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ABSTRACT 

 

VoIP ON A BARE PC 

 

GHOLAM HOSSIEN KHAKSARI 

 

This dissertation proposes a novel VoIP softphone architecture for a bare Intel-386 (or 

above) based PC without an operating system. First, we provide an overview of bare PC 

computing and note the advantages of a bare PC softphone including its inherent 

simplicity and ability to provide secure, reliable and efficient voice communication. Next, 

we discuss the design of a bare PC softphone and describe its architecture and 

implementation. We then present performance measurements from LAN and Internet 

experiments, which consider delay, jitter, packet loss, and MOS. They indicate that a bare 

PC softphone has less jitter, less security overhead, and is able to sustain larger voice 

packet sizes and a heavier load than a WinRTP softphone while maintaining acceptable 

call quality with or without background traffic. A bare PC softphone also has acceptable 

call quality when running Voice over Ethernet (voice packets with Ethernet headers only) 

on a LAN.     
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Chapter 1. Introduction 

In this chapter, we give an overview of this research, including the problem 

statement, goals and motivation. We include some general background on VoIP and bare 

PC computing. We also note the advantages of a bare PC softphone and briefly discuss 

related work.    

1.1. VoIP - Voice over Internet Protocol 

Voice over Internet Protocol (VoIP) is a technology that uses the Internet 

infrastructure and protocols for voice communication. VoIP is sometimes called Internet 

telephony, IP telephony, or Voice over the Internet. The concept of VoIP originated in 

the early 1970s when the idea and the technology were developed. Despite this history, 

VoIP did not establish a commercial niche until mid-1990s. VoIP technology finally 

became a viable alternative to PSTN due to the commercialization and mass-market use 

of the Internet, invention of the Web, and massive investments in IP networking 

infrastructures by business, vendors, and carriers. Advantages of VoIP technology 

include: 

1. Low cost of voice transmission due to utilization of existing IP networks 

2. Desire to integrate voice and data communication into a single network 

resulting in low operational and maintenance cost 

3. Inability of legacy PSTN to provide new voice services demanded by today’s 

businesses 

Figure 1 shows how operating System (OS) based softphone applications like 

WinRTP and OS-less bare PC softphone applications could be used in the future by using 
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SIP (Session Initiation Protocol) [37] to set up calls in a VoIP network. Phones register 

with a SIP server and use it to locate other VoIP phones. The SIP server implements call 

connection and termination between phones to emulate some of the call processing 

features present in the Signaling System 7 (SS7) used by the PSTN. A special PSTN 

gateway would enable the IP network to interface with the legacy plain old telephone 

system [1]. We do not consider SIP servers or PSTN gateways further in this dissertation 

as this research focuses on the design, implementation and performance of an optimized 

bare PC softphone that directly communicates with a peer bare PC or conventional 

softphone.   

 

 

 

Figure 1: Bare PC Softphone Network Configuration 
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Softphone applications enable a PC to be used as a VoIP phone. Typically, a 

softphone inputs digitized voice from a microphone, encodes voice into network packets, 

and transmits packets over the IP network. The softphone also inputs voice packets from 

the IP network, decodes each voice packet and outputs the voice payload to speakers. As 

voice packets travel over the IP network infrastructure from their source to their 

destination, due to the nature of the IP packet switched network, there is no guarantee 

that voice packets will reached their destination in a timely manner or that all voice 

packets will arrive at their destination. Moreover, voice packets may not arrive in order, 

and may not arrive uniformly spaced out in time. The voice quality for a softphone is 

usually estimated by measuring the following parameters [2] [9]: 

1. Delay: time required a talker’s voice to reach a listener’s ear. It includes time 

for microphone recording, packet encoding, network transit, packet decoding, 

and playback on speakers 

2. Jitter: voice packet delay variation due to the network  

3. Packet loss: percentage of voice packets lost by the network 

4. MOS: a measure used for assessment of VoIP call quality that is assigned by 

a listener or computed automatically  

In addition to the challenges of guaranteeing call quality and reliability for VoIP 

services, security is also a concern. Thus, although the popularity of VoIP continues to 

grow and major telecommunications companies use IP networks to carry digitized voice 

as it is convenient and costs less, VoIP has not yet gained widespread acceptance as a 

replacement for the standard PSTN service. 
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1.2. Bare PC Computing 

An OS manages resources on a computer and interfaces between the users and the 

hardware. While considerable advancements in improving the versatility of an OS have 

been made, these benefits have come at the cost of increased size, higher complexity, 

added overhead, and security flaws that have been exploited by attackers. Critics claim 

that today’s OSs are plagued by buggy code and device drivers making them insecure and 

unreliable [3]. While new generations of OSs are attempting to address these problems, 

there is still a need for OS-less application-centric systems that can take full advantage of 

the underlying hardware resources. Such systems can be more efficient while being 

inherently less complex due to their reduced size and because they are limited to 

providing only essential services and functionality. The idea of eliminating OS 

inefficiencies and abstractions is not new [4].   

It is possible to build systems that provide applications with direct interfaces to 

the bare hardware, thus obviating the need for a conventional operating system. Such 

applications manage themselves and have complete control of the hardware. An 

application-centric bare PC system is efficient and easier to secure, as it is less complex. 

Additionally, a bare PC is convenient for experimenting with novel techniques for 

improving the performance of applications and protocols since there are no inherent 

limitations due to an operating system. 

In bare PC computing, which is based on the dispersed operating system 

computing (DOSC) paradigm [5], a computer application contains its own operating 

environment, thus avoiding operating system middleware. Figure 2 illustrates this 

approach. Conventional computing layers are mapped into an application object, and the 
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application object runs directly over the hardware with no intervening software or 

firmware components. The hardware in this case is any bare device such as a PC with an 

Intel 386 (or above) based architecture.  

An application object contains both its application program and its necessary 

operating environment [6] [7]. Therefore, it is self-contained, self-managed, and self-

executed; this enables it to run on any hardware, provided it is compiled for the relevant 

hardware architecture. Application objects self-manage the CPU, memory, interrupts, and 

I/O. An application object is self-executed as well, since it manages its loading, execution 

and termination phases. It may also contain temporal information and security 

mechanisms. The application object interfaces that enable applications to run on the bare 

hardware [8] may be part of an application operating environment or implemented in 

hardware. In this research, we assume that these interfaces are in an application operating 

environment (i.e., existing hardware is used). 

 

Figure 2: Bare PC Computing 
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A bare PC is different from an embedded system [10], because a bare PC is 

capable of running any application and has no OS. The only element of OS functionality 

in a bare PC is intrinsic to its application and determined by the application (i.e., a bare 

PC is truly bare outside of its application and an application only includes elements of the 

operating environment that are essential for its execution).  Embedded systems run on 

some type of operating system and do not provide open interfaces to run applications on 

the bare hardware. For example, in an embedded system such as a cell phone, no other 

applications can directly run on the hardware since there are no external interfaces to it.  

A bare PC is also different from a system that provides a virtual machine interface 

enabling software to execute with or without an operating system [11]. A virtual machine 

interface limits the capabilities of applications running on it and introduces an additional 

layer that may hinder performance. In contrast, an Intel 386-based bare PC can be used to 

run any application object, which has direct and full access to the underlying hardware. 

The bare PC approach eliminates the OS altogether, and it goes further than earlier work 

on minimal OSs including Tiny OS [21], Exokernel [22], and OSKit [23].  

To support bare PC applications, a C++ API allowing applications to run directly 

on Intel 386 (or above) based PCs have been previously developed [8]. Interfaces to 

memory, CPU, timer, interrupts, tasks, keyboard, display, floppy drive, audio card and 

Ethernet card are written in Microsoft assembler (MASM). Several network protocols for 

a bare PC including ARP, IPv4, UDP, TCP, SMTP, lean FTP, and HTTP have also been 

implemented. Several applications that run on a bare PC have been developed previously. 

For example, in [12], a bare PC Web server that runs on any Intel 386-based architecture 
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with no operating system, hard disk, or other supporting software is described, and results 

comparing its performance to the Windows IIS and Apache Web servers are presented.  

1.3. Problem Statement and Research Goal 

This research focuses on designing and implementing an optimized VOIP 

softphone that runs on a bare PC and investigates its ability to provide efficient, reliable 

and secure communication. Many VoIP systems, including systems for peer-to-peer 

voice, have been discussed in the literature [13], [14], [15], [16], [17], [18], although 

none run on a bare PC. Security issues for VoIP systems are highlighted in [19].  

Existing VoIP systems are dependent on OS services. For example, both the 

Skype softphone [13] and the user agents for the peer-to-peer VoIP adaptor [20] require 

Windows, Linux, or some specialized OS. In view of OS complexity and overhead, it is 

difficult to fully optimize these VoIP phones to improve performance and call quality. 

They also inherit security weaknesses that result from OS vulnerabilities and their 

complexity. 

The goal of this research is to design and implement a softphone that runs on any 

Intel-386 (and above) based bare PC with no OS, and to investigate the effect of several 

optimizations on call quality. This work is part of an effort to develop bare PC 

applications including personal Web servers, email clients, and SIP clients and servers 

together with supporting security protocols. The contributions made by this research 

provide insight into the construction and optimization of secure softphone applications 

that can run without an OS. 
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1.4. Motivation 

Bare PC computing [5], which is an alternative approach for general purpose 

computing, eliminates the OS allowing the programmer direct access to (and complete 

control over) the underlying hardware. Therefore, it is very convenient for testing and 

evaluating VoIP optimizations that require changes to low-level system elements such as 

device drivers, the CPU task scheduler, or the networking subsystem. Furthermore, bare 

PC computing has many advantages for VoIP including performance benefits due to its 

low overhead, as well as simplicity, and the likelihood of being more secure due to 

elimination of the OS and unnecessary services. For example, when a bare PC softphone 

is connected to the Internet, the only open ports are those required by RTP and they 

would be the only means for a prospective attacker to send packets that would even be 

accepted by the softphone. 

In bare PC systems, the absence of an OS enables us to investigate novel 

techniques for the design and construction of optimized softphone applications. The 

following are some of the advantages of the bare PC softphone application: 

 Small code size  

 No OS 

 No hard disk 

 C++ code only 

 Runs on any bare Intel-386 (or above) based PC  

 Robust and efficient 

 Interoperates with an OS-based WinRTP softphone 

 Standard PCM codec 
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 Can be integrated with other bare PC applications such as a personal web 

server and email client  

 Customized security features  

 Excellent voice quality  

 Can be deployed in any LAN or the Internet  

 Can run directly over the Ethernet protocol in pure switched (routerless) LAN 

environments 

1.5. Related Work 

To the best of our knowledge, there are no VoIP softphone systems that run on a 

bare PC. Even if a softphone runs on Exokernel [22] (we are not aware of any), the latter 

would not give full control to the application as it is still a form of OS. Siscophone [14] 

uses several optimizations similar to those implemented on the bare PC softphone to 

improve call quality (such as minimal data copying). However, its design is constrained 

by the underlying OS. For example, it does not include an optimal task scheduling 

technique. The peer-to-peer VoIP architecture in [20] has many desirable features. The 

associated SIP adaptor works with existing SIP phones, is capable of supporting seamless 

addition of new services such as conferencing and voice mail, and is essentially plug-and-

play. However, it may be harder to optimize such a system for performance since the user 

agents that are required to use the adaptor rely on an OS. Another SIP-based VoIP 

architecture that also offers mobility support is discussed in [26], and a VoIP architecture 

based on Java and Web technologies is presented in [27]. Again, such architectures 

include user agents that run on a conventional OS, and the overall performance of the 

system are therefore bound by OS limitations. In contrast, a bare PC softphone may be 
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fully optimized since the AO programmer has total control of the system and its hardware 

resources [25].    

There have been many attempts to improve call quality in VoIP systems. In [28], 

different paths through the network are used in order to improve call quality. Playout 

buffer algorithms that incorporate jitter and packet loss compensation are given in [29]. 

In [30], Skype and MSN VoIP systems are compared with respect to throughput, packet 

inter-arrival statistics, and MOS (mean opinion score). Finally, in [31], MOS ratings are 

used to evaluate effects of bursty packet loss on call quality, and a method to maximize 

call quality by optimizing the packet interval is proposed. Since a bare PC has no OS, 

these and other techniques to improve voice quality can be added to the bare PC 

softphone with less intrinsic overhead and better performance than a conventional 

system. In essence, the main difference between existing softphones and a bare PC 

softphone is that the latter runs directly on the hardware with no OS, and is therefore 

simpler to optimize and control. 

VoIP security issues are discussed in detail in [43]. VoIP applications do not use 

TLS/SSL [40] for security because it has considerable overhead and is not designed for a 

real-time application such as voice. Moreover, TLS/SSL would need to be modified to 

run over UDP instead of TCP. Some security approaches for VoIP attempt to take 

advantage of the nature of voice conversations. For example, ZRTP [42] relies on an 

authentication procedure that assumes a user is able to match the peer’s voice during the 

conversation and authentication phases. A possible future standard for secure VoIP will 

be Secure RTP [44]. However, both ZRTP and SRTP are vulnerable to certain attacks 

[43]. VoIP security continues to be an ongoing subject of research. The bare PC VoIP 
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security mechanisms we describe are based on public key cryptography and assumes that 

the participants are in possession of (and trust) each other’s public keys. 

The rest of this dissertation is organized as follows. In Chapter 2, we discuss bare 

PC softphone design and in Chapter 3, we describe its architecture and implementation. 

In Chapter 4, we present performance measurements and in Chapter 5, we give the 

conclusion. 
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Chapter 2. Softphone Design 

In this chapter, we present an overview of bare PC softphone design. We also 

discuss softphone requirements and optimizations.     

2.1. Softphone Requirements 

The general requirement is to design, implement, and test a peer-to-peer VoIP 

softphone application that can run on a bare Intel-386 (or above) based PC without an 

operating system, while providing acceptable voice quality. It must be able to record, 

compress and transmit voice packets over the IP network, as well as receive, decompress, 

and playback voice packets from the IP network. Specific softphone requirements are: 

1. Manage the microphone recording and speaker playback processes 

2. Use a PCM codec to compress and decompress voice data  

3. Use the lean bare network protocols to send and receive voice packets 

4. Use a jitter buffer to adapt to varying Internet traffic conditions 

5. Communicate with an OS-based softphone 

6. Operate on a LAN or the Internet while maintaining acceptable voice quality 

2.2. Microphone Recording and Speaker Playback 

The device driver software for the onboard audio codec, as part of the DOSC 

environment, provides a set of API calls and circular buffers for communicating with the 

microphone and speaker. The device driver software for the Network Interface Card 

(NIC), also part of the DOSC environment, provides a set of API calls and circular send 



13 

 

 

 

and receive buffers for communicating with NIC as well. The microphone and speaker 

buffers and the NIC send and receive buffers are DMA mapped in the internal memory. 

The first task is to manage the microphone recording process and to read the 

recorded data in real-time with no loss. Two different methods that can be used to solve 

this problem are interrupts and polling. In the interrupts method, the audio card is 

configured to interrupt softphone processing upon completion of some microphone data 

recording, so that the softphone application can process the recorded data. The polling 

method configures the audio card to continue recording without interrupting the audio 

softphone application. Instead, softphone is responsible for polling the audio card for 

completion of recording so that it can process the recorded data. The polling method 

provides good performance, is convenient to use on a bare PC and has been successfully 

used by other bare PC applications. We therefore use this method in the bare PC 

softphone as well. 

The recorded microphone data is continuously transferred to the microphone 

circular buffer located in the main memory at the PCM rate using the onboard codec 

internal clock. The bare PC softphone uses the PC internal timer to poll for the arrival of 

recorded data in the microphone circular buffer and for management of the read and write 

pointers. It is necessary to coordinate data recording and buffer pointer manipulation to 

maintain call quality.  

The second task is to move recorded data from microphone circular buffer 

directly to the NIC circular send buffer without any intermediate copying of data. Both 

the microphone circular buffer and the NIC circular send buffers are resident in audio 

softphone address space; hence, direct copying of data between two circular buffers is 
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feasible. A DOSC application like the softphone is a single monolithic executable that 

executes in user mode and in a single address space with complete control of system 

resources. When a voice packet is recorded, it is compressed and directly copied into the 

NIC circular send buffer, while a pointer to voice data in the NIC circular buffer is used 

for all processing steps. Zero copy buffering (see below) is thus achieved during 

recording.  

The softphone also processes voice payloads arriving from the IP network and 

plays them back in real time on the speakers. The softphone has to manage the NIC 

operations and the NIC circular receive buffer in real-time with no loss of received data. 

The polling method can be used to manage the NIC receive buffer. When a voice packet 

arrives from the IP network, it is stored in the NIC circular receive buffer, and the pointer 

to the packet can be used for all processing steps. The voice payload is then 

decompressed and copied to the speaker circular buffer directly. This enables zero copy 

buffering during play back as well. 

The softphone manages the speaker playback process and the speaker circular 

buffer. The onboard codec supplies the speakers with voice data at the PCM rate from its 

internal queue using its internal clock. The codec driver software must replenish the 

codec queue with data stored in the speaker buffer. Received voice packets from the IP 

network are continuously transferred from the NIC receive buffer to the speaker circular 

buffer located in main memory. The softphone uses the system timer to poll and manage 

the speaker playback process and the speaker circular buffer.  The bare PC softphone 

uses the PC’s internal timer to poll for arrival of network packets in the NIC circular 



15 

 

 

 

receive buffer, and for management of the read pointer. The details of microphone buffer 

and speaker buffer management are covered in the next chapter. 

2.3. Voice Compression and Decompression 

Network bandwidth is a limited shared resource and VoIP traffic is delay 

sensitive. Heavy IP network traffic causes excessive network delay and results in packet 

loss that negatively impacts VoIP call quality. To optimize network bandwidth usage, 

voice packets can be compressed before transmission and decompressed after they are 

received from the IP network. The compression and decompression algorithm must not 

degrade voice quality. 

There are many available shareware software voice codecs as well as codec 

software products. The codec for the PC softphone has to be capable of processing voice 

data for the onboard audio codec in use. We ported PCM codecs from several free 

softphones to the bare PC softphone, but found that many of them produce unacceptable 

voice quality. We ultimately chose the WinRTP G.711 codec for the bare PC softphone 

since it is easily ported to the bare PC environment and provides good call quality.  

2.4. Optimal Task Scheduling 

The idea in optimal task scheduling is as follows: when a task is not doing useful 

work (no CPU processing), it should suspend itself or return control to the main task. 

Thus, in the softphone, the receive task will return to the main task after processing a 

received request. Similarly, the audio task will return to the main task after the audio 

frame pointers are placed in the jitter buffer. Upon activation, each task is allowed 

unlimited CPU time. When suspending itself, a task requests to be scheduled at a future 
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time by specifying a suspension time. The main task executes a task if and only if only its 

suspension time as requested by the task itself has expired. 

The bare PC tasking strategy has a direct impact on the intrinsic performance 

parameters of the softphone application. The softphone must process microphone voice 

data as soon as it becomes available and send it over the IP network; it must also process 

the incoming network voice packets in order while minimizing the effects of jitter and 

delay. The tasking strategy must also be efficient, so as to minimize resource usage.  

Initially, standard tasking strategies such as first-come-first-serve (FIFO), priority 

scheduling and round robin were used. Performance measurements indicated that none of 

these approaches is optimal for a bare PC softphone. Eventually, we decided to use a task 

scheduling strategy similar to that used in the bare PC Web server. As the bare PC 

softphone has complete control of task scheduling and execution, it was easy to test the 

effect of different task scheduling techniques, including novel strategies especially suited 

to the bare PC, and determine an optimal strategy.  

2.5. Recording and Playback Synchronization 

The onboard audio codec chip set uses its own internal timer to manage both 

microphone recording and speaker playback processes, while the softphone application 

uses the bare PC system timer for management of its own processing. The challenge is to 

determine the best time to read and process recorded microphone data and to provide data 

for speaker playback. Since the polling method is used to communicate to the audio 

codec, it was convenient and efficient to use the audio codec internal timer to 

synchronize playback and recording.  
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The bare PC softphone monitors the recording of the microphone voice data. 

Whenever a full microphone buffer has been recorded, it is processed and the jitter buffer 

is checked for received packets to be played back on the speakers. Therefore, every time 

a full microphone buffer is recorded and processed, a packet is played back on the 

speakers. This technique of synchronizing recording and playback helps to reduce the 

intrinsic delay by keeping the gap between the read and write pointers for the speaker 

playback buffer as short as possible. 

2.6. Interoperating with WinRTP  

The WinRTP softphone tool [24] enables voice to be recorded at the source, 

transmitted over the IP network and played back at the receiver. It is a Windows COM 

component tool, which can be modified, compiled, and executed with minimal effort. To 

enable voice communication between the bare PC softphone and the WinRTP softphone, 

it is necessary to match the rates at which they playback voice. Initially, it was observed 

that the bare PC softphone plays back voice at double the normal speed, while the 

WinRTP plays voice at half the normal speed. 

This problem was traced to the AD1981B audio codec used by the bare PC 

softphone. The bare PC audio codec records in stereo (i.e. two 16-bit PCM samples are 

recorded for the left channel and right channel), while the WinRTP machine’s audio 

codec records in mono. This problem is solved by eliminating the data for one of the 

channels on the bare PC side during recording and copying the data into both channels 

during playback. Interoperability with the WinRTP softphone is not only useful from a 

practical viewpoint, but also enables us to determine any effects on performance when a 

bare PC softphone communicates with a conventional softphone.  
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2.7. Cross-Layer Protocol Design 

Layered protocol design is the dominant approach for implementing network 

protocols with each layer corresponding to a single protocol and communication that is 

limited to adjacent layers. Although it simplifies protocol design, the layered approach is 

limiting and inefficient, especially when processing the packet payload. The bare PC 

softphone uses cross-layer protocol design since it is intrinsic to and facilitated by the 

bare PC computing environment. Although cross-layer design refers to a technique used 

in wireless networks wherein physical layer information is passed to the upper layers 

[48], we use the term in a more general sense to mean the capability to pass information 

freely between any two networking layers as done in the bare PC.  

In particular, we do not follow strict layering rules. For example, all the protocol 

processing for sending an outgoing packet is accomplished in a single step and 

implementation of the protocols RTP, UDP and IP in a bare PC are integrated with 

Ethernet processing. Communication between any two layers in a bare PC is easy since 

all layers share a single copy of the data due to zero copy buffering (discussed below). 

For example, when a microphone buffer is recorded, the bare PC softphone copies the 

voice data directly from the microphone buffer to the NIC send buffer, thereby 

eliminating unnecessary layer overhead. The RTP, UDP, IP, and Ethernet headers are 

then directly added to the payload. This approach to designing network protocols enables 

the bare PC to communicate lower layer information to any upper layer and vice versa. 
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2.8. Fixed Size Buffers 

The onboard audio codec records microphone voice data in fixed size buffers, and 

also requires fixed size voice buffers for playback on the speakers, as configured during 

compile time. The softphone application tasks are designed to process fixed size buffers 

of voice data per activation, before the tasks suspend themselves. This simplifies the 

processing steps, makes the softphone design simple and less prone to buffer pointer 

processing problems, and eliminates unnecessary copying of data into temporary local 

buffers.  

Each recorded microphone buffer provides the payload for a single RTP packet 

for transmission over the IP network, while the payload from each received RTP packet 

provides the data for one speaker buffer. Microphone and speaker buffers have the same 

size. By convention, voice packet size is expressed in milliseconds and mapped into a 

buffer size in bytes.  

2.9. Single Address Space   

The softphone application is a single monolithic image executing in user-mode.  It 

contains all the necessary code and hardware interfaces. It does not use any system calls 

or system libraries. In this system, user space and system space are the same, since the 

AO programmer controls the memory map for the softphone application. 

2.10. Zero Copy Buffering 

In a conventional system, the user space is virtual and controlled by an operating 

system. Together, the single address space feature of the bare PC softphone and modern 

Ethernet cards features allow the bare PC softphone application to keep network packets 
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in user address space. Similarly, the audio codec chip allows microphone and speaker 

buffers to be in user space as well.  

A novel feature in the bare PC architecture is a zero-copy buffering scheme in 

which incoming packets are stored in the receive UPD (upload pointer descriptor) buffer, 

and the same pointer is used until packets are played out. Likewise, zero copy buffering 

is achieved for outgoing packets by using the same pointer for the audio driver and the 

send DPD (download pointer descriptor) buffer.  

2.11. Minimal Resource Dependence 

The bare PC environment supports creation of applications with minimal 

dependency on system resources. The softphone application does not require complex 

interfaces. The softphone AO manages the CPU and the memory available in the bare 

PC. The necessary standard interfaces to the hardware elements, as well as drivers for the 

network cards and sound cards, were developed by other students during previous bare 

PC projects. In addition, there are C++ interfaces to tasks, interrupts, and exceptions [8].  

2.12. Call Quality 

Network delay, jitter and packet loss are important parameters affecting VoIP call 

quality. In addition, the MOS, which is used to measure call quality during a 

conversation, can be assigned by a group of listeners or calculated by an automated tool. 

The bare PC softphone is capable of determining values of call quality parameters 

including packet loss, maximum packet interarrival gap, mean and maximum jitter, 

network delay and total (end-to-end) delay. We discuss the calculation of these values in 

the next chapter. 
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Chapter 3. Architecture and Implementation 

In this chapter, we describe the bare PC softphone architecture and 

implementation. We include details of tasks and task scheduling, protocol header 

processing, jitter buffer implementation, network and audio buffer management and 

security mechanisms. The code for the RSA, AES, and SHA-1 algorithms were obtained 

from the Web and adapted for the bare PC computing environment by removing OS-

related calls [50], [51], [52]. 

3.1. System Architecture 

 

The bare PC softphone application executes on a bare PC in the DOSC computing 

environment [38]. This environment provides multi-tasking, audio codec and NIC 

drivers, and limited screen and keyboard I/O functionality as shown in Figure 3. 

 

Figure 3: Bare PC Softphone Context Diagram 
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During recording, the bare PC softphone application inputs digitized microphone 

voice data from the audio codec, encodes it into packets, and outputs each packet to the 

NIC for transmission by the network. During playback, the bare PC softphone application 

inputs incoming network voice packets from the NIC, decodes each voice packet, and 

outputs the voice payload to the audio codec for playback on the speakers. 

The bare PC VoIP softphone inherits many advantages of bare PC (OS-less) 

computing in general. The basic hardware elements that support the bare PC softphone 

are CPU, memory, floppy drive, Ethernet NIC (external 3Com 905CX network interface 

card), onboard audio chip (AD1981B), keyboard, headphones and display. A bare PC 

provides direct interfaces to the hardware and all other necessary operating elements are 

built into the application itself. As these interfaces are simple and robust, they are used to 

support the bare PC VoIP softphone application, as well as other bare PC applications 

such as an email client and a Web server [12]. These interfaces also enable the softphone 

to be run concurrently with other applications on the bare PC by adding more tasks.   

Figure 4 shows the system elements of the bare PC softphone application. The 

AD1981B 16-bit PCM codec digitizes analog voice data and the ICH5 DMA controller 

stores it in the microphone buffer. The bare PC softphone application inputs buffers of 

digitized voice data from the microphone buffer and compresses each buffer from 16-bit 

to 8-bit resolution using a G.711 codec, while ignoring data from one of the channels 

(stereo-to-mono conversion). Next, RTP, UDP, IP, and ETH headers are added to the 

voice data. Voice packets are stored in the NIC send buffer for transmission on the 

network.  
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Conversely, when a voice packet is received from the network, it is stored in the 

NIC receive buffer. Next, ETH, IP, UDP and RTP headers are checked and removed 

from each packet, and the RTP[33] header fields plus the pointer to the voice payload are 

inserted into the jitter buffer. The bare PC softphone application removes each 8-bit PCM 

compressed voice packet from the receive buffer, passes it through the G.711 codec for 

decompression to 16-bit PCM resolution, and writes it directly to the speaker buffer left 

and right channels (mono-to-stereo conversion). The ICH5 [35] DMA controller transfers 

digitized voice data to the AD1981B codec for playback on the speakers.  

 

 

Figure 4: Softphone System Diagram 
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The above architecture is very simple; it is also customized for the bare PC 

softphone. There is no functionality implemented in the system that is not relevant to this 

application. In addition, this architecture enables many novel features (described below) 

to be incorporated in the softphone. Many of these features are harder to implement in an 

OS-based system.  

3.2. Class Diagram 

 

The softphone application software design is based on object-oriented 

methodology using a set of interacting objects. This allows for simple reuse of existing 

bare PC objects, as well as a clean method for porting non-bare PC software to the bare 

PC environment. Every object maintains its own local state and provides interfaces for 

communication with the outside world. Object oriented analysis of the softphone 

application was used to identify the objects; these are briefly described next and shown in 

Figure 5: 

 G.711: deals with voice compression and decompression (has been modified 

and ported to the bare PC environment) 

 Audio Object: implements the driver for the onboard codec and is concerned 

with communicating with the onboard codec to manage the microphone 

recording and speaker playback processes 

 Jitter: implements the jitter buffer 

 RP: manages the record and playback functions of the softphone 

 APPTASK: implements the softphone tasks 

 Hshake: implements the handshake (over TCP) for exchange of the AES key 
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 RTP: implements the RTP protocol 

 Vsec: deals with voice security 

 TCP, ARP, UDP, IP, ETH: implement the respective network protocols  

 RSA: implements the RSA algorithm (has been ported to the bare PC 

environment) 

 AES: implements (AES has been ported to the bare PC environment) 
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Figure 5: Bare PC Softphone Class Association Diagram 
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3.3. Task Scheduling 

Bare PC softphone task scheduling is designed to be very simple. Yet, it is quite 

flexible and capable of supporting a powerful multi-tasking environment. The task 

scheduling strategy is an integral part of the bare PC softphone application, providing the 

softphone application with complete control of task scheduling and execution. It allows 

for scheduling of tasks only when processing is required. It also allows any task to 

suspend itself, and return control back to the main task so that the CPU can be allocated 

to other useful processing tasks. For example, the receive task will return control back to 

the main task after it has processed received network packets.  Similarly, the audio task 

will return control back to the main task after it has completed processing the microphone 

recorded data and the incoming network voice packets. 

The bare PC softphone task architecture is shown in Figure 6. First, softphone 

tasks are created and placed on the idle task list, and then placed on the active task list 

when processing is required. Upon completion of processing, each task is placed back on 

the idle task list.  

 

 

Figure 6: Audio Softphone Task Architecture 

RCV 

Task 

HSK 

Task 

Main 

Task 

Audio  

Task 

Web 

Server 



27 

 

 

 

As seen in the figure, audio softphone processing is partitioned into the following 

four separate tasks: 

 Main Task: responsible for management of the bare PC softphone tasks 

 Receive Task: responsible for checking for arrival of new network packets, 

processing of packet headers, and placement of packet descriptors into the jitter 

buffer 

 Audio Task: responsible for moving the recorded microphone data from the 

microphone buffer to the NIC, as well as for moving voice packets from the 

receive buffer to the speaker buffer 

 Handshake Task: responsible for the establishment of a TCP/IP handshake, 

exchange of the AES key, and termination of the handshake between two bare PC 

softphone applications during startup 

3.4. Main Task 

The main task is responsible for managing the other bare PC softphone tasks 

(Figure 7). The functions of the main task are activation, scheduling, and execution of 

other softphone tasks. Once a task is executed, it will complete processing the available 

data and then suspend itself for a fixed time. This results in a return of control back to the 

main task.  
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Figure 7: Main Task State Diagram 
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Figure 8: Receive and Audio Tasks Processing 
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header field and passes RTP packets to the RTP handler. The RTP handler processes RTP 

header fields and calls the jitter object to store each voice packet in the jitter buffer. The 

jitter object receives all RTP header fields associated with each voice packet descriptor 

and a pointer to the voice payload as stored in the UPD receive buffer (Figure 9). The 

receive task processing steps will be discussed next. 

 

 

Figure 9: Receive Task State Diagram 
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corresponds to a single packet of digitized voice data received from the IP network. The 

sender has prepended each voice packet with header fields for the ETH, IP, UDP, and 

RTP protocols. The UPD receive buffer located in RAM provides an interface between 

the NIC DMA controller and the audio softphone application.  

3.5.2. ETH Header Processing  

The Ethernet object processes each incoming voice packet directly from the UPD 

receive buffer by examining each ETH header field. The MAC address field of the 

incoming packet is checked against the MAC of the NIC to ensure that only packets 

destined for this softphone are accepted. Next, the protocol type field is checked for the 

IP packet type. All IP packets are accepted and the IP handler receives a pointer to the IP 

packet stored in the UPD memory.  

3.5.3. IP Header Processing  

The IP object processes the IP header fields for each IP packet as stored in the 

UPD receive buffer.  If the IP address field matches the IP address for this PC, then the 

packet is accepted. Next, the UDP handler is called with a pointer to the UDP packet as is 

stored in the UPD memory.   

3.5.4. UDP Header Processing  

The UDP object processes and validates UDP header fields for each packet 

located in the UPD receive buffer. All bytes received are processed in “Little Endian” 

byte order. UDP header fields are processed as follows: 
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 Source Port 16 bits: This is the port used by the source of UPD packets, i.e. the 

port that the softphone sending the UDP packet is using for this audio session 

This field must be checked against the port number of the audio softphone 

sending the UDP packets, as established at the start of the audio session 

 Destination Port 16 bits: This is the port by which the softphone receives UDP 

packets for this audio session. This field must be checked against the port number 

by which this audio softphone is accepting UDP packets, as established at the start 

of the audio session.  

 Length 16 bits: This field contains the size (number of bytes) of the voice 

payload plus the size of the UDP header field (8 bytes). 

 Checksum 16 bits: A checksum for the payload is computed and checked against 

the value stored in the checksum field of the UDP header. If the checksums do not 

match, the UDP packet is discarded. 

3.5.5. RTP Header Processing 

RTP is implemented as described in [33]. The RTP object process and validates 

RTP header fields for each packet located in the UPD receive buffer. Each RTP packet 

header is processed and checked for validity. All bytes received are processed in “Little 

Endian” byte order. The RTP header fields are as follows: 

 Version(V) 2 bits: This field must contain a value of 2, which is the current 

version of the RTP protocol used by the bare PC softphone. 

 Padding(P) 1 bit: This field must contain zero indicating there are no 

additional padding octets at the end that are not part of the payload. 
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 Extension(X) 1 bit: This field must contain zero indicating a fixed RTP 

header is used. 

 CRC Count (CC) 4 bits: This field must contain a zero indicating no 

additional data sources is used. 

 Marker (M) 1 bit: This field must contain a zero indicating no tailoring of the 

RTP header is used. 

 Payload type (PT) 7 bits: This field must contain zero if the source of the RTP 

packet used PCMU (µ-law) encoding, or 8 if it used PCMA (A-law) encoding. 

 Sequence Number (SN) 16 bits: This field is parsed as a 16-bit logical 

circular number, which designates a sequence number associated with the 

RTP packet as assigned by the sender. The sequence number starts from zero 

and is incremented for each subsequent packet (it is reset to zero upon 

reaching the maximum value). 

 Time Stamp (TS) 16 bits: This field is parsed as a 32-bit logical circular 

number designating a time stamp that indicates when the packet was 

generated by the source of the packet.   

 Synch Source (SSRC) 32 bits: This field is parsed as the IP address for the 

softphone sending the RTP packets. However, this field is not used. 

 

Finally, the RTP object passes the values for RTP header fields and a pointer to 

the RTP payload (stored in UPD memory) to the jitter object by calling the insert member 

function from the jitter object.  
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3.5.6. Jitter Buffer Implementation 

As noted above, the last processing step in the receive task is the RTP processing 

function, which inserts incoming voice packets into the jitter buffer. The jitter object 

implements the jitter processing functions. It receives voice packets inserted by the RTP 

object, and queues them for playback on the speakers by the audio task. Audio task 

processing is discussed later. 

The jitter buffer consists of an array of voice payload descriptor elements (Figure 

10). Each payload descriptor element has all the fields corresponding to the RTP fields. 

In addition, each element has a field for the size of the received voice packet, a field that 

contains a pointer to the actual voice packet (Payload Pointer) as stored in the DPD 

memory, and a playout time field for each packet. The values stored in each field are 

received from the RTP handler (except for the playout time field).   

The number of entries in the jitter buffer payload descriptor array is set during 

jitter object initialization. A voice packet description is inserted into the jitter buffer at 

any open slot as a packet arrives and it is removed for playback using the playback delay 

time for each packet and the packet sequence number. The playback occurs during audio 

task execution, which is discussed below. 
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Figure 10: Jitter Buffer Structure 
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end-to-end delay, the bare PC computes the approximate delay for a packet by using the 

value in the timestamp field and the local clock at the receiver. This value of delay is also 

used to calculate an adaptive playout delay for packets.  

3.5.7. Packet Loss  

 

The packet loss calculation uses a 1024 element vector. The vector elements are 

set to clear initially and again after every 1024 packets that arrive (SNVector[1024] = 

{0x00}). Every time a voice packet arrives, its sequence number is mapped into a position 

in the vector to set a flag for this position (SNVector[sn % 1024] = 0x01). After 1024 

packets have arrived, the number of clear positions in the vector is summed to find the 

packet loss count as follows: 
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3.6. Audio Task  

The audio task is responsible for two primary functions; recording and playback 

of voice data. Both functions are tightly coupled with the AD1981B onboard codec 

processing through the microphone buffer and the speaker buffer (Figure 11). This 
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section discusses the interface between the bare PC softphone and the AD1981B codec 

via the ICH5 DMA controller. The record and playback functions are covered in the 

subsequent sections of this document. 

The record and playback for the softphone are synchronized using the audio codec 

recording and playback timing. The audio task monitors the recording of the microphone 

data. Whenever a full buffer of microphone data has been recorded, it is processed. It also 

processes received voice packets in the jitter buffer. Therefore, every time a buffer is 

recorded, a packet is played as well. This technique provides the following advantages: 

 It simplifies the synchronization of the microphone buffer read/write pointers 

with the speaker buffer read/write pointers. 

 It minimizes the softphone intrinsic delay by keeping the distance between 

read and write pointers for the microphone and speaker buffers to a minimum. 

 It indirectly synchronizes the record and playback timing on both softphone 

applications. 
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Figure 11: Audio Task State Diagram 
 

While synchronizing playback and recording, the audio task also monitors the 

condition of the jitter buffer. If no packets are arriving due to network conditions or the 

any other failures, it will restart the audio task to its start state. The audio task is designed 

and implemented as a state machine with start, record, play, and suspend states. The 

audio task processes entire frames of recorded voice data per activation before 

suspending itself. 
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3.6.1. The AD1981B Codec 

The AD1981B Codec (Coder/Decoder) chip set provides the bare PC softphone 

application with analog and digital audio capabilities directly from the PC motherboard 

(Figure 12).  

The AD1981B onboard codec continuously samples microphone voice data at the 

16-bit PCM rate, converts it from analog to digital format, and stores it internally. The 

ICH5 DMA controller retrieves recorded digitized voice buffers from the AD1981B 

codec and stores them in RAM in the microphone circular buffer at the record position. 

The audio task reads each recorded voice buffer from the microphone buffer starting 

from the read position. It then does stereo to mono conversion, compresses the data using 

G.711, adds the RTP, UDP, IP, and ETH headers, and eventually stores each packet in 

the circular send buffer list, which is accessible via the DPD list. These packets are then 

placed on the network by the NIC.  

 

 

 

Figure 12: PCM/Codec data rate for 20ms 
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The audio task is also responsible for playback of voice packets via the speakers. 

It selects voice packets from the jitter buffer, decompresses the data using G.711, does 

stereo to mono conversion, and then stores each voice payload into the speaker buffer 

starting at the write position. The ICH5 DMA controller continuously reads each voice 

packet from the speaker circular buffer, starting at read position, and transfers them to the 

AD1981B codec, which converts each voice buffer from digital to analog, and plays it 

back at the PCM rate. Managing the write and read pointers for the microphone and 

speaker buffers involves both the audio softphone application as well as the ICH5 

controller driver software.  

3.6.2. Microphone Record Buffer 

The AD1981B codec samples narrowband speech from the microphone at the 

PCM rate of 8000 samples per second. Each digitized sample has a 16-bit resolution. This 

produces a digital signal stream with bit rate of 128Kbits/sec (8000*16) per channel. The 

recording is performed in stereo format via left and right channels, which results in a total 

of 256Kbits/sec (8000*16*2). The AD1981B controller performs Analog-to-Digital-

Conversion (ADC) during recording and Digital-to-Analog-Conversion (DAC) during 

playback. It also controls other microphone and speaker operations, such as volume and 

gain.  

The digitized voice buffers are first stored in the AD1981B codec internal FIFO 

and then mapped into the microphone buffer by the ICH5 controller DMA function as 

shown in Figure 13.  

 



41 

 

 

 

 

 

Figure 13: Microphone Record Buffer 

 

3.6.3. Speaker Playback Buffer 

In addition to microphone recording and digitization, the AD1981B codec also 

uses digitized voice buffers stored in its internal FIFO to reconstruct narrowband speech 

for playback on the speakers. The ICH5 DMA controller driver software is responsible 

for continuous and sufficient transfer of digitized voice buffers from speaker buffer to the 

AD1981B codec internal FIFO as shown in Figure 14. The playback requires a bit stream 

of 128Kbit/sec (8000*16) per channel or total of 256Kbit/sec (8000*16*2) for the left 

and right channels to reconstruct the original voice.  
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Figure 14: Speaker Playback Buffer 

 

3.6.4. Audio Task Recording 

Recording and processing of recorded voice data is one of the two primary 

functions of the softphone. First, the audio task recording function checks for newly 

recorded voice data. It then reads each recorded voice packet from the circular 

microphone buffer, converts it from stereo to mono, compresses it using G.711 and 

directly writes it to the DPD send buffer. Next, it prefixes the payload with RTP, UDP, IP 

and ETH headers. The stored voice frames are then transmitted over the network via the 

NIC. The record task processes an entire frame of recorded voice data per activation 

before suspending itself.  
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3.6.5. Microphone Buffer Management  

The microphone buffer is a circular list of voice buffers with a write pointer and a 

read pointer. A voice buffer is written at the write pointer and read at the read pointer. 

Each element of the microphone buffer holds one packet of raw digitized voice data with 

a 16-bit resolution and stereo quality. Each element occupies two consecutives bytes for 

the left channel followed by two bytes for the right channel. The audio task recording 

function reads buffer elements starting at the read pointer. Proper manipulation of the 

write and the read pointers is the responsibility of both the ICH5 DMA controller and the 

audio softphone application.  

There are two microphone buffer pointers that require proper and timely 

management for correct management of the microphone buffer: 

 CIV – Current Index Value (0-31) 

 LVI – Last Valid Index (0-31) 

 

The ICH5 DMA controller driver software manages the CIV, and the softphone 

application manages the LVI for the microphone buffer. 

The CIV is an index to the microphone buffer, which always points to the current 

buffer element where microphone data is being recorded. No processing should be done 

on this buffer element as it will interfere with data recording process. As part of its 

initialization steps, using an API call, the audio task sets the microphone CIV to zero so 

that voice data may be recorded starting in the first element of the microphone buffer. 

After the current buffer pointed to by the CIV is filled, the ICH5 controller software 

automatically increments the CIV by one so that microphone data can be recorded in the 
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next available buffer element. The range of valid values for both the CIV and LVI is from 

zero to 31. 

The buffer boundary conditions for the microphone buffer structure must be 

managed by the audio task recording function using the microphone buffer LVI. The LVI 

pointer must be set to 31 when CIV has changed to zero, and it must set to zero when 

CIV has changed to 31, as follows: 

civ = audio.getMicCIV () 

 If (civ == 31) 

       audio.setMicLVI (0) 

else if (civ == 0) 

      audio.setMicLVI (31) 

 

The size of a microphone buffer element must be computed and stored in the 

BUFFER_SIZE constant at compile time. PCM-16 sampling collects 8 samples per msec, 

with each sample consisting of four bytes of storage, two bytes for the left channel (LC) 

followed by two bytes for right (RC). Left and right channel samples are interleaved. The 

audio softphone application reads and processes packets of multiples of 10 msec (Figure 

15), so the frame size is calculated as follows: 

BUFFER_SIZE = Frame Size * PCM Rate * LC Bytes * RC Bytes 
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Figure 15: Frame Size and Buffer Size Calculation 

 

 

The ICH5 controller specification allows for buffer sizes of up to 65535 samples 

of 16-bit resolution, which is 131,070 (65535*2) bytes of data. In practice, smaller 

buffers are used as shown in the above table. 

The LVI for the microphone buffer must be changed fast enough so that the CIV 

is changed from 31 to zero and from zero to 31 to ensure no loss of recording. When the 

CIV reaches 31, the last element of the circular microphone buffer has been filled with 

voice data. If the LVI is not changed to 0, the recording will halt causing data loss. 

Similarly, when the CIV reaches 0, the LVI must be changed to 31. 

For large buffer sizes, the LVI change is less frequent. It is recommended that the 

CIV be checked a least a few times during recording of the frame size so that the LVI 

may change frequently with no loss of data.  

3.6.6. Stereo to Mono Conversion 

Digitized voice data from the microphone is recorded in stereo format i.e. they are 

interleaved as two bytes for the left channel followed by two more bytes for the right 

channel. The conversion from stereo to mono eliminates the two bytes for the right 

channel from each buffer element (Figure 16). This process reduces the bit rate for the 
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digital stream from 256Kbits/sec to 128Kbits/sec. The stereo-to-mono conversion is 

performed during G.711 compression by simply skipping the two bytes for the right 

channel. 

 

 

Figure 16: Stereo to Mono Conversion 

 

3.6.7. G.711 Compression 

The ITU-PCM (G.711) codec compresses 16-bit PCM samples into 8-bit PCM 

samples by using a look up table. There are two distinct tables for PCMA and PCMU 

compression. Each lookup table consists of 16,384 8-bit predetermined values. First, the 

two most significant bits of 16-bit PCM samples are masked off, while the remaining 14 

bits are used as an index to retrieve an 8-bit PCM value from the table. The 8-bit PCM 

value forms the compressed payload for transmission over the network. This process 

reduces the bit rate for the digital stream from 128Kbits/sec to 64Kbits/sec. The 

compression algorithm is valid for either mono or stereo recording formats. For mono, 

only the 16-bit PCM samples for the left channel are compressed; for stereo, 16-bit PCM 

samples for both left and right channels are compressed and interleaved. The 

compression algorithm reads voice data directly from the microphone buffer, eliminates 

2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 2 bytes 

RC LC RC LC RC LC RC LC 

2 bytes 2 bytes 2 bytes 2 bytes 

LC LC LC LC 
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the right channel, compresses the right channel, and directly copies the compressed data 

to the NIC circular buffer. This eliminates buffer copying of voice data. 

3.6.8. Adding RTP Headers 

The NIC send buffer now contains the 8-bit PCM compressed voice packets. 

Next, the voice packet is prefixed with the RTP header (Figure 17). The RTP header 

fields are processed in “Little Endian” byte order meaning that the LSB bytes are stored 

before the MSB bytes. 

 

Figure 17: RTP Header Fields 

 

 

The RTP header fields are populated as follows: 

 Version(V) 2 bits: This field is set to 2, which is the current working version 

of RTP protocol. 

 Padding(P) 1 bit: This field is set to zero to indicate no additional padding 

octets exist at the end, which is not part of the payload. 
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 Extension(X) 1 bit: This field is set to zero to indicate a fixed RTP header is 

used. 

 CRC Count (CC) 4 bits: This field is set to zero to indicate no additional data 

sources are used. 

 Marker (M) 1 bit: This field is set to zero to indicate there is no tailoring of 

the RTP header. 

 Payload type (PT) 7 bits: This field is set to zero for PCMU and 8 for PCMA 

compression. 

 Sequence Number (SN) 16 bits:  This field is populated with a 16-bit logical 

circular number starting from zero and incremented by one for each 

subsequent packet. 

 Time Stamp (TS) 16 bits: This field is populated with a 32-bit logical circular 

number by using the local timer converted into PCM byte units. This field has 

the local PCM time at which the packet is created. It is calculated by 

multiplying the local timer value by two. Each timer unit is equal to 250 μsec, 

which at the PCM sampling rate constitutes two bytes of data. 

 Synch Source (SSRC) 32 bits: This field has the IP address of the sender. 

3.6.9. Adding UDP, IP and ETH Headers 

The DPD send buffer now contains the compressed 8-bit PCM packet of voice 

data prefixed with the RTP header. This is now prefixed with the UDP header fields 

(Figure 18). The UDP header fields are also in “Little Endian” byte order.  
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Figure 18: UDP Header Fields 

 

 

The UDP fields are as follows: 

 Source Port 16 bits: This is the sender’s port number. 

 Destination Port 16 bits: This is the receiver’s port number. 

 Length16 bits: This is the number of bytes in the UDP datagram. 

 Checksum: 16 bits: A checksum is placed in this field. 

The IP object prefixes the UDP datagram with IP header fields. The ETH object 

prefixes the IP packet with the ETH header fields. The last step is to call the NIC API  to 

send the packet on the network. The UDP, IP and ETH code were developed by others 

during previous projects. 

3.6.10. DPD Send Buffer Management 

The DPD send buffer now contains digitized voice data prefixed with the RTP, 

UDP, IP and ETH headers. The DPD send buffer is located in RAM, which provides an 

interface between the NIC DMA controller and the audio softphone application. The 
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audio softphone application and the NIC DMA controller software must coordinate to 

manage the send buffer.  

The audio task record function must perform the necessary actions for managing 

the send buffer as follows: 

 Acquire a valid pointer to write to the send buffer 

 Copy the data into the send buffer 

 Add the RTP, UDP, IP and ETH header fields 

 Send the voice packet on the network 

3.7. Audio Task Playback  

Processing and playback of the incoming network voice packets is the other 

primary function of audio softphone. The audio task will playback a packet if and only if 

the audio task recording function has detected and recorded a new buffer of microphone 

data via an API call to the audio card driver. The playback function of the audio task 

fetches voice packets from the jitter buffer, decompresses the voice data using G.711, and 

copies the data directly from the NIC buffer to the speaker buffer. The decoded data is 

mono, and therefore must be converted to stereo format. This is accomplished by copying 

the decompressed voice data into left channel as well as the right channel. 

3.7.1. Jitter Buffer Playout 

The jitter object uses a priority queue to implement the jitter buffer functions. The 

receive task inserts voice packets into the jitter buffer queue as they arrive by using the 

jitter buffer insert function. The audio task playback function fetches packets from the 

jitter buffer one at a time using the jitter buffer remove function. The jitter buffer remove 
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function uses the packet sequence number as well as the packet playout time for all 

packets in the queue and returns the packet with smallest sequence number whose 

playout time has expired. The playout time for each packet is stored with each packet 

during the jitter buffer insert as discussed previously. The stored playout time is 

compared with current system time to determine whether the play out time for a packet 

has elapsed. If no voice packet is selected by the jitter remove function, then packet loss 

concealment will take place, via playback of a background noise packet. 

3.7.2. G.711 Decompression 

The ITU-PCM G.711 codec decompresses 8-bit PCM voice samples into 16-bit 

PCM samples by using a look up table for PCMA or PCMU decompression based on the 

payload type field in the RTP header for the incoming voice packets. Each lookup table 

consists of 256 16-bit predetermined values. The 8-bit PCM sample is used to retrieve a 

16-bit PCM value from the table, which forms the decompressed payload for playback on 

the speakers. This process increases the bit rate for the digital stream from 64Kbits/sec 

back to 128Kbits/sec per channel. The decompression algorithm is valid for either mono 

or stereo formats (8-bit PCM samples for the left channel or 8-bit PCM samples for the 

left channel and right channel are decompressed).  

3.7.3. Mono to Stereo Conversion 

The onboard AD1981B codec requires that digitized incoming voice buffers for 

playback on the speaker be stored in the speaker buffer in stereo format i.e. they must be 

interleaved as two bytes for the left channel followed by two bytes for the right channel. 

The conversion from mono to stereo copies each 16-bit PCM sample into the left channel 
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as well as the right channel (Figure 19). The mono to stereo conversion is implemented as 

part of the G.711 decompression algorithm to eliminate any intermediate copying of 

voice data. 

 

 

Figure 19: Mono to Stereo Conversion 

 

3.7.4. Speaker Buffer Management 

Each element of the speaker buffer holds exactly one packet of digitized voice 

data that has arrived from the network. Each packet must have the actual raw voice data 

for playback by the speaker at a 16-bit PCM rate and in stereo format. Each 16-bit PCM 

sample will occupy two consecutives bytes for the left channel and two consecutive bytes 

for the right channel. The circular speaker buffer is located in RAM and provides an 

interface between the ICH5 DMA controller and bare PC softphone application during 

the playback. The speaker buffer is a 32-element circular buffer with each element 

containing a single frame of digitized voice. The ICH5 DMA controller and bare PC 

softphone application must coordinate to ensure proper manipulation of the record and 

read pointers.  

The bare PC softphone application writes the incoming voice frames into the 

speaker buffer, and the ICH5 controller driver software moves them into the AB1985B 
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codec FIFO for playback on the speakers. There are two buffer pointers associated with 

the circular speaker buffer: 

 CIV – Current Index Value (0-31) 

 LVI – Last Valid Index (0-31) 

The ICH5 controller driver software manages the CIV and the bare PC softphone 

application manages the LVI for the speaker buffer. The CIV is an index for the speaker 

buffer, which points to the buffer element where speaker data is being read for playback 

on the speakers. No processing should be done on this buffer element as it will interfere 

with playback. The CIV is set to a zero during the initialization of the ICH5 controller 

driver software, so that voice data may be read starting from the first buffer element. 

After the current buffer is read, the ICH5 controller software automatically increments 

CIV by one if it is less than or equal to 31. When the CIV reaches 31, the CIV can be 

changed from 31 to zero but only if the LVI has been set to zero by the softphone 

application. 

The speaker buffer boundary conditions are managed by the audio softphone 

application using the speaker buffer LVI. The LVI pointer must be set to 31 when the 

CIV changes to zero, and to zero when the CIV changes to 31, as follows: 

 

civ = audio.getSpkerCIV () 

 If(civ == 31) 

  audio.setSpkrLVI (0) 

else if(civ==0) 

       audio.setSpkrLVI (31) 
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The size of a speaker buffer element is the same as the size of a microphone 

buffer element, which is defined by BUFFER_SIZE constant. The speaker playback also 

requires 16-bit voice data samples at the PCM rate. Each sample requires two bytes for 

the left channel and two bytes for the right channel. Samples for the left and right 

channels are interleaved in the buffer. We omit details concerning the adjustment of the 

LVI and CIV for the speaker buffer as it is similar to the case of the microphone buffer 

discussed previously.  

3.8. Security 

The bare PC softphone implements a lightweight security scheme designed for 

peer-to-peer VoIP communication. The scheme relies on several standard security 

mechanisms. For example, we use RSA encryption and signatures for secure symmetric 

key exchange and peer authentication. Similarly, AES encryption and a SHA-1 hash 

ensure the privacy and integrity of voice data. The scheme provides limited replay 

protection. We will add stronger replay protection and AES counter mode [45] in the 

future. It is possible to disable security by using a voice security flag in case the users do 

not wish to protect their conversation, or if performance takes precedence over security. 

Users can also choose either encryption or authentication protection if both are not 

needed.       

The bare PC softphone security protocol consists of a simple two-way handshake 

over TCP to exchange the AES key (or keys), which is followed by transfer of encrypted 

authenticated voice data over RTP/UDP. In keeping with the goal of simplicity, we do 

not support negotiation of a cipher suite or the use of X.509 [41] certificates. However, it 
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would be easy to add these capabilities if needed. Each bare PC softphone generates an 

RSA key pair and an AES key. At present, we do not address the important issue of key 

management, but assume that an out-of-band method (such as manual exchange of public 

keys between peers or use of a trusted key server) enables the peers to obtain and verify 

each other’s RSA public keys. We also assume that the bare PCs have public IP addresses 

or that it is possible to configure firewalls in the presence of NAT (network address 

translation) to enable the peers to establish a TCP connection for the handshake and 

transfer voice data over UDP. We are currently investigating alternate approaches for 

establishing call connections through NAT/firewalls, including STUN [46] and ICE [47].  

3.8.1. Handshake  

When making a call, the caller is the client and the callee is the server for the 

purposes of establishing a TCP connection to exchange AES keys. The caller generates 

an AES key and its SHA-1 hash. We encrypt the latter with the caller’s private RSA key 

to produce a signature. The AES key and its signature are then encrypted with the callee’s 

public RSA key and a message consisting of these encrypted items is sent to the callee. 

The callee decrypts the message using its private RSA key and recovers the AES key and 

its signature. It then decrypts the signature using the public RSA key of the caller and 

verifies the signature by computing the SHA-1 hash of the AES key and comparing it 

with the decrypted signature. If there is a match, the callee responds by generating a new 

AES key for use in the opposite direction and repeating each of the above steps taken by 

the caller. If desired, the same AES key can be used in both directions. The caller 

processes the received message in the same manner as the callee and the TCP connection 
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is closed. The messages involved in the handshake are shown in Figure 20 and the details 

of key exchange processing are shown in Figure 21. 

 

 

Figure 20: Handshake Messages for AES Key Exchange 

 

 

If either party is unable to decrypt the AES key or verify the signature, the call 

connection attempt fails, and a message appears on the screen to notify the user. 

Otherwise, the call proceeds to the next stage, which is the exchange of voice data. The 

above key exchange is secure, since only the caller and callee can decrypt the messages 

with their respective private keys and recover the AES keys and signatures. Moreover, 

only the caller and callee could have produced the signatures with their respective private 

keys. If it were necessary to ensure liveliness of the key exchange and protection against 

replay, each side would also need to generate a nonce, include it in the signature and send 
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it as part of the encrypted key exchange message. In this case, the nonce needs to be 

stored by each side and also returned in the response, resulting in one additional 

handshake message sent by the caller. 

 

 
 

 

Figure 21: AES Key Exchange Processing 

 

 

The security of the handshake relies on the ability of the bare PC softphones to 

protect the private RSA keys. We use an adaptation of a standard technique [49] to 

protect the private keys, which consists of the following steps. When the RSA keys are 
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generated, the user supplies a password. A SHA-1 hash of the password is created, and an 

AES key is derived from the hash. This key is used to encrypt the private RSA key. Only 

the encrypted private RSA key is stored. To recover the private RSA key, the user enters 

the password and the hash is recomputed. The AES key is again derived from the hash 

and used to decrypt the private RSA key.  

3.8.2. RSA Key Generation and Exchange 

Each bare PC softphone generates private and public RSA keys on behalf of its 

user. For two users to communicate, the bare PC softphone of a user must know the 

public key of the other user. For now, these public keys are placed on a floppy disk or 

flash drive and read into each softphone. 

3.8.3. Voice Payload Security 

If the handshake is successful, each side has the AES key generated by the other 

side and is able to send and receive encrypted and authenticated voice messages. First, 

the recorded voice data is compressed as described earlier. Then the sender computes a 

SHA-1 hash of the compressed voice data and the RTP header, and encrypts the voice 

data and the hash using its AES key. The inclusion of an encrypted hash serves to 

authenticate the message and verify the identity of the sender. By including the RTP 

header in the hash, we can provide limited protection against replay, since there is a 

timestamp field in the header. The receiver decrypts the compressed voice data and the 

hash using the AES key transferred during the handshake. It then computes and verifies 

the hash in the usual manner. Since the AES key was exchanged securely, only the 

legitimate parties can decrypt the voice message, and its integrity and the sender’s 



59 

 

 

 

identity are guaranteed. After decryption, the voice data can be played back after it is 

decompressed. Figure 22 shows the steps involved in the secure transmission of voice 

data.  

 

Figure 22: Secure Transmission of Voice Data 
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Chapter 4. Performance 

In this chapter, we present the results of experiments conducted with bare PC 

softphones on a LAN and on the Internet. We compare the performance of bare PC and 

WinRTP softphones, study the impact of heavy load conditions, demonstrate the 

feasibility of Voice over Ethernet, and examine the overhead due to VoIP security 

mechanisms. 

4.1. Performance on a LAN 

To study performance of the bare PC VoIP application, we conducted several 

experiments in our laboratory using a simple, isolated (i.e., there is no connection to 

external networks or the Internet) test LAN to measure call quality. For ease of data 

collection and measurement, a hub is used (instead of a switch) to connect the bare PCs 

running the VoIP clients, and an Ethereal sniffer is connected to the hub for passive 

monitoring of calls. Each bare PC is a 2.4 GHz Dell Optiplex GX260 with 512 MB 

memory, an external 3Com 905CX network interface card, and onboard audio chip 

AD1981B. The WinRTP softphone runs on an identical machine (the OS is Windows XP 

and we disabled unnecessary services). A commercial tool to calculate the MOS is also 

connected to the hub (Figure 23). The propagation delay between a pair of VoIP clients is 

negligible. In what follows, note that one-way measurements report separately the results 

for each direction in two-way paired (simultaneous) voice streams, whereas two-way 

measurements report the results considering the combined data from both directions.  
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Figure 23: LAN Measurement Setup 

 

First, we transferred voice data between two bare PCs running the VoIP 

application and determined packet loss, delay, and jitter for voice packets sizes ranging 

from 10 ms to 120 ms. As there was no other traffic on the network, no packet loss 

occurred. Also, values of delay and jitter were well within the prescribed ranges for 

acceptable voice quality, and the MOS remained at 4.43 throughout. The experiments 

were repeated after replacing first one bare PC and then both bare PCs with a VoIP client 

running on Windows. The bare PC is capable of supporting voice packet sizes ranging 

from 10 ms up to 120 ms, but the Windows client only allowed a maximum packet size 

of up to 60 ms.  

The maximum packet interarrival time (delta) in each direction for different frame 

sizes is shown in Figure 24. For voice data sent by either a bare PC or a Windows client, 

the maximum interval between packet arrivals is close to the voice frame size in ms. 

Therefore, a linear relationship is observed, regardless of whether the receiver is a bare 
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PC or a Windows client. However, as shown in Figure 25, if we plot the maximum 

deviation from the voice packet size considering traffic from both directions, the 

deviation for a bare PC is seen to be smaller than that for the Windows client.  
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Figure 24: Maximum Packet Interarival Time (ms) 

 

Next, we consider the maximum jitter separately in each direction for a two-way 

voice stream, which is shown in Figure 26 and Figure 27 respectively. The Windows 

clients exhibit a marked directional asymmetry when sending voice data to each other, 

which is likely caused by unmatched systems and operating system behavior. In contrast, 

the maximum jitter for voice data sent between a pair of bare PC clients is significantly 

lower than the values for the Windows clients and also has less asymmetry. This occurs 

because a bare PC has less overhead, and its behavior is more uniform and predictable. It 

is interesting to note that the performance of a Windows client sending to a bare PC is 
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better than when it is sending to another Windows client, whereas the bare PC 

performance is the same whether it is sending to a Windows client or a bare PC. The 

corresponding mean one-way jitter (in each direction) for the above experiments, shown 

in Figures 28 and 29 respectively, confirms the lower jitter values for the bare PC. Note 

that jitter measurements for both Windows and bare PC clients are well within the 

recommended jitter limit of 50 ms. Also, note that the accuracy and resolution of the 

measurements depend on the underlying operating system (Windows) on which the 

sniffer is running. We have not attempted to measure these limits in our studies.   
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Figure 25: Maximum Two-Way InterPacket Deviation (ms) 
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Figure 26: Maximum One-Way Jitter (ms) 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 10 20 30 40 50 60 70

Frame Size

M
a
x
 J

it
te

r 
V

a
lu

e

Bare/Bare Windows/Windows Windows/Bare

 

Figure 27: Maximum One-Way Jitter (ms) 
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Figure 28: Mean One-Way Jitter (ms) 
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Figure 29: Mean One-Way Jitter (ms) 

 

 

In Figure 30, we show the maximum jitter when considering two-way traffic. The 

graph clearly shows that the maximum jitter when a bare PC client is sending is 
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significantly lower than when a Windows client is sending. Again, we observe that the 

performance of the Windows PC improves when it is sending voice to a bare PC.  

In all cases considered above, since there is no packet loss, larger voice packet 

sizes do not have an observable impact on call quality. We introduced moderate levels of 

background traffic on the network and repeated the above experiments. We observed 

similar performance gains for the bare PC client over the Windows client. However, for 

both bare PC and Windows systems, there was a minimal impact on overall call quality 

with occasional packet loss and slightly larger values of delay and jitter (no significant 

change to the MOS was seen). However, the loss of a larger packet now has an 

observable effect.  
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Figure 30: Maximum Two-Way Jitter (ms) 
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4.1.1. Performance under Heavy Load 

Next, we conducted experiments on a LAN to test the call quality of the bare PC 

softphone when it is performing other tasks. For example, these experiments can simulate 

a situation when other applications are running on the bare PC concurrently with the 

softphone. The experiments consisted of interleaving 20 ms voice packets and dummy 

packets of 1038 bytes containing an Ethernet header only. The number of dummy packets 

was increased gradually from 1 to 30. We found that CPU utilization was very low and 

the call quality ranged from good to acceptable for up to 20 dummy packets. When 30 

dummy packets were sent, the call quality was poor. We repeated the experiment while 

flooding the network with background traffic from another source by using the MGEN 

tool [36]. In this case, call quality became poor with only 20 interleaved dummy packets. 

Although we could not interleave dummy packets in this manner on the Windows 

machine, we found that the call quality of the WinRTP softphone was unacceptable with 

an increased load on the system when the CPU utilization reached 30%. These results 

indicate that a bare PC can sustain a heavier load while running a softphone with or 

without background traffic.  

4.1.2. Performance of Voice over Ethernet 

Finally, we studied the performance of a bare PC softphone in an Ethernet LAN 

with no routers. In this case, we used bare PC softphones to investigate the feasibility of 

using voice packets that only had an Ethernet header (i.e., we eliminated the RTP, UDP 

and IP headers). We believe that it is much easier to incorporate such a Voice over 

Ethernet service using a bare PC rather than an embedded system, Exokernel, custom 
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Linux kernel, Linux, or Windows OS. We are not aware of any published studies that 

have used voice over Ethernet. In this case, packets are delivered by using the MAC 

address (a packet carries no IP address, sequence number, timestamp, or port numbers).  

Of course, this voice over Ethernet service has several drawbacks. For example, 

packet loss cannot be detected and no ordering of packets is possible, causing packets to 

be played in the order of arrival. Moreover, packets cannot be forwarded across IP 

subnets by routers (or across the Internet) due to a lack of IP addresses. However, in a 

pure switched Ethernet LAN environment, there is virtually no packet loss or out of order 

packets. The tradeoff is that these packets reduce VoIP bandwidth consumption in a LAN 

environment, and thus enabling increased call capacity (or more room for other traffic on 

the LAN). In our experiments, we found that call quality ranged from excellent to good. 

Packet size is reduced from 213 bytes to 174 bytes, and the savings in bandwidth is about 

19%. Voice over Ethernet may be feasible in a small organization or an in-building LAN. 

More studies are needed to determine the applicability of this approach and the ability to 

integrate it with IPv6 link local addresses.  

4.2. Performance on the Internet 

In order to evaluate the performance impact of bare PC optimizations, we 

conducted several experiments over the Internet, wherein the bare PC softphone 

application was tested in typical home and campus/business environments (Figure 31). 

The distance between end points on the Internet was between 16-22 hops. In a home, the 

bare PC softphone was tested using both DSL and cable modem connections to an ISP. 

On a campus network, the bare PC was directly connected to the campus LAN through a 
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100 Mbps Ethernet switch or hub. The PC hardware, NIC and onboard audio chip 

specifications are the same as for the LAN experiments in Section 4.1.  

 

Figure 31: Internet Measurement Setup 

 

 

A fixed delay jitter buffer was used in our experiments. We do not show packet 

loss as we did not observe significant packet loss (except in a LAN under conditions of 

heavy system load when testing the limits of a bare PC; in this case, the reported values 

of packet loss were unreliable since the systems were unstable). We also did not measure 

WinRTP-to-WinRTP performance as the preceding LAN experiments showed that this 

was worse than WinRTP-to-bare PC performance. 

Figures 32, 33 and 34 show respectively the maximum packet inter-arrival time 

(max delta), the maximum jitter, and mean jitter for a bare PC-to-bare PC connection and 

a bare PC-to-WinRTP connection as the packet size is varied. The jitter values for the 

bare PC-to-bare PC connection are always smaller than those for the WinRTP-to-bare PC 

connection. This is due to the efficient task scheduling and low processing overhead on 

the bare PC softphone. Note that the larger differences in the values of max delta (60 ms 
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for 10 ms packet for example), maximum jitter (6 ms for 30 ms packets for example), and 

mean jitter (2.5 ms for 50 ms packets for example) reflect the variation in the Internet 

conditions during the experiments. 
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Figure 32: Maximum packet inter-arrival time (max delta) 
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Figure 33: Maximum jitter 
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Figure 34: Mean jitter 

 

Figure 35 shows the variation in the maximum packet inter-arrival gap (max 

delta), maximum and mean jitter values over a period of 1 hour for a bare PC-to-bare PC 

connection with a fixed packet size of 20 ms and fixed delay jitter buffer size of 100 ms. 

Notice that the network conditions remained relatively stable during the period of 

measurement.   

In Figure 36, we show the end-to-end delays over the Internet for various voice 

packet sizes with a fixed delay jitter buffer size of 100 ms. The end-to-end delays vary 

from 100 ms to 450 ms. Delays over 400 ms are unacceptable, while those under 150 ms 

are not noticeable. During these experiments, we had the participants rate the quality of 

the calls as poor, acceptable, good or excellent; this roughly corresponds to MOS (mean 

opinion score) ratings of less than 2, 2-2.5, 3-3.5, 4 or greater, respectively (this scale 

assumes implicit rounding of MOS values). However, participants did not observe a 
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significant drop in voice quality even with the larger delays, and they typically assigned 

ratings ranging from good to acceptable. In this case, we were unable to compare the 

performance of the WinRTP softphone under the same conditions. This experiment 

suggests that voice quality achieved by a bare PC softphone under marginal to poor 

network conditions is adequate, although more studies are needed to reach a definite 

conclusion.   
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Figure 35: Max packet inter-arrival gap (max delta), max jitter, and min jitter 
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Figure 36: End-to-end delay 

 

4.3. Performance with VoIP Security 

We conducted several experiments to evaluate the performance impact of adding 

security mechanisms for VoIP to a bare PC softphone. The experiments used the same 

test LAN environment and hardware as in Section 4.1. Since there is no other traffic on 

the LAN, access delays due to collisions are negligible, and also, there is no significant 

network delay. Therefore, we assume that the values of jitter and max delta reflect the 

intrinsic overhead due to processing the voice packets and the addition of security 

mechanisms.   
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Calls were made between two bare PC softphones and between two WinRTP 

softphones. Data was collected for approximately 20 seconds and each experiment was 

repeated six times to ensure that the results were consistent. For each run, we first 

averaged the results for the voice streams in both direction, and then computed the 

average of these results over the six runs. All voice packets consisted of 20 ms of data 

and the length of the SHA-1 hash was 20 bytes. For convenience, we used the same AES 

key in both directions. These experiments did not consider replay protection as the hash 

did not include the RTP header. 

Figures 37 and 38 show the maximum packet interarrival time (max delta), 

maximum (max) jitter and mean jitter for barePC to barePC calls using 20-ms voice 

packets without security and with security. In the latter case, the AES key sizes are 128, 

192 and 256 bits, and the SHA-1 hash is 20 bytes. As expected due to additional 

processing with a larger key size, there is a constant insignificant increase (about 20 

microseconds) in max delta for each 64-bit increment in key size as seen in Figure 37. 

Figure 38 shows that max jitter and mean jitter are not significantly different; mean jitter 

remains the same for all key sizes (about 100 microseconds), while max jitter with a 192 

and 256-bit key is the same but negligibly (about 10 microseconds) less than that for 128-

bit keys.  
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Figure 37: Max delta  
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Figure 38: Max and mean jitter  

  

Thus on the bare PC softphone, there is no significant difference in max delta, 

max jitter, and mean jitter due to encrypting voice or computing the hash even when 

increasing the AES key size. This performance benefit is a result of optimized processing 

and task scheduling on the bare PC softphone. The implication is that the cost to achieve 
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higher levels of security with the bare PC softphone by increasing the AES key size is 

negligible.  

We were unable to repeat the preceding experiment by adding a hash to the voice 

data on the WinRTP softphones as it was not possible to easily access the WinRTP code 

that needed to be modified. Instead, we conducted separate experiments to compare bare 

PC and WinRTP softphone performance. Specifically, we determined max delta, max 

jitter, and mean jitter for bare PC to bare PC and WinRTP to WinRTP calls when 

encryption of the 20-ms voice data (payload) only was performed for AES key sizes of 

128, 192 and 256 bits without adding a SHA-1 hash. The results are shown in Figures 39, 

40, and 41. Figure 39 shows that max delta for the bare PC softphone is constant and 

about 1 ms less than that for WinRTP softphone for all AES key sizes. The smaller gap 

for the 192 bit key size is due to a reduction in max delta for WinRTP with this key size. 

Figure 40 shows that max jitter on a bare PC softphone is about 100 microseconds less 

than that for a WinRTP softphone for all key sizes although a slight increase in the gap is 

seen for 256 bit keys. Figure 41 shows that the difference between mean jitter values for 

the two softphones is very small, with a slight increase occurring in the 256 bit keys. The 

results indicate that a bare PC softphone performs better, and also shows less variability 

in max delta and jitter values than a WinRTP softphone for all AES keys sizes. 
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Figure 39 Max delta for bare PC to bare PC and WinRTP to WinRTP  
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Figure 40: Max jitter for bare PC to bare PC and WinRTP to WinRTP  



78 

 

 

 

BarePC vs WinPC Payload AES Encryption 
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Figure 41: Mean jitter for bare PC to bare PC and WinRTP to WinRTP  

 

In Figure 42, we compare handshake performance between bare PC softphones 

and between WinRTP softphones when exchanging 128, 192 and 256 bit AES keys. 

Although the total time increases by about 20 ms for each increase in the AES key size, 

the time for the bare PC softphone is about 200 ms less than that for the WinRTP 

softphone for all key sizes. This constant reduction in overhead reflects the benefits of 

optimal processing done on the bare PC softphone.  
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Figure 42: Total time for the handshake to exchange an AES key  

 

Figure 43 shows the time for the various components of the handshake between 

bare PC softphones and between WinRTP softphones at the sender and the receiver using 

a 256-bit RSA key, a 256-bit AES key and a 20 byte SHA-1. While AES key generation 

and computing the SHA-1 take minimal time, the bulk of processing time involves RSA 

encryption and decryption. The total time for the bare PC softphone at the sender and 

receiver is about 0.5 seconds less than that for the WinRTP softphone. This difference 

illustrates the advantage of using optimized bare PC softphones for secure P2P VoIP 

systems.      
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Figure 43: Time for various components of the handshake  

 

In Figure 44, we compare the time to generate 256, 512 and 1024 bit RSA keys on 

bare PC and WinRTP softphones. The benefit of using a barePC softphone is greatest 

when generating 1024 bit keys. However, these results indicate that even with optimized 

processing on the bare PC softphone, RSA key generation overhead with larger key sizes 

is significant and may not be acceptable unless a high level of security is desired.  

Figure 45 compares the total time for generating between 10 to 100 keys on bare 

PC and WinRTP softphones. The time to generate 100 keys is about 3 minutes less on a 

bare PC softphone than on a WinRTP softphone. Generation of multiple keys could be 

Handshake Step Handshake Sub Step 

B2B AVG 

(ms) 

W2W 

AVG 

(ms) 

At Sender    

Generate AES   0 0 

Process AES     

 Compute SHA-1 0 0 

  Encrypt SHA-1 736 782 

  Encrypt AES  554 588 

Recover AES      

  Decrypt AES 203 232 

  Recompute SHA1 0 0 

  Decrypt SHA1 556 591 

 Compare SHA1 0 0 

At Receiver    

Recover AES      

  Decrypt AES  195 254 

  Recompute HA1 0 0 

  Decrypt SHA1 589 688 

  Compare SHA1 
0 0 

Process AES     

  Compute SHA1 0 0 

  Encrypt SHA1 697 818 

  Encrypt AES K 584 685 
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done in the background and the faster completion time of the bare PC softphone suggests 

that key generation will have a lesser effect on voice calls and other applications running 

simultaneously.  
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Figure 44: RSA key generation time for various RSA key sizes  
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Figure 45: Total time for generating 10-100 RSA keys on barePC and WinRTP  
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Chapter 5. Conclusion  

This dissertation has investigated using the bare PC (OS-less) computing 

environment for peer-to-peer VoIP. We described the design, architecture and 

implementation of a bare PC softphone and conducted experiments to measure its 

performance in LAN and on the Internet. We also compared the performance of a bare 

PC softphone and a Windows-based WinRTP softphone, and examined the impact on 

performance due to adding security mechanisms for VoIP.  

We discussed several design and architectural features unique to a bare PC 

softphone including optimized task scheduling, zero copy buffering and cross-layer 

design. Optimized task scheduling results in better CPU utilization and minimizes 

intrinsic delays in processing packets. Zero copy buffering minimizes overhead and 

facilitates communication between network layers. The use of polling instead of 

interrupts also contributes to better performance. In addition, the record and playback 

functions for the bare PC softphone are synchronized, which helps to improve its 

efficiency.  

The LAN and Internet experiments indicate that the performance of a bare PC 

softphone is better than that of the OS-based WinRTP softphone. We compared call 

quality by measuring delay, jitter, packet loss and the MOS. The bare PC softphone has 

lower jitter than the WinRTP softphone even when packet sizes are larger. The bare PC 

softphone was also found to have adequate performance under marginal to poor network 

conditions.  

We conducted additional experiments suggesting that the bare PC softphone 

provides acceptable call quality under heavy system load conditions without or with 
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background traffic on a LAN. In contrast, a WinRTP softphone degraded under a lower 

system load. Finally, we found that it is possible to obtain excellent to good call quality 

on a switched Ethernet LAN with no routers by using packets containing only an Ethernet 

header. The resulting savings in bandwidth could be used to support more calls or run 

other applications on the LAN.  

Bare PC softphones support standard security mechanisms. A secure two-way 

handshake based on RSA is used to exchange the AES key. Thereafter, the voice data is 

encrypted using AES, and authenticity and integrity of voice data is guaranteed by use of 

an encrypted SHA-1 hash. Comparison of the performance of bare PC and WinRTP 

softphones after adding security mechanisms indicates that the bare PC is more efficient 

and able to provide better voice quality as it has less variation in maximum packet 

interarrival time and less jitter than a WinRTP softphone. Bare PC handshake 

performance is also better than a WinRTP softphone since it takes less time to complete. 

Bare PC softphones can also be used to achieve a higher level of security than WinRTP 

softphones since they have less overhead for larger AES key sizes. Generation of 

multiple RSA keys can also be done faster on bare PC softphones compared to WinRTP 

softphones.  

The bare PC softphone can run alone, or concurrently with other bare PC 

applications, and it can be used to communicate with the OS-based WinRTP softphone. 

Also, the bare PC softphone is capable of functioning like a conventional OS-based 

softphone, since it can be used to connect seamlessly to an existing home, business or 

campus network, and thus to the Internet. Furthermore, since the bare PC softphone can 

run on older Intel-386 based PCs, it could serve as a communication tool in situations 
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where high-speed Internet connectivity is available but PCs capable of supporting a 

modern OS required to run today’s multi-featured softphones are scarce. It should also be 

noted that, in principle, the AO for a bare PC softphone can be run on any device with an 

Intel 386 (or above) based architecture. Bare PC softphones inherit the advantages of bare 

PC computing, which include simplicity, efficiency and inherent security. This research 

suggests that bare PC softphones are an attractive option for direct efficient 

communication between peers while providing customizable security based on personal 

preference.     
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Appendix A: Bare PC Softphone Guide 

 

1. Compilation Environment 

The bare PC softphone is written entirely in C++. The softphone also uses existing 

bare PC C++ API calls to interface with the hardware. A bare PC C++ API call invokes a 

C call, and that in turn invokes an assembly call. The compiling environment uses batch 

files to compile and link the softphone application with the necessary bare PC modules 

[8]. Visual Studio C++ compiler (batch mode), MASM 6.11 assembler, and Turbo 

assembler compilers are used to create executable modules. We have written batch files 

to do compilation and linking for boot and loader programs and the VoIP softphone 

application. All command files are executed in the root directory for the softphone as 

shown in Figure 46.  

\VoIPSec Root directory of the softphone 

\aes\ AES code  

\arp\ Address Resolution Protocol code 

\audio\ Audio card drivers code 

\bin\ Compiler and linker executables 

\dosclib\ DOSC object files 

\ethernet\ Ethernet protocol code 

\G711Codec\ G.711 codec code 

\hshake\ Handshake code 
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\interfaces\ DOSC interface files 

\ip\ Internet Protocol code 

\jitter\ Jitter buffer code 

\MASS\ Assembler executable 

\memorymap\ DOSC memory map files 

\rp\ Record and playback code 

\rsa\ RSA key generation code 

\rtp\ Real-Time Transport Protocol code 

\sha1\ Sha1 code 

\tcp\ TCP code 

\udp\ UDP code 

\vsec\ VoIP security code 

\webserver\ C++ main and tasking code 

 

Figure 46: Softphone Directory Structure 
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Figure 47 shows lines of code information for the bare PC softphone application. 

File Name File Type 

Uncommented 

Lines of Code 

VoIPSec  257 

Aes H 44 

ARP H 60 

Audio H 105 

Ethernet H 119 

G711Codec H 4186 

Hshake H 82 

IP H 45 

Jitter H 192 

Rp H 26 

Rtp H 45 

sha1 H 26 

Tcp H 277 

Udp H 29 

VSEC H 36 

webserver H 610 

Aes CPP 1200 

ARP CPP 586 

Audio CPP 439 

Ethernet CPP 848 

G711Codec CPP 84 

Hshake CPP 597 

interfaces CPP 805 

IP CPP 307 

Jitter CPP 609 

Rp CPP 271 

Rtp CPP 199 

sha1 CPP 157 

Tcp CPP 2696 

Udp CPP 179 

VSEC CPP 386 

webserver CPP 5132 

Total  20634 

 

Figure 47: Lines of Code 
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2. How to Boot, Load and Execute the Softphone Application 

In order to load and execute the bare PC softphone application, one needs to place a 

boot program, a loader program, and the softphone application on a bootable device such 

as a floppy diskette. The boot program enables bare PC applications such as the 

softphone to be executed after booting is completed. You need to follow standard PC 

boot procedures and power up the PC with the boot device in the boot drive. During the 

boot process, the loader program will load an AOA interface menu into internal memory 

for execution. Using this interface menu, a user can load the softphone application from 

the same boot device and then execute it.  
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