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Abstract

In this paper we develop a unified approach for solving a wide class of sequential
selection problems. This class includes, but is not limited to, selection problems with
no–information, rank–dependent rewards, and considers both fixed as well as random
problem horizons. The proposed framework is based on a reduction of the original
selection problem to one of optimal stopping for a sequence of judiciously constructed
independent random variables. We demonstrate that our approach allows exact and
efficient computation of optimal policies and various performance metrics thereof for a
variety of sequential selection problems, several of which have not been solved to date.
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1 Introduction

In sequential selection problems a decision maker examines a sequence of observations
which appear in random order over some horizon. Each observation can be either accepted
or rejected, and these decisions are irrevocable. The objective is to select an element in
this sequence to optimize a given criterion. A classical example is the so-called secretary
problem in which the objective is to maximize the probability of selecting the element of
the sequence that ranks highest. The existing literature contains numerous settings and
formulations of such problems, see, e.g., Gilbert and Mosteller (1966), Freeman (1983),
Berezovsky & Gnedin (1984), Ferguson (1989), Samuels (1991) and Ferguson (2008); to
make more concrete connections we defer further references to the subsequent section where
we formulate the class of problems more precisely.

Sequential selection problems are typically solved using the principles of dynamic pro-
gramming, relying heavily on structure that is problem-specific, and focusing on theoretical
properties of the optimal solution; cf. Gilbert and Mosteller (1966), Berezovsky & Gnedin
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(1984) and Ferguson (2008). Consequently, it has become increasingly difficult to discern
commonalities among the multitude of problem variants and their solutions. Moreover, the
resulting optimal policies are often viewed as difficult to implement, and focus is placed
on deriving sub–optimal policies and various asymptotic approximations; see, e.g., Mucci
(1973), Frank & Samuels (1980), Krieger & Samuel-Cahn (2009), and Arlotto & Gurvich
(2018), among many others.

In this paper we demonstrate that a wide class of such problems can be solved optimally
and in a unified manner. This class includes, but is not limited to, sequential selection
problems with no–information, rank–dependent rewards and allows for fixed or random
horizons. The proposed solution methodology covers both problems that have been worked
out in the literature, albeit in an instance-specific manner, as well as several problems
whose solution to the best of our knowledge is not known to date. We refer to Section 2
for details. The unified framework we develop is based on the fact that various sequential
selection problems can be reduced, via a conditioning argument, to a problem of optimal
stopping for a sequence of independent random variables that are constructed in a special
way. The latter is an instance of a more general class of problems, referred to as sequential
stochastic assignments, first formulated and solved by Derman, Lieberman & Ross (1972)
(some extensions are given in Albright (1972)). The main idea of the proposed framework
was briefly sketched in Goldenshluger and Zeevi (2018, Section 4); in this paper it is fully
fleshed and adapted to the range of problems alluded to above.

The approach we take is operational, insofar as it supports exact and efficient compu-
tation of the optimal policies and corresponding optimal values, as well as various other
performance metrics. In the words of Robbins (1970), we “put the problem on a computer.”
Optimal stopping rules that result from our approach belong to the class of memoryless
threshold policies and hence have a relatively simple structure. In particular, the proposed
reduction constructs a new sequence of independent random variables, and the optimal rule
is to stop the first time instant when the current “observation” exceeds a given thresh-
old. The threshold computation is predicated on the structure of the policy in sequential
stochastic assignment problems a lá Derman, Lieberman & Ross (1972) and Albright (1972)
(as part of the so pursued unification, these problems are also extended in the present pa-
per to the case of a random time horizon). The structure of the optimal stopping rule we
derive allows us to explicitly compute probabilistic characteristics and various performance
metrics of the stopping time, which, outside of special cases, are completely absent from
the literature.

The rest of the paper is structured as follows. Section 2 provides the formulation
for the various problem instances that are covered by the proposed unified framework.
Section 3 describes the class of stochastic sequential selection problems first formulated in
Derman, Lieberman & Ross (1972) that are central to our solution approach. Section 4
formulates the auxiliary stopping problem, and explains its solution via the mapping to
a stochastic assignment problem. It then explains the details of the reduction and the
structure of the algorithm that implements our proposed stopping rule. Section 5 presents
the implementation of said algorithm to the various sequential selection problems surveyed
in Secton 2. We close with a few concluding remarks in Section 6.
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2 Sequential selection problems

Let us introduce some notation and terminology. Let X1,X2, . . . be an infinite sequence of
independent identically distributed continuous random variables defined on a probability
space (Ω,F ,P). Let Rt be the relative rank of Xt and At,n be the absolute rank of Xt

among the first n observations (which we also refer to as the problem horizon):

Rt :=

t
∑

j=1

1(Xt ≤ Xj), At,n :=

n
∑

j=1

1(Xt ≤ Xj), t = 1, . . . , n.

Note that with this notation the largest observation has the absolute rank one, and
Rt = At,t for any t. Let Rt := σ(R1, . . . , Rt) and Xt := σ(X1, . . . ,Xt) denote the σ–
fields generated by R1, . . . , Rt and X1, . . . ,Xt, respectively; R = (Rt, 1 ≤ t ≤ n) and
X = (Xt, 1 ≤ t ≤ n) are the corresponding filtrations. In general, the class of all stopping
times of a filtration Y = (Yt, 1 ≤ t ≤ n) will be denoted T (Y ); i.e., τ ∈ T (Y ) if
{τ = t} ∈ Yt for all 1 ≤ t ≤ n.

Sequential selection problems are classified according to the information available to the
decision maker and the structure of the reward function. The settings in which only relative
ranks {Rt} are observed are usually referred to as no–information problems, whereas full
information refers to the case when random variables {Xt} are available.

In this paper we mainly consider the class of problems with no–information and rank–
dependent reward. The prototypical sequential selection problem with no–information and
rank–dependent reward is formulated as follows; see, e.g., Gnedin & Krengel (1996).

Problem (A1). Let n be a fixed positive integer, and let q : {1, 2, . . . , n} → R

be a reward function. The average reward of a stopping rule τ ∈ T (R) is

Vn(q; τ) := Eq
(

Aτ,n

)

,

and we want to find the rule τ∗ ∈ T (R) such that

V ∗
n (q) := max

τ∈T (R)
Vn(q; τ) = Eq

(

Aτ∗,n

)

.

We are naturally also interested in the computation of the optimal value V ∗
n (q).

Depending on the reward function q we distinguish among the following types of se-
quential selection problems.

Best–choice problems. The settings in which the reward function is an indicator are
usually referred to as best–choice stopping problems. Of special note are the following.

(P1). Classical secretary problem corresponds to the case q(a) = qcsp(a) := 1{a = 1}.
Here we want to maximize the probability P{Aτ,n = 1} of selecting the best alternative
over all stopping times τ from T (R). It is well known that the optimal policy will pass
on approximately the first n/e observations and select the first subsequent to that which
is superior than all previous ones, if such an observation exists; otherwise the last element
in the sequence is selected. The limiting optimal value is limn→∞ V ∗

n (qcsp) = 1/e (Dynkin
1963, Gilbert and Mosteller 1966). We refer to Ferguson (1989) where the history of this
problem is reviewed in detail.
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(P2). Selecting one of the k best values. The problem is usually referred to as the Gusein–

Zade stopping problem (Gusein–Zade 1966, Frank & Samuels 1980). Here q(a) = q
(k)
gz (a) :=

1{a ≤ k}, and the problem is to maximize P{Aτ,n ≤ k} with respect to τ ∈ T (R). The
optimal policy was characterized in Gusein–Zade (1966). It is determined by k natural
numbers 1 ≤ π1 ≤ · · · ≤ πk and proceeds as follows: pass the first π1 − 1 observations and
among the subsequent π1, π1 +1, . . . , π2 − 1 choose the first best observation; if it does not
exists then among the set of observations π2, π2+1, . . . , π3−1 choose one of the two best, etc.
Gusein–Zade (1966) studied the limiting behavior of the numbers π1, . . . , πk as the problem

horizon grows large, and showed that limn→∞ V ∗
n (q

(2)
gz ) ≈ 0.574. Exact results for the case

k = 3 are given in Quine & Law (1996). The above optimal policy requires determination
of π1, . . . , πk which is computationally challenging for general k > 3 and general n; exact

values of V ∗
n

(

q
(k)
gz

)

are not reported in the literature. Based on general asymptotic results of

Mucci (1973), Frank & Samuels (1980) computed numerically limn→∞ V ∗
n

(

q
(k)
gz

)

for a range
of different values of k. The recent paper Dietz et al. (2011) studies some approximate
policies.

(P3). Selecting the kth best alternative. In this problem q(a) = q
(k)
pd (a) := 1{a = k}, i.e.

we want to maximize the probability of selecting the kth best candidate. The problem was
explicitly solved for k = 2 by Rose (1982a) and Vanderbei (2012); the last paper coined
the name the postdoc problem for this setting. The optimal policy for k = 2 is to reject
first ⌊n/2⌋ observations and then select the one which is the second best relative to this
previous observation set, if it exits; otherwise the last element in the sequence is selected.

The optimal value is V ∗
n (q

(2)
pd ) = (n+ 1)/4n. An optimal stopping rule for the case k = 3

and some results on the optimal value were reported recently in Lin et al. (2016). We are
not aware of results on the optimal policy and exact computation of the optimal values
for general n and k. Recently approximate policies were developed in Bruss & Louchard
(2016). The problem of selecting the median value k = (n + 1)/2, where n is odd, was

considered in Rose (1982b). It is shown there that limn→∞ V ∗
n (q

((n+1)/2)
pd ) = 0.

Expected rank type problems. To this category we attribute problems with reward q
which is not an indicator function.

(P4). Minimization of the expected rank. In this problem the goal is to minimize EAτ,n

with respect to τ ∈ T (R). If we put q(a) = qer(a) := −a then

min
τ∈T (R)

EAτ,n = − max
τ∈T (R)

E qer(Aτ,n). (1)

This problem was discussed heuristically by Lindley (1961) and solved by Chow et al.
(1964). It was shown there that limn→∞minτ∈T (R) EAτ,n =

∏∞
j=1(1 +

2
j )

1/(j+1) ≈ 3.8695.
The corresponding optimal stopping rule is given by backward induction relations. A
simple suboptimal stopping rule which is close to the optimal one was proposed in Krieger
& Samuel-Cahn (2009).

(P5). Minimization of the expected squared rank. Based on Chow et al. (1964), Robbins
(1991) developed the optimal policy and computed the asymptotic optimal value in the
problem of minimization of E[Aτ,n(Aτ,n + 1) · · · (Aτ,n + k − 1)] with respect to τ ∈ T (R).
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In particular, he showed that for the optimal stopping rule τ∗

lim
n→∞

E[Aτ∗,n(Aτ∗,n + 1) · · · (Aτ∗,n + k − 1)] = k!

{ ∞
∏

j=1

(

1 +
k + 1

j

)1/(k+j)}k

.

Robbins (1991) also discussed the problem of minimization of EA2
τ,n over τ ∈ T (R) and

mentioned that the optimal stopping rule and optimal value are unknown. As we will
demonstrate below, optimal policies for any problem of this type can be easily derived, and
the corresponding optimal values are straightforwardly calculated for any fixed n.

Problems with a random horizon. The standard assumption in sequential selection
problems is that the problem horizon n is fixed beforehand, and optimal policies depend
critically on this assumption. However, in practical situations n may be unknown. This
fact motivates settings in which n is assumed to be a random variable independent of the
observations. A general sequential selection problem with no–information, rank–dependent
reward and random horizon can be formulated as follows.

Problem (A2). Let N be a positive integer random variable with distribu-
tion γ = {γk}, γk = P(N = k), k = 1, 2, . . . , Nmax, where Nmax may be
infinite. Assume that N is independent of the sequence {Xt, t ≥ 1}. Let
q : {1, 2, . . . , Nmax} → R be a reward function, and let the reward for stop-
ping at time t be q(At,N ) provided that N ≥ t. The performance of a stopping
rule τ ∈ T (R) is measured by

Vγ(q; τ) := E
[

q(Aτ,N )1(τ ≤ N)
]

.

We want to find the stopping rule τ∗ ∈ T (R) such that

V ∗
γ (q) := max

τ∈T (R)
Vγ(q; τ) = Vγ(q; τ∗).

We are also interested in computation of the optimal value V ∗
γ (q).

The problems (P1)–(P5) discussed above can be all considered under the assumption
that the observation horizon is random. Below we discuss the following two problem in-
stances.

(P6). Classical secretary problem with random horizon. The classical secretary problem
with random horizon N was studied in Presman and Sonin (1972). In Problem (P1) where
n is fixed, the stopping region is an interval of the form {kn, . . . , n} for some integer kn.
In contrast to (P1), Presman and Sonin (1972) show that for general distributions of N
the optimal policy can involve “islands,” i.e., the stopping region can be a union of several
disjoint intervals (“islands”). The paper derives some sufficient conditions under which the
stopping region is a single interval and presents specific examples satisfying these conditions.
In particular, it is shown that in the case of the uniform distribution on {1, . . . , Nmax}, i.e.,
γk = 1/Nmax, k = 1, . . . , Nmax, the stopping region is of the form {kNmax , . . . , Nmax} with
kNmax/Nmax → 2e−2, Vγ(qcsp) → 2e−2 as Nmax → ∞. The characterization of optimal
policies for general distributions of N is not available in the existing literature.
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(P7). Minimization of the expected rank over a random horizon. Consider a variant of
Problem (P4) under the assumption that the horizon is a random variable N with known
distribution. In this setting the loss (the negative reward) for stopping at time t is the
absolute rank At,N on the event {N ≥ t}; otherwise, the absolute rank of the last available
observation AN,N = RN is received. We want to minimize the expected loss over all stopping
rules τ ∈ T (R). This problem has been considered in Gianini-Pettitt (1979). In particular,
it was shown there that if N is uniformly distributed over {1, . . . , Nmax} then the expected
loss tends to infinity as Nmax → ∞. On the other hand, for distributions which are more
“concentrated” around Nmax, the optimal value coincides asymptotically with the one for
Problem (P4). Below we demonstrate that this problem can be naturally formulated and
solved for general distributions of N using our proposed unifying framework; the details
are given in Section 5.

Multiple choice problems. The proposed framework is also applicable for some multiple
choice problems. We review some of these settings below.

(P8). Maximizing the probability of selecting the best observation with k choices. Assume
that one can make k selections, and the reward function equals one if the best observation
belongs to the selected subset and zero otherwise. Formally, the problem is to maximize
the probability P(∪k

j=1{Aτj = 1}) over stopping times τ1 < · · · < τk from T (R). This
problem has been considered in Gilbert and Mosteller (1966) who gave numerical results
for up to k = 8; see also Haggstrom (1967) for theoretical results for k = 2.

(P9). Minimization of the expected average rank. Assume that k choices are possible,
and the goal is to minimize the expected average rank of the selected subset. Formally,
the problem is to minimize 1

kE
∑k

j=1Aτj over stopping times τ1 < · · · < τk of T (R). For
related results we refer to Ajtai et al. (2001), Krieger et al. (2008), Krieger et al. (2007)
and Nikolaev & Sofronov (2007).

Miscellaneous problems. The proposed framework extends beyond problems with rank–
dependent rewards and no–information. The next two problem instances demonstrate such
extensions.

(P10). Moser’s problem with random horizon. Let {Xt, t ≥ 1} is a sequence of indepen-
dent identically distributed random variables with distribution G and expectation µ. Let
N be a positive integer-valued random variable with distribution {γk}, γk = P(N = k),
k = 1, 2, . . . , Nmax, where Nmax < ∞.Assume that N is independent of the sequence
{Xt, t ≥ 1}. We observe the sequence X1,X2, . . ., and the reward for stopping at time
t is Xt provided that t ≤ N ; otherwise the reward is XN . Formally, we want to maximize

E
[

Xτ1(τ ≤ N) +XN1{τ > N}
]

.

with respect to all stopping times τ of filtration X . The formulation with fixed N = n and
uniformly distributed Xt’s on [0, 1] corresponds to the classical problem of Moser (1956).

(P11). Bruss’ Odds–Theorem. Bruss (2000) considered the following optimal stopping
problem. Let Z1, . . . , Zn be independent Benoulli random variables with success probabili-
ties p1, . . . , pn respectively. We observe Z1, Z2, . . . sequentially and want to stop at the time
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of the last success, i.e., the problem is to find a stopping time τ ∈ T (Z ) so as the proba-
bility P(Zτ = 1, Zτ+1 = Zτ+2 = · · · = Zn = 0) is maximized. Odds–Theorem (Bruss 2000,
Theorem 1) states that it is optimal to stop at the first time instance t such that

Zt = 1 and t ≥ t∗ := sup

{

1, sup
{

k = 1, . . . , n :
n
∑

j=k

pj
qj

≥ 1
}

}

,

with qj := 1 − pj and sup{∅} = −∞. This statement has been used in various settings
for finding optimal stopping policies. In what follows we will demonstrate that Bruss’
Odds–Theorem can be easily derived using the proposed framework.

3 Sequential stochastic assignment problems

The unified framework we propose leverages the sequential assignment model toward the
solution of the problems presented in Section 2. In this section we consider two formula-
tions of the stochastic sequential assignment problem: the first is the classical formulation
introduced by Derman, Lieberman & Ross (1972), while the second one is an extension for
random horizon.

3.1 Sequential assignment problem with fixed horizon

The formulation below follows the terminology used by Derman, Lieberman & Ross (1972).
Suppose that n jobs arrive sequentially in time, referring henceforth to the latter as the
problem horizon. The tth job, 1 ≤ t ≤ n, is identified with a random variable Yt which is
observed. The jobs must be assigned to n persons which have known “values” p1, . . . , pn.
Exactly one job should be assigned to each person, and after the assignment the person
becomes unavailable for the next jobs. If the tth job is assigned to the jth person then a
reward of pjYt is obtained. The goal is to maximize the expected total reward.

Formally, assume that Y1, . . . , Yn are integrable independent random variables defined
on probability space (Ω,F ,P), and let Ft be the distribution function of Yt for each t. Let
Yt denote the σ–field generated by (Y1, . . . , Yt): Yt = σ(Y1, . . . , Yt), 1 ≤ t ≤ n. Suppose
that π = (π1, . . . , πn) is a random permutation of {1, . . . , n} defined on (Ω,F ). We say
that π is an assignment policy (or simply policy) if {πt = j} ∈ Yt for every 1 ≤ j ≤ n
and 1 ≤ t ≤ n. That is, π is a policy if it is non–anticipating relative to the filtration
Y = {Yt, 1 ≤ t ≤ n} so that tth job is assigned on the basis of information in Yt. Denote
by Π(Y ) the set of all policies associated with the filtration Y = {Yt, 1 ≤ t ≤ n}.

Now consider the following sequential assignment problem.

Problem (AP1). Given a vector p = (p1, . . . , pn), with p1 ≤ p2 ≤ · · · ≤ pn, we
want to maximize the total expected reward Sn(π) := E

∑n
t=1 pπtYt with respect

to π ∈ Π(Y ). The policy π∗ is called optimal if Sn(π
∗) = supπ∈Π(Y ) Sn(π).

In the sequel the following representation will be useful

n
∑

t=1

pπtYt =
n
∑

t=1

n
∑

j=1

pjYt1{πt = j} =
n
∑

j=1

pjYνj ;

7



here the random variables νj ∈ {1, . . . , n}, j = 1, . . . , n are given by the one-to-one corre-
spondence {νj = t} = {πt = j}, 1 ≤ t ≤ n, 1 ≤ j ≤ n. In words, νj denotes the index of
the job to which the jth person is assigned.

The structure of the optimal policy is given by the following statement.

Theorem 1 (Derman, Lieberman & Ross (1972)) Consider Problem (AP1) with hori-
zon n. There exist real numbers {aj,n}

n
j=0,

−∞ ≡ a0,n ≤ a1,n ≤ · · · ≤ an−1,n ≤ an,n ≡ ∞

such that on the first step, when random variable Y1 distributed F1 is observed, the optimal
policy is π∗

1 =
∑n

j=1 j1{Y1 ∈ (aj−1,n, aj,n]}. The numbers {aj,n}nj=1 do not depend on
p1, . . . , pn and are determined by the following recursive relationship

aj,n+1 =

∫ aj,n

aj−1,n

zdF1(z) + aj−1,nF1(aj−1,n) + aj,n[1− F1(aj,n)], j = 1, . . . , n,

where −∞ · 0 and ∞ · 0 are defined to be 0. At the end of the first stage the assigned p
is removed from the feasible set and the process repeats with the next observation, where
the above calculation is then performed relative to the distribution F2 and so on. Note that
aj,n+1 = EYνj , ∀1 ≤ j ≤ n, i.e., aj,n+1 is the expected value of the job which is assigned to
the jth person.

3.2 Stochastic sequential assignment problems with random horizon

In practical situations the horizon, or number of available jobs, n is often unknown. Under
these circumstances the optimal policy of Derman, Lieberman & Ross (1972) is not appli-
cable. This fact provides motivation for the setting with random number of jobs. Nikolaev
& Jacobson (2010) considered the sequential assignment problem with a random horizon.
They show that the optimal solution to the problem with random horizon can be derived
from the solution to an auxiliary assignment problem with dependent job sizes. Here we
demonstrate that the problem with random horizon is in fact equivalent to a certain version
of the sequential assignment problem with fixed horizon and independent job sizes.

Problem (AP2). Let N be a positive integer-valued random variable with
distribution γ = {γk}, γk = P(N = k), k = 1, . . . , Nmax, where Nmax can
be infinite. Let Y1, Y2, . . . be an infinite sequence of integrable independent
random variables with distributions F1, F2, . . ., independent of N . Given real
numbers p1 ≤ . . . ≤ pNmax the objective is to maximize the expected total
reward Sγ(π) = E

∑N
t=1 pπtYt over all policies π ∈ Π(Y ).

In the following statement we show that Problem (AP2) is equivalent to a version of
the standard sequential assignment problem with fixed horizon.

Theorem 2 In Problem (AP2) assume that Nmax < ∞ and let Ỹt := Yt
∑Nmax

k=t γk, t =

1, . . . , Nmax. For any π ∈ Π(Y ) one has Sγ(π) = E
∑Nmax

t=1 pπt Ỹt, and the optimal policy
in Problem (AP2) coincides with the optimal policy in Problem (AP1) associated with fixed
horizon n = Nmax and job sizes Ỹ1, . . . , ỸNmax .

8



Proof : For any π ∈ Π(Y ) we have Sγ(π) = E
∑N

t=1 pπtYt =
∑Nmax

t=1 E[pπtYt1(N ≥ t)], and

E[pπtYt1(N ≥ t)] = E

Nmax
∑

k=t

E
{

[pπtYt1(N = k)] |Yt

}

= E
{

pπtYt

Nmax
∑

k=t

γk

}

,

where we have used the fact that πt is Yt–measurable, andN is independent of Yt. Therefore
E
∑N

t=1 pπtYt = E
∑Nmax

t=1 pπtỸt. Note that Ỹt are independent random variables, and σ-fields
Ỹt and Yt are identical. This implies the stated result.

Remark 1 To the best of our knowledge, the relation between Problems (AP2) and (AP1)
established in Theorem 2 is new. It is worth noting that Nikolaev & Jacobson (2010)
developed an optimal policy by reduction of the problem to an auxiliary one with dependent
random variables. In contrast, Theorem 2 shows that the problem with random number of
jobs is equivalent to the standard sequential assignment problem with independent random
variables which is solved by the procedure of Derman, Lieberman & Ross (1972).

Remark 2 In Theorem 2 we assume that Nmax is finite. Under suitable assumptions on
the weights {pj} and jobs sizes {Yt} one can construct ǫ–optimal policies for the problem
with infinite Nmax. However, we do not pursue this direction here.

4 A unified approach for solving sequential selection prob-

lems

4.1 An auxiliary optimal stopping problem

Consider the following auxiliary problem of optimal stopping.

Problem (B). Let Y1, . . . , Yn be a sequence of integrable independent real-
valued random variables with corresponding distributions F1, . . . , Fn. For a
stopping rule τ ∈ T (Y ) define Wn(τ) := EYτ . The objective is to find the
stopping rule τ∗ ∈ T (Y ) such that

W ∗
n := max

τ∈T (Y )
EYτ = Wn(τ∗) = EYτ∗ .

Problem (B) is a specific case of the stochastic sequential assignment problem of Der-
man, Lieberman & Ross (1972), and Theorem 1 has immediate implications for Prob-
lem (B). The following statement is a straightforward consequence of Theorem 1.

Corollary 1 Consider Problem (B). Let {bt, t ≥ 1} be the sequence of real numbers defined
recursively by

b1 = −∞, b2 = EYn,

bt+1 =

∫ ∞

bt

zdFn−t+1(z) + btFn−t+1(bt), t = 2, . . . , n. (2)

Let
τ∗ = min{1 ≤ t ≤ n : Yt > bn−t+1}; (3)

then
W ∗

n = EYτ∗ = max
τ∈T (Y )

EYτ = bn+1.

9



Proof : The integral in (2) is finite because the random variables Y1, . . . , Yn are integrable.
Consider Problem (AP1) with p = (0, . . . , 0, 1). By Theorem 1, at step t the optimal policy
assigns value pn to the job Yt only if Yt > an−t,n−t+1, t = 1, . . . , n, and

an−t,n−t+1 =

∫ ∞

an−t−1,n−t

zdFt+1(z) + an−t−1,n−tFt+1(an−t−1,n−t).

Setting bt := at−1,t, and noting that b1 = −∞, b2 =
∫∞

−∞
zdFn(z), we come to the required

statement.

4.2 Reduction to the auxiliary stopping problem

Problems (A1) and (A2) of Section 2 can be reduced to the optimal stopping of a sequence
of independent random variables [Problem (B)]. In order to demonstrate this relationship
we use well known properties of the relative and absolute ranks. These properties are briefly
recalled in the next paragraph.

Let An := (A1,n, . . . , An,n), and let An denote then set of all permutations of {1, . . . , n};
then P(An = A) = 1/n! for all A ∈ An and all n. The random variables {Rt, t ≥ 1} are
independent, and P(Rt = r) = 1/t for all r = 1, . . . , t. For any n and t = 1, . . . , n

P(At,n = a|R1 = r1, . . . , Rt = rt) = P(At = a|Rt = rt), (4)

and

P(At,n = a|Rt = r) =

(a−1
r−1

)(n−a
t−r

)

(n
t

) , r ≤ a ≤ n− t+ r. (5)

Now we are in a position to establish a relationship between Problems (A1) and (B).

Fixed horizon. Let

It,n(r) :=

n−t+r
∑

a=r

q(a)

(a−1
r−1

)(n−a
t−r

)

(n
t

) , r = 1, . . . , t. (6)

It follows from (5) that It,n(Rt) = E{q(At,n) |Rt}. Define

Yt := It,n(Rt), t = 1, . . . , n. (7)

By independence of the relative ranks, {Yt} is a sequence of independent random variables.
The relationship between stopping problems (A1) and (B) is given in the next theorem.

Theorem 3 The optimal stopping rule τ∗ solving Problem (B) with random variables {Yt}
given in (6)–(7) also solves Problem (A1):

Vn(q; τ∗) = max
τ∈T (R)

Eq(Aτ,n) = max
τ∈T (Y )

EYτ = Wn(τ∗).

10



Proof : First we note that for any stopping rule τ ∈ T (R) one has Eq(Aτ,n) = EYτ , where
Yt := E[q(At,n)|Rt]. Indeed,

Eq(Aτ ) =

n
∑

k=1

Eq(Aτ )1{τ = k} =

n
∑

k=1

Eq(Ak)1{τ = k}

=

n
∑

k=1

E
[

1{τ = k}E{q(Ak)|Rk}
]

=

n
∑

k=1

E[1{τ = k}Yk] = EYτ ,

where we have used the fact that {τ = k} ∈ Rk. This implies that maxτ∈T (R) Eq(Aτ,n) =
maxτ∈T (R) EYτ . To prove the theorem it suffices to show only that

max
τ∈T (R)

EYτ = max
τ∈T (Y )

EYτ . (8)

Clearly,
Yt ⊂ Rt, ∀1 ≤ t ≤ n, (9)

Because R1, . . . , Rn are independent random variables, and Yt = It,n(Rt), ∀t we have that
for any s, t ∈ {1, . . . , n} with s < t

P{Gt |Ys} = P{Gt |Rs}, ∀Gt ∈ Yt. (10)

The statement (8) follows from (9), (10) and Theorem 5.3 of Chow et al. (1971). In fact,
(8) is a consequence of the well known fact that randomization does not increase rewards
in stopping problems (Chow et al. 1971, Chapter 5). This concludes the proof.

It follows from Theorem 3 that the optimal stopping rule in Problem (A1) is given by
Corollary 1 with random variables {Yt} defined by (7). To implement the rule we need
to compute the distributions {Ft} of the random variables {Yt} and to apply formulas (2)
and (3).

Random horizon. Next, we establish a correspondence between Problems (A2) and (B).
Let

Jt(r) :=

Nmax
∑

k=t

γkIt,k(r), r = 1, . . . , t. (11)

where It,k(·) is given in (6), and γk = P(N = k). Below in the proof of Theorem 4 we show
that

Jt(r) = E
{

q(At,N )1{N ≥ t}|R1 = r1, . . . , Rt−1 = rt−1, Rt = r
}

.

Define also

Yt := Jt(Rt) =

Nmax
∑

k=t

γkIt,k(Rt), t = 1, . . . , Nmax. (12)

Theorem 4

(i) Let Nmax < ∞; then the optimal stopping rule τ∗ solving Problem (B) with fixed
horizon Nmax and random variables {Yt} given in (11)–(12) provides the optimal
solution to Problem (A2):

V ∗
γ (q) = max

τ∈T (R)
Vγ(q; τ) = max

τ∈T (Y )
EYτ = WNmax(τ

∗).

11



(ii) Let Nmax = ∞ and assume that

sup
t

max
1≤r≤t

∞
∑

k=t

γk|It,k(r)| < ∞. (13)

Let ǫ > 0 be arbitrary; then there exists Ñmax = Ñmax(ǫ) such that for any stopping
rule τ ∈ T (R) one has

WÑmax
(τ)− ǫ ≤ Vγ(q; τ) ≤ WÑmax

(τ) + ǫ. (14)

In particular, the optimal stopping rule τ∗ solving Problem (B) with fixed horizon
Ñmax = Ñmax(ǫ) and {Yt} given (11)–(12) is an ǫ–optimal stopping rule for Prob-
lem (A2):

WÑmax
(τ∗)− ǫ ≤ V ∗

γ (q) ≤ WÑmax
(τ∗) + ǫ (15)

Proof : (i). In Problem (A2) the reward for stopping at time t is q̃(At,N ) = q(At,N )1{N ≥ t}.
The expectation of the reward conditional on the observations R1, . . . , Rt until time t is

E{q(At,N )1{N ≥ t} |R1 = r1, . . . , Rt−1 = rt−1, Rt = r}

=

Nmax
∑

k=t

E
{

q(At,N )1{N = k} |R1 = r1, . . . , Rt−1 = rt−1, Rt = r
}

=

Nmax
∑

k=t

E
{

1{N = k)}E
[

q(At,k) |N = k,Rt = r
]}

=
Nmax
∑

k=t

γk

k−t+r
∑

a=r

q(a)

(a−1
r−1

)(k−a
t−r

)

(

k
t

) =
Nmax
∑

k=t

γkIt,k(r) =: Jt(r). (16)

where we have used (4) and (5) with fixed horizon N = k, and independence of N and
{Rt}. Together with (12) this implies that Eq̃(Aτ,N ) = EJτ (Rτ ) = EYτ for any τ ∈ T (R).
The remainder of the proof proceeds along the lines of the proof of Theorem 3.

(ii). Let Ñmax = Ñmax(ǫ) be the minimal integer number such that

sup
t

max
1≤r≤t

∞
∑

k=Ñmax+1

γk|It,k(r)| ≤ ǫ. (17)

The existence of Ñmax(ǫ) follows from (13). In view of (16) and (17) for any stopping rule
τ ∈ T (R) we have Vγ(q; τ) = E

∑∞
k=τ γkIτ,k(Rτ ), and

E

Ñmax
∑

k=τ

γkIτ,k(Rτ )− ǫ ≤ Vγ(q; τ) ≤ E

Ñmax
∑

k=τ

γkIτ,k(Rτ ) + ǫ.

This implies (14). In order to prove (15) we note that if τ̃ is the optimal stopping rule in
Problem (A2) then by (14) and definition of τ∗

Vγ(q; τ̃ ) = V ∗
γ (q) ≤ WÑmax

(τ̃ ) + ǫ ≤ WÑmax
(τ∗) + ǫ,

12



which proves the upper bound in (15). On the other hand, in view of (14)

V ∗
γ (q) = Vγ(q; τ̃ ) ≥ Vγ(q; τ∗) ≥ WÑmax

(τ∗)− ǫ.

This concludes the proof.

Remark 3 Condition (13) imposes restrictions on the tail of the distribution of N . It can
be easily verified in any concrete setting; for details see Section 5.

Remark 4 Theorems 3 and 4 imply that solution of Problems (A1) and (A2) can be ob-
tained by solving Problem (B) with a suitably defined horizon and random variables {Yt}
given by (6)–(7) and (11)-(12) respectively. The latter problem is solved by the recursive
procedure given in Corollary 1.

4.3 Specification of the optimal stopping rule for Problems (A1) and (A2)

Now, using Theorems 3 and 4, we specialize the result of Corollary 1 for solution of Prob-
lems (A1) and (A2). For this purpose we require the following notation:

ν :=

{

n, Problem (A1),

Nmax or Ñmax, Problem (A2),
Ut(r) :=

{

It,n(r), Problem (A1),
Jt(r), Problem (A2).

Note that in Problem (A2) we put ν = Nmax for distributions with the finite right
endpoint Nmax < ∞; otherwise ν = Ñmax, where Ñmax is defined in the proof of Theorem 4.
With this notation Problem (B) is associated with independent random variables Yt =
Ut(Rt) for t = 1, . . . , ν.

Let yt(1), . . . , yt(ℓt) denote distinct points of the set {Ut(1), . . . , Ut(t)}, t = 1, . . . , ν.
The distribution of the random variable Yt is supported on the set {yt(1), . . . , yt(ℓt)} and
given by

ft(j) := P{Yt = yt(j)} =
1

t

t
∑

r=1

1
{

Ut(r) = yt(j)
}

, j = 1, . . . , ℓt, (18)

Ft(z) =

ℓt
∑

j=1

ft(j)1{yt(j) ≤ z}, z ∈ R. (19)

The following statement is an immediate consequence of Corollary 1 and formulas (18)–(19).

Corollary 2 Let τ∗ = min{1 ≤ t ≤ ν : Yt > bν−t+1}, where the sequence {bt} is given by

b1 = −∞, b2 =

ℓν
∑

j=1

yν(j)fν(j), (20)

bt+1 =

ℓν−t+1
∑

j=1

[

bt ∨ yν−t+1(j)
]

fν−t+1(j), t = 2, . . . , ν. (21)

Then
EYτ∗ = sup

τ∈T (R)
EYτ = bν+1.

13



Proof : In view of (7) and (12) , Y1, . . . , Yν are independent random variables; therefore
Corollary 1 is applicable. We have

∫ ∞

bt

zdFν−t+1(z) =

ℓν−t+1
∑

j=1

yν−t+1(j)1{yν−t+1(j) > bt}fν−t+1(j),

btFν−t+1(bt) = bt

ℓν−t+1
∑

j=1

fν−t+1(j)1{yν−t+1(j) ≤ bt}.

Summing up these expressions we come to (21).

As we have already mentioned, in the considered problems the optimal stopping rule
belongs to the class of memoryless threshold policies. This facilitates derivation of the
distributions of the corresponding stopping times, and calculation of their probabilistic
characteristics. One of the important characteristics is the expected time elapsed before
stopping. In problems with fixed horizon ν = n it is given by the following formula

E (τ∗) =

n−1
∑

i=0

P(τ∗ > i) = 1 +

n−1
∑

i=1

P(τ∗ > i)

= 1 +

n−1
∑

i=1

i
∏

t=1

P (Yt ≤ bn−t+1) = 1 +

n−1
∑

i=1

i
∏

t=1

Ft (bn−t+1) , (22)

where {Ft} and {bt} are defined in (19) and (20)–(21).
In the problems where the horizon N is random, the time until stopping is τ∗ ∧N . In

this case
E(τ∗ ∧N) = Eτ∗1{τ∗ ≤ N}+ EN1{τ∗ > N}, (23)

where

E[τ∗1{τ∗ ≤ N}] = E
(

τ∗

Nmax
∑

k=τ∗

γk

)

=

Nmax
∑

j=1

j

Nmax
∑

k=j

γkP(τ∗ = j)

=

Nmax
∑

k=2

γk(1− F1(bNmax)) +

Nmax
∑

k=2

γk

k
∑

j=2

j(1− Fj(bNmax−j+1))

j−1
∏

t=1

Ft(bNmax−t+1) (24)

and

E[N1(N < τ∗)] =

Nmax
∑

k=1

kγk

k
∏

t=1

Ft(bNmax−t+1). (25)

4.4 Implementation

In this section we present an efficient algorithm implementing the optimal stopping rule
described earlier. In order to implement (20)–(21) we need to find the sets {yt(j), j =
1, . . . , ℓt} in which random variables Yt, t = 1, . . . , ν take values, and to compute the
corresponding probabilities {ft(j), j = 1, . . . , ℓt}.

The following algorithm implements the optimal policy.

14



Algorithm 1.

1. Compute

Ut(r) =
ν−t+r
∑

a=r

q(a)

(a−1
r−1

)(ν−a
t−r

)

(ν
t

) , r = 1, . . . , t; t = 1, . . . , ν.

We note that the computations can be efficiently performed using the following re-
cursive formula: for any reward function q

Ut(r) =
r

t+ 1
Ut+1(r + 1) +

(

1−
r

t+ 1

)

Ut+1(r), r = 1, . . . , t; (26)

see Gusein–Zade (1966) and Mucci (1973, Proposition 2.1).

2. Find the distinct values (yt(1), . . . , yt(ℓt)) of the vector (Ut(1), . . . , Ut(t)), t = 1, . . . , ν;
here ℓt is a number of the distinct points.

3. Compute

ft(j) =
1

t

t
∑

r=1

1
{

Ut(r) = yt(j)
}

, j = 1, . . . , ℓt; t = 1, . . . , ν.

4. Let b1 = −∞, b2 =
∑ℓν

j=1 yν(j)fν(j).

For t = 2, . . . , ν compute

bt+1 =

ℓν−t+1
∑

j=1

[

bt ∨ yν−t+1(j)
]

fν−t+1(j). (27)

5. Output bν+1 and τ∗ = min{t ∈ {1, . . . , ν} : Ut(Rt) > bν−t+1}.

5 Solution of the sequential selection problems

In this section we revisit problems (P1)–(P11) discussed earlier from the viewpoint of the
proposed framework. We refer to Section 2 for detailed description of these problems and
related literature.

5.1 Problems with fixed horizon

First we consider problems (P1)-(P6) with fixed horizon; in all these problems ν = n.

5.1.1 Classical secretary problem

For description of this problem and related references see Problem (P1) in Section 2. Here
q(a) = 1{a = 1}, and

Ut(r) = It,n(r) =
t

n
1{r = 1}, r = 1, . . . , t; ℓt = 2, t = 1, . . . , n.
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The random variable Yt = (t/n)1{Rt = 1} = P(At,n = 1|Rt) takes two different values
yt(1) = t/n, yt(2) = 0 with probabilities ft(1) = 1/t and ft(2) = 1− (1/t). Then Step 4 of
the Algorithm 1 takes the form: b1 = −∞, b2 = 1/n,

bt+1 = bt +
( 1

n
−

bt
n− t+ 1

)

1
{

bt <
n− t+ 1

n

}

, t = 2, . . . , n.

The optimal policy is to stop the first time instance t such that Yt > bn−t+1, i.e.,

τ∗ = min
{

1 ≤ t ≤ n :
t

n
1{Rt = 1} > bn−t+1

}

,

which coincides with well known results.

5.1.2 Selecting one of k best alternatives

This setting is stated as Problem (P2) in Section 2. In this problem q(a) = 1{a ≤ k} with
some k ≤ n. We will assume here that k ≥ 2; the case k = 1 was treated above.

We have

Ut(r) =











0, k + 1 ≤ r ≤ t,

∑(n−t+r)∧k
a=r

(a−1
r−1)(

n−a

t−r)
(nt)

, 1 ≤ r ≤ k,
t = 1, . . . , n. (28)

It is easily checked that for q(a) = 1{a ≤ k} one has

Un(r) =

{

1, r = 1, . . . , k
0, r = k + 1, . . . , n.

(29)

Using this formula together with the recursive relationship (26) we can determine the
structure of vector Ut := (Ut(1), . . . , Ut(t)) for each t = 1, . . . , n, and compute {yt(j)} and
{ft(j)}. Specifically, the following facts are easily verified.

(a) Let n− k + 2 ≤ t ≤ n. Here vector Ut has the following structure: the first t+ k − n
components are ones, the next n− t components are distinct numbers in (0, 1) which
are given in (28), and the last t − k components are zeros. Formally, if n − k + 2 ≤
t ≤ n− 1 and k > 2 then we have

Ut(j) =







1, j = 1, . . . , k − n+ t,
∈ (0, 1), j = k − n+ t+ 1, . . . , k,
0, j = k + 1, . . . , t,

Note that if k = 2 the regime reduces to t = n; therefore if k = 2 or t = n then Un is
given by (29). These facts imply the following expressions for {yt(j)} and {ft(j)}:

ℓt = n− t+ 2; yt(j) =







1, j = 1,
Ut(k − n+ t+ j), j = 2, . . . , n − t+ 1,
0, j = n− t+ 2,

(30)

and

ft(j) =







1− (n− k)/t, j = 1,
1/t, j = 2, . . . , n− t+ 1,
1− k/t, j = n− t+ 2.

(31)
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n k P (n, k) E(n, k)/n n k P (n, k) E(n, k)/n n k P (n, k) E(n, k)/n

100 2 0.57956 0.68645 500 2 0.57477 0.68886 1,000 2 0.57417 0.68966
5 0.86917 0.60871 5 0.86211 0.60921 5 0.86123 0.60988
10 0.98140 0.54236 10 0.97754 0.54454 10 0.97703 0.54434
15 0.99755 0.50428 15 0.99627 0.50845 15 0.99609 0.50893

5,000 2 0.57369 0.68931 10,000 2 0.57363 0.68927 50,000 2 0.57358 0.68923
5 0.86052 0.61015 5 0.86043 0.61014 5 0.86036 0.61018
10 0.97663 0.54499 10 0.97658 0.54496 10 0.97654 0.54500
15 0.99594 0.50943 15 0.99592 0.50947 15 0.99591 0.50950

Table 1: Optimal probabilities P (n, k) and the normalized expected time elapsed until
stopping E(n, k)/n for selecting one of the k best values.

If t = n then

ℓt = 2, yn(1) = 1, yn(2) = 0, fn(1) = k/n, fn(2) = 1− k/n.

(b) If k+2 ≤ t ≤ n− k+1 then the set {Ut(1), . . . , Ut(t)} contains k+ 1 distinct values:
Ut(1), . . . , Ut(k) are positive distinct, and Ut(k + 1) = · · · = Ut(t) = 0. Therefore

ℓt = k + 1; yt(j) =

{

Ut(j), j = 1, . . . , k
0, j = k + 1;

ft(j) =

{

1/t, j = 1, . . . , k,
1− k/t, j = k + 1.

(32)

(c) If 1 ≤ t ≤ k + 1 then all the values Ut(1), . . . , Ut(t) are positive and distinct. Thus

ℓt = t; yt(j) = Ut(j), j = 1, . . . , t; ft(j) =
1

t
, j = 1, . . . , t. (33)

In our implementation we compute Ut(j) for t = 1, . . . , n and j = 1, . . . , t using (29)
and (26). Then {yt(j)}, {ft(j)} and the sequence {bt} are easily calculated from (30)–(33)
and (27) respectively.

Table 1 presents exact values of the optimal probability P (n, k) = bn+1 and the expected
time until stopping E(n, k) = E(τ∗) normalized by n for different values of k and n. We are
not aware of works that report exact results for general k and n as presented in Table 1.
It is worth noting that the optimal policy developed by Gusein–Zade (1966) is expressed
in terms of of relative ranks. In contrast, our policy is expressed via the random variables
Yt = Ut(Rt), and it is memoryless threshold in terms of {Yt}. This allows to efficiently
compute the distribution of the optimal stopping time, and, in particular, the expected
time until stopping. The value of E(n, k) is computed using formula (22) combined with
(18) and (28)–(33). The presented numbers agree with asymptotic results of Yeo (1997)
proved for k = 2, 3 and 5.

5.1.3 Selecting the k-th best alternative

This setting is discussed in Section 2 as problem (P3). In this problem q(a) = 1{a = k},
k ≥ 2. Similarly to the Gusein–Zade stopping problem, here we have three different regimes
that define explicit relations for {Ut(r)}, {yt(j)} and {ft(j)}.
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(a) Let 1 ≤ t ≤ k; then

Ut(r) =

(k−1
r−1

)(n−k
t−r

)

(n
t

) , r = 1, . . . , t.

All values of Ut(1), . . . , Ut(t) are positive and distinct. Thus

ℓt = t, yt(j) = Ut(j), ft(j) =
1

t
, 1 ≤ j ≤ t. (34)

(b) If k + 1 ≤ t ≤ n− k + 1 then

Ut(r) =







(

k−1
r−1

)(

n−k
t−r

)

(n
t

) , 1 ≤ r ≤ k,

0, k + 1 ≤ r ≤ t.

The set {Ut(1), . . . , Ut(t)} contains k+1 distinct values: Ut(1), . . . , Ut(k) are positive
distinct, and Ut(k + 1) = · · · = Ut(t) = 0. Therefore,

ℓt = k + 1; yt(j) =

{

Ut(j), j = 1, . . . , k
0, j = k + 1;

ft(j) =

{

1/t, j = 1, . . . , k,
1− k/t, j = k + 1.

(35)

(c) Let n− k + 2 ≤ t ≤ n; then the sequence {Ut(r)} takes the following values

Ut(r) =















0, r = 1, . . . , t− n+ k − 1,
(

k−1
r−1

)(

n−k
t−r

)

(n
t

) , r = t− n+ k, . . . , k,

0, r = k + 1, . . . , t.

Therefore,

ℓt = n− t+ 2; yt(j) =

{

0, j = 1
Ut(t− (n − k)− 2 + j), j = 2, . . . , n− t+ 2.

(36)

and, correspondingly,

ft(j) =

{

(2t− n− 1)/t, j = 1,
1/t, j = 2, . . . , n− t+ 2.

(37)

Table 2 presents optimal probabilities of selecting kth best alternative for a range of k
and n. In the specific case of k = 2 Rose (1982a) showed that the optimal stopping rule is

τ∗ = min
{

{t ≥ ⌈n/2⌉ : Rt = 2} ∪ {n}
}

,

and the optimal probability is P (n, 2) = n+1
4n . The results for k = 2 in Table 2 are in full

agreement with this formula. The table also presents numerical computation of optimal
values in the problem of selecting the median value; see Rose (1982b) who proved that

limn→∞ V ∗
n (q

((n+1)/2)
pd ) = 0.
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n k P (n, k) E(n, k)/n n k P (n, k) E(n, k)/n n k P (n, k) E(n, k)/n

101 2 0.25247 0.82995 501 2 0.25050 0.75466 1,001 2 0.25025 0.74984
5 0.19602 0.78968 5 0.19281 0.78890 5 0.19241 0.78896
10 0.15962 0.84827 10 0.15506 0.84508 10 0.15451 0.84517
50 0.11467 0.86699 250 0.06876 0.91156 500 0.05504 0.92688

5,001 2 0.25005 0.84527 10,001 2 0.25002 0.75453 50,001 2 0.25000 0.83830
5 0.19210 0.78896 5 0.19206 0.78891 5 0.19203 0.78891
10 0.15450 0.84478 10 0.15402 0.84477 10 0.15397 0.84477

2,500 0.03265 0.95443 5,000 0.02603 0.96320 25,000 0.01533 0.97787

Table 2: Optimal probabilities P (n, k) and the normalized expected time elapsed until
stopping E(n, k)/n for selecting the k-th best alternative computed using (34)–(37).

5.1.4 Expected rank type problems

In this section we consider problems (P4) and (P5) discussed in Section 2.

Expected rank minimization. Following (1) we consider the problem of minimization
of Eq(Aτ,n), where q(a) = −a. It is well known that E

[

At,n|Rt = r
]

= (n + 1)r/(t + 1);
therefore for t = 1, . . . , n

Ut(r) = It,n(r) = E[q(At,n)|Rt = r] = −E[At,n|Rt = r] = −
(n+ 1)r

t+ 1
, r = 1, . . . , t.

In this setting

ℓt = t, ∀t; yt(j) = Ut(j) = −
n+ 1

t+ 1
j, j = 1, . . . t; ft(j) =

1

t
, ∀j = 1, . . . , t.

Substitution to (21) yields b1 = −∞, b2 = −1
2(n+ 1),

bt+1 =
1

n− t+ 1

n−t+1
∑

j=1

[

bt ∨
(

−
n+ 1

n− t+ 2
j
)]

, t = 2, . . . , n. (38)

Straightforward calculation shows that (38) takes form

bt+1 = bt −
1

n− t+ 1

[

n+ 1

n− t+ 2

jt(jt + 1)

2
+ jtbt

]

, t = 2, . . . , n.

where jt := ⌊−bt
n−t+2
n+1 ⌋. The optimal policy is to stop the first time instance t such that

Yt > bn−t+1, i.e.,

τ∗ = min
{

1 ≤ t ≤ n : −
n+ 1

t+ 1
Rt > bn−t+1

}

= min
{

1 ≤ t ≤ n : Rt < jn−t+1

}

.

Then according to (1) the optimal value of the problem equals to −bn+1. We note that the
derived recursive procedure coincides with the one of Chow et al. (1964), and the calculation
for n = 106 yields the optimal value 3.86945 . . .
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Expected squared rank minimization. This problem was posed in Robbins (1991),
and to the best of our knowledge, it was not solved to date. We show that the proposed
unified framework can be used in order to compute efficiently the optimal policy and its
value.

In this setting Ut(r) = It,n(r), and the reward is given by q(a) = −a2. It is well known
that

E
[

At,n(At,n + 1) · · · (At,n + k − 1) |Rt = r
]

=
(n+ 1) · · · (n+ k)

(t+ 1) · · · (t+ k)
r · · · (r + k − 1);

see, e.g., Robbins (1991). Therefore we put

Ut(r) = −E(A2
t,n|Rt = r) = −

(n+ 1)(n + 2)

(t+ 1)(t+ 2)
r
(

r +
n− t

n+ 2

)

.

In this case

ℓt = t, yt(j) = Ut(j) = −
(n+ 1)(n + 2)

(t+ 1)(t+ 2)
j
(

j +
n− t

n+ 2

)

, ft(j) =
1

t
, j = 1, . . . , t.

Substituting this to (21) we obtain the following recursive relationship: b1 = −∞, b2 =
−1

6(n+ 1)(2n + 1),

bt+1 =
1

n− t+ 1

n−t+1
∑

j=1

{

bt ∨
[

−
(n+ 1)(n + 2)

(n− t+ 2)(n − t+ 3)
j
(

j +
t− 1

n+ 2

)]

}

.

Denote jt := max{1 ≤ j ≤ n− t+ 1 : bt ≤ −j2Cn,t − jDn,t}, where

Cn,t =
(n+ 1)(n + 2)

(n− t+ 2)(n − t+ 3)
, Dn,t =

(t− 1)(n + 1)

(n− t+ 2)(n − t+ 3)
.

Then

jt = max

{

1 ≤ j ≤ n− t+ 1 : j ≤
1

2Cn,t

(

−Dn,t +
√

D2
n,t − 4Cn,tbt

)

}

=
⌊ 1

2Cn,t

(

−Dn,t +
√

D2
n,t − 4Cn,tbt

)⌋

.

With this notation we have b1 = −∞, b2 = −1
6(n+ 1)(2n + 1), and for t = 2, . . . , n

bt+1 =
1

n− t+ 1

[

−
1

6
jt(jt + 1)(2jt + 1)Cn,t −

1

2
jt(jt + 1)Dn,t + (n− t+ 1− jt)bt

]

. (39)

The optimal policy is to stop the first time instance t such that Yt > bn−t+1 which is
equivalent to

τ∗ = min
{

1 ≤ t ≤ n : Rt < jn−t+1

}

.

Table 3 presents optimal values V∗(n) := EA2
τ∗,n computed with recursive relation (39) for

different n.
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n 100 250 500 750 1,000 2,500
V∗(n) 23.70663 26.49268 27.66697 28.10937 28.34466 28.80553

n 5,000 10,000 20,000 105 106 108

V∗(n) 28.97697 29.06969 29.11944 29.16302 29.17431 29.17579

Table 3: Optimal values of V∗(n) := EA2
τ∗,n computed using (39).

5.2 Problems with random horizon

This section demonstrates how to apply the proposed framework for solution of selection
problems with a random horizon. In these problems we apply Algorithm 1 with ν being
the maximal horizon length Nmax, provided that Nmax is finite, or with sufficiently large
horizon Ñmax if Nmax is infinite. Moreover, Ut(r) = Jt(r), where {Jt(r)} is given by (11).

5.2.1 Classical secretary problem with random horizon

In this setting q(a) = 1{a = 1}; therefore

It,k(r) = P(At,N = 1 |N = k,Rt = r) =
t

k
1{r = 1}, k ≥ t,

Ut(r) = Jt(r) =
Nmax
∑

k=t

γkIt,k(r) = t1{r = 1}
Nmax
∑

k=t

γk
k

.

Note that if Nmax = ∞ then condition (13) is trivially fulfilled since

t

∞
∑

k=t

γk
k

≤
∞
∑

k=t

γk ≤ 1.

The random variables Yt = Ut(Rt) = 1(Rt = 1) t
∑ν

k=t γk/k take two different values
yt(1) = t

∑ν
k=t γk/k and yt(2) = 0 with corresponding probabilities ft(1) = 1/t and ft(2) =

1−1/t. Substituting these values in (27) we obtain b1 = −∞, b2 = γν/ν, and for t = 2, . . . , ν

bt+1 = bt +

( ν
∑

k=ν−t+1

γk
k

−
bt

ν − t+ 1

)

1

{

bt < (ν − t+ 1)

ν
∑

k=ν−t+1

γk
k

}

. (40)

The optimal policy is to stop at time t if Yt > bν−t+1, i.e.,

τ∗ =
{

t = 1, . . . , ν : 1{Rt = 1} t
ν

∑

k=t

γk
k

> bν−t+1

}

. (41)

Presman and Sonin (1972) investigated the structure of optimal stopping rules and
showed that, depending on the distribution of N , the stopping region can involve several
“islands,” i.e., it can be a union of disjoint subsets of {1, . . . , Nmax}. Note that (41) de-
termines the stopping region automatically. Indeed, it is optimal to stop only at those t’s
that satisfy t

∑ν
k=t γk/k > bν−t+1. We apply the stopping rule (40)–(41) for two examples

of distributions of N . In the first example N is assumed to be uniformly distributed on the
set {1, . . . , Nmax}. As it is known, in this case the optimal stopping region has only one
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Nmax |n 10 20 40 60 80 102 103 105

V∗(Nmax) 0.35145 0.30760 0.28889 0.28260 0.27949 0.27779 0.27137 0.27067
E∗(Nmax) 0.29290 0.26227 0.280651 0.28605 0.27410 0.27410 0.27995 0.27983
E∗(n) 0.61701 0.73421 0.75074 0.73988 0.73436 0.74104 0.73620 0.73576

Table 4: Optimal values V∗(Nmax) := P{Aτ∗,N = 1, τ∗ ≤ N} for a uniformly distributed
horizon lengthN , normalized expected times until stoppingE∗(Nmax) and E∗(n) for random
and fixed horizons.

“island.” The second example illustrates a setting in which the stopping region has more
than one “island.”

1. Uniform distribution. In this case ν = Nmax, γk = 1/Nmax, k = 1, . . . , Nmax. It was
shown in Presman and Sonin (1972) that the optimal stopping region in this problem has
one “island,” i.e., the optimal policy selects the first best member appearing in the range
{kn, . . . , n}. The recursive relation (40) with γk = 1/Nmax, k = 1, . . . , Nmax yields the
optimal values V∗(Nmax) := P{Aτ∗,N = 1, τ∗ ≤ N} given in Table 4. The second line of Ta-
ble 4 presents the normalized expected time until stopping E∗(Nmax) := E(τ∗∧Nmax)/Nmax

computed using (23), (24) and (25). For comparison, we also give the normalized expected
time elapsed until stopping E∗(n) := Eτ∗/n for the optimal stopping rule in the classical
secretary problem (see the third line of the table). These numbers are calculated using
(22). As expected, E∗(Nmax) is significantly smaller than E∗(n); the optimal rule is more
cautious when the horizon is random.

It was also shown in Presman and Sonin (1972) that limNmax→∞ V∗(Nmax) = 2e−2 =
0.27067 . . .. Note that the numbers in Table 4 are in full agreement with these results.
Figure 1(a) displays the sequences {bNmax−t+1} and

{

t
∑Nmax

k=t γk/k
}

for the uniform distri-
bution for Nmax = 100. Note the stopping region is the set of t’s where the blue curve is
above the red curve. Thus, there is only one “island” in this case.

2. Mixture of two zero–inflated binomial distributions. Here we assume that the distribu-
tion GN of N is the mixture: GN (x) = 1

2H1(x)+
1
2H2(x), whereHi(x) = P(Xi ≤ x|Xi ≥ 1),

i = 1, 2, and X1 ∼ Bin(50, 0.2), X2 ∼ Bin(100, 0.8). In other words, for k = 1, . . . , 100

γk = P(N = k) =
1

2

(

50

k

)

(1

4

)k (0.8)50

1− (0.8)50
+

1

2

(

100

k

)

4k
(0.2)100

1− (0.2)100
.

The optimal stopping rule is given by (40)–(41) with {γk} indicated above. Figure 1(b)
displays the graphs of the sequences {bNmax−t+1} and

{

t
∑Nmax

k=t γk/k
}

. It is clearly seen
that in this setting the stopping region is a union of two disjoint sets of subsequent integer
numbers. These sets correspond to the indices where the graph of

{

t
∑Nmax

k=t γk/k
}

is above
the graph of {bNmax−t+1}. The stopping region can be easily identified from given formulas.

5.2.2 Expected rank minimization over random horizon

In this setting we would like to minimize the expected absolute rank on the event that
the stopping occurs before N ; otherwise we receive the absolute rank of the last available
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Figure 1: The graphs of sequences {bNmax−t+1} and {t
∑Nmax

k=t γk/k} for different distribu-
tions of N : (a) the uniform distribution; (b) the mixture of two zero–inflated binomial
distributions.

observation, AN,N = RN . Formally, the corresponding stopping problem is

V∗(Nmax) := min
τ∈T (R)

E
[

Aτ,N1{N ≥ τ}+RN1{N < τ}
]

= − max
τ∈T (R)

E
[

(RN −Aτ,N )1{N ≥ τ} −RN ]

= − max
τ∈T (R)

E
[

(RN −Aτ,N )1{N ≥ τ}] +
1

2
(1 + EN).

Thus, letting q(At,N ) = RN −At,N we note that

It,k(r) = E
[

q(At,N ) |N = k,R1 = r1, . . . , Rt−1 = rt−1, Rt = r
]

=
1

2
(k + 1)−

k + 1

t+ 1
r

and therefore

Ut(r) = Jt(r) =

Nmax
∑

k=t

γkIt,k(r) =
(1

2
−

r

t+ 1

)

Nmax
∑

k=t

(k + 1)γk.

If Nmax = ∞ then we require that EN < ∞; this ensures condition (13).
In this setting ν = Nmax or ν = Ñmax depending on support of the distribution of N ,

and

yt(j) =
(1

2
−

j

t+ 1

)

ν
∑

k=t

(k + 1)γk, ft(j) =
1

t
, j = 1, . . . , t, t = 1, . . . , ν.

The recursion for computation of the optimal value is obtained by substitution of these
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Nmax 100 500 103 104 105 106

α = 1 4.74437 8.42697 10.70615 23.34298 50.43062 108.71663
α = 2 3.83593 4.14133 4.18918 4.23792 4.24381 4.24444
α = 3 3.61069 3.80588 3.83549 3.86542 3.86909 3.86947

Table 5: Optimal values V∗(Nmax) computed using (42).

formulas in (27): b1 = −∞, b2 = 0, and for t = 2, . . . , ν

bt+1 =
1

ν − t+ 1

ν−t+1
∑

j=1

[

bt ∨
(1

2
−

j

ν − t+ 2

)

ν
∑

k=ν−t+1

(k + 1)γk

]

.

= bt +
1

ν − t+ 1

ν−t+1
∑

j=1

[

(1

2
−

j

ν − t+ 2

)

ν
∑

k=ν−t+1

(k + 1)γk − bt

]

+

. (42)

The optimal policy is to stop at time t if Yt = Ut(Rt) > bν−t+1, i.e.,

τ∗ =

{

t = 1, . . . , ν :
(1

2
−

Rt

t+ 1

)

ν
∑

k=ν−t+1

(k + 1)γk > bν−t+1

}

.

Note that V∗(Nmax) = bNmax+1 +
1
2(1 + EN).

Gianini-Pettitt (1979) considered distributions of N with finite right endpoint Nmax and
studied asymptotic behavior of the optimal value V∗(Nmax) as Nmax → ∞. In particular,
for distributions satisfying P(N = k|N ≥ k) = (Nmax − k+1)−α, k = 1, . . . , Nmax, Nmax =
1, 2, . . . with α > 0 one has: (a) if α < 2 then V∗(Nmax) → ∞ as Nmax → ∞; (b) if
α > 2 then limNmax→∞ V∗(Nmax) = 3.86945 . . .; (c) if α = 2 then lim supNmax→∞ V∗(Nmax)
is finite and greater than 3.86945 . . .. Thus, if α > 2 then the optimal value V∗(Nmax)
coincides asymptotically with the one in the classical problem of minimizing the expected
rank studied in Chow et al. (1964); see Problem (P4) in Section 2. On the other hand, if N
is uniformly distributed on {1, . . . , Nmax}, i.e. α = 1, then V∗(Nmax) → ∞ as Nmax → ∞.

We illustrate these results in Table 5. The first row of the table, α = 1, corresponds to
the uniform distribution where γk = 1/Nmax, k = 1, . . . , Nmax, while for general α > 0

γk =
1

(Nmax − k + 1)α

k−1
∏

j=1

[

1−
1

(Nmax − j + 1)α

]

, k = 1, . . . , Nmax;

see Gianini-Pettitt (1979). It is seen from the table that in the case α = 3 the optimal
value approaches the universal limit of Chow et al. (1964) as Nmax goes to infinity. For
α = 2 the formula (42) yields the optimal value 4.2444 . . .; this complements the result of
Gianini-Pettitt (1979) on boundedness of the optimal value.

5.3 Multiple choice problems

The existing literature treats sequential multiple choice problems as problems of multiple
stopping. However, if the reward function has an additive structure, and the involved
random variables are independent then these problems can be reformulated in terms of
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the sequential assignment problem of Section 3. Under these circumstances the results of
Derman, Lieberman & Ross (1972) are directly applicable and can be used in order to
construct optimal selection rules. We illustrate this approach in the next two examples.

5.3.1 Maximizing the probability of selecting the best observation with k
choices

This setting was first considered by Gilbert and Mosteller (1966), and it is discussed in
Section 2 as Problem (P8). The goal is to maximize the probability for selecting the best
observation with k choices, i.e., to maximize

P
{

∪k
j=1 (Aτj = 1)

}

=

k
∑

j=1

P(Aτj = 1)

with respect to the stopping times τ (k) = (τ1, . . . , τk), τ1 < · · · < τk of the filtration R. This
problem is equivalent to the following version of the sequential assignment problem (AP1)
[see Section 3].

Let 0 = p1 = · · · = pn−k < pn−k+1 = · · · = pn = 1, and let

Yt =
t

n
1{Rt = 1}, t = 1, . . . , n.

The goal is to maximize S(π) = E
∑n

t=1 pπtYt with respect to π ∈ Π(Y ), where
Π(Y ) is the set of all non–anticipating policies of filtration Y , i.e., {πt = j} ∈ Yt

for all j = 1, . . . , n and t = 1, . . . , n.

The relationship between sequential assignment and multiple choice problems is evident: if
a policy π assigns pπt = 1 to the observation Yt then the corresponding tth observation is
selected, i.e., events {pπt = 1} and ∪k

j=1{τj = t} are equivalent.
The optimal policy for the above assignment problem is characterized by Theorem 1.

Specifically, for t = 1, . . . , n let pt1 ≤ pt2 ≤ · · · ≤ ptn−t+1 be the subset of the coefficients

{p1, . . . , pn} that are left unassigned at time t. Let st =
∑n−t+1

i=1 pti denote the number of
observations to be selected (unassigned coefficients p’s equal to 1). The optimal policy π∗
at time t partitions the real line by numbers

−∞ = a0,n−t+1 ≤ a1,n−t+1 ≤ · · · ≤ an−t,n−t+1 ≤ an−t+1,n−t+1 = ∞,

and prescribes to select the tth observation if Yt > an−t+1−st,n−t+1. In words, the last
inequality means that the observation is selected if Yt is greater than the st-th largest
number among the numbers a1,n−t+1, a2,n−t+1, . . . , an−t,n−t+1. These numbers are given by
the following formulas: a0,n−t+1 = −∞, an−t+1,n−t+1 = ∞, and for j = 1, . . . , n − t

aj,n−t+1 =

∫ aj,n−t

aj−1,n−t

zdFt+1(z) + aj−1,n−tFt+1(aj−1,n−t) + aj,n−t(1− Ft+1(aj,n−t)),

where Ft is the distribution function of Yt. The optimal value of the problem is

S∗(k) = S(π∗; k) =

k
∑

j=1

an−j+1,n+1 . (43)
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k 1 2 3 4 5 6 7 8 25

S∗(k) 0.36791 0.59106 0.73217 0.82319 0.88263 0.92175 0.94767 0.96491 0.999997

Table 6: Optimal values S∗(k) in the problem of maximizing the probability of selecting
the best option with k choices. The table is computed using (44) and (43) for n = 104.

In our case Ft(z) = (1− 1
t )1(z ≥ 0) + 1

t1(z ≥ t
n), t = 1, . . . , n which yields

aj,n−t+1 = 1
n1

(

aj−1,n−t <
t+1
n ≤ aj,n−t

)

+ aj−1,n−t

[(

1− 1
t+1

)

1(aj−1,n−t ≥ 0) + 1
t+11

(

aj−1,n−t ≥
t+1
n

)]

(44)

+ aj,n−t

[(

1− 1
t+1

)

1(aj,n−t < 0) + 1
t+11

(

aj,n−t <
t+1
n

)]

for j = 1, . . . , n − t, a0,n−t+1 = −∞, an−t+1,n−t+1 = ∞, and by convention we set
−∞ · 0 = ∞ · 0 = 0.

Table 6 gives optimal values S∗(k) for n = 104 and different k. Note that the case k = 1
corresponds to the classical secretary problem. It is clearly seen that the optimal probability
of selecting the best observtation grows fast with the number of possible choices k. The
numbers presented in the table agree with those given in Table 4 of Gilbert and Mosteller
(1966).

The structure of the optimal policy allows to compute distribution of the time required
for the subset selection. As an illustration, we consider computation of the expected time
required for selecting two options (k = 2). According to the optimal policy the first choice
is made at time τ1 := min{t = 1, . . . , n : Yt > an−t−1,n−t+1}, while the second choice occurs
at time τ2 := min{t > τ1 : Yt > an−t,n−t+1}. Then the expected time to the subset selection
is

Eτ2 = Eτ1 + E(τ2 − τ1), (45)

where

Eτ1 = 1 +
n−1
∑

j=1

j
∏

t=1

Ft(an−t−1,n−1+1) (46)

E(τ2 − τ1) = 1 +

n−2
∑

i=1

P(τ2 − τ1 > i) = 1 +

n−1
∑

j=1

n−j−1
∑

i=1

P(τ2 − τ1 > i | τ1 = j)P(τ1 = j)

= 1 +

n−1
∑

j=1

n−j−1
∑

i=1

j+i
∏

t=1

Ft(an−t,n−1+1)P(τ1 = j)

= 1 +

n−1
∑

j=1

n−j−1
∑

i=1

j+i
∏

t=j+1

Ft(an−t,n−1+1)
[

1− Fj(an−j−1,n−j+1)
]

j−1
∏

t=1

Ft(an−t−1,n−t+1). (47)

These formulas are clearly computationally amenable and easy to code on a computer.
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k 1 2 3 4 5 6 7 8 25

S∗(k) 3.86488 4.50590 5.12243 5.72330 6.31262 6.89285 7.46574 8.03255 17.22753

Table 7: The optimal value S∗(k) in the problem of minimization of the expected average
rank with k choices for n = 105.

5.3.2 Minimization of the expected average rank with k choices

In this problem that it is discussed in Section 2 as Problem (P9) we want to minimize the
expected average rank of the k selected observations:

min
τ (k)

E

(

1

k

k
∑

j=1

Aτj

)

,

where τ (k) = (τ1, . . . , τk), τ1 < · · · < τk are stopping times of filtration R.
This setting is equivalent to the following sequential assignment problem.

Let 0 = p1 = · · · = pn−k < pn−k+1 = · · · = pn = 1, and let

Yt = −
n+ 1

t+ 1
Rt, t = 1, . . . , n.

The goal is to maximize S(π) = E
∑n

t=1 pπtYt with respect to π ∈ Π(Y ).

Note that here Ft is a discrete distribution with atoms at yt(ℓ) = −n+1
t+1 ℓ, ℓ = 1, . . . , t and

corresponding probabilities ft(ℓ) := P{Yt = yt(ℓ)} = 1
t . The structure of the optimal policy

is exactly as in the previous section: at time t the real line is partitioned by real numbers
aj,n−t+1, j = 0, . . . , n− t+1 and tth option if Yt > an−t+1−st,n−t+1, where st stands for the
number of coefficients pi equal to 1 at time t. The constants {aj,n−t+1} are determined by
the following formulas: a0,n−t+1 = −∞, an−t+1,n−t+1 = ∞, and for j = 2, . . . , n − t

aj,n−t+1 =
1

t+ 1

t+1
∑

ℓ=1

yt+1(ℓ)1
{

yt+1(ℓ) ∈ (aj−1,n−t, aj,n−t]
}

+
aj−1,n−t

t+ 1

t+1
∑

ℓ=1

1
{

yt+1(ℓ) ≤ aj−1,n−t

}

+
aj,n−t

t+ 1

t+1
∑

ℓ=1

1
{

yt+1(ℓ) > aj,n−t

}

.

The optimal value S∗(k) of the problem is again given by (43). Table 7 presents S∗(k)
for n = 105 and different values of k. It worth noting that k = 1 corresponds to the stan-
dard problem of expected rank minimization [Problem (P4)] with well known asymptotics
S∗(k) ≈ 3.8695 . . . as n goes to infinity. Using formulas (45), (46) and (47) we also com-
puted expected time required for k = 2 selections when n = 103: Eτ1 ≈ 396.25983 and
Eτ2 ≈ 610.54822. Such performance metrics were not established so far and our approach
illustrates the simplicity with which this can be done.

5.4 Miscellaneous problems

The next two examples illustrate applicability of the proposed framework to some other
problems of optimal stopping.
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5.4.1 Moser’s problem with random horizon

This is Problem (P10) of Section 2. The stopping problem is

V∗(Nmax) := max
τ∈T (X )

E[(Xτ −XN )1{τ ≤ N}] + µ.

Define Yt = E
[

(Xt −XN )1{t ≤ N} |Xt]; then

Yt =

Nmax
∑

k=t

E
[

(Xt −XN )1{N = k} |Xt

]

= (Xt − µ)

Nmax
∑

k=t+1

γk,

and for any stopping time τ ∈ T (X )

E
[

(Xτ −XN )1{τ ≤ N}
]

=

∞
∑

t=1

E
[

1{τ = t}E
{

(Xt −XN )1{t ≤ N} |Xt

}

]

= EYτ .

Thus, the original stopping problem is equivalent to the problem of stopping the sequence
of independent random variables Yt = (Xt−µ)

∑Nmax
k=t+1 γk, t = 1, . . . , Nmax, and the optimal

value is
V∗(Nmax) = µ+ max

τ∈T (Y )
EYτ .

The distribution of Yt is Ft(z) = G(µ+ z
σt
), t = 1, . . . , Nmax, where σt :=

∑Nmax
k=t+1 γk. Then

applying Corollary 1 we obtain that the optimal stopping rule is given by

b1 = −∞, b2 = EYNmax ,

bt+1 =

∫ ∞

bt

zdFNmax−t+1(z) + btFNmax−t+1(bt), t = 2, . . . , Nmax,

τ∗ = min{1 ≤ t ≤ Nmax : Yt > bNmax−t+1}.

In particular, if G is the uniform [0, 1] distribution then straightforward calculation
yields: b2 = 0 and

bt+1 =
1

2σNmax−t+1

(

bt +
1
2σNmax−t+1

)2
, t = 2, . . . , Nmax.

The optimal value of the problem is V∗(Nmax) = bNmax+1 +
1
2 .

It is worth noting that the case of γk = 0 for all k = 1, . . . , Nmax − 1 and γNmax = 1
corresponds to the original Moser’s problem with fixed horizon Nmax. In this case σt = 1
for all t, and the above recursive relationship coincides with the one in Moser (1956) which
is Et+1 =

1
2(1 + E2

t ) where Et = bt +
1
2 .

5.4.2 Bruss’ Odds–Theorem

This is the stopping problem (P11) of Section 2. In this setting we have

Yt := P{Zt = 1, Zt+1 = · · · = Zn = 0 |Zt} =

{

Zt
∏n

k=t+1 qk, t = 1, . . . , n− 1,
Zt, t = n,

(48)
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and then
V∗ := max

τ∈T (Z )
P(Zτ = 1, Zτ+1 = · · · = Zn = 0} = max

τ∈T (Y )
EYτ .

Thus, the original stopping problem is equivalent to stopping the sequence {Yt} which
is given in (48). Note that Yt’s are independent, and Yt takes two values

∏n
k=t+1 qk and 0

for t = 1, . . . , n − 1, and 1 and 0 for t = n with respective probabilities pt and qt = 1− pt.
Therefore applying Corollary 1 we obtain that the optimal stopping rule is given by

τ∗ = min

{

t = 1, . . . , n : Yt > bn−t+1

}

, (49)

where b1 = −∞, b2 = EYn = pn, and for t = 2, 3, . . . , n

bt+1 =

∫ ∞

bt

zdFn−t+1(z) + btFn−t+1(bt) = bt + pn−t+1

[ n
∏

k=n−t+2

qk − bt

]

+

, (50)

where [·]+ = max{0, ·}. The problem optimal value is V∗ = bn+1.
Now we demonstrate the the stopping rule (49)–(50) is equivalent to the sum–odds–

and–stop algorithm of Bruss (2000). According to (49), it is optimal to stop at the first
time instance t ∈ {1, . . . , n − 1} such that Zt = 1 and bn−t+1(

∏n
k=t+1 qk)

−1 < 1; if such t
does not exist then the stopping time is n. Note that

bn−t+1
∏n

k=t+1 qk
=

bn−t
∏n

k=t+1 qk
+

pt+1

qt+1

[

1−
bn−t

∏n
k=t+2 qk

]

+

, t = 0, 1, . . . , n− 2. (51)

Define us := bs(
∏n

k=n−s+2 qk)
−1, s = 2, . . . , n + 1. It is evident that {us} is a monotone

increasing sequence, and with this notation (51) takes the form

un−t+1 =
1

qt+1
un−t +

pt+1

qt+1
(1− un−t)+, t = 0, 1, . . . , n − 2, (52)

u2 =
pn
qn

. (53)

In terms of the sequence {us} the optimal stopping rule (49) is the following: it is
optimal to stop at first time t ∈ {1, . . . , n − 1} such that Zt = 1 and un−t+1 < 1; if such t
does not exist then stop at time n. Formally, define t∗ := min{t = 1, . . . , n−1 : un−t+1 < 1}
if it exists. Then for any t ∈ {t∗, t∗+1. . . . , n−1} we have un−t+1 < 1 and iterating (52)-(53)
we obtain

un−t+1 = un−t +
pt+1

qt+1
=

n
∑

k=t+1

pk
qk

, t = t∗, t∗ + 1, . . . , n− 1. (54)

Therefore (49) can be rewritten as

τ∗ = inf

{

t = 1, . . . , n− 1 : Zt = 1 and

n
∑

k=t+1

pk
qk

< 1

}

∧ n,

where by convention inf{∅} = ∞. In order to compute the optimal value V∗ = bn+1 we
need to determine un+1. For this purpose we note that the definition of t∗ and (52) imply

un−t+1 =
un−t

qt+1
, t = t∗ − 1, t∗ − 2, . . . , 1, 0, (55)
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and, in view of (54), un−t∗+1 =
∑n

k=t∗+1(pk/qk). Therefore iterating (55) we have

un+1 =

( t∗
∏

j=1

1

qj

)

un−t∗+1 =

( t∗
∏

j=1

1

qj

) n
∑

k=t∗+1

pk
qk

.

Taking into account that un+1 = bn+1(
∏n

j=1 qj)
−1 we finally obtain the optimal value of

the problem:

V∗ = bn+1 =

n
∏

j=t∗+1

qj

n
∑

k=t∗+1

pk
qk

.

These results coincide with the statement of Theorem 1 in Bruss (2000).

6 Concluding remarks

The proposed framework is applicable to sequential selection problems that can be reduced
to settings with independent observations and additive reward function. As we showed,
this class is rather broad; in particular, it includes selection problems with no-information,
rank-dependent rewards and fixed or random horizon. In addition, the framework covers
selection problems with full information when the random variables {Xt} are observable,
and the reward for stopping at time t is a function of the current observation Xt only. Also,
multiple choice problems with random horizon and additive reward can be solved by the
proposed framework.

There are selection problems that do not belong to the indicated class. For instance,
settings with rank–dependent reward and full information as in Gilbert and Mosteller (1966,
Section 3) and Gnedin (2007) cannot be reduced to optimal stopping of a sequence of
independent random variables. Another example is the multiple choice problem with zero–
one reward; see, e.g., Rose (1982a) and Vanderbei (1980) where the problem of maximizing
the probability of selecting k best alternatives was considered. The fact that the results
of Derman, Lieberman & Ross (1972) are not applicable to the latter problem was already
observed by Rose (1982a) who mentioned this explicitly.
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