Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.



mailto:scholarworks-group@umbc.edu

1910.03678v1 [cs.CL] 29 Sep 2019

arxXiv

Unfolding the Structure of a Document
using Deep Learning

Muhammad Mahbubur Rahman and Tim Finin

Abstract—Understanding and extracting of information from large documents, such as business opportunities, academic articles,
medical documents and technical reports, poses challenges not present in short documents. Such large documents may be
multi-themed, complex, noisy and cover diverse topics. We describe a framework that can analyze large documents and help people
and computer systems locate desired information in them. We aim to automatically identify and classify different sections of documents
and understand their purpose within the document. A key contribution of our research is modeling and extracting the logical and
semantic structure of electronic documents using deep learning techniques. We evaluate the effectiveness and robustness of our
framework through extensive experiments on two collections: more than one million scholarly articles from arXiv and a collection of

requests for proposal documents from government sources.

Index Terms—Document Structure, Deep Learning, Document Understanding, Semantic Annotation

1 INTRODUCTION

URRENT language understanding approaches are

mostly focused on small documents, such as newswire
articles, blog posts, and product reviews. Understanding
and extracting information from large documents like legal
documents, reports, proposals, technical manuals, and re-
search articles is still a challenging task. The reason behind
this challenge is that the documents may be multi-themed,
complex, and cover diverse topics. For example, business
documents may contain the background of the business,
product or service of the business, budget related data, and
legal information. The content can be split into multiple files
or aggregated into one large file. As a result, the content
of the whole document may have different structures and
formats. Furthermore, the information is expressed in dif-
ferent forms, such as paragraphs, headers, tables, images,
mathematical equations, or a nested combination of these
structures.

These documents neither follow a standard sequence
of sections nor do they have a standard table of contents
(TOQ). Even if a TOC is present, it is not always straightfor-
ward to map a TOC across documents and a TOC may not
map a document’s section and subsection headers directly.
Moreover, not all documents from the same domain have
consistent section and subsection headers.

Modeling a document’s structure is often viewed as a
simple syntactic problem, i.e., recognizing a document’s or-
ganization into sections, subsections, appendices, etc. These
parts, however, also have meaning or semantics at two
different levels. The first depends on a document’s genre
(e.g., scholarly article or user manual) and focuses the
components’ function and purpose within the document.
The second level of semantics models a document’s domain
or topic, such as a scholarly article about computer science
versus one about anthropology.
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The semantic organization of the sections and subsec-
tions of documents across all vertical domains is not the
same. For example, business documents typically have com-
pletely different structures than user manuals or scholarly
papers. Even research articles from Computer Science and
Social Science may have different structures. For example,
Social Science articles usually have sections named method-
ology whereas Computer Science articles generally have
sections named approach. Semantically these two sections
should be the same.

Identifying a document’s logical sections and organizing
them into a standard framework to understand the semantic
structure of a document will not only help many informa-
tion extraction and retrieval applications, but also enable
users to quickly navigate to sections of interest. Such an
understanding of a document’s structure will significantly
benefit and facilitate a variety of applications, such as in-
formation extraction, document categorization, document
summarization, information retrieval and question answer-
ing. Humans are often interested in reading specific sections
of a large document and hence will find semantically labeled
sections very useful as it can save their valuable time.

Our goal is to section large and complex PDF doc-
uments automatically and annotate each section with a
semantic, human-understandable labels. Our semantic labels
are intended to capture the general role or purpose that a
document section fills in the larger document, rather than
identifying any concepts that are specific to the document’s
domain. This does not preclude annotating the sections with
semantic labels appropriate to a specific class of documents
(e.g., scholarly articles) or documents about a domain (e.g.,
scholarly articles for computer science). We also desire to
capture any concept that is specific to a document’s do-
main. In a nutshell, we aim to automatically identify and
classify semantic sections of documents and assign human-
understandable, consistent labels to them.

We have developed simple, yet powerful, approaches to
build our framework using layout information and textual



content. Layout information and text are extracted from
PDF documents, such as scholarly articles and request for
proposal (RFP) documents. We develop state of the art ma-
chine learning models including deep learning architectures
for classification and semantic annotation. We also explore
and experiment with the Latent Dirichlet Allocation (LDA)
[1], TextRank [2] and Tensorflow Textsum [3] models for se-
mantic concept identification and document summarization,
respectively. We map each of the sections with a semantic
name using a document ontology.

While we aim to develop a generic and domain in-
dependent framework, for experimental purposes, we use
scholarly articles from the arXiv repository [4] and RFP
documents from RedShred [5]. We evaluate the performance
of our framework using different evaluation matrices, in-
cluding precision, recall and F1 scores. We also analyze and
visualize the results in the embedding space. The initial
experiments and results are demonstrated in our earlier re-
search [6]. Advanced experiments and results with detailed
explanations are presented in this paper.

2 BACKGROUND

This section includes necessary definitions and information
to understand the research work.

2.1 Section Definition

A section can be defined in different ways. In our paper, we
define a section as follows.

S = a set of paragraphs, P ; where number of
paragraphsis 1 ton

P = aset of lines, L

L = a set of words,W

W = a set of characters, C

C = all character set

D = digits | roman numbers | single character
LI = a set of list items

TI = an entry from a table

Cap = table caption | image caption

B = characters are in Bold

LFS = characters are in larger font size
HLS = higher line space

Section Header = 1 C L where [ often starts with
d € DAnd! ¢ {TI, Cap} And usuallyl € LI And
generally ! C {B, LF'S, HLS}

Section = s C S followed by a Section Header.
2.2 Documents

Our work is focused on understanding the textual content
of PDF documents that may have anywhere a few pages
to several hundred pages. We consider those with more
than ten pages to be “large” documents. It is common
for these documents to have page headers, footers, tables,
images, graphics, forms and mathematical equation. Some
examples of large documents are business documents, legal
documents, requests for proposals, user manuals, technical
reports and academic articles.

2.3 Document Structure

A document’s structure can be defined in different ways.
In this research, we focus on documents that have a hi-
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erarchical structure, which typically is aligned with the
document’s logical structure. According to our definition,
a document has top-level sections, subsections and sub-
subsections. Sections start with a section header, which is
defined in the earlier part of the background section. A
document also has a semantic structure. An academic article,
for example, has an abstract followed by an introduction
whereas a business document, such as an RFP, has deliver-
ables, services and place of performance sections. In both
the logical and semantic structure, each section may have
more than one paragraph.

2.4 Ontology

According to Tom Gruber, an ontology is a specification of a
conceptualization [7]. It describes conceptx with the help of
an instance, class and properties. It can be used to capture
the semantics or meaning of different domains and also for
annotating information. We need an ontology to understand
and label the semantic structure of a document and reuse
the structure in other documents. Detailed information of
our ontology is given in section 5.

2.5 Semantic Annotation

Semantic annotation [8] can be described as a technique of
enhancing a document with annotations, either manually
or automatically, that provides a human-understandable
way to identify semantic meaning of a document. It also
describes the document in such a way that the document is
understandable to a machine.

3 RELATED WORK

Identifying the structure of a scanned text document is a
well-known research problem. Some solutions are based on
the analysis of the font size and text indentation [9], [10].
Mao et al. provide a detailed survey on physical layout
and logical structure analysis of document images [10].
According to them, document style parameters, such as size
of and gap between characters, words and lines are used
to represent document physical layout. Algorithms used in
physical layout analysis can be categorized into three types:
top-down, bottom-up and hybrid approaches.

The O’Gorman’s Docstrum algorithm [11], the Voronoi-
diagram-based algorithm of Kise [12] and Fletcher’s text
string separation algorithm [13] are bottom-up algorithms.
Gorman et al. describe the Docstrum algorithm using the
K-NN for each connected component of a page and use
distance thresholds to form text lines and blocks. Kise et
al. propose Voronoi-diagram-based method for document
images with a non-Manhattan layout and a skew. Fletcher
et al. design their algorithm for separating text components
in graphics regions using Hough transform [14]. The X-Y-
cut algorithm presented by Nagy et al. [15] is an example
of the top-down approach based on recursively cutting the
document page into smaller rectangular areas. A hybrid
approach presented by Pavlidis et al. [16] identifies column
gaps and groups them into column separators after horizon-
tal smearing of black pixels.

Bloechle et al. describe a geometrical method for finding
blocks of text from a PDF document and restructuring
the document into a structured XCDF format [17]. Their
approach focuses on PDF formatted TV Schedules and



multimedia meeting note, which usually are organized and
well formatted. Hui Chao et al. describe an approach that
automatically segments a PDF document page into different
logical structure regions, such as text blocks, images blocks,
vector graphics blocks and compound blocks [18], but does
not consider continuous pages. Djean et al. present a system
that relies solely on PDF-extracted content using table of
contents (TOC) [19]. But many documents may not have
a TOC. Ramakrishnan et al. develop a layout-aware PDF
text extraction system to classify a block of text from the
PDF version of biomedical research articles into rhetorical
categories using a rule-based method [20]. Their system
does not identify any logical or semantic structure for the
processed document.

Constantin et al. design PDFX, a rule-based system
to reconstruct the logical structure of scholarly articles in
PDF form and describe each of the sections in terms of
some semantic meaning, such as title, author, body text
and references [21]. Tuarob et al. describe an algorithm
to automatically build a semantic hierarchical structure of
sections for a scholarly paper [22]. But they only detect top-
level sections and settle upon few standard section heading
names, such as ABS (Abstract), INT (Introduction) and REL
(Background and Related Work).

Monti et al. develop a system to reconstruct an electronic
medical document with semantic annotation [23]. They di-
vide the whole process into three steps. They classify doc-
uments in one of the document categories specified in the
Consolidated CDA (C-CDA) standard [24] using the Naive
Bayes algorithm. Zhang et al. apply temporal ConvNets [25]
to understand text from character-level inputs all the way
up to abstract text concepts [26]. Their ConvNets do not re-
quire any knowledge on the syntactic or semantic structure
of a language to give good text understanding. They use an
alphabet that consists of 70 characters, including 26 English
letters, 10 digits, new line, and 33 other characters.

Ghosh et al. propose a Contextual Long short-term
memory(CLSTM) [27] for sentence topic prediction [28].
They develop a model to predict topic or intent of the
next sentence, given the words and the topic of the current
sentence taking categories from an extraneous source named
Hierarchical Topic Model (HTM) [29]. Lopyrev et al. train
an encoder-decoder RNN with LSTM for generating news
headlines using the texts of news articles from the Gigaword
dataset [30]. Srivastava et al. introduce a type of Deep
Boltzmann Machine (DBM) for extracting distributed se-
mantic representations from a large unstructured collection
of documents [31]. They use the Over-Replicated Softmax
model for document retrieval and classification.

Over the last few years, several ontologies have been
developed to represent a document’s semantic structure and
annotate it with a semantic name. Some deal with academic
articles and others with non-scholarly types of documents.
Ciccarese et al. develop an Ontology of Rhetorical Blocks
(ORB) [32] to capture the coarse-grained rhetorical struc-
ture of a scientific article by dividing it into header, body
and tail. The header captures meta-information about the
article, such as publication’s title, authors and abstract. The
body adopts the IMRAD structure from [33] and contains
introduction, methods, results, and discussion. The tail pro-
vides additional meta-information about the paper, such as
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acknowledgments and references. Peroni et al. introduce
a Semantic Publishing and Referencing (SPAR) Ontologies
[34] to create comprehensive machine-readable RDF meta-
data for the entire set of characteristics of a document from
semantic publishing.

DoCO, the document components ontology [35], [36],
provides a general-purpose structured vocabulary of doc-
ument elements to describe both structural and rhetorical
document components in RDF format. This ontology can
be used to annotate and retrieve document components of
an academic article based on the structure and content of
the article. It also inherits another two ontologies: Discourse
Elements Ontology(Deo) [37] and Document Structural Pat-
terns Ontology [38].

To the best of our knowledge, many of the systems
described above are not accessible. Most of the available
systems focus on short articles or news articles. Some of
the systems focus on scholarly articles within a limited
scope. We also have not seen any end-to-end system that
understand large and complex PDF documents. Some pre-
vious research focuses on document images and are not
similar to the problem we are trying to solve. Hence, their
methods are not directly applicable to our problem domain.
Our framework deals with large complex documents in
electronic formats. In our experiments, we use business
documents, such as RFPs and a wide variety of scholarly
articles from the arXiv repository. We applied machine
learning approaches including deep learning for sectioning
and semantic labeling. Our framework also understands the
logical and semantic structure of scholarly articles as well as
RFP documents.

4 SYSTEM ARCHITECTURE

In this section, we explain the system architecture of our
framework, which is organized as a sequence of units,
including a Pre-processing, Annotation, Classification and
Semantic Annotation units, as shown in Figure 1.

4.1 Pre-processing Unit

The Pre-processing Unit takes PDF documents as input
and gives processed data as output for annotation. It uses
PDFLib [39] to extract metadata and text content from PDF
documents. It has a parser that parses TETML generated
by PDFLib. The granularity of TETML is word level, which
means that TETML has high level descriptions of each
character of a word. The parser applies different heuristics
to get font information of each character, such as size, weight
and family. It uses © — y coordinates of each character to
generate a complete line and calculates the indentation and
line spacing of each line. It also calculates average font size,
weight and line spacing for each page. All metadata on
layout and text of each line are written in a CSV file, where
each row of the CSV has a line of text and layout information
of the line.

4.2 Annotation Unit

The Annotation Unit takes a CSV file as input. Our an-
notation team reads each line, finds it in the original PDF
document and annotates it as a section-header or regular-text.
A section-header can be of different levels, such as top-level,
subsection or sub-subsection. While annotating, annotators
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do not look into the layout information given in the CSV
file. For our experiments on arXiv articles, we extracted
bookmarks from PDF documents and used them as the gold
standard annotation for training and test as described in the
Input Document Processing section.

4.3 Classification Unit

This unit takes annotated data and trains classifiers to iden-
tify physically divided sections using sub-units for line and
section classification. The Line Classification sub unit has
Features Extractor and Line Classifiers modules. Based on
heuristics, the Feature Extractor extracts features from lay-
out information and texts that include text length, number of
noun phrases, font size, higher line space, bold italic, colon
and number sequence at the beginning of a line. The Line
Classifiers module implements multiple classifiers using
well known algorithms, including Support Vector Machines,
Decision Trees, Naive Bayes, and Convolutional and Recur-
rent Neural Networks, as described in section 5. We note
that we do not use an ensemble method but select the best
one based on the performance of different algorithms and
result analysis. The output of the Line Classifiers module is
section-header or reqular-text.

The Section Classifiers module of the Section Classifica-
tion sub unit takes section headers as input and classifies
them as top-level, subsection or sub-subsection headers using
RNN and CNN. The Section Classification sub unit also has
a Section Boundary Detector described in our earlier work
[6], which detects the boundary of a section using different
level of section headers and regular text. It generates physi-
cally divided sections and finds relationship among top-level,
subsection and sub-subsection headers. This relationship infers
the logical structure of different sections, subsections and
sub-subsections from a low level representation of a PDF
document to make a deep understanding of a document’s
logical structure. The relationship is also used to generate a

TABLE 1: Human generated features

Feature Name

pos_nnp, without_verb_higher_line_space,
font_weight, bold_italic, at_least_3_lines_upper,
higher_line_space, number_dot,
text_len_group, seq_number, colon, header_0,
header_1, header_2, title_case, all_upper, voc

table of contents(TOC) from a document.

4.4 Semantic Annotation Unit

The Semantic Annotation Unit annotates each physically
divided section with a semantic name. It has a Semantic
Labeling module, which implements LDA for topic model-
ing, CNN for semantic classification for each of the divided
sections, and LSTM for sequencing sections. LDA is used
to get a semantic concept from each of the sections. A
document ontology is designed and implemented to capture
semantic annotation. Going beyond the logical structure of
a document, this unit understands the semantic of each
section to capture the general role or purpose of that section
as well as identifying any concepts that are specific to the
document’s domain. It also applies document summariza-
tion techniques using TextRank and Tensorflow Textsum to
generate a short summary for each individual section. The
output of the Semantic Annotation Unit is a TOC, sections
with semantic labels, semantic concepts of each section, and
section summarizations from each PDF document.

5 TECHNICAL APPROACH

In this section, we present the approaches to build the
framework using different machine learning techniques,
including deep learning.

5.1 Line Classification

The Line Classification unit has the following components.



5.1.1 Feature Extractor

Given a collection of labeled texts and layout information
of a line, the Features Extractor applies different heuristics
to extract features. We build a vocabulary from all section
headers of arXiv training data, where a word is considered
if the frequency of that word is more than 100 and is
not a common English word. The vocabulary size is 13371
and the top five words are “Introduction”, “References”,
“Proof”, “Appendix” and “Conclusions”. The Features Ex-
tractor calculates average font size, font weight, line spacing
and line indentation. It finds number of dots, sequence
number, length of the text, presence of vocabulary and case
of words (title case and upper case) in the text. It also
generates lexical features, such as the number of Nouns or
Noun Phrases, Verbs and Adjectives. It is common that a
section header should have more Nouns or Noun Phrases
than other parts of speech. The ratio of Verbs or Auxiliary
Verbs should be much less in a section header. A section
header usually starts with a numeric or Roman numeral or
single English alphabet letter. Based on all these heuristics,
the Features Extractor generates 16 features from each line.
These features are given in table 1. We also use the n-gram
model to generate unigram, bigram and trigram features
from the text.

5.1.2 Support Vector Machine

Given a training dataset with labels, we train SVM models
which learn a decision boundary to split the dataset into two
groups by constructing a hyperplane or a set of hyperplanes
in a high dimensional space. Consider our training dataset,
T ={z1, 2, ..., T} and their label set, L = {0, 1}, where
0: regular-text and 1: section-header. Each of the data points
from T is either a vector of 16 layout features or a vector
of 16 layout features concatenated with n-gram features
generated from text using TF-IDF vectorizer. Using SV M
we can determine a classification model as Equation 1 to
map a new data point with a class label from L.

f:T—L flx)=L 1)

Here the classification rule, the function f(x), can be of
different types based on the chosen kernels and optimiza-
tion techniques. We use LinearSVC from scikit-learn [40]
which implements Support Vector Classification for the case
of a linear kernel as presented by Chang et al. [41]. Since
our line classification task has only two class labels, we use
a linear kernel. We experimented with different parameter
configurations using the combined features vector as well
as the layout features vector. The detail of the SVM ex-
periments is presented in the Experiments and Evaluation
section.

5.1.3 Decision Tree

Given a set of lines, T' = {x1, 3, ...., ¥, } where each line, x;
is labeled with a class name from the label set, L = {0,1},
we train a decision tree model that predicts the class label
for a line, z; by learning simple decision rules inferred from
either only 16 layout features or 16 layout features con-
catenated with a number of n-gram features generated from
the text using the TF-IDF vectorizer. The model recursively

Class labels
+
softmax
Hidden layer

tanh
Y

Layout vector One hot vector

1 One hot encoding
. 1 | . 1 |
L Layout information J Text

Layout vector

Fig. 2: RNN Architecture for Layout and Text

partitions all the text lines such that the lines with the same
class labels are grouped together.

To select the most important feature, which is the most
relevant to the classification process at each node, we cal-
culate the gini — index. Let p1(f) and p2(f) be the fraction
of class label presence of two classes 0: reqular-text and 1:
section-header for a feature f. Then, we have equation 2.

2
> opi(f) =1 )
=1

Then, the gini — index for the feature f is in equation 3.

G(f) = Zm(ff €)

For our two class line classification tasks, the value of
G(f) is always in the range of (1/2,1). If the value of G(f)
is high, it indicates a higher discriminative power of the
feature f at a certain node.

5.1.4 Naive Bayes

Given a dependent feature vector set, F' = { f1, fa, ...., fn } for
each line of text from a set of text lines, T' = {x1, xo, ..., T, }
and a class label set, L = {0, 1}, we calculate the probability
of each class ¢; from L using the Bayes theorem in equation
4,

(4)

As P(F) is the same for the given input text, we can
determine the class label of a text line having feature vector
set F', using the equation 5.

Label(F) = arg Max.,{P(c¢;|F)} )
=arg Max.,{P(c;) . P(F|c;)}

Here, the probability P(F|c;) is calculated using the
multinomial Naive Bayes method. We use the multinomial
Naive Bayes method from scikit-learn [40] to train models,
where the feature vector, I is either 16 features from layout
or 16 layout features concatenated with the word vector of
the text line.
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5.1.5 Recurrent Neural Network

Given an input sequence, S = {s1, S2, ..., s:} of a line of
text, we train a character level RNN model to predict its
label, I € L = {reqular-text : 0, section-header : 1}. We
use a many-to-one RNN approach, which reads a sequence
of characters until it gets to the end of the sequence char-
acter. It then predicts the class label of the sequence. The
RNN model takes the embeddings of characters in the text
sequence as input. For character embedding, we represent
the sequence into a character level one-hot matrix, which
is given as input to the RNN network. It is able to process
the sequence recursively by applying a transition function
to its hidden unit, h;. The activation of the hidden unit is
computed by Equation 6.

0
I = {f(ht—hst)

Here h; and h;_; are the hidden units at time ¢t and t — 1
and s; is the input sequence from the text line at time ¢. The
RNN maps the whole sequence of characters until the end
of the sequence character with a continuous vector, which is
input to the softmax layer for label classification.

We use TensorFlow [42] to build our RNN models. We
build three different networks for our line classification task.
In the first and second network, we use text only and layout
only as input sequence respectively. In the third network, we
use both the 16 layout features and the text as input, where
the one-hot matrix of characters sequence is concatenated
at the end of the layout features vector. Finally, the whole
vector is given as input to the network. Figure 2 shows
the complete network architecture for combined layout and
text input vectors. Implementation details are given in the
Experiments section.

t=20

otherwise

(6)

5.1.6 Convolutional Neural Network

Given an input sequence, S = {s1, Sz, ..., s:} of a line of
text, we train a character level CNN model to predict its
label, I € L = {reqular-text : 0, section-header : 1}.
The total vocabulary size is 256. We convert the input text
into one hot encoding. If the input length is more than a
threshold, we truncate it otherwise we pad it with zeros.
The input sequence is then passed through the embedding
layer to represent each of the characters with a mapping in
the embedding space. A convolution layer is used on the
subsets of the input sequence with a filter to produce new
features. Thus, cis a set of features from the input sequence,

6

S. Then a feature map can be presented by equation 7 where
each of the features, c¢; can be generated by Equation 8.

,Ci] (7)

Here w is a weight matrix, X is a subset from the input
sequence S and b is a bias value.

After getting the feature set, we apply max pooling on c,
to get the maximum feature values. These feature values
are given to the fully connected hidden layer to get the
sentence level embedding vector, which is then passed to the
Softmaz layer for classification. We build CNN networks
for three vectors: text only, layout only and the combination
of text and layout. We apply ReLu activation function at
each convolution layer and max pooling layer.

For the combined text and layout input vectors, we have
two parallel sequential layers; one for character level text
input and another for the 16 layout features. The output
from both are merged and passed through the last fully
connected hidden layer and its output is passed through
the Softmax for classification. The network architecture is
given in Figure 3.

¢ = ey, cay e

5.2 Section Classification

The section classification module takes section headers and
section body text as input from the line classification mod-
ule and identifies different levels of section headers, such
as top-level section, subsection and sub-subsection headers. It
also detects section boundaries using the Section Boundary
Detector algorithm presented in our earlier work [6]. It has
a Section Classifiers module, which is explained below. The
output of this module are physically divided sections.

5.2.1 Section Classifiers

Like the Line Classifiers module, the Section Classifiers
module considers the section classification task as a se-
quence classification problem, where we have a sequence
of inputs, S = {s1,$2,...., 8¢} from classified section head-
ers and the task is to predict a category from L = {
top-level section header:1, subsection header:2 sub-subsection
header:3} for the sequence. For this sequence classification
task, we use both RNN and CNN architectures similar to the
architectures used for the line classification task. We also use
text only, layout only and, combined text and layout input
vectors for the Section Classifiers. The overall inputs and
outputs for the section classification task with the Section
Boundary Detector is shown in Figure 4, where the network
has combined the text and layout input vectors.

There are several reasons for choosing RNN and CNN
over other machine learning algorithms for the section
classification. One is that the section classification is more
complex than line classification due to the complexity of the
nature of different types of section headers. Another is that
we achieve better performance for line classification using
RNNs and CNNs over other algorithms for our dataset.
A third is that we worry less about feature generation. A
fourth reason is that RNNs and CNNs learn the structure
of our dataset more effectively than other machine learning
algorithms. The final one is that these techniques can gener-
ate new unknown features and find relationships between
features for our dataset.



Fig. 4: Overall Inputs and Outputs for Section Classification
with Combined Text and Layout Vector
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5.3 Semantic Section Annotation

Given a set of physically divided sections, D =
{di,ds, ....,dy,}, the Semantic Annotation Unit assigns a hu-
man understandable semantic name to each section. It has
a Semantic Labeling module, which implements different
components described below.

5.3.1 Semantic Classifier

We build CNN and bidirectional LSTM models to classify
each of the physically divided sections. At the end, the
word-based CNN model was chosen as a Semantic Classifier
for several reasons. First, we achieve the best performance
using word based CNN for our dataset. Secondly, we choose
word based architecture to capture the semantic meaning
of each section based on words. Finally, the CNN model
works better to capture the structure of sentences in different
sections, which helps to identify the semantic meaning of
different sections. For example, an introduction has sen-
tences for explaining motivations, a related work section
has lot of citations, a technical approach section usually has
more mathematics and equations, and a result section has
more graphics and plots.

The labels of the Semantic Classifier are classes from
our document ontology. Detailed information about class
selection is described in the ontology design section. We im-
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Fig. 7: LSTM Sequence Prediction Diagram

plement a CNN architecture similar to the model presented
by Kim [43] for sentence classification. The architecture is
also similar to the architecture we presented in the Line
Classification for CNN in a previous section. In our imple-
mentation, we build a word embedding layer and each of
the sections with its class label is considered as input to the
network. The CNN architecture is given in Figure 5.

For the experimental purpose, we also build both word
based and character based bidirectional LSTM models for
semantic section classification. The architecture is given in
Figure 6.

5.3.2 Section Sequencing

After getting all of the sections with semantic names, we
may need to restructure the sequence for inferring a better
semantic structure. The order of sections may differ from
article to article. In some articles, an introduction is followed
by a related work section, whereas in other articles, an
introduction may also contain related work. It is important
to reorganize the sections after automatic section generation
with semantic name.

For a sequence of section headers, H = {hq, hg, ..., by}
from a document, we build a Sequence Prediction model to
reproduce the whole sequence of section headers based on
a given sequence of section headers. This prediction model
predicts each section header using historical sequence in-
formation in the sequence. We use LSTM network for our
sequence prediction task. The reason is that LSTM networks
achieve state-of-the-art results in sequence prediction prob-
lems. We choose a many-to-many LSTM architecture for
our section header prediction, since the whole sequence of
section headers is predicted based on the given sequence of
section headers. The section header prediction diagram is
shown in Figure 7.

5.3.3 Document Ontology Design

After getting a list of section headers classified by the Se-
mantic Classifier and sequencing them using the Sequence
Prediction model, we map them in a semantic manner using
an ontology. This mapping is basically the process of se-
mantic annotation in a document. An article from computer
science may have an approach section, which is similar to a
methodology section in a social science article. The semantic
section mapping helps to map each of the sections of a
document with human understandable names, which adds
meaningful semantics by standardizing section names of the
document.

In order to design a document ontology, we create a list
of classes and properties. We follow the count based and the
cluster based approaches. In the count based approach, we
first take all section headers, including top-level, subsection
and sub-subsection which are basically headers from the table
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TABLE 2: Classes for Ontology from arXiv Articles

Introduction, Conclusion, Discussion, References,
Acknowledgments, Results, Abstract, Appendix,
RelatedWork, Experiments, Methodology, Preliminary,
ProofOfTheorem, Evaluation, FutureWork, Datasets,
Contribution, Background, Implementation, Approach

Class Name

of contents of all arXiv articles released by Rahman et al.
[44]. Then we remove numbers and dots from the beginning
of each header and generate the count for each header and
sort them based on the count.

In the cluster based approach, we generate all section
headers from the table of contents of all arXiv articles [44]
and develop a Variational Autoencoder(VAE) [45], [46], [47]
to represent each of the section headers in a sentence level
embedding which is named as header embedding in our
research. We apply Autoencoder to learn the header embed-
ding in an unsupervised fashion so that we can achieve a
good cluster. Then we dump the embedding vector from
the last encoding layer. This vector has higher dimensions.
Usually, clustering on higher dimensions doesn’t work well.
So we apply t-SNE [48] dimensionality reduction tech-
nique to reduce the dimensions of the embedding vector
to 2 dimensions. After dimensionality reduction, we use k-
means clustering on the embedding vector to cluster the
header embedding in semantically meaningful groups. We
manually analyze all clusters and all section headers from
the count based approach and come up with the classes
to design our document ontology. The list of the selected
classes is shown in Table 2. A more detailed description
of our approach is presented in Rahman et al. [49]. We
also apply similar approaches for section headers from
RFP documents. To understand the sections of an RFP, we
read [50] and discuss with experts from RedShred [5]. The
architecture of the autoencoder is given in Figure 8.

After getting the classes from manual analysis of the
count and the cluster based approaches, we design an ontol-
ogy for our input document. The classes represent concepts
in our ontology. We also analyze cluster visualization to get
properties and relationship among classes. Detailed results
are included in the Experiments and Evaluation section.
Figure 9 shows our simple document ontology.

5.3.4 Semantic Concepts using LDA

We use LDA to find semantic concepts from a section. LDA
is a generative topic model which is used to understand the
hidden structure of a collection of documents. In an LDA
model, each document has a mixture of various topics with
a probability distribution. Again, each topic is a distribution
of words. Using Gensim [51], we train an LDA topic model
on a set of divided sections. The model is used to predict the
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topic for any test section. A couple of terms, which have the
highest probability values of the predicted topics, are used
as semantic concepts for a given section. These semantic
concepts are also used as property values in the document
ontology.

5.3.5 Section Summarization

Given a set of sections, D = {dy,ds, ....,d, } from an arXiv
article or an RFP, the semantic labeling module imple-
ments a summarization component to generate automatic
summary for each section. The summarization component
uses state of the art approaches to generate both extractive
and abstractive summaries. For an extractive summary, it
uses the T'extrank algorithm implemented in Gensim [51].
The summarization component also trains the Tensor flow
Textsum model using Sequence-to-Sequence with Atten-
tion Model [52] to generate an abstractive summary from
each section.

6 INPUT DOCUMENT PROCESSING AND DATA
CONSTRUCTION

In this section, we describe input documents, data collec-
tion, data processing, training data and test data.

6.1 Data Type

In this research, we focus on PDF documents. The rea-
son to choose PDF documents as input documents is the
popularity and portability of PDF files over different types
of devices, such as personal computers, laptops, mobile
phones and other smart devices. PDF is also compatible
with different operating systems, such as Windows, Mac
OS and Linux. We mostly focus on large PDF documents
and those may be of different domains, such as academic
articles and business documents. We choose arXiv e-prints
as academic articles and RFPs as business documents.

6.2 Data Collection

We use the arXiv bulk data access option to collect arXiv
articles available from Amazon S3. The available access
mechanisms are grouped into two different services: meta-
data access and full-text access services. We download a
complete set of arXiv articles available in tar using requester
pay buckets from Amazon S3 cloud. In total, we receive
1,121, 363 PDF articles over 37,966 arXiv categories during
1986 to 2016 publication year. The total size of all PDF files
is 743.4G'B. Using Open Archives Initiative(OAI) protocol,
we harvest metadata for each article from arXiv. Then we
extract bookmarks from the original PDF file. The hierarchy,
which has up to several level of sub-subsections, is kept
intact. We consider bookmarks as the TOC for each article.
The TOCs are used as section header annotation in our
experiments on arXiv articles.

For each of the arXiv articles, we apply PDFLib TET
[39] to extract their contents. The PDFLib converts PDF to
special type of XML called Text Extraction Toolkit Markup
Language(TETML). While converting into TETML, we use
word level granularity which generates TETML with a
detailed description of each character of every word.

We collect a wide range of RFPs from different sources
through the collaboration with RedShred [5]. The total num-
ber of RFPs is 350, 000. Then we choose 250 random RFPs
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TABLE 3: Generated Attributes from the TETML

Attribute’s Name || Description

Text Line A complete text line based on heuristics.

Font Size maximum occurrence of font size from a line.
Font Family maximum occurrence of font family from a line.
Font Weight maximum occurrence of font weight from a line.
Page Number taken from TETML attribute “number”.

X coordinate of the first character of the first
word in a line.

X Position Left

X coordinate of the last character of the last
word in a line.

X Position Right

Y coordinate of the first character of the first
word in a line.

Y Position Left

Y Position Right Y coordinate of the last character of the last
word in a line.

Page Width taken from TETML attribute “width”.

Page Height is taken from TETML attribute “height”.

over the total RFPs to ensure diverseness in the chosen RFPs.
We generate TETML files for each of the chosen RFPs.

6.3 TETML Processing

The elements in a TETML are organized in a hierarchical
order. Each TETML file contains pages, and each page has
annotation and content elements. The content element has
all of the text blocks in a page as a list of para elements, each
of which has a list of words where each word contains a high
level description of each character. We developed a parser
to read the structure of the TETEML file. The parser also
reads and processes the description of each character. We
apply different heuristics to process the description. Based
on the heuristics, the parser generates the text on each line,
font size, font weight, and font family for that line. All of the
generated attributes from the TETML description are given
in Table 3.

For each article, we map TOC with original text lines
from the document. This mapping is used to generate class
labels for each of the text lines. If a line is not in the TOC, it is
considered a regular text and the class label is 0. If a line is in
the TOC, we search the path of that line from the root to leaf.
And for each hierarchical hop, we add a level in such a way
that the top-level element from a TOC has label 1, the next
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Fig. 10: Flow Diagram for Input Document Processing
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level has 2 and so on. To find the path of a text line from the
TOC, we write a recursive algorithm. After mapping each
line with elements from the TOC for a document, we write
all the lines with attribute values shown in Table 3 in CSV
files. A complete process diagram is shown in Figure 10.

6.4 Training and Test Data

For each of the units of our system architecture, we create
training and test datasets. The training set is used to build
models in each unit and the test set is used to evaluate the
performance of the models.

6.4.1 Data for Line Classifiers

For each of the data points we have two feature vectors: lay-
out vector and text vector. The Features Extractor presented
in section 5 is used to generate the layout feature vector.
The text vector is a one hot encoding vector from a text line.
After generating the vectors, we split the whole dataset into
training and test sets using a 5fold cross validation with
balanced class labels. Then we randomize each dataset using
stratified sampling so that the classifiers learn from random
input data. The training and test datasets are shown in Table
4.

6.4.2 Data For Section Classifiers

In our section classification task, we experiment with three
and four classes. The three classes are top-level, subsection
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TABLE 5: For both Layout and Combined Feature Vectors

i Algorithms Layout Features Combined Features
Tralnlng Data TeSt Data Class Precision Recall Fl-score Precision Recall Fl-score
SVM
Section-Head 097 0.92 0.94 0.93 0.92 0.93

RegUIar'TeXt 389229 80184 RZ;:;::-T:; ° 093 0.97 095 092 093 093
Section-Header 389229 80184 bT Section-Header 097 0.92 095 0.96 0.87 091
TOp'leVel SeCtiOn Header 37650 9003 Regular-Text 0.92 0.97 0.95 0.88 0.97 0.92

. Section-Header 076 0.90 0.82 0.73 0.89 0.80
Subsection Header 37650 9003 NB Regular-Text 0.88 0.72 0.79 0.85 0.67 0.75
Sub-subsection Header 37650 9003 RNN Section-Header 094 0.94 0.94 0.95 0.95 095

. . lar-Text 0.94 0.94 0.94 095 0.95 095
Semantic Section 80000 20000 Regy
Section Sequence 86991 16439 .
Section Su(rlnmarizati on 618276 117876 TABLE 6: Avg. Precision, Recall and Fl-score for CNN and

and sub-subsection section headers and the four class exper-
iment uses an additional regular-text class. The dataset is
prepared using stratified sampling to balance all of the class
samples. Table 4 shows the training and test datasets for the
Section Classifiers.

6.4.3 Data For Semantic Section Classifiers

For each physically divided section and corresponding sec-
tion header, we apply some heuristics to group them based
on the classes defined for our document ontology. For the
ontology of arXiv articles, we have 20 different classes. We
map those classes with the section headers of each section to
generate training and test datasets for the Semantic Section
Classifier. We stratify the dataset to balance class samples,
where each class has 5000 sample. Later we split the dataset
into training and test using 5 fold cross validation approach.
For the evaluation of semantic section classifiers, we manu-
ally cross check and annotate the mapped classes of the test
dataset. The dataset information is shown in Table 4.

6.4.4 Data For Section Sequencing

We take all section headers for each document in a sequen-
tial order. Then we map them to the classes of our document
ontology. We develop training and test datasets for sequence
prediction in a section sequence. We also manually cross
check the test dataset for the evaluation. Table 4 shows the
dataset details.

6.4.5 Data For Section Summarization

To generate abstractive summarization using the Tensorflow
TextSum model, we developed training and test datasets
from extractive summarization. Extractive summarization
for each section is considered an annotated summary and is
used for training and test. We also use 5 fold cross validation
for splitting the dataset. The total training and test sections
for summarization are shown in table 4.

7 EXPERIMENTS AND EVALUATION

In this section, we discuss the experimental setup, results
and findings of each experiment with evaluation, and com-
parative analysis with the baseline system.

7.1 Experiments for Line Classification

As explained in section 5, we used SVM, DT, NB, RNN and
CNN algorithms for our line classification. We implemented
different algorithms for the evaluation and result analysis
purposes.

To evaluate the performance of the models, we used pre-
cision (positive predictive value), recall (sensitivity) and F1-
score (harmonic mean of precision and recall) using the test

RNN Models for Line Classification

Algorithm | Model Precision | Recall | Fl-score
Text 0.94 0.94 0.94

RNN Layout 0.94 0.94 0.94
Combined Text 095 0.95 0.95
and Layout
Text 0.97 0.96 0.96

CNN Layout 0.91 0.84 0.87
Combined Text 098 0.95 0.97
and Layout

dataset. Table 5 shows the performance comparison of the
experiments using SVM, DT, NB and RNN for layout only,
and combined layout and text feature vectors presented in
our initial research [6]. We extended our experiments using
CNN algorithm. Table 6 compares the average precision,
recall and fl-score for different models trained using RNN
and CNN for text only, layout only, and combined text and
layout feature vectors.

From all of the line classification experiments, we
achieved the best performance using the CNN model with
combined text and layout input vectors, since it was able
to learn important patterns from character sequences along
with additional information from layout input vector. We
can conclude that deep learning models had better per-
formance over regular machine learning models for line
classification because both RNN and CNN were able to
learn important and complex features automatically. Figure
11 shows the performance comparison over all of the models
for line classification.

7.2 Experiments for Section Classification

As explained in section 5, we used RNN and CNN algo-
rithms for our section classification. We also described the
reasons for choosing RNN and CNN for section classifica-
tion in section 5. After identifying each line as a Regular-Text
or Section-Header, we built RNN and CNN models to classify
each Section-Header as a Top-level, Subsection or Sub-subsection
header. We used text-only, layout-only, and combined text
and layout as input vectors to train our models. Similar
to the Line Classifiers, we converted each section header
into character level one-hot vector. The layout vector was
represented using 16 layout features.

Table 7 shows the performance of the models. Figure 12a
and 12b show the {-SNE visualization of embedding vectors
generated by RNN and CNN models using combined text
and layout input vectors. We found same level of section
headers to be grouped together. We also observed that
similar section headers are plotted near by each other. For
example, result and observation sections were closed by in
the embedding space.
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TABLE 7: Precision, Recall and F1-score for Section Classification using RNN and CNN

Algorithm Model Class Precission | Recall | Fl-score
Top-level 0.81 0.89 0.85
Text Subsection 0.84 0.79 0.82
Sub-subsection | 0.77 0.74 0.76
Avg 0.81 0.81 0.81
Top-level 0.39 0.94 0.55
Subsection 0.62 0.15 0.24
RNN Layout Sub-subsection | 0.63 0.22 0.33
Avg 0.55 0.44 0.38
Top-level 0.85 0.95 0.89
Combined Text | Subsection 0.82 0.84 0.83
and Layout Sub-subsection | 0.85 0.74 0.79
Avg 0.84 0.84 0.84
Top-level 0.81 0.90 0.85
Text Subsection 0.84 0.82 0.82
Sub-subsection | 0.80 0.73 0.76
Avg 0.83 0.82 0.82
Top-level 0.36 0.98 0.53
Subsection 0.71 0.08 0.15
CNN Layout Sub-subsection | 0.59 0.1T 0.18
Avg 0.55 0.39 0.29
Top-level 0.82 0.94 0.88
Combined Text | Subsection 0.83 0.84 0.83
and Layout Sub-subsection | 0.86 0.72 0.83
Avg 0.83 0.84 0.83

After analyzing the performance of the models trained
by RNN and CNN using text-only, layout-only, and com-
bined text and layout input vectors, we achieved the best
performance using combined input vectors. Figure 13 shows
the performance comparison of all of the models trained by
RNN and CNN for section classification. Models trained by
CNN and RNN using the combined text and layout input

vectors had almost similar performance. We achieved poor
performance using the layout-only vector. The reason is
that many section headers have similar layout information
though they are from different classes. For example, a top-
level section header and a subsection header might be bold
with the same indentation. From Figure 12a and 12b, we
observed that some sub-subsection headers were plotted near
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Fig. 13: Performance for Section Classification

TABLE 8: Precision, Recall and F1-score for Semantic Section
Classifier using CNN and Bidirectional LSTM

Algorithm Model Class | Precision | Recall | Fl-score
CNN Word Based Avg. | 0.72 0.75 0.73
Character Based | Avg. [ 0.69 0.72 0.70
Bidirectional | Word Based Avg. | 0.71 0.72 0.71
LSTM Character Based | Avg. | 0.68 0.70 0.69

by top-level section headers because in some articles, sub-
subsection headers started with a single number or letter.

We also trained a CNN model for section classification
as four class classification problem, where the classes are
Regular-Text, Top-level, Subsection and Sub-subsection headers.
The model was trained based on text-only, layout-only, and
combined text and layout feature vectors. The network
architecture and experimental procedures were similar to
the three class experiments using CNN.

For the evaluation purposes, we assessed the CNN
model with the text-only input vector where we achieved
average 0.8430 precision, 0.8442 recall and 0.8415 fl-score.
Compared with Table 5, 6 and 7, we observed that a pipeline
approach of line and section classifiers performed better
than the single four class classifier.

7.3 Experiments for Semantic Section Classification

After identifying the different levels of section headers, we
applied the Section Boundary Detector algorithm presented
in our earlier research [6], in order to split a document
into different sections, subsections, and sub-subsections. To
assign a human understandable semantic label for each
physically divided section, we built semantic section classi-
fier models using CNN and bidirectional LSTM algorithms
based on both word and character level inputs as explained
in section 5.

We had 20 classes which were mentioned in the Table
2 in section 5. For the word based models, we considered
the first two hundred words for each section. The total vo-
cabulary size was 111084 words generated from all training
samples with a minimum frequency of 150. The input texts
were converted into a multi-label one-hot vector, which was
passed into the embedding layer to map each word in the
embedding space.

For the character based models, we considered the first
600 characters from each section and converted them into
a multi-label one-hot vector, which was input to the embed-
ding layer. In this case, the total vocabulary size was 256.

Table 8 compares the performance and Figure 14 shows
training losses of CNN and Bidirectional LSTM models for
semantic section classification. Although we noticed that
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the word level bidirectional LSTM model had the lowest
training loss among all of the models, we achieved poor
performance in the embedding visualization shown in Fig-
ure 12d. From this observation, we could infer that the
bidirectional LSTM model was overfitted for our training
dataset.

We achieved better performance using the word based
CNN model. This is because the word based model was
able to capture the semantic meaning of different words. For
some classes, the model wasn’t able to classify any instance,
such as background, datasets, and implementation. We ana-
lyzed the results and obtained that sections of these classes
usually describe various concepts, and hence the model was
unable to get the semantic meaning from those sections.
We also achieved very high precision and recall for some
classes, such as acknowledgements, references, abstract, and
introduction. After analyzing sections for these classes, we
found that sections for these classes have semantic patterns.

Figure 12c shows the T-SNE visualization of section
embedding with different classes based on word level CNN.
After analyzing the visualization we can say that some
of the sections were well separated and surrounded by
semantically similar sections.

7.4 Experiments for Section Sequencing

We chose an LSTM encoder-decoder architecture since
LSTM can remember a long sequence of observations and
its encoder-decoder approach can be trained in an unsuper-
vised way. The model took a sequence of section headers
and reproduced the input sequence. We built the model
using Tensorflow and Keras deep learning framework. A
document may have any number of sections. Since we were
using arXiv scholarly articles, we set the threshold for the
number of sections to be 15. We truncated the sequence if
the length was more than 15 and padded if the length was
less then 15. Then we used a Label Encoder from the scikit-
learn preprocessing module to encode each of the sequences
into a sequence of integer numbers.

In order to feed the input sequence into the LSTM
encoder-decoder, we transformed the sequence into a one-
hot binary vector representation. As a result, our input
sequence was converted into a vector of 15220 = 300
dimensions, where 15 was the input sequence length and
20 was the number of unique semantic section headers.

The loss for the test dataset was 0.000000119, a very low
test loss. Figure 12e shows the T-SNE visualization of section
sequences in an embedding space. From the Figure 12e and
the validation loss, we inferred that the LSTM performed
very well in our section sequencing and grouped similar
section sequences together.

7.5 Experiments for Ontology Design

We trained a Variational Autoencoder (VAE) to learn the
header embedding for ontology design. We clustered the
header embedding matrix into semantically meaningful
groups and identified different classes for ontology. The
VAE was trained with different configurations and hyper-
parameters to achieve the best results. We experimented
with different input lengths, such as 10, 15 and 20 word
length section headers. The model parameters were trained
using two loss functions, which were a reconstruction loss
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Fig. 14: Training Losses for Semantic Section Classification using CNN and Bidirectional LSTM Models

(a) With Input Length 15 (b) With Input Length 20

Fig. 15: t-SNE Visualization of VAE Matrix Clusters

to force the decoded output to match with the initial inputs,
and a KL divergence between the learned latent and prior
distribution.

The output of the VAE embedding layer was dumped
and clustered after {-SNE dimensionality reduction. Fig-
ure 15a shows the visualization of k-means clustering with
k = 50 and inputlength = 15 for VAE embedding matrix.
Similar visualization with inputlength = 20 is shown in
Figure 15b. After analyzing both the Figures, we observed
that VAE models learned very well and were able to
capture similar section headers together. We noticed that
semantically similar section headers were plotted nearby.
We also realized that semantically similar section headers
were constructed gradually from one concept to another.
For example, we noticed a pattern in the graph where a
sequence of concepts from “methods” gradually moved to
“data construction”, “results”, “discussion”, “remarks” and
“conclusion”. From this analysis, we could infer that VAE
learned concepts over section headers in a semantic pattern.

7.6 Experiments for Semantic Concepts

To build an LDA model, we applied different experimental
approaches using word, phrase and bigram dictionaries.
The word-based dictionary contains only unigram terms
whereas the bigram dictionary has only bigram terms. The
phrase-based dictionary contains combination of unigram,
bigram and trigram terms. All three dictionaries were de-
veloped from the training dataset by ignoring terms that
appeared in less than 20 sections or in more than 10% of the
sections of the whole training dataset. The final dictionary
size, after filtering, was 100,000. Different LDA models
were trained based on various number of topics and passes.
We ran the trained model to identify a topic for any section,
which was used to retrieve top terms with the highest
probability. The terms with the highest probability were
used as a domain specific semantic concepts for a section.
For the performance evaluation of LDA models, we
considered perplexity and cosine similarity measures. The
log perplexity for a test chunk was -9.684 for ten topics.
In our experiment, the perplexity was lower in magnitude,
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which meant that the LDA model fit better for test sections
and probability distribution fit better for predicting sections.

For the cosine similarity measurement, we split the test
dataset into ten different chunks of test sections where
each chunk had 1000 sections without repetition. We also
split each section from each test chunk into two parts and
checked two measures. The first measure was a similarity
between topics of the first half and topics of the second half
for the same section. The second measure was a similarity
between halves of two different sections. We calculated an
average cosine similarity between parts for each test chunk.
Due to coherence among topics, the first measure would be
higher and the second measure would be lower. Figure 16
shows these two measures for ten different chunk of test
sections.

For the evaluation, we also loaded the trained LDA mod-
els and generated domain specific semantic concepts from
100 arXiv abstracts, where we knew the categories of the
articles. We analyzed their categories and semantic terms.
We noticed a very interesting correlation between the arXiv
category and the semantic terms from LDA topic models,
finding that most of the top semantic terms were strongly
co-related to their original arXiv categories. A comparative
analysis is shown in Table 9. After manual analysis of the
results, we noticed that a bigram LDA model was more
meaningful than either of the other two models.
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TABLE 9: Comparative analysis of LDA models for semantic concepts

arXiv Category Word based LDA

Bigram based LDA Phrase based LDA

Mathematics - Algebraic Topology,
Mathematics - Combinatorics

algebra, lie, maps,
element and metric

half plane, complex plane,
real axis, rational functions
and unit disk

recent, paper is, theoretical,
framework, and developed

phase, spin, magnetic,

Nuclear Theory particle and momentum

form factor, matrix elements,
heavy ion, transverse
momentum and u’energy loss

scattering, quark, momentum,
neutron move and ged

Computer Science - Computer Vision
and Pattern Recognition

network, performance,
error, channel and average

neural networks, machine
learning, loss function,
training data and deep learning

learning, deep, layers, image
and machine learning

quantum, entropy,
asymptotic, boundary and
classical

Mathematical Physics

dx dx, initial data, unique
solution, positive constant
and uniformly bounded

stochastic, the process of,
convergence rate, diffusion
rate and walk

stars, emission,
gas, stellar and velocity

Astrophysics - Solar and
Stellar Astrophysics

active region, flux rope,
magnetic reconnection,
model set and solar cycle

magnetic ray, the magnetic,
plasma, shock and rays

TABLE 10: Precision, Recall and Fl-score on RFP Dataset

Task Class Precision | Recall | Fl-score
Line Classification Regular-Text 0.88 0.92 0.92
Section-Header | 0.91 0.90 0.91
Avg 0.90 091 091
Section Classification | Top-level 0.75 0.77 0.76
Subsection 0.79 0.73 0.76
Sub-subsection | 0.82 0.78 0.80
Avg 0.79 0.76 0.77

7.7 Experiments for Section Summarization

For each of the sections from a document, we generated
an extractive summary using the T'extrank algorithm. We
set the ratio at 0.2 to return 20% of the original content as
summary. The summary would consist of the most repre-
sentative sentences from the original texts. As a result, we
obtained a short version of the original document with the
most informative sentences in each of the sections.

We also used Sequence-to-Sequence with an Attention
model implemented in T'ensor flow for abstractive summa-
rization. To train a Textsum model for abstractive sum-
maries, we treated the extractive summaries generated us-
ing T'extrank as annotated data.

Figure 17a shows the training loss of sequence-to-
sequence learning for the T'extsum model. After analyzing
the loss graph, we observed that the Textsum model had
high training loss. This is because the Textsum model
works well for short texts, such as news headline generation
from a few lines of a news article. Evaluation loss for the
Textsum model is shown in Figure 17b. We noticed that
the evaluation loss was oscillating between 6.0 and 9.0,
which inferred that the model didn’t perform well for the
test dataset.

7.8 Experiments on RFP dataset

To assess the generalization of our models, we evaluated our
models using the RFP dataset. We manually annotated RFP
documents as explained in the Input Document Processing
section. Later, we processed annotated data to prepare a
test dataset for text-only, layout-only, and combined text
and layout input vectors. The models which had the best
performance for line and section classification for the arXiv
dataset, were used to test the RFP dataset.

Table 10 shows the performances for the line and section
classifications of the RFP dataset using the CNN models for
the combined text and layout input vectors. The models did

not perform as good as they performed for arXiv datasets.
This is because we developed few features from arXiv
section headers which are not similar to the RFP section
headers, such as “Experiments”, “Dataset” and “Contribu-
tion” usually exist in arXiv articles whereas “Requirement”,
“Deliverable” and “Contract Clauses” generally exist in RFP
documents.

7.9 Discussion

We compared the performance of our framework with re-
spect to different performance matrices and with the help
of different visualization techniques. We also compared
the performance of our framework against top performing
systems developed for scholarly articles. The first system
to be compared was PDFX presented by Constantin et
al. in [21]. Our task is partially similar to their task. Their
system identifies author, title, email, section headers, etc.
from scholarly articles. They reported an fl-score of 0.77 for
top-level section headers identified from various articles. We
could not evaluate our framework using their dataset since
the dataset was not publicly available.

The second system, which we would like to compare our
results with, had a hybrid approach by Tuarob et al. [22]
to discover semantic hierarchical sections from scholarly
documents. Their task was limited to a few fixed section
header names whereas our framework identifies any section
header. Hence, their dataset may not not directly applicable
to our system. They attained a 0.92 fl-score for the section
boundary detection where sections were from fixed names,
such as abstract, introduction and conclusion.

8 LIMITATION AND FUTURE WORK

The input of our framework is TETML file which is gener-
ated by PDFLib TET. Hence the framework heavily depends
on PDFLib TET. Sometimes PDFLib generates multiple
blocks from a single text line and assigns them into different
paragraph tags. While parsing a TETML file, the parser
may consider these paragraphs separately since the post-
processing of TETML file depends on rules and schema of
a TETML. This may generate an error in our data when we
map bookmarks in the original PDF for training and test
datasets generation. To reduce this error, we calculate string
similarity score. If the score is more than a threshold, we
map the bookmark entry with a line of text from the orig-



inal PDF. Due to the use of similarity score and threshold
heuristic, we may still miss a few section headers.

For future work, we plan to improve the abstractive
summarization technique so that the models can work for a
longer text block. We are also interested to adapt other do-
mains, such as Medical Reports and US Patents along with
Scanned Documents. Moreover, we hope to quickly develop
a complete end-to-end system to release the product as open
source.

9 CONCLUSION

In this research, we have explored a variety of machine
learning and deep learning architectures to understand the
logical and semantic structure of large documents. Our
framework was able to automatically identify logical sec-
tions from a low level representation of a document, infer
their structure, capture their semantic meaning, and assign
a human understandable and consistent semantic label to
each section that could help a machine understand a large
document. The framework used arXiv scholarly articles and
RFP business documents to evaluate the performance and
efficiency of the models.
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