
TOWSON UNIVERSITY

COLLEGE OF GRADUATE STUDIES AND RESEARCH

VoIP ON A BARE PC

BY

GHOLAM HOSSIEN KHAKSARI

A DISSERTATION PRESENTED TO THE FACULTY OF

TOWSON UNIVERSITY

IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE

DOCTOR OF SCIENCE

IN APPLIED INFORMATION TECHNOLOGY

MAY 2007

TOWSON UNIVERSITY

TOWSON, MARYLAND 21252

ii

© 2007 By Gholam Hossien Khaksari
All Rights Reserved

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to all those who have supported me to

complete this dissertation. I am deeply indebted to my research committee Dr. Alexander

Wijesinha (chair), Dr. Ramesh K. Karne, Dr. Yeong-Tae Song, Dr. Yanggon Kim, and

Dr. Sungchul Hong for supporting this research. I am especially thankful to Dr.

Wijesinha and Dr. Karne for all the support and advice I have received throughout this

endeavor. I also would like to thank Dr. Ali Behforooz, executive director of the Center

for Applied Information Technology, and Dr. Chao Lu, chair of Department of Computer

and Information Sciences at Towson University, for facilitating this work. I am also

obliged to my daughter Mitra for helping with final editing of this document.

iv

TOWSON UNIVERSITY

COLLEGE OF GRADUATE STUDIES AND RESEARCH

DISSERTATION APPROVAL PAGE

This is to certify that the dissertation prepared by Gholam Hossien Khaksari, entitled

“VoIP on a Bare PC” has been approved by this committee as satisfactory completion of

the requirement for the degree of Doctor of Science in Applied Information Technology.

___ __________________

Committee Chair, Dr. Alexander Wijesinha Date

___ __________________

Committee Member, Dr. Ramesh K. Karne Date

___ __________________

Committee Member, Dr. Yeong-Tae Song Date

___ __________________

Committee Member, Dr. Yanggon Kim Date

___ __________________

Committee Member, Dr. Sungchul Hong Date

___ __________________

Dean, College of Graduate Studies and Research Date

Dr. Jin K. Gong

v

ABSTRACT

VoIP ON A BARE PC

GHOLAM HOSSIEN KHAKSARI

This dissertation proposes a novel VoIP softphone architecture for a bare Intel-386 (or

above) based PC without an operating system. First, we provide an overview of bare PC

computing and note the advantages of a bare PC softphone including its inherent

simplicity and ability to provide secure, reliable and efficient voice communication. Next,

we discuss the design of a bare PC softphone and describe its architecture and

implementation. We then present performance measurements from LAN and Internet

experiments, which consider delay, jitter, packet loss, and MOS. They indicate that a bare

PC softphone has less jitter, less security overhead, and is able to sustain larger voice

packet sizes and a heavier load than a WinRTP softphone while maintaining acceptable

call quality with or without background traffic. A bare PC softphone also has acceptable

call quality when running Voice over Ethernet (voice packets with Ethernet headers only)

on a LAN.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

Chapter 1. Introduction ... 1

1.1. VoIP - Voice over Internet Protocol ... 1

1.2. Bare PC Computing .. 4

1.3. Problem Statement and Research Goal ... 7

1.4. Motivation ... 8

1.5. Related Work .. 9

Chapter 2. Softphone Design .. 12

2.1. Softphone Requirements ... 12

2.2. Microphone Recording and Speaker Playback ... 12

2.3. Voice Compression and Decompression .. 15

2.4. Optimal Task Scheduling .. 15

2.5. Recording and Playback Synchronization .. 16

2.6. Interoperating with WinRTP ... 17

2.7. Cross-Layer Protocol Design .. 18

2.8. Fixed Size Buffers... 19

2.9. Single Address Space .. 19

2.10. Zero Copy Buffering ... 19

2.11. Minimal Resource Dependence .. 20

2.12. Call Quality ... 20

Chapter 3. Architecture and Implementation ... 21

3.1. System Architecture .. 21

3.2. Class Diagram ... 24

3.3. Task Scheduling .. 26

3.4. Main Task ... 27

3.5. Receive Task ... 29

3.5.1. UPD Receive Buffer Management ... 30

3.5.2. ETH Header Processing .. 31

3.5.3. IP Header Processing .. 31

3.5.4. UDP Header Processing .. 31

3.5.5. RTP Header Processing .. 32

3.5.6. Jitter Buffer Implementation ... 34

3.5.7. Packet Loss ... 36

3.6. Audio Task .. 36

3.6.1. The AD1981B Codec .. 39

3.6.2. Microphone Record Buffer ... 40

3.6.3. Speaker Playback Buffer... 41

3.6.4. Audio Task Recording .. 42

vii

3.6.5. Microphone Buffer Management ... 43

3.6.6. Stereo to Mono Conversion .. 45

3.6.7. G.711 Compression... 46

3.6.8. Adding RTP Headers .. 47

3.6.9. Adding UDP, IP and ETH Headers .. 48

3.6.10. DPD Send Buffer Management .. 49

3.7. Audio Task Playback .. 50

3.7.1. Jitter Buffer Playout .. 50

3.7.2. G.711 Decompression ... 51

3.7.3. Mono to Stereo Conversion .. 51

3.7.4. Speaker Buffer Management .. 52

3.8. Security ... 54

3.8.1. Handshake ... 55

3.8.2. RSA Key Generation and Exchange ... 58

3.8.3. Voice Payload Security ... 58

Chapter 4. Performance .. 60

4.1. Performance on a LAN ... 60

4.1.1. Performance under Heavy Load ... 67

4.1.2. Performance of Voice over Ethernet ... 67

4.2. Performance on the Internet .. 68

4.3. Performance with VoIP Security .. 73

Chapter 5. Conclusion .. 82

APPENDICES .. 85

1. Compilation Environment ... 86

2. How to Boot, Load and Execute the Softphone Application 89

References ... 90

Curriculum Vitae .. 96

viii

LIST OF FIGURES

Figure 1: Bare PC Softphone Network Configuration .. 2

Figure 2: Bare PC Computing .. 5

Figure 3: Bare PC Softphone Context Diagram ... 21

Figure 4: Softphone System Diagram ... 23

Figure 5: Bare PC Softphone Class Association Diagram.. 25

Figure 6: Audio Softphone Task Architecture .. 26

Figure 7: Main Task State Diagram .. 28

Figure 8: Receive and Audio Tasks Processing .. 29

Figure 9: Receive Task State Diagram ... 30

Figure 10: Jitter Buffer Structure .. 35

Figure 11: Audio Task State Diagram .. 38

Figure 12: PCM/Codec data rate for 20ms ... 39

Figure 13: Microphone Record Buffer ... 41

Figure 14: Speaker Playback Buffer ... 42

Figure 15: Frame Size and Buffer Size Calculation ... 45

Figure 16: Stereo to Mono Conversion ... 46

Figure 17: RTP Header Fields .. 47

Figure 18: UDP Header Fields .. 49

Figure 19: Mono to Stereo Conversion ... 52

Figure 20: Handshake Messages for AES Key Exchange .. 56

Figure 21: AES Key Exchange Processing ... 57

Figure 22: Secure Transmission of Voice Data .. 59

Figure 23: LAN Measurement Setup .. 61

Figure 24: Maximum Packet Interarival Time (ms) ... 62

Figure 25: Maximum Two-Way InterPacket Deviation (ms) ... 63

Figure 26: Maximum One-Way Jitter (ms) .. 64

Figure 27: Maximum One-Way Jitter (ms) .. 64

Figure 28: Mean One-Way Jitter (ms) .. 65

Figure 29: Mean One-Way Jitter (ms) .. 65

Figure 30: Maximum Two-Way Jitter (ms) .. 66

Figure 31: Internet Measurement Setup .. 69

Figure 32: Maximum packet inter-arrival time (max delta) ... 70

Figure 33: Maximum jitter .. 70

Figure 34: Mean jitter ... 71

Figure 35: Max packet inter-arrival gap (max delta), max jitter, and min jitter 72

Figure 36: End-to-end delay ... 73

Figure 37: Max delta ... 75

ix

Figure 38: Max and mean jitter ... 75

Figure 39 Max delta for bare PC to bare PC and WinRTP to WinRTP 77

Figure 40: Max jitter for bare PC to bare PC and WinRTP to WinRTP 77

Figure 41: Mean jitter for bare PC to bare PC and WinRTP to WinRTP 78

Figure 42: Total time for the handshake to exchange an AES key 79

Figure 43: Time for various components of the handshake .. 80

Figure 44: RSA key generation time for various RSA key sizes 81

Figure 45: Total time for generating 10-100 RSA keys on barePC and WinRTP 81

Figure 46: Softphone Directory Structure ... 87

Figure 47: Lines of Code .. 88

1

Chapter 1. Introduction

In this chapter, we give an overview of this research, including the problem

statement, goals and motivation. We include some general background on VoIP and bare

PC computing. We also note the advantages of a bare PC softphone and briefly discuss

related work.

1.1. VoIP - Voice over Internet Protocol

Voice over Internet Protocol (VoIP) is a technology that uses the Internet

infrastructure and protocols for voice communication. VoIP is sometimes called Internet

telephony, IP telephony, or Voice over the Internet. The concept of VoIP originated in

the early 1970s when the idea and the technology were developed. Despite this history,

VoIP did not establish a commercial niche until mid-1990s. VoIP technology finally

became a viable alternative to PSTN due to the commercialization and mass-market use

of the Internet, invention of the Web, and massive investments in IP networking

infrastructures by business, vendors, and carriers. Advantages of VoIP technology

include:

1. Low cost of voice transmission due to utilization of existing IP networks

2. Desire to integrate voice and data communication into a single network

resulting in low operational and maintenance cost

3. Inability of legacy PSTN to provide new voice services demanded by today’s

businesses

Figure 1 shows how operating System (OS) based softphone applications like

WinRTP and OS-less bare PC softphone applications could be used in the future by using

2

SIP (Session Initiation Protocol) [37] to set up calls in a VoIP network. Phones register

with a SIP server and use it to locate other VoIP phones. The SIP server implements call

connection and termination between phones to emulate some of the call processing

features present in the Signaling System 7 (SS7) used by the PSTN. A special PSTN

gateway would enable the IP network to interface with the legacy plain old telephone

system [1]. We do not consider SIP servers or PSTN gateways further in this dissertation

as this research focuses on the design, implementation and performance of an optimized

bare PC softphone that directly communicates with a peer bare PC or conventional

softphone.

Figure 1: Bare PC Softphone Network Configuration

PSTN

Gateway

SIP

Server

Bare PC

Softphone

Bare PC

Softphone

Internet

PSTN Regular

Phone

WinRTP

Softphone

WinRTP

Softphone

3

Softphone applications enable a PC to be used as a VoIP phone. Typically, a

softphone inputs digitized voice from a microphone, encodes voice into network packets,

and transmits packets over the IP network. The softphone also inputs voice packets from

the IP network, decodes each voice packet and outputs the voice payload to speakers. As

voice packets travel over the IP network infrastructure from their source to their

destination, due to the nature of the IP packet switched network, there is no guarantee

that voice packets will reached their destination in a timely manner or that all voice

packets will arrive at their destination. Moreover, voice packets may not arrive in order,

and may not arrive uniformly spaced out in time. The voice quality for a softphone is

usually estimated by measuring the following parameters [2] [9]:

1. Delay: time required a talker’s voice to reach a listener’s ear. It includes time

for microphone recording, packet encoding, network transit, packet decoding,

and playback on speakers

2. Jitter: voice packet delay variation due to the network

3. Packet loss: percentage of voice packets lost by the network

4. MOS: a measure used for assessment of VoIP call quality that is assigned by

a listener or computed automatically

In addition to the challenges of guaranteeing call quality and reliability for VoIP

services, security is also a concern. Thus, although the popularity of VoIP continues to

grow and major telecommunications companies use IP networks to carry digitized voice

as it is convenient and costs less, VoIP has not yet gained widespread acceptance as a

replacement for the standard PSTN service.

4

1.2. Bare PC Computing

An OS manages resources on a computer and interfaces between the users and the

hardware. While considerable advancements in improving the versatility of an OS have

been made, these benefits have come at the cost of increased size, higher complexity,

added overhead, and security flaws that have been exploited by attackers. Critics claim

that today’s OSs are plagued by buggy code and device drivers making them insecure and

unreliable [3]. While new generations of OSs are attempting to address these problems,

there is still a need for OS-less application-centric systems that can take full advantage of

the underlying hardware resources. Such systems can be more efficient while being

inherently less complex due to their reduced size and because they are limited to

providing only essential services and functionality. The idea of eliminating OS

inefficiencies and abstractions is not new [4].

It is possible to build systems that provide applications with direct interfaces to

the bare hardware, thus obviating the need for a conventional operating system. Such

applications manage themselves and have complete control of the hardware. An

application-centric bare PC system is efficient and easier to secure, as it is less complex.

Additionally, a bare PC is convenient for experimenting with novel techniques for

improving the performance of applications and protocols since there are no inherent

limitations due to an operating system.

In bare PC computing, which is based on the dispersed operating system

computing (DOSC) paradigm [5], a computer application contains its own operating

environment, thus avoiding operating system middleware. Figure 2 illustrates this

approach. Conventional computing layers are mapped into an application object, and the

5

application object runs directly over the hardware with no intervening software or

firmware components. The hardware in this case is any bare device such as a PC with an

Intel 386 (or above) based architecture.

An application object contains both its application program and its necessary

operating environment [6] [7]. Therefore, it is self-contained, self-managed, and self-

executed; this enables it to run on any hardware, provided it is compiled for the relevant

hardware architecture. Application objects self-manage the CPU, memory, interrupts, and

I/O. An application object is self-executed as well, since it manages its loading, execution

and termination phases. It may also contain temporal information and security

mechanisms. The application object interfaces that enable applications to run on the bare

hardware [8] may be part of an application operating environment or implemented in

hardware. In this research, we assume that these interfaces are in an application operating

environment (i.e., existing hardware is used).

Figure 2: Bare PC Computing

Hardware

OS

 Environments

Application

 Programs

Hardware

Application

Object

6

A bare PC is different from an embedded system [10], because a bare PC is

capable of running any application and has no OS. The only element of OS functionality

in a bare PC is intrinsic to its application and determined by the application (i.e., a bare

PC is truly bare outside of its application and an application only includes elements of the

operating environment that are essential for its execution). Embedded systems run on

some type of operating system and do not provide open interfaces to run applications on

the bare hardware. For example, in an embedded system such as a cell phone, no other

applications can directly run on the hardware since there are no external interfaces to it.

A bare PC is also different from a system that provides a virtual machine interface

enabling software to execute with or without an operating system [11]. A virtual machine

interface limits the capabilities of applications running on it and introduces an additional

layer that may hinder performance. In contrast, an Intel 386-based bare PC can be used to

run any application object, which has direct and full access to the underlying hardware.

The bare PC approach eliminates the OS altogether, and it goes further than earlier work

on minimal OSs including Tiny OS [21], Exokernel [22], and OSKit [23].

To support bare PC applications, a C++ API allowing applications to run directly

on Intel 386 (or above) based PCs have been previously developed [8]. Interfaces to

memory, CPU, timer, interrupts, tasks, keyboard, display, floppy drive, audio card and

Ethernet card are written in Microsoft assembler (MASM). Several network protocols for

a bare PC including ARP, IPv4, UDP, TCP, SMTP, lean FTP, and HTTP have also been

implemented. Several applications that run on a bare PC have been developed previously.

For example, in [12], a bare PC Web server that runs on any Intel 386-based architecture

7

with no operating system, hard disk, or other supporting software is described, and results

comparing its performance to the Windows IIS and Apache Web servers are presented.

1.3. Problem Statement and Research Goal

This research focuses on designing and implementing an optimized VOIP

softphone that runs on a bare PC and investigates its ability to provide efficient, reliable

and secure communication. Many VoIP systems, including systems for peer-to-peer

voice, have been discussed in the literature [13], [14], [15], [16], [17], [18], although

none run on a bare PC. Security issues for VoIP systems are highlighted in [19].

Existing VoIP systems are dependent on OS services. For example, both the

Skype softphone [13] and the user agents for the peer-to-peer VoIP adaptor [20] require

Windows, Linux, or some specialized OS. In view of OS complexity and overhead, it is

difficult to fully optimize these VoIP phones to improve performance and call quality.

They also inherit security weaknesses that result from OS vulnerabilities and their

complexity.

The goal of this research is to design and implement a softphone that runs on any

Intel-386 (and above) based bare PC with no OS, and to investigate the effect of several

optimizations on call quality. This work is part of an effort to develop bare PC

applications including personal Web servers, email clients, and SIP clients and servers

together with supporting security protocols. The contributions made by this research

provide insight into the construction and optimization of secure softphone applications

that can run without an OS.

8

1.4. Motivation

Bare PC computing [5], which is an alternative approach for general purpose

computing, eliminates the OS allowing the programmer direct access to (and complete

control over) the underlying hardware. Therefore, it is very convenient for testing and

evaluating VoIP optimizations that require changes to low-level system elements such as

device drivers, the CPU task scheduler, or the networking subsystem. Furthermore, bare

PC computing has many advantages for VoIP including performance benefits due to its

low overhead, as well as simplicity, and the likelihood of being more secure due to

elimination of the OS and unnecessary services. For example, when a bare PC softphone

is connected to the Internet, the only open ports are those required by RTP and they

would be the only means for a prospective attacker to send packets that would even be

accepted by the softphone.

In bare PC systems, the absence of an OS enables us to investigate novel

techniques for the design and construction of optimized softphone applications. The

following are some of the advantages of the bare PC softphone application:

 Small code size

 No OS

 No hard disk

 C++ code only

 Runs on any bare Intel-386 (or above) based PC

 Robust and efficient

 Interoperates with an OS-based WinRTP softphone

 Standard PCM codec

9

 Can be integrated with other bare PC applications such as a personal web

server and email client

 Customized security features

 Excellent voice quality

 Can be deployed in any LAN or the Internet

 Can run directly over the Ethernet protocol in pure switched (routerless) LAN

environments

1.5. Related Work

To the best of our knowledge, there are no VoIP softphone systems that run on a

bare PC. Even if a softphone runs on Exokernel [22] (we are not aware of any), the latter

would not give full control to the application as it is still a form of OS. Siscophone [14]

uses several optimizations similar to those implemented on the bare PC softphone to

improve call quality (such as minimal data copying). However, its design is constrained

by the underlying OS. For example, it does not include an optimal task scheduling

technique. The peer-to-peer VoIP architecture in [20] has many desirable features. The

associated SIP adaptor works with existing SIP phones, is capable of supporting seamless

addition of new services such as conferencing and voice mail, and is essentially plug-and-

play. However, it may be harder to optimize such a system for performance since the user

agents that are required to use the adaptor rely on an OS. Another SIP-based VoIP

architecture that also offers mobility support is discussed in [26], and a VoIP architecture

based on Java and Web technologies is presented in [27]. Again, such architectures

include user agents that run on a conventional OS, and the overall performance of the

system are therefore bound by OS limitations. In contrast, a bare PC softphone may be

10

fully optimized since the AO programmer has total control of the system and its hardware

resources [25].

There have been many attempts to improve call quality in VoIP systems. In [28],

different paths through the network are used in order to improve call quality. Playout

buffer algorithms that incorporate jitter and packet loss compensation are given in [29].

In [30], Skype and MSN VoIP systems are compared with respect to throughput, packet

inter-arrival statistics, and MOS (mean opinion score). Finally, in [31], MOS ratings are

used to evaluate effects of bursty packet loss on call quality, and a method to maximize

call quality by optimizing the packet interval is proposed. Since a bare PC has no OS,

these and other techniques to improve voice quality can be added to the bare PC

softphone with less intrinsic overhead and better performance than a conventional

system. In essence, the main difference between existing softphones and a bare PC

softphone is that the latter runs directly on the hardware with no OS, and is therefore

simpler to optimize and control.

VoIP security issues are discussed in detail in [43]. VoIP applications do not use

TLS/SSL [40] for security because it has considerable overhead and is not designed for a

real-time application such as voice. Moreover, TLS/SSL would need to be modified to

run over UDP instead of TCP. Some security approaches for VoIP attempt to take

advantage of the nature of voice conversations. For example, ZRTP [42] relies on an

authentication procedure that assumes a user is able to match the peer’s voice during the

conversation and authentication phases. A possible future standard for secure VoIP will

be Secure RTP [44]. However, both ZRTP and SRTP are vulnerable to certain attacks

[43]. VoIP security continues to be an ongoing subject of research. The bare PC VoIP

11

security mechanisms we describe are based on public key cryptography and assumes that

the participants are in possession of (and trust) each other’s public keys.

The rest of this dissertation is organized as follows. In Chapter 2, we discuss bare

PC softphone design and in Chapter 3, we describe its architecture and implementation.

In Chapter 4, we present performance measurements and in Chapter 5, we give the

conclusion.

12

Chapter 2. Softphone Design

In this chapter, we present an overview of bare PC softphone design. We also

discuss softphone requirements and optimizations.

2.1. Softphone Requirements

The general requirement is to design, implement, and test a peer-to-peer VoIP

softphone application that can run on a bare Intel-386 (or above) based PC without an

operating system, while providing acceptable voice quality. It must be able to record,

compress and transmit voice packets over the IP network, as well as receive, decompress,

and playback voice packets from the IP network. Specific softphone requirements are:

1. Manage the microphone recording and speaker playback processes

2. Use a PCM codec to compress and decompress voice data

3. Use the lean bare network protocols to send and receive voice packets

4. Use a jitter buffer to adapt to varying Internet traffic conditions

5. Communicate with an OS-based softphone

6. Operate on a LAN or the Internet while maintaining acceptable voice quality

2.2. Microphone Recording and Speaker Playback

The device driver software for the onboard audio codec, as part of the DOSC

environment, provides a set of API calls and circular buffers for communicating with the

microphone and speaker. The device driver software for the Network Interface Card

(NIC), also part of the DOSC environment, provides a set of API calls and circular send

13

and receive buffers for communicating with NIC as well. The microphone and speaker

buffers and the NIC send and receive buffers are DMA mapped in the internal memory.

The first task is to manage the microphone recording process and to read the

recorded data in real-time with no loss. Two different methods that can be used to solve

this problem are interrupts and polling. In the interrupts method, the audio card is

configured to interrupt softphone processing upon completion of some microphone data

recording, so that the softphone application can process the recorded data. The polling

method configures the audio card to continue recording without interrupting the audio

softphone application. Instead, softphone is responsible for polling the audio card for

completion of recording so that it can process the recorded data. The polling method

provides good performance, is convenient to use on a bare PC and has been successfully

used by other bare PC applications. We therefore use this method in the bare PC

softphone as well.

The recorded microphone data is continuously transferred to the microphone

circular buffer located in the main memory at the PCM rate using the onboard codec

internal clock. The bare PC softphone uses the PC internal timer to poll for the arrival of

recorded data in the microphone circular buffer and for management of the read and write

pointers. It is necessary to coordinate data recording and buffer pointer manipulation to

maintain call quality.

The second task is to move recorded data from microphone circular buffer

directly to the NIC circular send buffer without any intermediate copying of data. Both

the microphone circular buffer and the NIC circular send buffers are resident in audio

softphone address space; hence, direct copying of data between two circular buffers is

14

feasible. A DOSC application like the softphone is a single monolithic executable that

executes in user mode and in a single address space with complete control of system

resources. When a voice packet is recorded, it is compressed and directly copied into the

NIC circular send buffer, while a pointer to voice data in the NIC circular buffer is used

for all processing steps. Zero copy buffering (see below) is thus achieved during

recording.

The softphone also processes voice payloads arriving from the IP network and

plays them back in real time on the speakers. The softphone has to manage the NIC

operations and the NIC circular receive buffer in real-time with no loss of received data.

The polling method can be used to manage the NIC receive buffer. When a voice packet

arrives from the IP network, it is stored in the NIC circular receive buffer, and the pointer

to the packet can be used for all processing steps. The voice payload is then

decompressed and copied to the speaker circular buffer directly. This enables zero copy

buffering during play back as well.

The softphone manages the speaker playback process and the speaker circular

buffer. The onboard codec supplies the speakers with voice data at the PCM rate from its

internal queue using its internal clock. The codec driver software must replenish the

codec queue with data stored in the speaker buffer. Received voice packets from the IP

network are continuously transferred from the NIC receive buffer to the speaker circular

buffer located in main memory. The softphone uses the system timer to poll and manage

the speaker playback process and the speaker circular buffer. The bare PC softphone

uses the PC’s internal timer to poll for arrival of network packets in the NIC circular

15

receive buffer, and for management of the read pointer. The details of microphone buffer

and speaker buffer management are covered in the next chapter.

2.3. Voice Compression and Decompression

Network bandwidth is a limited shared resource and VoIP traffic is delay

sensitive. Heavy IP network traffic causes excessive network delay and results in packet

loss that negatively impacts VoIP call quality. To optimize network bandwidth usage,

voice packets can be compressed before transmission and decompressed after they are

received from the IP network. The compression and decompression algorithm must not

degrade voice quality.

There are many available shareware software voice codecs as well as codec

software products. The codec for the PC softphone has to be capable of processing voice

data for the onboard audio codec in use. We ported PCM codecs from several free

softphones to the bare PC softphone, but found that many of them produce unacceptable

voice quality. We ultimately chose the WinRTP G.711 codec for the bare PC softphone

since it is easily ported to the bare PC environment and provides good call quality.

2.4. Optimal Task Scheduling

The idea in optimal task scheduling is as follows: when a task is not doing useful

work (no CPU processing), it should suspend itself or return control to the main task.

Thus, in the softphone, the receive task will return to the main task after processing a

received request. Similarly, the audio task will return to the main task after the audio

frame pointers are placed in the jitter buffer. Upon activation, each task is allowed

unlimited CPU time. When suspending itself, a task requests to be scheduled at a future

16

time by specifying a suspension time. The main task executes a task if and only if only its

suspension time as requested by the task itself has expired.

The bare PC tasking strategy has a direct impact on the intrinsic performance

parameters of the softphone application. The softphone must process microphone voice

data as soon as it becomes available and send it over the IP network; it must also process

the incoming network voice packets in order while minimizing the effects of jitter and

delay. The tasking strategy must also be efficient, so as to minimize resource usage.

Initially, standard tasking strategies such as first-come-first-serve (FIFO), priority

scheduling and round robin were used. Performance measurements indicated that none of

these approaches is optimal for a bare PC softphone. Eventually, we decided to use a task

scheduling strategy similar to that used in the bare PC Web server. As the bare PC

softphone has complete control of task scheduling and execution, it was easy to test the

effect of different task scheduling techniques, including novel strategies especially suited

to the bare PC, and determine an optimal strategy.

2.5. Recording and Playback Synchronization

The onboard audio codec chip set uses its own internal timer to manage both

microphone recording and speaker playback processes, while the softphone application

uses the bare PC system timer for management of its own processing. The challenge is to

determine the best time to read and process recorded microphone data and to provide data

for speaker playback. Since the polling method is used to communicate to the audio

codec, it was convenient and efficient to use the audio codec internal timer to

synchronize playback and recording.

17

The bare PC softphone monitors the recording of the microphone voice data.

Whenever a full microphone buffer has been recorded, it is processed and the jitter buffer

is checked for received packets to be played back on the speakers. Therefore, every time

a full microphone buffer is recorded and processed, a packet is played back on the

speakers. This technique of synchronizing recording and playback helps to reduce the

intrinsic delay by keeping the gap between the read and write pointers for the speaker

playback buffer as short as possible.

2.6. Interoperating with WinRTP

The WinRTP softphone tool [24] enables voice to be recorded at the source,

transmitted over the IP network and played back at the receiver. It is a Windows COM

component tool, which can be modified, compiled, and executed with minimal effort. To

enable voice communication between the bare PC softphone and the WinRTP softphone,

it is necessary to match the rates at which they playback voice. Initially, it was observed

that the bare PC softphone plays back voice at double the normal speed, while the

WinRTP plays voice at half the normal speed.

This problem was traced to the AD1981B audio codec used by the bare PC

softphone. The bare PC audio codec records in stereo (i.e. two 16-bit PCM samples are

recorded for the left channel and right channel), while the WinRTP machine’s audio

codec records in mono. This problem is solved by eliminating the data for one of the

channels on the bare PC side during recording and copying the data into both channels

during playback. Interoperability with the WinRTP softphone is not only useful from a

practical viewpoint, but also enables us to determine any effects on performance when a

bare PC softphone communicates with a conventional softphone.

18

2.7. Cross-Layer Protocol Design

Layered protocol design is the dominant approach for implementing network

protocols with each layer corresponding to a single protocol and communication that is

limited to adjacent layers. Although it simplifies protocol design, the layered approach is

limiting and inefficient, especially when processing the packet payload. The bare PC

softphone uses cross-layer protocol design since it is intrinsic to and facilitated by the

bare PC computing environment. Although cross-layer design refers to a technique used

in wireless networks wherein physical layer information is passed to the upper layers

[48], we use the term in a more general sense to mean the capability to pass information

freely between any two networking layers as done in the bare PC.

In particular, we do not follow strict layering rules. For example, all the protocol

processing for sending an outgoing packet is accomplished in a single step and

implementation of the protocols RTP, UDP and IP in a bare PC are integrated with

Ethernet processing. Communication between any two layers in a bare PC is easy since

all layers share a single copy of the data due to zero copy buffering (discussed below).

For example, when a microphone buffer is recorded, the bare PC softphone copies the

voice data directly from the microphone buffer to the NIC send buffer, thereby

eliminating unnecessary layer overhead. The RTP, UDP, IP, and Ethernet headers are

then directly added to the payload. This approach to designing network protocols enables

the bare PC to communicate lower layer information to any upper layer and vice versa.

19

2.8. Fixed Size Buffers

The onboard audio codec records microphone voice data in fixed size buffers, and

also requires fixed size voice buffers for playback on the speakers, as configured during

compile time. The softphone application tasks are designed to process fixed size buffers

of voice data per activation, before the tasks suspend themselves. This simplifies the

processing steps, makes the softphone design simple and less prone to buffer pointer

processing problems, and eliminates unnecessary copying of data into temporary local

buffers.

Each recorded microphone buffer provides the payload for a single RTP packet

for transmission over the IP network, while the payload from each received RTP packet

provides the data for one speaker buffer. Microphone and speaker buffers have the same

size. By convention, voice packet size is expressed in milliseconds and mapped into a

buffer size in bytes.

2.9. Single Address Space

The softphone application is a single monolithic image executing in user-mode. It

contains all the necessary code and hardware interfaces. It does not use any system calls

or system libraries. In this system, user space and system space are the same, since the

AO programmer controls the memory map for the softphone application.

2.10. Zero Copy Buffering

In a conventional system, the user space is virtual and controlled by an operating

system. Together, the single address space feature of the bare PC softphone and modern

Ethernet cards features allow the bare PC softphone application to keep network packets

20

in user address space. Similarly, the audio codec chip allows microphone and speaker

buffers to be in user space as well.

A novel feature in the bare PC architecture is a zero-copy buffering scheme in

which incoming packets are stored in the receive UPD (upload pointer descriptor) buffer,

and the same pointer is used until packets are played out. Likewise, zero copy buffering

is achieved for outgoing packets by using the same pointer for the audio driver and the

send DPD (download pointer descriptor) buffer.

2.11. Minimal Resource Dependence

The bare PC environment supports creation of applications with minimal

dependency on system resources. The softphone application does not require complex

interfaces. The softphone AO manages the CPU and the memory available in the bare

PC. The necessary standard interfaces to the hardware elements, as well as drivers for the

network cards and sound cards, were developed by other students during previous bare

PC projects. In addition, there are C++ interfaces to tasks, interrupts, and exceptions [8].

2.12. Call Quality

Network delay, jitter and packet loss are important parameters affecting VoIP call

quality. In addition, the MOS, which is used to measure call quality during a

conversation, can be assigned by a group of listeners or calculated by an automated tool.

The bare PC softphone is capable of determining values of call quality parameters

including packet loss, maximum packet interarrival gap, mean and maximum jitter,

network delay and total (end-to-end) delay. We discuss the calculation of these values in

the next chapter.

21

Chapter 3. Architecture and Implementation

In this chapter, we describe the bare PC softphone architecture and

implementation. We include details of tasks and task scheduling, protocol header

processing, jitter buffer implementation, network and audio buffer management and

security mechanisms. The code for the RSA, AES, and SHA-1 algorithms were obtained

from the Web and adapted for the bare PC computing environment by removing OS-

related calls [50], [51], [52].

3.1. System Architecture

The bare PC softphone application executes on a bare PC in the DOSC computing

environment [38]. This environment provides multi-tasking, audio codec and NIC

drivers, and limited screen and keyboard I/O functionality as shown in Figure 3.

Figure 3: Bare PC Softphone Context Diagram

Bare PC

Softphone

Audio Codec

API

NIC API

Keyboard API

Screen API
WAN/LAN

22

During recording, the bare PC softphone application inputs digitized microphone

voice data from the audio codec, encodes it into packets, and outputs each packet to the

NIC for transmission by the network. During playback, the bare PC softphone application

inputs incoming network voice packets from the NIC, decodes each voice packet, and

outputs the voice payload to the audio codec for playback on the speakers.

The bare PC VoIP softphone inherits many advantages of bare PC (OS-less)

computing in general. The basic hardware elements that support the bare PC softphone

are CPU, memory, floppy drive, Ethernet NIC (external 3Com 905CX network interface

card), onboard audio chip (AD1981B), keyboard, headphones and display. A bare PC

provides direct interfaces to the hardware and all other necessary operating elements are

built into the application itself. As these interfaces are simple and robust, they are used to

support the bare PC VoIP softphone application, as well as other bare PC applications

such as an email client and a Web server [12]. These interfaces also enable the softphone

to be run concurrently with other applications on the bare PC by adding more tasks.

Figure 4 shows the system elements of the bare PC softphone application. The

AD1981B 16-bit PCM codec digitizes analog voice data and the ICH5 DMA controller

stores it in the microphone buffer. The bare PC softphone application inputs buffers of

digitized voice data from the microphone buffer and compresses each buffer from 16-bit

to 8-bit resolution using a G.711 codec, while ignoring data from one of the channels

(stereo-to-mono conversion). Next, RTP, UDP, IP, and ETH headers are added to the

voice data. Voice packets are stored in the NIC send buffer for transmission on the

network.

23

Conversely, when a voice packet is received from the network, it is stored in the

NIC receive buffer. Next, ETH, IP, UDP and RTP headers are checked and removed

from each packet, and the RTP[33] header fields plus the pointer to the voice payload are

inserted into the jitter buffer. The bare PC softphone application removes each 8-bit PCM

compressed voice packet from the receive buffer, passes it through the G.711 codec for

decompression to 16-bit PCM resolution, and writes it directly to the speaker buffer left

and right channels (mono-to-stereo conversion). The ICH5 [35] DMA controller transfers

digitized voice data to the AD1981B codec for playback on the speakers.

Figure 4: Softphone System Diagram

Internet

End Start

Read
Position

Write
Position

 Microphone
Buffer

G.711 Encoder

RTP

UDP

IP

ETH

G.711 Decoder

End Start

Write
Position

Read
Position

Send
Buffer

Jitter
Buffer

 Speaker
Buffer

DAC FIFO

ICH5 Controller

AD1981B

ICH5 Controller

AD1981B

ADC

Receive
Buffer

NIC

FIFO

24

The above architecture is very simple; it is also customized for the bare PC

softphone. There is no functionality implemented in the system that is not relevant to this

application. In addition, this architecture enables many novel features (described below)

to be incorporated in the softphone. Many of these features are harder to implement in an

OS-based system.

3.2. Class Diagram

The softphone application software design is based on object-oriented

methodology using a set of interacting objects. This allows for simple reuse of existing

bare PC objects, as well as a clean method for porting non-bare PC software to the bare

PC environment. Every object maintains its own local state and provides interfaces for

communication with the outside world. Object oriented analysis of the softphone

application was used to identify the objects; these are briefly described next and shown in

Figure 5:

 G.711: deals with voice compression and decompression (has been modified

and ported to the bare PC environment)

 Audio Object: implements the driver for the onboard codec and is concerned

with communicating with the onboard codec to manage the microphone

recording and speaker playback processes

 Jitter: implements the jitter buffer

 RP: manages the record and playback functions of the softphone

 APPTASK: implements the softphone tasks

 Hshake: implements the handshake (over TCP) for exchange of the AES key

25

 RTP: implements the RTP protocol

 Vsec: deals with voice security

 TCP, ARP, UDP, IP, ETH: implement the respective network protocols

 RSA: implements the RSA algorithm (has been ported to the bare PC

environment)

 AES: implements (AES has been ported to the bare PC environment)

Audio

RPJitter

RTP

UDP

IP

ETH

ARP

Vsec TCP

HshakeAPPTask

G.711

RSA AES

Figure 5: Bare PC Softphone Class Association Diagram

26

3.3. Task Scheduling

Bare PC softphone task scheduling is designed to be very simple. Yet, it is quite

flexible and capable of supporting a powerful multi-tasking environment. The task

scheduling strategy is an integral part of the bare PC softphone application, providing the

softphone application with complete control of task scheduling and execution. It allows

for scheduling of tasks only when processing is required. It also allows any task to

suspend itself, and return control back to the main task so that the CPU can be allocated

to other useful processing tasks. For example, the receive task will return control back to

the main task after it has processed received network packets. Similarly, the audio task

will return control back to the main task after it has completed processing the microphone

recorded data and the incoming network voice packets.

The bare PC softphone task architecture is shown in Figure 6. First, softphone

tasks are created and placed on the idle task list, and then placed on the active task list

when processing is required. Upon completion of processing, each task is placed back on

the idle task list.

Figure 6: Audio Softphone Task Architecture

RCV

Task

HSK

Task

Main

Task

Audio

Task

Web

Server

27

As seen in the figure, audio softphone processing is partitioned into the following

four separate tasks:

 Main Task: responsible for management of the bare PC softphone tasks

 Receive Task: responsible for checking for arrival of new network packets,

processing of packet headers, and placement of packet descriptors into the jitter

buffer

 Audio Task: responsible for moving the recorded microphone data from the

microphone buffer to the NIC, as well as for moving voice packets from the

receive buffer to the speaker buffer

 Handshake Task: responsible for the establishment of a TCP/IP handshake,

exchange of the AES key, and termination of the handshake between two bare PC

softphone applications during startup

3.4. Main Task

The main task is responsible for managing the other bare PC softphone tasks

(Figure 7). The functions of the main task are activation, scheduling, and execution of

other softphone tasks. Once a task is executed, it will complete processing the available

data and then suspend itself for a fixed time. This results in a return of control back to the

main task.

28

Figure 7: Main Task State Diagram

Figure 8 shows that receive and audio tasks perform the bulk of audio softphone

processing.

Main Task

Start

New Packets? ReceiveTaskFlag = 1

AudioTaskFlag = 1

ReceiveTaskFlag = 0

Schedule a Task

Execute Task

Yes

No

29

Figure 8: Receive and Audio Tasks Processing

3.5. Receive Task

The NIC card inputs voice packets from the IP network and transfers them to

RAM. These are accessible via the UPD list. The Ethernet object validates each packet by

examining each field in the ETH header fields and makes packets available for use by the

receive task. The receive task checks for arrival of new network packets via the Ethernet

object and calls the IP handler. The IP object examines and verifies each IP header field

and passes all UDP packets to the UDP handler. The UPD object examines each UDP

RCV

Task

NIC

 ETH

RTP

IP

UDP

Upload Pointer
Descriptor (UPD)

Playing

Rate

Rate

Recording

G.711Codec

Jitter Buffer

Speaker

Speaker Buffer

Microphone

Audio
Task

Microphone Buffer

Download Pointer
Descriptor (DPD)

PTR

PTR

30

header field and passes RTP packets to the RTP handler. The RTP handler processes RTP

header fields and calls the jitter object to store each voice packet in the jitter buffer. The

jitter object receives all RTP header fields associated with each voice packet descriptor

and a pointer to the voice payload as stored in the UPD receive buffer (Figure 9). The

receive task processing steps will be discussed next.

Figure 9: Receive Task State Diagram

3.5.1. UPD Receive Buffer Management

The Ethernet object is responsible for management of the circular UPD receive

buffer while working with the NIC driver software. Each element of this buffer

Process IP Header

Suspend

Start

New Packets?

Process UDP Header

Process RTP Header

Insert Packet in Jitter Buffer

No

31

corresponds to a single packet of digitized voice data received from the IP network. The

sender has prepended each voice packet with header fields for the ETH, IP, UDP, and

RTP protocols. The UPD receive buffer located in RAM provides an interface between

the NIC DMA controller and the audio softphone application.

3.5.2. ETH Header Processing

The Ethernet object processes each incoming voice packet directly from the UPD

receive buffer by examining each ETH header field. The MAC address field of the

incoming packet is checked against the MAC of the NIC to ensure that only packets

destined for this softphone are accepted. Next, the protocol type field is checked for the

IP packet type. All IP packets are accepted and the IP handler receives a pointer to the IP

packet stored in the UPD memory.

3.5.3. IP Header Processing

The IP object processes the IP header fields for each IP packet as stored in the

UPD receive buffer. If the IP address field matches the IP address for this PC, then the

packet is accepted. Next, the UDP handler is called with a pointer to the UDP packet as is

stored in the UPD memory.

3.5.4. UDP Header Processing

The UDP object processes and validates UDP header fields for each packet

located in the UPD receive buffer. All bytes received are processed in “Little Endian”

byte order. UDP header fields are processed as follows:

32

 Source Port 16 bits: This is the port used by the source of UPD packets, i.e. the

port that the softphone sending the UDP packet is using for this audio session

This field must be checked against the port number of the audio softphone

sending the UDP packets, as established at the start of the audio session

 Destination Port 16 bits: This is the port by which the softphone receives UDP

packets for this audio session. This field must be checked against the port number

by which this audio softphone is accepting UDP packets, as established at the start

of the audio session.

 Length 16 bits: This field contains the size (number of bytes) of the voice

payload plus the size of the UDP header field (8 bytes).

 Checksum 16 bits: A checksum for the payload is computed and checked against

the value stored in the checksum field of the UDP header. If the checksums do not

match, the UDP packet is discarded.

3.5.5. RTP Header Processing

RTP is implemented as described in [33]. The RTP object process and validates

RTP header fields for each packet located in the UPD receive buffer. Each RTP packet

header is processed and checked for validity. All bytes received are processed in “Little

Endian” byte order. The RTP header fields are as follows:

 Version(V) 2 bits: This field must contain a value of 2, which is the current

version of the RTP protocol used by the bare PC softphone.

 Padding(P) 1 bit: This field must contain zero indicating there are no

additional padding octets at the end that are not part of the payload.

33

 Extension(X) 1 bit: This field must contain zero indicating a fixed RTP

header is used.

 CRC Count (CC) 4 bits: This field must contain a zero indicating no

additional data sources is used.

 Marker (M) 1 bit: This field must contain a zero indicating no tailoring of the

RTP header is used.

 Payload type (PT) 7 bits: This field must contain zero if the source of the RTP

packet used PCMU (µ-law) encoding, or 8 if it used PCMA (A-law) encoding.

 Sequence Number (SN) 16 bits: This field is parsed as a 16-bit logical

circular number, which designates a sequence number associated with the

RTP packet as assigned by the sender. The sequence number starts from zero

and is incremented for each subsequent packet (it is reset to zero upon

reaching the maximum value).

 Time Stamp (TS) 16 bits: This field is parsed as a 32-bit logical circular

number designating a time stamp that indicates when the packet was

generated by the source of the packet.

 Synch Source (SSRC) 32 bits: This field is parsed as the IP address for the

softphone sending the RTP packets. However, this field is not used.

Finally, the RTP object passes the values for RTP header fields and a pointer to

the RTP payload (stored in UPD memory) to the jitter object by calling the insert member

function from the jitter object.

34

3.5.6. Jitter Buffer Implementation

As noted above, the last processing step in the receive task is the RTP processing

function, which inserts incoming voice packets into the jitter buffer. The jitter object

implements the jitter processing functions. It receives voice packets inserted by the RTP

object, and queues them for playback on the speakers by the audio task. Audio task

processing is discussed later.

The jitter buffer consists of an array of voice payload descriptor elements (Figure

10). Each payload descriptor element has all the fields corresponding to the RTP fields.

In addition, each element has a field for the size of the received voice packet, a field that

contains a pointer to the actual voice packet (Payload Pointer) as stored in the DPD

memory, and a playout time field for each packet. The values stored in each field are

received from the RTP handler (except for the playout time field).

The number of entries in the jitter buffer payload descriptor array is set during

jitter object initialization. A voice packet description is inserted into the jitter buffer at

any open slot as a packet arrives and it is removed for playback using the playback delay

time for each packet and the packet sequence number. The playback occurs during audio

task execution, which is discussed below.

35

Figure 10: Jitter Buffer Structure

We have implemented both fixed delay and adaptive jitter buffer algorithms [32]

in the bare PC softphone. Calculation of jitter follows the specifications in [33]. The bare

PC softphone continually monitors performance and reports the values of network delay,

end-to-end (total) delay, mean and maximum jitter, and the maximum inter-arrival gap

(max delta) between packets. The end-to-end delay is measured as the time that elapses

between extracting voice data for a packet from the sender’s microphone buffer and

copying it to the receiver’s speaker buffer. The bare PC also reports the percentage of lost

or late packets. We validated jitter and max delta values by comparing them with the

values reported by an Ethereal sniffer [34]. Note that synchronized sender and receiver

clocks are not needed to compute jitter and max delta. For estimating network and total

Payload Pointer (PP)

•
•
•
•

Payload Pointer (PP)

Payload Pointer (PP)

Payload Data

•
•
•
•

Payload Data

Payload Data

PP Size SSRC TS SN PT M CC X P V PTS

PP Size SSRC TS SN PT M CC X P V PTS

36

end-to-end delay, the bare PC computes the approximate delay for a packet by using the

value in the timestamp field and the local clock at the receiver. This value of delay is also

used to calculate an adaptive playout delay for packets.

3.5.7. Packet Loss

The packet loss calculation uses a 1024 element vector. The vector elements are

set to clear initially and again after every 1024 packets that arrive (SNVector[1024] =

{0x00}). Every time a voice packet arrives, its sequence number is mapped into a position

in the vector to set a flag for this position (SNVector[sn % 1024] = 0x01). After 1024

packets have arrived, the number of clear positions in the vector is summed to find the

packet loss count as follows:

}

;0__

}

;0)(_

;__)0)(_(

{

);1024;0(

{

)1024__(

;1]1024%[_

;__















countvectorsn

ivectorsn

countlosspacketivectorsnif

iiifor

countvectorsnif

snvectorsn

countvectorsn

3.6. Audio Task

The audio task is responsible for two primary functions; recording and playback

of voice data. Both functions are tightly coupled with the AD1981B onboard codec

processing through the microphone buffer and the speaker buffer (Figure 11). This

37

section discusses the interface between the bare PC softphone and the AD1981B codec

via the ICH5 DMA controller. The record and playback functions are covered in the

subsequent sections of this document.

The record and playback for the softphone are synchronized using the audio codec

recording and playback timing. The audio task monitors the recording of the microphone

data. Whenever a full buffer of microphone data has been recorded, it is processed. It also

processes received voice packets in the jitter buffer. Therefore, every time a buffer is

recorded, a packet is played as well. This technique provides the following advantages:

 It simplifies the synchronization of the microphone buffer read/write pointers

with the speaker buffer read/write pointers.

 It minimizes the softphone intrinsic delay by keeping the distance between

read and write pointers for the microphone and speaker buffers to a minimum.

 It indirectly synchronizes the record and playback timing on both softphone

applications.

38

Start

New

Microphone

Buffer?

Record Microphone Buffer

Suspend

Playback Packet

New Jitter

Buffer Packet?

NO

NO

Send Packet over IP Network

Start

New

Microphone

Buffer?

Record Microphone Buffer

Suspend

Playback Packet

New Jitter

Buffer Packet?

NO

NO

Send Packet over IP Network

Figure 11: Audio Task State Diagram

While synchronizing playback and recording, the audio task also monitors the

condition of the jitter buffer. If no packets are arriving due to network conditions or the

any other failures, it will restart the audio task to its start state. The audio task is designed

and implemented as a state machine with start, record, play, and suspend states. The

audio task processes entire frames of recorded voice data per activation before

suspending itself.

39

3.6.1. The AD1981B Codec

The AD1981B Codec (Coder/Decoder) chip set provides the bare PC softphone

application with analog and digital audio capabilities directly from the PC motherboard

(Figure 12).

The AD1981B onboard codec continuously samples microphone voice data at the

16-bit PCM rate, converts it from analog to digital format, and stores it internally. The

ICH5 DMA controller retrieves recorded digitized voice buffers from the AD1981B

codec and stores them in RAM in the microphone circular buffer at the record position.

The audio task reads each recorded voice buffer from the microphone buffer starting

from the read position. It then does stereo to mono conversion, compresses the data using

G.711, adds the RTP, UDP, IP, and ETH headers, and eventually stores each packet in

the circular send buffer list, which is accessible via the DPD list. These packets are then

placed on the network by the NIC.

Figure 12: PCM/Codec data rate for 20ms

Sound Card

In Out

1 Byte/125µs

Buffer Size = 160 Byte

40

The audio task is also responsible for playback of voice packets via the speakers.

It selects voice packets from the jitter buffer, decompresses the data using G.711, does

stereo to mono conversion, and then stores each voice payload into the speaker buffer

starting at the write position. The ICH5 DMA controller continuously reads each voice

packet from the speaker circular buffer, starting at read position, and transfers them to the

AD1981B codec, which converts each voice buffer from digital to analog, and plays it

back at the PCM rate. Managing the write and read pointers for the microphone and

speaker buffers involves both the audio softphone application as well as the ICH5

controller driver software.

3.6.2. Microphone Record Buffer

The AD1981B codec samples narrowband speech from the microphone at the

PCM rate of 8000 samples per second. Each digitized sample has a 16-bit resolution. This

produces a digital signal stream with bit rate of 128Kbits/sec (8000*16) per channel. The

recording is performed in stereo format via left and right channels, which results in a total

of 256Kbits/sec (8000*16*2). The AD1981B controller performs Analog-to-Digital-

Conversion (ADC) during recording and Digital-to-Analog-Conversion (DAC) during

playback. It also controls other microphone and speaker operations, such as volume and

gain.

The digitized voice buffers are first stored in the AD1981B codec internal FIFO

and then mapped into the microphone buffer by the ICH5 controller DMA function as

shown in Figure 13.

41

Figure 13: Microphone Record Buffer

3.6.3. Speaker Playback Buffer

In addition to microphone recording and digitization, the AD1981B codec also

uses digitized voice buffers stored in its internal FIFO to reconstruct narrowband speech

for playback on the speakers. The ICH5 DMA controller driver software is responsible

for continuous and sufficient transfer of digitized voice buffers from speaker buffer to the

AD1981B codec internal FIFO as shown in Figure 14. The playback requires a bit stream

of 128Kbit/sec (8000*16) per channel or total of 256Kbit/sec (8000*16*2) for the left

and right channels to reconstruct the original voice.

End Start Write Position

Microphone Buffer Read Position

ICH5 Controller

AD1981B

ADC

FIFO

42

Figure 14: Speaker Playback Buffer

3.6.4. Audio Task Recording

Recording and processing of recorded voice data is one of the two primary

functions of the softphone. First, the audio task recording function checks for newly

recorded voice data. It then reads each recorded voice packet from the circular

microphone buffer, converts it from stereo to mono, compresses it using G.711 and

directly writes it to the DPD send buffer. Next, it prefixes the payload with RTP, UDP, IP

and ETH headers. The stored voice frames are then transmitted over the network via the

NIC. The record task processes an entire frame of recorded voice data per activation

before suspending itself.

End Start
Read Position

Write Position Speaker Buffer

DAC FIFO

ICH5 Controller

AD1981B

43

3.6.5. Microphone Buffer Management

The microphone buffer is a circular list of voice buffers with a write pointer and a

read pointer. A voice buffer is written at the write pointer and read at the read pointer.

Each element of the microphone buffer holds one packet of raw digitized voice data with

a 16-bit resolution and stereo quality. Each element occupies two consecutives bytes for

the left channel followed by two bytes for the right channel. The audio task recording

function reads buffer elements starting at the read pointer. Proper manipulation of the

write and the read pointers is the responsibility of both the ICH5 DMA controller and the

audio softphone application.

There are two microphone buffer pointers that require proper and timely

management for correct management of the microphone buffer:

 CIV – Current Index Value (0-31)

 LVI – Last Valid Index (0-31)

The ICH5 DMA controller driver software manages the CIV, and the softphone

application manages the LVI for the microphone buffer.

The CIV is an index to the microphone buffer, which always points to the current

buffer element where microphone data is being recorded. No processing should be done

on this buffer element as it will interfere with data recording process. As part of its

initialization steps, using an API call, the audio task sets the microphone CIV to zero so

that voice data may be recorded starting in the first element of the microphone buffer.

After the current buffer pointed to by the CIV is filled, the ICH5 controller software

automatically increments the CIV by one so that microphone data can be recorded in the

44

next available buffer element. The range of valid values for both the CIV and LVI is from

zero to 31.

The buffer boundary conditions for the microphone buffer structure must be

managed by the audio task recording function using the microphone buffer LVI. The LVI

pointer must be set to 31 when CIV has changed to zero, and it must set to zero when

CIV has changed to 31, as follows:

civ = audio.getMicCIV ()

 If (civ == 31)

 audio.setMicLVI (0)

else if (civ == 0)

 audio.setMicLVI (31)

The size of a microphone buffer element must be computed and stored in the

BUFFER_SIZE constant at compile time. PCM-16 sampling collects 8 samples per msec,

with each sample consisting of four bytes of storage, two bytes for the left channel (LC)

followed by two bytes for right (RC). Left and right channel samples are interleaved. The

audio softphone application reads and processes packets of multiples of 10 msec (Figure

15), so the frame size is calculated as follows:

BUFFER_SIZE = Frame Size * PCM Rate * LC Bytes * RC Bytes

45

Figure 15: Frame Size and Buffer Size Calculation

The ICH5 controller specification allows for buffer sizes of up to 65535 samples

of 16-bit resolution, which is 131,070 (65535*2) bytes of data. In practice, smaller

buffers are used as shown in the above table.

The LVI for the microphone buffer must be changed fast enough so that the CIV

is changed from 31 to zero and from zero to 31 to ensure no loss of recording. When the

CIV reaches 31, the last element of the circular microphone buffer has been filled with

voice data. If the LVI is not changed to 0, the recording will halt causing data loss.

Similarly, when the CIV reaches 0, the LVI must be changed to 31.

For large buffer sizes, the LVI change is less frequent. It is recommended that the

CIV be checked a least a few times during recording of the frame size so that the LVI

may change frequently with no loss of data.

3.6.6. Stereo to Mono Conversion

Digitized voice data from the microphone is recorded in stereo format i.e. they are

interleaved as two bytes for the left channel followed by two more bytes for the right

channel. The conversion from stereo to mono eliminates the two bytes for the right

channel from each buffer element (Figure 16). This process reduces the bit rate for the

1600 (50 * 8 * 2 * 2) 50 5

1280 (40 * 8 * 2 * 2) 40 4

960 (30 * 8 * 2 * 2) 30 3

640 (20 * 8 * 2 *2) 20 2

320 (10 * 8 * 2 * 2) 10 1

BUFFER_SIZE =

(Frame Size) * (PCM Rate) * 2 * 2

Frame Size

(msec)

46

digital stream from 256Kbits/sec to 128Kbits/sec. The stereo-to-mono conversion is

performed during G.711 compression by simply skipping the two bytes for the right

channel.

Figure 16: Stereo to Mono Conversion

3.6.7. G.711 Compression

The ITU-PCM (G.711) codec compresses 16-bit PCM samples into 8-bit PCM

samples by using a look up table. There are two distinct tables for PCMA and PCMU

compression. Each lookup table consists of 16,384 8-bit predetermined values. First, the

two most significant bits of 16-bit PCM samples are masked off, while the remaining 14

bits are used as an index to retrieve an 8-bit PCM value from the table. The 8-bit PCM

value forms the compressed payload for transmission over the network. This process

reduces the bit rate for the digital stream from 128Kbits/sec to 64Kbits/sec. The

compression algorithm is valid for either mono or stereo recording formats. For mono,

only the 16-bit PCM samples for the left channel are compressed; for stereo, 16-bit PCM

samples for both left and right channels are compressed and interleaved. The

compression algorithm reads voice data directly from the microphone buffer, eliminates

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

RC LC RC LC RC LC RC LC

2 bytes 2 bytes 2 bytes 2 bytes

LC LC LC LC

47

the right channel, compresses the right channel, and directly copies the compressed data

to the NIC circular buffer. This eliminates buffer copying of voice data.

3.6.8. Adding RTP Headers

The NIC send buffer now contains the 8-bit PCM compressed voice packets.

Next, the voice packet is prefixed with the RTP header (Figure 17). The RTP header

fields are processed in “Little Endian” byte order meaning that the LSB bytes are stored

before the MSB bytes.

Figure 17: RTP Header Fields

The RTP header fields are populated as follows:

 Version(V) 2 bits: This field is set to 2, which is the current working version

of RTP protocol.

 Padding(P) 1 bit: This field is set to zero to indicate no additional padding

octets exist at the end, which is not part of the payload.

48

 Extension(X) 1 bit: This field is set to zero to indicate a fixed RTP header is

used.

 CRC Count (CC) 4 bits: This field is set to zero to indicate no additional data

sources are used.

 Marker (M) 1 bit: This field is set to zero to indicate there is no tailoring of

the RTP header.

 Payload type (PT) 7 bits: This field is set to zero for PCMU and 8 for PCMA

compression.

 Sequence Number (SN) 16 bits: This field is populated with a 16-bit logical

circular number starting from zero and incremented by one for each

subsequent packet.

 Time Stamp (TS) 16 bits: This field is populated with a 32-bit logical circular

number by using the local timer converted into PCM byte units. This field has

the local PCM time at which the packet is created. It is calculated by

multiplying the local timer value by two. Each timer unit is equal to 250 μsec,

which at the PCM sampling rate constitutes two bytes of data.

 Synch Source (SSRC) 32 bits: This field has the IP address of the sender.

3.6.9. Adding UDP, IP and ETH Headers

The DPD send buffer now contains the compressed 8-bit PCM packet of voice

data prefixed with the RTP header. This is now prefixed with the UDP header fields

(Figure 18). The UDP header fields are also in “Little Endian” byte order.

49

Figure 18: UDP Header Fields

The UDP fields are as follows:

 Source Port 16 bits: This is the sender’s port number.

 Destination Port 16 bits: This is the receiver’s port number.

 Length16 bits: This is the number of bytes in the UDP datagram.

 Checksum: 16 bits: A checksum is placed in this field.

The IP object prefixes the UDP datagram with IP header fields. The ETH object

prefixes the IP packet with the ETH header fields. The last step is to call the NIC API to

send the packet on the network. The UDP, IP and ETH code were developed by others

during previous projects.

3.6.10. DPD Send Buffer Management

The DPD send buffer now contains digitized voice data prefixed with the RTP,

UDP, IP and ETH headers. The DPD send buffer is located in RAM, which provides an

interface between the NIC DMA controller and the audio softphone application. The

50

audio softphone application and the NIC DMA controller software must coordinate to

manage the send buffer.

The audio task record function must perform the necessary actions for managing

the send buffer as follows:

 Acquire a valid pointer to write to the send buffer

 Copy the data into the send buffer

 Add the RTP, UDP, IP and ETH header fields

 Send the voice packet on the network

3.7. Audio Task Playback

Processing and playback of the incoming network voice packets is the other

primary function of audio softphone. The audio task will playback a packet if and only if

the audio task recording function has detected and recorded a new buffer of microphone

data via an API call to the audio card driver. The playback function of the audio task

fetches voice packets from the jitter buffer, decompresses the voice data using G.711, and

copies the data directly from the NIC buffer to the speaker buffer. The decoded data is

mono, and therefore must be converted to stereo format. This is accomplished by copying

the decompressed voice data into left channel as well as the right channel.

3.7.1. Jitter Buffer Playout

The jitter object uses a priority queue to implement the jitter buffer functions. The

receive task inserts voice packets into the jitter buffer queue as they arrive by using the

jitter buffer insert function. The audio task playback function fetches packets from the

jitter buffer one at a time using the jitter buffer remove function. The jitter buffer remove

51

function uses the packet sequence number as well as the packet playout time for all

packets in the queue and returns the packet with smallest sequence number whose

playout time has expired. The playout time for each packet is stored with each packet

during the jitter buffer insert as discussed previously. The stored playout time is

compared with current system time to determine whether the play out time for a packet

has elapsed. If no voice packet is selected by the jitter remove function, then packet loss

concealment will take place, via playback of a background noise packet.

3.7.2. G.711 Decompression

The ITU-PCM G.711 codec decompresses 8-bit PCM voice samples into 16-bit

PCM samples by using a look up table for PCMA or PCMU decompression based on the

payload type field in the RTP header for the incoming voice packets. Each lookup table

consists of 256 16-bit predetermined values. The 8-bit PCM sample is used to retrieve a

16-bit PCM value from the table, which forms the decompressed payload for playback on

the speakers. This process increases the bit rate for the digital stream from 64Kbits/sec

back to 128Kbits/sec per channel. The decompression algorithm is valid for either mono

or stereo formats (8-bit PCM samples for the left channel or 8-bit PCM samples for the

left channel and right channel are decompressed).

3.7.3. Mono to Stereo Conversion

The onboard AD1981B codec requires that digitized incoming voice buffers for

playback on the speaker be stored in the speaker buffer in stereo format i.e. they must be

interleaved as two bytes for the left channel followed by two bytes for the right channel.

The conversion from mono to stereo copies each 16-bit PCM sample into the left channel

52

as well as the right channel (Figure 19). The mono to stereo conversion is implemented as

part of the G.711 decompression algorithm to eliminate any intermediate copying of

voice data.

Figure 19: Mono to Stereo Conversion

3.7.4. Speaker Buffer Management

Each element of the speaker buffer holds exactly one packet of digitized voice

data that has arrived from the network. Each packet must have the actual raw voice data

for playback by the speaker at a 16-bit PCM rate and in stereo format. Each 16-bit PCM

sample will occupy two consecutives bytes for the left channel and two consecutive bytes

for the right channel. The circular speaker buffer is located in RAM and provides an

interface between the ICH5 DMA controller and bare PC softphone application during

the playback. The speaker buffer is a 32-element circular buffer with each element

containing a single frame of digitized voice. The ICH5 DMA controller and bare PC

softphone application must coordinate to ensure proper manipulation of the record and

read pointers.

The bare PC softphone application writes the incoming voice frames into the

speaker buffer, and the ICH5 controller driver software moves them into the AB1985B

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes

RC LC RC LC RC LC RC LC

2 bytes 2 bytes 2 bytes 2 bytes

LC LC LC LC

53

codec FIFO for playback on the speakers. There are two buffer pointers associated with

the circular speaker buffer:

 CIV – Current Index Value (0-31)

 LVI – Last Valid Index (0-31)

The ICH5 controller driver software manages the CIV and the bare PC softphone

application manages the LVI for the speaker buffer. The CIV is an index for the speaker

buffer, which points to the buffer element where speaker data is being read for playback

on the speakers. No processing should be done on this buffer element as it will interfere

with playback. The CIV is set to a zero during the initialization of the ICH5 controller

driver software, so that voice data may be read starting from the first buffer element.

After the current buffer is read, the ICH5 controller software automatically increments

CIV by one if it is less than or equal to 31. When the CIV reaches 31, the CIV can be

changed from 31 to zero but only if the LVI has been set to zero by the softphone

application.

The speaker buffer boundary conditions are managed by the audio softphone

application using the speaker buffer LVI. The LVI pointer must be set to 31 when the

CIV changes to zero, and to zero when the CIV changes to 31, as follows:

civ = audio.getSpkerCIV ()

 If(civ == 31)

 audio.setSpkrLVI (0)

else if(civ==0)

 audio.setSpkrLVI (31)

54

The size of a speaker buffer element is the same as the size of a microphone

buffer element, which is defined by BUFFER_SIZE constant. The speaker playback also

requires 16-bit voice data samples at the PCM rate. Each sample requires two bytes for

the left channel and two bytes for the right channel. Samples for the left and right

channels are interleaved in the buffer. We omit details concerning the adjustment of the

LVI and CIV for the speaker buffer as it is similar to the case of the microphone buffer

discussed previously.

3.8. Security

The bare PC softphone implements a lightweight security scheme designed for

peer-to-peer VoIP communication. The scheme relies on several standard security

mechanisms. For example, we use RSA encryption and signatures for secure symmetric

key exchange and peer authentication. Similarly, AES encryption and a SHA-1 hash

ensure the privacy and integrity of voice data. The scheme provides limited replay

protection. We will add stronger replay protection and AES counter mode [45] in the

future. It is possible to disable security by using a voice security flag in case the users do

not wish to protect their conversation, or if performance takes precedence over security.

Users can also choose either encryption or authentication protection if both are not

needed.

The bare PC softphone security protocol consists of a simple two-way handshake

over TCP to exchange the AES key (or keys), which is followed by transfer of encrypted

authenticated voice data over RTP/UDP. In keeping with the goal of simplicity, we do

not support negotiation of a cipher suite or the use of X.509 [41] certificates. However, it

55

would be easy to add these capabilities if needed. Each bare PC softphone generates an

RSA key pair and an AES key. At present, we do not address the important issue of key

management, but assume that an out-of-band method (such as manual exchange of public

keys between peers or use of a trusted key server) enables the peers to obtain and verify

each other’s RSA public keys. We also assume that the bare PCs have public IP addresses

or that it is possible to configure firewalls in the presence of NAT (network address

translation) to enable the peers to establish a TCP connection for the handshake and

transfer voice data over UDP. We are currently investigating alternate approaches for

establishing call connections through NAT/firewalls, including STUN [46] and ICE [47].

3.8.1. Handshake

When making a call, the caller is the client and the callee is the server for the

purposes of establishing a TCP connection to exchange AES keys. The caller generates

an AES key and its SHA-1 hash. We encrypt the latter with the caller’s private RSA key

to produce a signature. The AES key and its signature are then encrypted with the callee’s

public RSA key and a message consisting of these encrypted items is sent to the callee.

The callee decrypts the message using its private RSA key and recovers the AES key and

its signature. It then decrypts the signature using the public RSA key of the caller and

verifies the signature by computing the SHA-1 hash of the AES key and comparing it

with the decrypted signature. If there is a match, the callee responds by generating a new

AES key for use in the opposite direction and repeating each of the above steps taken by

the caller. If desired, the same AES key can be used in both directions. The caller

processes the received message in the same manner as the callee and the TCP connection

56

is closed. The messages involved in the handshake are shown in Figure 20 and the details

of key exchange processing are shown in Figure 21.

Figure 20: Handshake Messages for AES Key Exchange

If either party is unable to decrypt the AES key or verify the signature, the call

connection attempt fails, and a message appears on the screen to notify the user.

Otherwise, the call proceeds to the next stage, which is the exchange of voice data. The

above key exchange is secure, since only the caller and callee can decrypt the messages

with their respective private keys and recover the AES keys and signatures. Moreover,

only the caller and callee could have produced the signatures with their respective private

keys. If it were necessary to ensure liveliness of the key exchange and protection against

replay, each side would also need to generate a nonce, include it in the signature and send

C

L

I

E

N

T

S

O

F

T

P

H

O

N

E

S

E

R

V

E

R

S

O

F

T

P

H

O

N

E

 Establish TCP Connection

RSA encrypted/signed AES key

RSA encrypted/signed AES key

 Terminate TCP connection

57

it as part of the encrypted key exchange message. In this case, the nonce needs to be

stored by each side and also returned in the response, resulting in one additional

handshake message sent by the caller.

Figure 21: AES Key Exchange Processing

The security of the handshake relies on the ability of the bare PC softphones to

protect the private RSA keys. We use an adaptation of a standard technique [49] to

protect the private keys, which consists of the following steps. When the RSA keys are

A = AES Key

B = SHA1 of A

C = Sign B

D = Encrypt A

E = C + D

F = AES from Receiver

G = AES SHA1 from Receiver

H = Decrypted F

I = Verify G

J = SHA1 of H

Security

I == J
N

Sender

Security

K = AES from Sender

L = AES SHA1 from Sender

M = Verify L

N = Decrypted K

O = SHA1 of K

O == M

Receiver

N

O

P = SHA1 of N

Q = Sign P

R = Encrypt N

S = Q + R

Send S to Sender

58

generated, the user supplies a password. A SHA-1 hash of the password is created, and an

AES key is derived from the hash. This key is used to encrypt the private RSA key. Only

the encrypted private RSA key is stored. To recover the private RSA key, the user enters

the password and the hash is recomputed. The AES key is again derived from the hash

and used to decrypt the private RSA key.

3.8.2. RSA Key Generation and Exchange

Each bare PC softphone generates private and public RSA keys on behalf of its

user. For two users to communicate, the bare PC softphone of a user must know the

public key of the other user. For now, these public keys are placed on a floppy disk or

flash drive and read into each softphone.

3.8.3. Voice Payload Security

If the handshake is successful, each side has the AES key generated by the other

side and is able to send and receive encrypted and authenticated voice messages. First,

the recorded voice data is compressed as described earlier. Then the sender computes a

SHA-1 hash of the compressed voice data and the RTP header, and encrypts the voice

data and the hash using its AES key. The inclusion of an encrypted hash serves to

authenticate the message and verify the identity of the sender. By including the RTP

header in the hash, we can provide limited protection against replay, since there is a

timestamp field in the header. The receiver decrypts the compressed voice data and the

hash using the AES key transferred during the handshake. It then computes and verifies

the hash in the usual manner. Since the AES key was exchanged securely, only the

legitimate parties can decrypt the voice message, and its integrity and the sender’s

59

identity are guaranteed. After decryption, the voice data can be played back after it is

decompressed. Figure 22 shows the steps involved in the secure transmission of voice

data.

Figure 22: Secure Transmission of Voice Data

Payload Security

A = Microphone Voice Data

B = G.711 Compressed A

N
Security

C = SHA1 of B

D = AES Encrypted B

E = AES Encrypted C

F = D + E

Send F

G = Network Voice Packet

H = G.711 Decompressed G

K == M

Send B

Play H

I = SHA1 from H

J = Payload from H

K = AES Decrypted I

L = AES Decrypted J

M = SHA1 of L

Security

Play L

Drop G

N

N

O

Y

Y

Y

B

60

Chapter 4. Performance

In this chapter, we present the results of experiments conducted with bare PC

softphones on a LAN and on the Internet. We compare the performance of bare PC and

WinRTP softphones, study the impact of heavy load conditions, demonstrate the

feasibility of Voice over Ethernet, and examine the overhead due to VoIP security

mechanisms.

4.1. Performance on a LAN

To study performance of the bare PC VoIP application, we conducted several

experiments in our laboratory using a simple, isolated (i.e., there is no connection to

external networks or the Internet) test LAN to measure call quality. For ease of data

collection and measurement, a hub is used (instead of a switch) to connect the bare PCs

running the VoIP clients, and an Ethereal sniffer is connected to the hub for passive

monitoring of calls. Each bare PC is a 2.4 GHz Dell Optiplex GX260 with 512 MB

memory, an external 3Com 905CX network interface card, and onboard audio chip

AD1981B. The WinRTP softphone runs on an identical machine (the OS is Windows XP

and we disabled unnecessary services). A commercial tool to calculate the MOS is also

connected to the hub (Figure 23). The propagation delay between a pair of VoIP clients is

negligible. In what follows, note that one-way measurements report separately the results

for each direction in two-way paired (simultaneous) voice streams, whereas two-way

measurements report the results considering the combined data from both directions.

61

Figure 23: LAN Measurement Setup

First, we transferred voice data between two bare PCs running the VoIP

application and determined packet loss, delay, and jitter for voice packets sizes ranging

from 10 ms to 120 ms. As there was no other traffic on the network, no packet loss

occurred. Also, values of delay and jitter were well within the prescribed ranges for

acceptable voice quality, and the MOS remained at 4.43 throughout. The experiments

were repeated after replacing first one bare PC and then both bare PCs with a VoIP client

running on Windows. The bare PC is capable of supporting voice packet sizes ranging

from 10 ms up to 120 ms, but the Windows client only allowed a maximum packet size

of up to 60 ms.

The maximum packet interarrival time (delta) in each direction for different frame

sizes is shown in Figure 24. For voice data sent by either a bare PC or a Windows client,

the maximum interval between packet arrivals is close to the voice frame size in ms.

Therefore, a linear relationship is observed, regardless of whether the receiver is a bare

Bare-PC

Softphone
Bare-PC

Softphone

Windows PC

(Ethereal)

WinRTP

Softphone

WinRTP

Softphone

MOS Tool

HUB

62

PC or a Windows client. However, as shown in Figure 25, if we plot the maximum

deviation from the voice packet size considering traffic from both directions, the

deviation for a bare PC is seen to be smaller than that for the Windows client.

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

Frame Sizes

M
a
x
 D

e
lt

a
 V

a
lu

e
s

Bare to Bare Windows to Windows Bare to Windows

Figure 24: Maximum Packet Interarival Time (ms)

Next, we consider the maximum jitter separately in each direction for a two-way

voice stream, which is shown in Figure 26 and Figure 27 respectively. The Windows

clients exhibit a marked directional asymmetry when sending voice data to each other,

which is likely caused by unmatched systems and operating system behavior. In contrast,

the maximum jitter for voice data sent between a pair of bare PC clients is significantly

lower than the values for the Windows clients and also has less asymmetry. This occurs

because a bare PC has less overhead, and its behavior is more uniform and predictable. It

is interesting to note that the performance of a Windows client sending to a bare PC is

63

better than when it is sending to another Windows client, whereas the bare PC

performance is the same whether it is sending to a Windows client or a bare PC. The

corresponding mean one-way jitter (in each direction) for the above experiments, shown

in Figures 28 and 29 respectively, confirms the lower jitter values for the bare PC. Note

that jitter measurements for both Windows and bare PC clients are well within the

recommended jitter limit of 50 ms. Also, note that the accuracy and resolution of the

measurements depend on the underlying operating system (Windows) on which the

sniffer is running. We have not attempted to measure these limits in our studies.

0.00

0.20

0.40

0.60

0.80

1.00

0 50 100 150

Packet Size

T
im

e
 (

m
s
)

MAX Deviation (BB) Max Deviation (WW)

Figure 25: Maximum Two-Way InterPacket Deviation (ms)

64

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30 40 50 60 70

Frame Size

M
a
x
 J

it
te

r
V

a
lu

e

Bare/Bare Windows/Windows Bare/Windows

Figure 26: Maximum One-Way Jitter (ms)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 10 20 30 40 50 60 70

Frame Size

M
a
x
 J

it
te

r
V

a
lu

e

Bare/Bare Windows/Windows Windows/Bare

Figure 27: Maximum One-Way Jitter (ms)

65

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70

Frame Size

M
e
a
n

 J
it

te
r

Bare/Bare Windows/Windows Bare/Windows

Figure 28: Mean One-Way Jitter (ms)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 10 20 30 40 50 60 70

Frame Size

M
e
a
n

 J
it

te
r

Bare/Bare Windows/Windows Windows/Bare

Figure 29: Mean One-Way Jitter (ms)

In Figure 30, we show the maximum jitter when considering two-way traffic. The

graph clearly shows that the maximum jitter when a bare PC client is sending is

66

significantly lower than when a Windows client is sending. Again, we observe that the

performance of the Windows PC improves when it is sending voice to a bare PC.

In all cases considered above, since there is no packet loss, larger voice packet

sizes do not have an observable impact on call quality. We introduced moderate levels of

background traffic on the network and repeated the above experiments. We observed

similar performance gains for the bare PC client over the Windows client. However, for

both bare PC and Windows systems, there was a minimal impact on overall call quality

with occasional packet loss and slightly larger values of delay and jitter (no significant

change to the MOS was seen). However, the loss of a larger packet now has an

observable effect.

0.00

0.05

0.10

0.15

0.20

0 50 100 150

Frame Size

M
ax

 J
it

te
r

Max Jitter (BB) Max Jitter (BW)

Max Jitter (WB) Max Jitter (WW)

Figure 30: Maximum Two-Way Jitter (ms)

67

4.1.1. Performance under Heavy Load

Next, we conducted experiments on a LAN to test the call quality of the bare PC

softphone when it is performing other tasks. For example, these experiments can simulate

a situation when other applications are running on the bare PC concurrently with the

softphone. The experiments consisted of interleaving 20 ms voice packets and dummy

packets of 1038 bytes containing an Ethernet header only. The number of dummy packets

was increased gradually from 1 to 30. We found that CPU utilization was very low and

the call quality ranged from good to acceptable for up to 20 dummy packets. When 30

dummy packets were sent, the call quality was poor. We repeated the experiment while

flooding the network with background traffic from another source by using the MGEN

tool [36]. In this case, call quality became poor with only 20 interleaved dummy packets.

Although we could not interleave dummy packets in this manner on the Windows

machine, we found that the call quality of the WinRTP softphone was unacceptable with

an increased load on the system when the CPU utilization reached 30%. These results

indicate that a bare PC can sustain a heavier load while running a softphone with or

without background traffic.

4.1.2. Performance of Voice over Ethernet

Finally, we studied the performance of a bare PC softphone in an Ethernet LAN

with no routers. In this case, we used bare PC softphones to investigate the feasibility of

using voice packets that only had an Ethernet header (i.e., we eliminated the RTP, UDP

and IP headers). We believe that it is much easier to incorporate such a Voice over

Ethernet service using a bare PC rather than an embedded system, Exokernel, custom

68

Linux kernel, Linux, or Windows OS. We are not aware of any published studies that

have used voice over Ethernet. In this case, packets are delivered by using the MAC

address (a packet carries no IP address, sequence number, timestamp, or port numbers).

Of course, this voice over Ethernet service has several drawbacks. For example,

packet loss cannot be detected and no ordering of packets is possible, causing packets to

be played in the order of arrival. Moreover, packets cannot be forwarded across IP

subnets by routers (or across the Internet) due to a lack of IP addresses. However, in a

pure switched Ethernet LAN environment, there is virtually no packet loss or out of order

packets. The tradeoff is that these packets reduce VoIP bandwidth consumption in a LAN

environment, and thus enabling increased call capacity (or more room for other traffic on

the LAN). In our experiments, we found that call quality ranged from excellent to good.

Packet size is reduced from 213 bytes to 174 bytes, and the savings in bandwidth is about

19%. Voice over Ethernet may be feasible in a small organization or an in-building LAN.

More studies are needed to determine the applicability of this approach and the ability to

integrate it with IPv6 link local addresses.

4.2. Performance on the Internet

In order to evaluate the performance impact of bare PC optimizations, we

conducted several experiments over the Internet, wherein the bare PC softphone

application was tested in typical home and campus/business environments (Figure 31).

The distance between end points on the Internet was between 16-22 hops. In a home, the

bare PC softphone was tested using both DSL and cable modem connections to an ISP.

On a campus network, the bare PC was directly connected to the campus LAN through a

69

100 Mbps Ethernet switch or hub. The PC hardware, NIC and onboard audio chip

specifications are the same as for the LAN experiments in Section 4.1.

Figure 31: Internet Measurement Setup

A fixed delay jitter buffer was used in our experiments. We do not show packet

loss as we did not observe significant packet loss (except in a LAN under conditions of

heavy system load when testing the limits of a bare PC; in this case, the reported values

of packet loss were unreliable since the systems were unstable). We also did not measure

WinRTP-to-WinRTP performance as the preceding LAN experiments showed that this

was worse than WinRTP-to-bare PC performance.

Figures 32, 33 and 34 show respectively the maximum packet inter-arrival time

(max delta), the maximum jitter, and mean jitter for a bare PC-to-bare PC connection and

a bare PC-to-WinRTP connection as the packet size is varied. The jitter values for the

bare PC-to-bare PC connection are always smaller than those for the WinRTP-to-bare PC

connection. This is due to the efficient task scheduling and low processing overhead on

the bare PC softphone. Note that the larger differences in the values of max delta (60 ms

Bare-PC

Softphone
Bare-PC

Softphone

Windows

PC

(Ethereal)

WinRTP

Softphone

WinRTP

Softphone

Router

Router

Windows

PC

(Ethereal)

Internet

70

for 10 ms packet for example), maximum jitter (6 ms for 30 ms packets for example), and

mean jitter (2.5 ms for 50 ms packets for example) reflect the variation in the Internet

conditions during the experiments.

Max Delta for BarePC/WinRTP

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

Packet Size (ms)

T
im

e
 (

m
s
)

Max Delta (Two Bare PCs) Max Delta (BPC-WinRTP)

Figure 32: Maximum packet inter-arrival time (max delta)

Max Jitter for BarePC/WinRTP

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

Packet Size (ms)

T
im

e
 (

m
s
)

Max Jitter (Two Bare PCs) Max Jitter (BPC-WinRTP)

Figure 33: Maximum jitter

71

Mean Jitter for BarePC/WinRTP

0

1

2

3

4

5

0 10 20 30 40 50 60 70

Packet Size (ms)

T
im

e
 (

m
s
)

Mean Jitter (Two BPCs) Mean Jitter (Bare PC-WinRTP)

Figure 34: Mean jitter

Figure 35 shows the variation in the maximum packet inter-arrival gap (max

delta), maximum and mean jitter values over a period of 1 hour for a bare PC-to-bare PC

connection with a fixed packet size of 20 ms and fixed delay jitter buffer size of 100 ms.

Notice that the network conditions remained relatively stable during the period of

measurement.

In Figure 36, we show the end-to-end delays over the Internet for various voice

packet sizes with a fixed delay jitter buffer size of 100 ms. The end-to-end delays vary

from 100 ms to 450 ms. Delays over 400 ms are unacceptable, while those under 150 ms

are not noticeable. During these experiments, we had the participants rate the quality of

the calls as poor, acceptable, good or excellent; this roughly corresponds to MOS (mean

opinion score) ratings of less than 2, 2-2.5, 3-3.5, 4 or greater, respectively (this scale

assumes implicit rounding of MOS values). However, participants did not observe a

72

significant drop in voice quality even with the larger delays, and they typically assigned

ratings ranging from good to acceptable. In this case, we were unable to compare the

performance of the WinRTP softphone under the same conditions. This experiment

suggests that voice quality achieved by a bare PC softphone under marginal to poor

network conditions is adequate, although more studies are needed to reach a definite

conclusion.

Jitter for Two Bare PCs (20ms Packets)

0

10

20

30

40

50

0 10 20 30 40 50 60 70

Over Time (minutes)

T
im

e
 (

s
e
c
)

Max Delta Max Jitter Mean Jitter

Figure 35: Max packet inter-arrival gap (max delta), max jitter, and min jitter

73

BarePC/BarePC E2E Delay

0

100

200

300

400

500

0 20 40 60 80 100

Voice Packet Size (ms)

T
im

e
 (

m
s

)

E2E Delay (ms)

Figure 36: End-to-end delay

4.3. Performance with VoIP Security

We conducted several experiments to evaluate the performance impact of adding

security mechanisms for VoIP to a bare PC softphone. The experiments used the same

test LAN environment and hardware as in Section 4.1. Since there is no other traffic on

the LAN, access delays due to collisions are negligible, and also, there is no significant

network delay. Therefore, we assume that the values of jitter and max delta reflect the

intrinsic overhead due to processing the voice packets and the addition of security

mechanisms.

74

Calls were made between two bare PC softphones and between two WinRTP

softphones. Data was collected for approximately 20 seconds and each experiment was

repeated six times to ensure that the results were consistent. For each run, we first

averaged the results for the voice streams in both direction, and then computed the

average of these results over the six runs. All voice packets consisted of 20 ms of data

and the length of the SHA-1 hash was 20 bytes. For convenience, we used the same AES

key in both directions. These experiments did not consider replay protection as the hash

did not include the RTP header.

Figures 37 and 38 show the maximum packet interarrival time (max delta),

maximum (max) jitter and mean jitter for barePC to barePC calls using 20-ms voice

packets without security and with security. In the latter case, the AES key sizes are 128,

192 and 256 bits, and the SHA-1 hash is 20 bytes. As expected due to additional

processing with a larger key size, there is a constant insignificant increase (about 20

microseconds) in max delta for each 64-bit increment in key size as seen in Figure 37.

Figure 38 shows that max jitter and mean jitter are not significantly different; mean jitter

remains the same for all key sizes (about 100 microseconds), while max jitter with a 192

and 256-bit key is the same but negligibly (about 10 microseconds) less than that for 128-

bit keys.

75

BarePC with Security Performance - Max-Delta

20.03

20.04

20.05

20.06

20.07

20.08

20.09

110 130 150 170 190 210 230 250 270

AES Key Size (bits)

T
im

e

(m

s
e
c
)

Avg BarePC Max Delta (ms)

Figure 37: Max delta

BarePC with Security Performance Max & Mean Jitter

0.00

0.02
0.04

0.06

0.08
0.10

0.12

100 120 140 160 180 200 220 240 260 280

AES Key Size (bits)

Ti
me
(m
se

c)

Avg BarePC Max Jitter (ms) Avg BarePC Mean Jitter (ms)

Figure 38: Max and mean jitter

Thus on the bare PC softphone, there is no significant difference in max delta,

max jitter, and mean jitter due to encrypting voice or computing the hash even when

increasing the AES key size. This performance benefit is a result of optimized processing

and task scheduling on the bare PC softphone. The implication is that the cost to achieve

76

higher levels of security with the bare PC softphone by increasing the AES key size is

negligible.

We were unable to repeat the preceding experiment by adding a hash to the voice

data on the WinRTP softphones as it was not possible to easily access the WinRTP code

that needed to be modified. Instead, we conducted separate experiments to compare bare

PC and WinRTP softphone performance. Specifically, we determined max delta, max

jitter, and mean jitter for bare PC to bare PC and WinRTP to WinRTP calls when

encryption of the 20-ms voice data (payload) only was performed for AES key sizes of

128, 192 and 256 bits without adding a SHA-1 hash. The results are shown in Figures 39,

40, and 41. Figure 39 shows that max delta for the bare PC softphone is constant and

about 1 ms less than that for WinRTP softphone for all AES key sizes. The smaller gap

for the 192 bit key size is due to a reduction in max delta for WinRTP with this key size.

Figure 40 shows that max jitter on a bare PC softphone is about 100 microseconds less

than that for a WinRTP softphone for all key sizes although a slight increase in the gap is

seen for 256 bit keys. Figure 41 shows that the difference between mean jitter values for

the two softphones is very small, with a slight increase occurring in the 256 bit keys. The

results indicate that a bare PC softphone performs better, and also shows less variability

in max delta and jitter values than a WinRTP softphone for all AES keys sizes.

77

Bare PC vs WinPC Payload Encryption Performance (Max Delta)

19.5

20.0

20.5

21.0

100 150 200 250 300

AES Key Size (bits)

M
a
x
 D

e
la

t
(m

s
)

WinPC BarePC

Figure 39 Max delta for bare PC to bare PC and WinRTP to WinRTP

BarePC vs WinPC Payload AES Encryption

Performance(Max Jitter)

0.00

0.05

0.10

0.15

0.20

0.25

100 150 200 250 300

AES Key Size (bits)

M
e
a
n

 J
it

te
r

(m
s
)

WinPC BarePC

Figure 40: Max jitter for bare PC to bare PC and WinRTP to WinRTP

78

BarePC vs WinPC Payload AES Encryption

Performance(Mean Jitter)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

100 150 200 250 300

AES Key Size (bits)

M
e
a
n

 J
it

te
r(

m
s
)

WinPC BarePC

Figure 41: Mean jitter for bare PC to bare PC and WinRTP to WinRTP

In Figure 42, we compare handshake performance between bare PC softphones

and between WinRTP softphones when exchanging 128, 192 and 256 bit AES keys.

Although the total time increases by about 20 ms for each increase in the AES key size,

the time for the bare PC softphone is about 200 ms less than that for the WinRTP

softphone for all key sizes. This constant reduction in overhead reflects the benefits of

optimal processing done on the bare PC softphone.

79

1.95

2

2.05

2.1

2.15

2.2

2.25

100 150 200 250 300

AES Key Size (bits)

H
a
n

d
s
h

a
k
e
 T

im
e

(s

e
c
)

BarePC WinPC

Figure 42: Total time for the handshake to exchange an AES key

Figure 43 shows the time for the various components of the handshake between

bare PC softphones and between WinRTP softphones at the sender and the receiver using

a 256-bit RSA key, a 256-bit AES key and a 20 byte SHA-1. While AES key generation

and computing the SHA-1 take minimal time, the bulk of processing time involves RSA

encryption and decryption. The total time for the bare PC softphone at the sender and

receiver is about 0.5 seconds less than that for the WinRTP softphone. This difference

illustrates the advantage of using optimized bare PC softphones for secure P2P VoIP

systems.

80

Figure 43: Time for various components of the handshake

In Figure 44, we compare the time to generate 256, 512 and 1024 bit RSA keys on

bare PC and WinRTP softphones. The benefit of using a barePC softphone is greatest

when generating 1024 bit keys. However, these results indicate that even with optimized

processing on the bare PC softphone, RSA key generation overhead with larger key sizes

is significant and may not be acceptable unless a high level of security is desired.

Figure 45 compares the total time for generating between 10 to 100 keys on bare

PC and WinRTP softphones. The time to generate 100 keys is about 3 minutes less on a

bare PC softphone than on a WinRTP softphone. Generation of multiple keys could be

Handshake Step Handshake Sub Step

B2B AVG

(ms)

W2W

AVG

(ms)

At Sender

Generate AES 0 0

Process AES

 Compute SHA-1 0 0

 Encrypt SHA-1 736 782

 Encrypt AES 554 588

Recover AES

 Decrypt AES 203 232

 Recompute SHA1 0 0

 Decrypt SHA1 556 591

 Compare SHA1 0 0

At Receiver

Recover AES

 Decrypt AES 195 254

 Recompute HA1 0 0

 Decrypt SHA1 589 688

 Compare SHA1
0 0

Process AES

 Compute SHA1 0 0

 Encrypt SHA1 697 818

 Encrypt AES K 584 685

81

done in the background and the faster completion time of the bare PC softphone suggests

that key generation will have a lesser effect on voice calls and other applications running

simultaneously.

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200

RSA Key Size (bits)

T
im

e
 (

s
e
c
)

BarePC WinPC

Figure 44: RSA key generation time for various RSA key sizes

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

Numner of 512-bit RSA Keys

T
im

e
 (

s
e

c
)

BarePC WinPC

Figure 45: Total time for generating 10-100 RSA keys on barePC and WinRTP

82

Chapter 5. Conclusion

This dissertation has investigated using the bare PC (OS-less) computing

environment for peer-to-peer VoIP. We described the design, architecture and

implementation of a bare PC softphone and conducted experiments to measure its

performance in LAN and on the Internet. We also compared the performance of a bare

PC softphone and a Windows-based WinRTP softphone, and examined the impact on

performance due to adding security mechanisms for VoIP.

We discussed several design and architectural features unique to a bare PC

softphone including optimized task scheduling, zero copy buffering and cross-layer

design. Optimized task scheduling results in better CPU utilization and minimizes

intrinsic delays in processing packets. Zero copy buffering minimizes overhead and

facilitates communication between network layers. The use of polling instead of

interrupts also contributes to better performance. In addition, the record and playback

functions for the bare PC softphone are synchronized, which helps to improve its

efficiency.

The LAN and Internet experiments indicate that the performance of a bare PC

softphone is better than that of the OS-based WinRTP softphone. We compared call

quality by measuring delay, jitter, packet loss and the MOS. The bare PC softphone has

lower jitter than the WinRTP softphone even when packet sizes are larger. The bare PC

softphone was also found to have adequate performance under marginal to poor network

conditions.

We conducted additional experiments suggesting that the bare PC softphone

provides acceptable call quality under heavy system load conditions without or with

83

background traffic on a LAN. In contrast, a WinRTP softphone degraded under a lower

system load. Finally, we found that it is possible to obtain excellent to good call quality

on a switched Ethernet LAN with no routers by using packets containing only an Ethernet

header. The resulting savings in bandwidth could be used to support more calls or run

other applications on the LAN.

Bare PC softphones support standard security mechanisms. A secure two-way

handshake based on RSA is used to exchange the AES key. Thereafter, the voice data is

encrypted using AES, and authenticity and integrity of voice data is guaranteed by use of

an encrypted SHA-1 hash. Comparison of the performance of bare PC and WinRTP

softphones after adding security mechanisms indicates that the bare PC is more efficient

and able to provide better voice quality as it has less variation in maximum packet

interarrival time and less jitter than a WinRTP softphone. Bare PC handshake

performance is also better than a WinRTP softphone since it takes less time to complete.

Bare PC softphones can also be used to achieve a higher level of security than WinRTP

softphones since they have less overhead for larger AES key sizes. Generation of

multiple RSA keys can also be done faster on bare PC softphones compared to WinRTP

softphones.

The bare PC softphone can run alone, or concurrently with other bare PC

applications, and it can be used to communicate with the OS-based WinRTP softphone.

Also, the bare PC softphone is capable of functioning like a conventional OS-based

softphone, since it can be used to connect seamlessly to an existing home, business or

campus network, and thus to the Internet. Furthermore, since the bare PC softphone can

run on older Intel-386 based PCs, it could serve as a communication tool in situations

84

where high-speed Internet connectivity is available but PCs capable of supporting a

modern OS required to run today’s multi-featured softphones are scarce. It should also be

noted that, in principle, the AO for a bare PC softphone can be run on any device with an

Intel 386 (or above) based architecture. Bare PC softphones inherit the advantages of bare

PC computing, which include simplicity, efficiency and inherent security. This research

suggests that bare PC softphones are an attractive option for direct efficient

communication between peers while providing customizable security based on personal

preference.

85

APPENDICES

86

Appendix A: Bare PC Softphone Guide

1. Compilation Environment

The bare PC softphone is written entirely in C++. The softphone also uses existing

bare PC C++ API calls to interface with the hardware. A bare PC C++ API call invokes a

C call, and that in turn invokes an assembly call. The compiling environment uses batch

files to compile and link the softphone application with the necessary bare PC modules

[8]. Visual Studio C++ compiler (batch mode), MASM 6.11 assembler, and Turbo

assembler compilers are used to create executable modules. We have written batch files

to do compilation and linking for boot and loader programs and the VoIP softphone

application. All command files are executed in the root directory for the softphone as

shown in Figure 46.

\VoIPSec Root directory of the softphone

\aes\ AES code

\arp\ Address Resolution Protocol code

\audio\ Audio card drivers code

\bin\ Compiler and linker executables

\dosclib\ DOSC object files

\ethernet\ Ethernet protocol code

\G711Codec\ G.711 codec code

\hshake\ Handshake code

87

\interfaces\ DOSC interface files

\ip\ Internet Protocol code

\jitter\ Jitter buffer code

\MASS\ Assembler executable

\memorymap\ DOSC memory map files

\rp\ Record and playback code

\rsa\ RSA key generation code

\rtp\ Real-Time Transport Protocol code

\sha1\ Sha1 code

\tcp\ TCP code

\udp\ UDP code

\vsec\ VoIP security code

\webserver\ C++ main and tasking code

Figure 46: Softphone Directory Structure

88

Figure 47 shows lines of code information for the bare PC softphone application.

File Name File Type

Uncommented

Lines of Code

VoIPSec 257

Aes H 44

ARP H 60

Audio H 105

Ethernet H 119

G711Codec H 4186

Hshake H 82

IP H 45

Jitter H 192

Rp H 26

Rtp H 45

sha1 H 26

Tcp H 277

Udp H 29

VSEC H 36

webserver H 610

Aes CPP 1200

ARP CPP 586

Audio CPP 439

Ethernet CPP 848

G711Codec CPP 84

Hshake CPP 597

interfaces CPP 805

IP CPP 307

Jitter CPP 609

Rp CPP 271

Rtp CPP 199

sha1 CPP 157

Tcp CPP 2696

Udp CPP 179

VSEC CPP 386

webserver CPP 5132

Total 20634

Figure 47: Lines of Code

89

2. How to Boot, Load and Execute the Softphone Application

In order to load and execute the bare PC softphone application, one needs to place a

boot program, a loader program, and the softphone application on a bootable device such

as a floppy diskette. The boot program enables bare PC applications such as the

softphone to be executed after booting is completed. You need to follow standard PC

boot procedures and power up the PC with the boot device in the boot drive. During the

boot process, the loader program will load an AOA interface menu into internal memory

for execution. Using this interface menu, a user can load the softphone application from

the same boot device and then execute it.

90

 References

[1] Upkar Varshney, Andy Snow, Matt McGivern and Christi Howard. “Voice Over IP.”

Communication of ACM, January 2002/Vol 45, No. 1.

[2] Cole, R. G. and Rosenbluth, J. H. “Voice Over IP Performance Monitoring. ” ACM

SIGCOMM, Computer Communication Review, 2001.

[3] A. S. Tanenbaum, J. N. Herder and H. Bos. “Can we make Operating Systems

Reliable and Secure?” IEEE Computer, May 2006.

[4] D. R. Engler and M. F. Kaashoek. “Exterminate all operating system abstractions.”

5
th

 Workshop on Hot Topics in Operating Systems, 1995.

[5] R. K. Karne, K. V. Jaganathan and T. Ahmed. “DOSC: Dispersed Operating System

Computing.” OOPSLA, October 2005, San Diego, CA, pp. 55-61.

[6] R. K. Karne, R. Gattu, R. Dandu and Z. Zhang. “Application-oriented Object

Architecture: Concepts and Approach.” In Proc. IASTED, October 2002.

[7] R. K. Karne. “Application-oriented Object Architecture: A Revolutionary

Approach.” HPC Asia, December 2002.

[8] R. K. Karne, K. V. Jaganathan and T. Ahmed. “How to run C++ Applications on a

bare PC.” In Proc. SNPD, 2005, pp. 50-55.

[9] M. Hillenbrand, J. Gotze and P. Muller. “Voice over IP – Considerations for a next

Generation Architecture.” In Proc. EUROMICRO, 2005.

[10] G. Borriello and R. Want. “Embedded Computation Meets the World Wide Web.”

CACM, Vol. 43, No. 5, May 2000.

91

[11] S. T. King, G. W. Dunlap, and P. M. Chen. “Debugging operating systems with time-

traveling virtual machines.” In Proc. USENIX, 2005.

[12] H. Long, R. K. Karne, S. Girumala, A. L. Wijesinha, and G. H. Khaksari. “Design

Issues for a Bare PC Web Server.” In Proc. SNPD, 2006.

[13] S. A. Baset and H. Schulzrinne. “An analysis of the Skype peer-to-peer internet

telephony protocol.” In Proc. IEEE INFOCOM, 2006.

[14] O. Hagsand, I. Marsh, and K. Hanson. “Sicsophone: A low-delay Internet telephony

tool.” In Proc. EUROMICRO, 2003.

[15] R. C. Hsu, C-T Liu, W-P Huang, and J-J Yang. “An embedded software approach for

the development of SIP-based VoIP Server.” In Proc. APSEC, 2004.

[16] M. Manousos, S. Apostolacos, I. Grammatikakis, D. Mexis, D. Kagklis, and E. Sykas.

“Voice quality monitoring and control for VoIP.” IEEE Internet Computing,

July/August 2005.

[17] K. Singh and H. Schulzrinne. “Peer-to-peer Internet telephony using SIP.” In Proc.

NOSDAV, 2005.

[18] S. Zeadally and F. Siddiqui. “Design and Implementation of a SIP-based VoIP

Architecture.” In Proc. AINA, 2004.

[19] T. J. Walsh and R. Kuhn. “Challenges in securing Voice over IP.” IEEE Security and

Privacy, 2005.

[20] K. Singh and H. Schulzrinne. “Peer-to-Peer Internet Telephony using SIP.” In Proc.

NOSDAV, Stevenson, WA, June 2005.

[21] TinyOS Community Forum. http://www.tinyos.net

92

[22] D. R. Engler. “The Exokernel Operating System Architecture.” Ph.D. thesis, MIT,

October 1998.

[23] The OS Kit Project. http://www.cs.utah.edu/flux/oskit

[24] Vovida. “WinRTP.” http://www.vovida.org

[25] G. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He and S. Girumala. “A Peer-toPeer

Bare PC VoIP Application.” In Proc. IEEE CCNC, Jan 2007.

[26] S. Zeadally and F. Siddiqui. “Design and Implementation of a SIP-based VoIP

Architecture.” In Proc. AINA, 2004.

[27] M. Hillenbrand and G. Zhang. “A Web Services Based Framework for Voice over

IP.” In Proc. EUROMICRO, 2004.

[28] M. Ghanassi and P. Kabal. “Optimizing Voice-over-IP Speech Quality using Path

Diversity.” International Workshop on Multimedia Signal Processing, October 3-6,

2006, Victoria, BC, Canada.

[29] J. Rosenberg, L. Qiu, and H. Schulzrinne. “Integrating Packet FEC into Adaptive

Voice Playout Algorithms on the Internet.” In Proc. INFOCOM, 2000.

[30] W. H. Chiang, W. C. Xiao and C. F. Chou. “A Performance Study of VoIP

Applications: MSN vs. Skype.” In Proc. MULTICOMM, 2006.

[31] W. Jiang and H. Schuzrinne. “Comparison and Optimization of Packet Loss Repair

Methods on VoIP Perceived Quality under Bursty Loss.” In Proc. NOSSDAV, 2002.

[32] R. Ramjee, J. Kurose, D. Towsley and H. Schulzrinne. “Adaptive Playout

Mechanisms for Packetized Audio Applications in Wide-Area Networks.” National

Science Foundation.

93

[33] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson. “RTP: A Transport

Protocol for Real-Time Applications.” RFC 3550. http://www.ietf.org/rfc/rfc3550.txt

[34] Ethereal. “Ethereal Network Analyzer.” http://www.ethereal.com

[35] IntelliCorp. “Intel 82801 EB (ICH5) I/O Controller Hub: AC ’97 Programmers

Reference Manual.” April 2003, Document Number: 252751-001

[36] Naval Research Laboratory. “MGEN: Multi-Generator.”

http://cs.itd.nrl.navy.mil/work/mgen

[37] J. Rosenberg, Dynamicsoft, H. Schulzrinne, Columbia U., G. Camarillo, Ericsson, A.

Johnston, WorldCom, J. Peterson, Neustar, R. Sparks, M. Handley, ICIR, E.

Schooler, AT&T. “ SIP RFC 3261.” http://www.faqs.org/rfcs/rfc3261.html

[38] Gholam. H. Khaksari, A. L. Wijesinha, R. K. Karne, Q. Yao, and K. Parikh. “A VoIP

Softphone on a Bare PC.” In Proc. WORLDCOMP ESA, 2007.

[39] Hansen, Markus; Hansen, Marit; Moeller, Jan; Rohwer, Thomas; Tolkmit, Carsten,

Waack, Henning. “Developing a Legally Compliant Reachability Management

System as a Countermeasure against SPIT.” Third Annual VoIP Security Workshop,

Berlin, June 2006.

[40] T. Dierks, C. Allen. “The TLS Protocol 1.0.”

http://www.apps.ietf.org/rfc/rfc2246.html

[41] R. Housley, W. Ford, W. Polk, D. Solo. “Internet X.509 Public Key Infrastructure:

Certificate and CRL Profile.” IETF RFC 2459. January 1999.

94

[42] P. Zimmerman, A. Johnston, J. Callas. “ZRTP: Extensions to RTP for Diffie-Hellman

Key Agreement for SRTP. AVT WG Internet-Draft.” 2006 March 5.

http://www.ietf.org/internet-drafts/draft-zimmermann-avt-zrtp-01.txt

[43] D. R. Kuhn, T. J. Walsh, S. Fries. “Security Considerations for Voice Over IP

Systems.” Recommendations of the National Institutes of Standards and

Technology.” January 2005. http://csrc.nist.gov/publications/nistpubs/800-58/SP800-

58-final.pdf

[44] M. Baugher, D. McGrew, Cisco Systems, Inc., M. Naslund, E. Carrara, K. Norrman,

Ericsson Research. “SRTP: Secure Real-time Transport Protocol.” http://www.rfc-

archive.org/getrfc.php?rfc=3711

[45] H. Lipmaa, P. Rogaway, and D. Wagner. “CTR-mode encryption.” In 1
st
 NIST

Workshop on Modes of Operation, 2000.

[46] J. Rosenberg, J. Weinberger, dynamicsoft, C. Huitema, Microsoft, R. Mahy, Cisco.

“STUN: Simple Traversal of UDP through Network Address Translators.” RFC 3489,

March 2003. http://www.ietf.org/rfc/rfc3489.txt

[47] E. Rescorla, Network Resonance. “Interactive Connectivity Establishment (ICE).”

http://tools.ietf.org/id/draft-rescorla-mmusic-ice-lite-00.txt

[48] Shakkottai, S., Rappaport, T.S., Karlsson, P.C. “Cross-layer design for wireless

networks.” Communications Magazine, IEEE, Volume 41, Issue 10, Oct 2003

Page(s): 74 – 80

[49] J. Callas, L. Donnerhacke, H. Finney and R. Thayer. “OpenPGP Message Format.”

RFC 2440. http://www.ietf.org/rfc/rfc2440.txt

95

[50] D. Reichl. “CSHA1 - A C++ class implementation of the SHA-1 hash algorithm.”

2002. http://www.codeproject.com/cpp/csha1.asp

[51] G. Anescu. “A C++ Implementation of the Rijndael Encryption/Decryption method.”

2001. http://www.codeproject.com/cpp/aes.asp

[52] RSA Public-Key Cryptography. http://www.efgh.com/software/rsa.txt,

http://www.efgh.com/software/rsa.htm

96

Curriculum Vitae

Gholam H. Khaksari Curriculum Vitae

Department of Computer Science

Morgan State University

1700 East Cold Spring Lane

Baltimore, MD 21251

USA

voice: (443) 885 1395

email: khaksari@jewel.morgan.edu

Education

2007 D.Sc. Applied Information Technology,

Towson University, Towson, MD

1992 M.Sc. Computer Science,

John’s Hopkins University, Baltimore, MD

1984 B.Sc. Computer Science,

Youngstown State University, Youngstown, OH

1981 B.Sc. Civil Engineering,

Youngstown State University, Youngstown, OH

Research Interests

o Voice over IP (VoIP)

o Bare PC Computing

o IT Security

o Artificial Intelligence (AI) & Decision Support Systems (DSS)

o Database Management Systems & Data Mining

Publications

[1] Gholam H. Khaksari, Alexander L. Wijesinha, Ramesh K. Karne, and Qi Yao, “A VoIP

Softphone on a Bare PC” to appear in proceeding of 2007 Worldcomp ESA, Las Vegas,

Nevada, USA.

[2] Gholam. H. Khaksari, A. L. Wijesinha, R. K. Karne, L. He and S. Girumala. “A Peer-to-

Peer Bare PC VoIP Application” in proceeding of 2007 IEEE CCNC, Las Vegas, Nevada,

USA.

mailto:khaksari@jewel.morgan.edu

97

[3] Long He, Ramesh K. Karne, Alexander L. Wijesinha, Sandeep Girumala, and Gholam H.

Khaksari, “Design Issues for a Bare PC Web Server” In proceeding of 2006 Seventh

ACIS International Conference on Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing

[4] Gholam H. Khaksari, et al. “Expert Drug Trafficking Detection System” In proceeding of

1990 Westinghouse R&D Symposium, Baltimore, MD.

[5] Gholam H. Khaksari, “Westinghouse Fault Isolation System” in proceeding of 1989

Westinghouse R&D Symposium, Pittsburgh, PA.

[6] Gholam H. Khaksari, “Expert Diagnostic Systems” in proceeding of 1988 International

Conference on Industrial and Engineering Applications of Artificial Intelligence &

Expert Systems, Knoxville, Tennessee, USA.

[7] Gholam H. Khaksari, “Generic Fault Isolation System” in proceeding of 1987

Westinghouse R&D Symposium, Baltimore, MD.

Research Experience

2004-present Doctoral Research: VoIP on a Bare PC

Department of Computer Science

Towson University, Towson, MD

Advisors: Alexander L. Wijesinha Ph.D., Ramesh K. Karne Ph.D.

This dissertation proposes a novel VoIP softphone architecture for a bare

Intel-386 (or above) based PC without an operating system. First, we

provide an overview of bare PC computing and note the advantages of a

bare PC softphone including its inherent simplicity and ability to provide

secure, reliable and efficient voice communication. Next, we discuss the

design of a bare PC softphone and describe its architecture and

implementation. We then present performance measurements from LAN

and Internet experiments, which consider delay, jitter, packet loss, and

MOS. They indicate that a bare PC softphone has less jitter, less security

overhead, and is able to sustain larger voice packet sizes and a heavier

load than a WinRTP softphone while maintaining acceptable call quality

with or without background traffic. A bare PC softphone also has

acceptable call quality when running Voice over Ethernet (voice packets

with Ethernet headers only) on a LAN.

1984-1990 Research and Development: Hardware Diagnostic using AI

Aerospace Division

Westinghouse Electric Corporation

Baltimore, MD

98

The rapid increase in the complexity, use and dependency of our society

on state-of-the-art electronic systems has produced the need for better

methods of maintaining the operational readiness of these complex

systems. Diagnostics is the process of detecting, localizing, isolating and

fixing the failures in such sophisticated systems

The Expert Diagnostic System (EDS) is an innovative application of

Artificial Intelligence (AI) techniques to hardware failure diagnosis that

provides less experienced technicians with diagnostic knowledge and

understanding attributed to experts

Experts Shallow Knowledge is captured and represented in the form of

rules, and Hardware Deep Knowledge is captured and represented in a

schematic data model describing the signal flow and connectivity of the

system components and the related testability information. The EDS also

captures and maintains system failure history and uses this knowledge

along with shallow and deep knowledge to adaptively diagnose hardware

failures

Academic Activities

o Course development

o Student advising

o NSF REU program

o Weekly technology seminars presentation

o Technology committee member

o Curriculum assessment & development committee member

Teaching Experience

2005-present Lecturer

Department of Computer Science

Morgan State University

Baltimore, MD

Courses developed & taught:

Internetworking using TCP/IP (COSC 357)

Object Oriented Programming (COSC 230)

Operating Systems (COSC 354)

Computer Architecture (COSC 243)

Network Security Fundamentals (COSC 358)

Introduction to Computer Science (CCCOSC 111)

2001-2005 Lecturer

99

Department of Information Sciences

Morgan State University

Baltimore, MD

Courses developed & taught:

Decision Support Systems (INSS693)

System Analysis and Design (INSS370)

Database Management Systems (INSS380)

E-Commerce (INSS430)

Introduction to Information Systems (INSS360)

Computer Based Information Systems (INSS141)

2004-present Adjunct

Department of Computer Science

Towson University,

Towson, MD

Courses taught:

Fundamentals of Data Structures and Algorithm Analysis (COSC 501)

Project Management (CIS 479)

Information & Technology for Business (CIS 111)

Introduction to Computer Science (COSC 236)

Industry Experience

1997-2000 Customer Services Director

Powerize.com

As the director of customer services, I acted in partnership with product

manager, director of engineering, director of sales as well as customer service

staff in definition, design, development, testing, documentation, installation,

training and support of software products

Responsibilities included: Development of software product installation

procedures and technical documentation, development and implementation of

technical training courses, setup of call center and workflow tools and

procedures, hiring and managing of customer support representatives to

support software products and web services, consultation with customers to

identify new and enhanced product features

1991-1997 Senior Software Engineer

Convera Inc.

As a Senior Software Engineer, I worked with a top-notch software

engineering team responsible for design, development, and testing of

RetrievalWare product, a pioneering distributed client server search engine

100

and document management system

Responsibilities included: Analysis, design, coding, testing and integration of

software components such as a document parser, document summarizer,

ranking algorithms, profiler, and query by Example (QBE), as well as system

integration and localization of RetrievalWare involving API, TCP/IP, HTML,

CGIs, Web servers, RDBMS, NT, Windows, and UNIX, and C

1984-1991 Senior Software Engineer

Westinghouse Electric Corp.

As a Senior Software Engineer, I worked with system engineering, software

engineering, and test station equipment development and design teams

responsible for development, testing and integration of diagnostic software

used to support DOD Aerospace products

Responsibilities included: Application of Artificial Intelligence (AI)

techniques to Fault Isolation and Testing (FIT), development, coding, testing

and integration of diagnostic Ada software for ALQ-131 and AWACS using

MIL-STD 2167A

Programming Experience

Languages: C, C++, Lisp, Pascal, Fortran, Prolog, ADA, Atlas, Assembly

Operating Systems: Unix, Linux, VMS, VM, Windows

Databases: Oracle, MySQL, SQL Server

Honors, Awards and Patents

1990 Signature award of excellence, Westinghouse

1989 Software patent disclosure award, Westinghouse

1987 First place IR&D symposium award, Westinghouse

