration 
naturally. In this children’s version of Pair Programming 
(PP), the Wiimote holder is the driver and the Nunchuck 
holder is the (recipe directions) navigator. In our design 
sessions when the children were exploring the 
programming tools, we found that the children naturally 
whispered among each other, they thought aloud, and 
decided together about the next instruction to execute, and 
corrected the partner’s errors. Occasionally, children 
switched roles by changing the controllers (along with the 
paper handout). How the children naturally explored the 
programming environment confirmed the literature on the 
PP model and how effective it is for novice student 
programmers in introductory programming courses [17,28].  

Complexity for Children: Iteration versus Concurrency 
Although iteration is an essential construct in programming, 
our young designers had trouble with the design of loops. 
Pane et al. [22] found that children tend to describe iteration 
as operations on sets of objects. We found that this 
generalized to programming a virtual chef to cook. 

Because the children in our team found loops “boring,” we 
asked their opinions about what they would add to our 
system to make it more exciting. Their first suggestion was 
adding more cooks. They could quickly comprehend the 
differences and similarities between each cook preparing 
different dishes and all cooks collaborating on a single dish, 
although it was not implemented in the Toque prototype 
and was never mentioned throughout the sessions. These 
are means for concurrent programming, and so another 
possibility is that children prefer parallelism to iteration, 
which is the same finding that Pane found in his study. 

Our young design team members preferred a third-person, 
storytelling perspective. However, researchers found fewer 
loops in Storytelling Alice programs than regular Alice 
programs [13]. Given our experience, we propose that the 
loop construct is not well matched to storytelling, but that 
iteration may still be possible by using a different approach 
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