

Technical Report TR-CS-09-01

A Framework for Relating Frontstage and

Backstage Quality in Virtualized Services

Karuna P Joshi, Anupam Joshi, Yelena Yesha

Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County

Baltimore, MD 21250, USA

Ravi Kothari

IBM India Research Labs, Vasant Kunj,

New Delhi 110070, India

15 May 2009

COLLEGE OF ENGINEERING

UMBC

A Framework for Relating Frontstage and Backstage Quality in Virtualized

Services

Karuna P Joshi
1
, Anupam Joshi

1,2
, Ravi Kothari

2
,

Yelena Yesha

1

1 Depart of Computer Science and Electrical Engineering 2 IBM India Research Labs

University of Maryland Baltimore County Vasant Kunj,

Baltimore, MD 21250, USA New Delhi 110070, India

{kjoshi1, joshi, yeyesha}@cs.umbc.edu {anupam.joshi, rkothari}@in.ibm.com


 This work performed while the author was visiting IBM

India Research Labs on leave from UMBC

Abstract

Virtualized service models are now emerging and

redefining the way Information technology is delivered to

end users. In this paper, we propose a framework to

measure and track quality delivered by a Virtualized

service delivery system. The framework accounts for the

service’s internal elements as well as the other services it

depends on for its performance. It provides a mechanism

to relate hard metrics typically measured at the backstage

of the delivery process to quality related hard and soft

metrics tracked at the front stage where the end user

interacts with the service. The framework is general

enough to be applied to any type of IT service. In the

paper, we show three instantiations of the framework – an

IT enabled service, Software as a Service, and

Infrastructure as a Service.

Keywords-component; Services; Quality Framework;

frontstage, backstage

1. Introduction and Background

Businesses are increasingly relying on service

providers for services that are crucial, but nonetheless

outside their core competency. In some cases, the business

may utilize multiple service providers to mitigate risks

that may be associated with a single provider. In other

cases, a business may utilize a single provider that in turn

utilizes the services of other providers. In either case, the

delivery of a service is often based on the composition of

multiple other services and assets that may be supplied by

one or more entities. The service, in effect, is virtualized

on the cloud. This virtualized model of service delivery

[1] allows easier customization, better utilization, greater

responsiveness and is presently the preferred method to

deliver services ranging from simple services such as

helpdesk and backoffice functions to more complex

services such as Infrastructure as a Service (IaaS). Indeed,

the virtualized model of service delivery even extends to

IT Enabled Services (ITeS) which typically also include a

large human element.

The virtualized nature of service delivery brings about

new challenges in ensuring the quality of service delivery.

In particular, while it is easier to express metrics related to

individual services that comprise the overall service, and

the resources they use (such as storage, network,

processing power etc.), it is the overall and composed

service that is experienced by the client or the business at

its front stage. It is this perceived quality at the front

stage of a service that often acts as a differentiator in an

otherwise commoditized service delivery environment.

Service Level Agreements (SLAs) related to customer

satisfaction are often a part of delivery contracts.

Translating the metrics related to individual components

of the service (which are in a sense backstage metrics) to

the frontstage experienced by the client or business will

therefore allow a service provider to differentiate from

competitors offering a similar service. Some efforts have

been directed at measuring quality in other environments;

however, to the best of our knowledge there is no current

standard for measuring IT service quality in virtualized

environments.

SERVQUAL, for example, is a multi-item scale

developed by Parasuraman et. al, to assess customer

perceptions of service quality in service and retail

businesses [2]. The scale is based on five dimensions of

service quality, viz. Tangibility, Reliability,

Responsiveness, Assurance and Empathy (also

abbreviated as RATER) that can be adapted to meet the

demands of the particular kind of service setting under

assessment. SERVQUAL represents service quality as the

discrepancy between a customer's expectations for a

service offering and the customer's perceptions of the

service received, requiring respondents to answer

questions about both their expectations and their

perceptions. In other words, identical perceptions can still

lead to different quality judgments. This is intuitive – the

same service provided at a discount chain and at an

exclusive designer shop will lead to very different quality

judgments. The use of perceived as opposed to actual

service received makes the SERVQUAL measure an

attitude measure that is related to, but not the same as,

satisfaction.

Parsuraman et. al. [3] also proposed a multiple-item

scale (E-S-QUAL) for measuring the service quality

delivered by Web sites on which customers shop online.

The basic E-S-QUAL consists of four dimensions:

efficiency, fulfillment, system availability, and privacy.

The second scale, E-RecS-QUAL, is salient only to

customers who had non-routine encounters with the sites

and contains three dimensions: responsiveness,

compensation, and contact.

However, these existing quality measures are not

appropriate for IT/ITeS. For one, they are mostly defined

for Business-Client (B-C) systems, where the interaction

is between a human agent in a physical facility

representing the business and a consumer. In the

virtualized service delivery model, the environment is

Business-Virtualized service providers-Customer (B-V-

C). So the end interaction might or might not involve a

human being, and is almost never directly with the

business whose customer is consuming the service. While

some elements of RATER type models such as

Responsiveness and Reliability have analogs in the IT

domain, others such as empathy do not seem to have

obvious analogs. Moreover, typically measures such as

Customer Satisfaction (CSAT) are lagging. Existing work

also makes no efforts to relate them in any (analytic) form

with measures that can be made at the contact point with

the customer, such as the average call handling time,

waiting time, and such. These in turn are not related in the

existing models to measurable parameters at the elements

(other services, resources) that the orchestration of a

service requires.

In other words, existing models are largely confined to

the front stage, both in terms of the objectively measured

variables as well as the perceived measures such as

quality. Given that a service can be using other services,

or resources, at the backend, it is evident that front stage

metrics will depend on what happens at the back end (or

at the other stages of the service orchestration). One key

question, for which this paper proposes an answer, is how

to relate the backend metrics related to resources and the

services on which this service depends, to the quality

metrics at the front end of the service? “Hard” Metrics are

often available for resources and even some applications

(such as response time, throughput, packet drop rates,

transactions per second, etc), and most service providers

have tools to measure such parameters.

If such relationships are found, they can provide two

significant advantages. For one they help avoid the

“winners curse” by making sure that the quality related

SLAs agreed to with the customer can be met with the

resources and services available. Many service delivery

contracts are structured to provide a bonus if the SLAs are

exceeded and a penalty if they are missed. Relating

quality to performance can also help to see if increased

investment in some element that makes up a service

(another service or resource) can increase the quality

perceived by the customer and lead to bonus or help avoid

penalty. Second, they can help decide what new services

can be provided from the given resources.

 The key contribution of this paper is a new framework

that enables the translation of backstage metrics to those

at the frontstage. It captures the dependency of a service

on others, or on backend applications and resources.

Linguistic rules are then used to define how quality

measures of a service at the frontstage relate to those of

its resources or the other services it calls. Fuzzy Logic [7]

is used to reason over such rules to move from the known

hard metrics at the backstage to the soft metrics at the

front.

Fuzzy sets provide us with the ability to classify

elements into a continuous set using the concept of degree

of membership. The characteristic membership function

not only gives 0 or 1 for membership, but can also give

values in between. For instance, instead of expecting an

exact numeric measure of dependence between two

services, we could use a description such as dependence is

high. The relation of a dependence measure to a linguistic

term such as high or low will be captured in the

membership function.

2. Service Coupling and Dependency

It is generally easier to control the performance of an

individual service which does not depend on others. Its

performance quality can be measured, and correlated with

the performance of resources upon which it depends.

However, the virtualized service delivery model requires

composition of services to deliver the overall service to

the client. The interactions between the individual

services, many of which may come from different sources,

makes it harder to provide quality measures for it in terms

of the quality and performance of the underlying services.

Our framework addresses this issue by explicitly capturing

and utilizing the interactions and dependencies.

Service Dependence or Coupling (C) is a measure that

we propose to capture how dependent the service is on

other services or resources for its delivery. It is similar to,

but not the same as, the Coupling measure used in

traditional software engineering to describe the

interdependence between two software modules [6].

Loose coupling or a Low Dependency factor indicates that

the Service provider does not have to depend on other

services or resources to complete delivery of its service.

High Dependency Factor or tight coupling on the other

hand indicates that successful delivery of other services or

availability of resources is a prerequisite for the

completion of a service.

We capture a linguistic description of the dependency

– define it as high or moderately high or low, or so on...

The degree of dependency or coupling could be directly

elicited by the experts who have created the service.

Another option is to mine the historical data to obtain the

dependency relationships. Initial attempts at mining this

on Infrastructure services have shown promise [8]. In

either case though, the question of creating the fuzzy

membership functions remains. We believe that this can

also be mined from historical data, and are doing this in

our ongoing work.

 When the dependency is between a service and some

resource it uses, coupling will essentially be a function of

how often the resource is used. For instance, the

dependence of a service on the network layer might be

measured by how often it is making a socket call, or how

much data it is transferring. The dependence of a database

on compute partition will be determined by how much

compute resources it needs from that partition, and so on.

For coupling between services, we can also build on

the work related to module level coupling that has been

extensively studied in Software Engineering (see for

instance [4][5]). Existing literature defines several

different types of coupling, which we adapt for the

services domain.

When services are linked together, they exhibit

Environmental coupling which is caused by calling and

being called by other services. Data flow and Stamp

coupling is caused by the parameters of the service

interface. Unlike modules in a code base, services tend to

be independent and largely self contained. So the Control

Flow coupling has minimum influence on coupling in IT

Services. Similarly, unless the services share state by

altering some shared data repository, Global coupling will

not be a significant factor either.

Fenton and Melton [5] propose the following metric as

a measure of coupling between two components x and y:

C(x,y)= i +n/(n+1) where,

n = number of interconnections between x and y, and

i = level of highest (worst) coupling type found

between x and y.

The level of coupling type is based on the Myers

classification and is assigned a numeric value [5]. The

higher the value, the more coupled the services. Another

well known formula in Software Engineering due to

Dhama [6] defines how a module is coupled. This

definition, like most others in software engineering, is a

global one. It provides a measure of how tightly coupled

the module is with the rest. We need in particular to define

pairwise coupling between two services where one uses

the other. So we adapt Dhama‟s metric to define coupling

between services x and y using the formula,

Service Coupling C(x,y) = 1/ (i + u + g + r)

where,

i = in data parameters – data sent from calling service x

to called service y

u = out data parameters – data sent from called service

y to calling service x.

g = number of global variables used as data

r = number of times x calls y.

The lower this measure, the more tightly coupled the

two services are. We can define fuzzy membership

functions to map these measures into linguistic variables.

3. Proposed Framework

The framework that we propose for measuring the

performance can be applied to every domain of IT

services.

3.1. Service Elements

Services comprise of three key elements, the Agents or

Human Beings providing the Service, actual software that

encodes the service provided and other services/resources

that the service depends on for its delivery. Since all the

three elements contribute towards the quality of the

service, performance failure in any of the element will

result in poor service quality. A service might not have

one of the elements, i.e. it may have no human element or

no dependency on other services. Usually SLAs exist for

each element of the service that measure the performance

of the service.

3.2. Example for Software as a Service

To illustrate our framework for SaaS, we apply it to a

Collaboration tool service which is provided to the

consumers via the web. The service provides capability to

its consumers to collaborate online allowing them to

conduct meetings, simultaneously work on documents,

chat as a group, etc.

Figure 1: SaaS example - Collaboration tool services

Collaboration

tool software

Provides

capability to

collaborate

online – share

documents,

group chat

etc.

Document

Management

Service

Instant

Messaging

Service

Database

Service

IM

Server

Service

Network

Service

As the service is completely automated, it has no

service agents who provide the service. Hence, the service

providers have a high degree of separation from the

consumers who only contact them for technical assistance

or if the tool performance is below par. The service is

however highly dependent or tightly coupled with the

underlying core services, like Databases and Network, for

its successful delivery and this is illustrated in Figure 1.

The collaboration tool service is coupled with the

following external services. Table 1 lists the main

performance metrics used to measure the service‟s quality.

a. Collaboration tool is tightly coupled with Document

Management service and Instant Messaging service.

b. Document Management service is tightly coupled

with Database service.

c. Instant Messaging service is tightly coupled with

Instant Messaging (IM) Server services

d. Database Service and IM Server Service is tightly

coupled with Network Services

Table 1: Performance metrics used by Collaboration

tool services

Metric Measures what

Customer

Satisfaction

Assessed through surveys of customers

via telephone call, email or post.

Response

Time

The time it takes for application to

respond to user‟s (keystroke/mouse)

commands.

Reliability

of the tool

How consistently the software

responds to user

Scalability Performance of tool with increased

number of collaborators

Number of

Documents

Number of Documents users can

collaborate on per session

Session Average time spent by users on a

session.

To measure the frontend quality of our service we

apply fuzzy rules to the backend performance metrics

which enable us to generate performance rules.

For this example, we fuzzify the “response time”

performance metric into the fuzzy variables HIGH, LOW

and MEDIUM. For the Collaboration tool service,

Response time performance is LOW if response time is

greater than 10 seconds. It is MEDIUM if response time

lies between 3 and 10 seconds. It is HIGH if response

time is less than 3 seconds. Graph 1 illustrates these fuzzy

rules.

We have selected the response time metric as it can be

applied across the main collaboration service as well as

the services it depends on. The baseline for the various

services will be different. Hence a response time of 2

seconds may point to HIGH performance for the

Collaboration service, but it will be regarded as a LOW

performance for Network Service.

Similar fuzzification rules can be applied to the other

performance measures listed in table above. Once we have

determined the fuzzy rules for our performance measures,

we can create linguistic rules for the service that will help

us determine the Service Quality. We are listing below

some linguistic rules for the Collaboration Service

1. If {(Collaboration service tightly coupled with

Document Management service) AND (Document

Management service performance is LOW)} then the

Collaboration service performance is LOW

2. If {(Document Management service tightly coupled

with Database service) AND (Database service

performance is LOW)} then the Document

Management service performance is LOW.

3. If {(Database service tightly coupled with Network

service) AND (Network service performance is

LOW)} then the Database service performance is

LOW.

4. If {(Collaboration service tightly coupled with Instant

Messaging service) AND (Instant Messaging service

performance is LOW)} then the Collaboration service

performance is LOW

LO W

0

0.5

1

1.5

0 2 4 6 8 10 12 14
Response T ime (in secs)

P
er

fo
rm

an
ce

MEDIUM

0

0.5

1

1.5

0 2 4 6 8 10 12 14

Response T ime (in secs)

P
er

fo
rm

an
ce

HIGH

0

0.5

1

1.5

0 2 4 6 8 10 12 14

Response T ime (in secs)

P
er

fo
rm

an
ce

Graph 1: Fuzzification rules for Response Time

5. If {(Instant Messaging service tightly coupled with

IM server service) AND (IM Server service

performance is LOW)} then the Instant Messaging

service performance is LOW

6. If {(IM Server service tightly coupled with Network

service) AND (Network service performance is

LOW)} then the IM Server service performance is

LOW

7. If Collaboration service performance is LOW then

Response Time is LOW

8. If Collaboration service performance is LOW then

Reliability is LOW

9. {If Response Time is LOW OR Reliability is LOW}

then Customer Satisfaction is LOW

Each of these performance rules should be evaluated

for the service whose quality is being measured. Based on

the rules, we can easily determine if the Service is

performing at its desired level or not.

3.3. Example for IT enabled Service

We next apply this framework to a more complex IT

service which consists of many more elements. Service

Agent or the Human element of a service introduces more

complex fuzzy rules.

To illustrate our framework for the IT enabled

Services, we apply it to the IT Helpdesk application. This

service provides technical solution/guidance to its

consumers. Elements of Helpdesk service, illustrated in

Figure 2, include Agents that provide the actual service of

responding to the service consumers, software used to

provide the service which is a CRM (Customer

Relationship Management) application, and Automatic

Call Distribution (ACD) software (integrated with PBX)

used to automatically route the Helpdesk calls to the

various agents.

Helpdesk service is coupled with the following external

services. Table 2 lists the primary performance metrics

used to measure the Helpdesk service quality.

a. Agent‟s expertise is coupled with the expertise of

other Agents (i.e. Tier 2 helpdesk) or with external

Agents (software experts etc.).

b. CRM software is tightly coupled with the Database

server service.

c. The Database service is tightly coupled with the

Network service.

d. The CRM software is coupled with the

Knowledgebase service. The Knowledgebase could

be a set of pre-determined solution list or FAQs or

Help systems. Depending on the implementation it

can be tightly or loosely coupled with the CRM

application.

e. ACD+PBX software is tightly coupled with the

underlying Telecommunication service.

Figure 2: ITeS example: Helpdesk service

Table 2: Performance metrics used by Helpdesk

services

Metric Measures what Helpdesk

Element

Customer

Satisfaction

Assessed through surveys

of customers via telephone

call, email or post.

Consume

r

Response

Time

The average time phone

calls are answered; time it

takes for a Help Desk agent

who is to troubleshoot the

service request to contact

an authorized caller.

CRM,

ACD

Call abandon

rate

Percentage of calls where

callers disconnect before

reaching an agent

ACD

Employee

Proficiency

Skill set of the Helpdesk

analysts.

Agents

Call Volume The number of calls taken

by the Help Desk within a

certain time period (a day,

a month, a year).

ACD,

CRM

Solution

Accuracy

Assessment of the accuracy

of solutions the Help Desk

provides customers.

Agent,

Consume

r, CRM,

Reliability of

Predefined

Solutions

How reliable is the

Knowledgebase data

Agent,

CRM

Tracking

Accuracy

Percentage of helpdesk

cases resolved accurately

CRM

Resolution

Time

Average Time it takes to

resolve a problem

CRM

Resolution

Excellence

The number of problems

resolved versus the number

of customer problems

issued.

CRM

CRM

software

Agents ACD +

PBX

Database

Service

Expert

Agents,

External

Helpdesks

Telecommu

nication

Service

Knowled

gebase

Service

Network

Service

Helpdesk Service

First Time

Settlement

The number or percentage

of problems resolved

during the first customer

call.

Agent,

CRM,

ACD

Number of

calls

The number of calls taken

per Help Desk agent per

shift.

ACD

Time

controller

The time spent per call. ACD,

CRM

Opened

tickets

Number of helpdesk tickets

opened per Helpdesk agent

per shift.

CRM

Closed tickets Number of helpdesk tickets

closed per Helpdesk agent

per shift.

CRM

For the Helpdesk service, we will illustrate the

fuzzification rules for two key metrics of the service, viz.

the Resolution time and Tracking Solution Accuracy. For

this service, the Response time fuzzification rules will be

similar to the ones applied in the previous example,

except that the time scale will be in minutes instead of

seconds to account for the Human element of the service.

For our illustration, Resolution time performance is

LOW if Resolution time is greater than 4 hours. It is

MEDIUM if Resolution time lies between 2 hours and 4

hours. It is HIGH if Resolution time is less than 2 hours.

We are using our experience in managing Helpdesks to set

the HIGH, LOW and MEDIUM for this metric. Graph 2

illustrates the fuzzy rule for Resolution time performance

metric.

Another important quality metric for Helpdesk service

is „Tracking Solution Accuracy‟ which measures the

percentage of problems resolved accurately. This metric is

completely dependent on Service agent‟s proficiency, or

his/her skill set. The Service Agent could be dependent

on (or coupled with) other services, like the

Knowledgebase service or Expert Agent, for solutions and

this dependency will also affect the Agent‟s performance

which will have direct bearing on the Service Quality. For

our illustration, „Tracking Accuracy‟ is HIGH if 80% or

more cases are closed accurately. It is MEDIUM if it lies

between 65% and 80%. It is LOW if it is less than 65%.

We are using our experience in managing Helpdesks to set

the HIGH, LOW and MEDIUM for this metric, however

this baseline can be adjusted based on the SLAs. Graph 3

illustrates the fuzzy rules for Tracking Solution Accuracy

metric.

Similar Fuzzyification rules can be applied to the other

performance measures listed in Table 2. Once we have

MEDIUM

0

0.5

1

1.5

0 20 40 60 80
100 Accuracy (in %)

P
er

fo
rm

an
ce

HIGH

0

0.5

1

1.5

0 20 40 60 80
100

Accuracy (in %)

P
er

fo
rm

an
ce

LO W

0

0.5

1

1.5

0 20 40 60 80
100 Accuracy (in %)

P
er

fo
rm

an
ce

Graph 2: Fuzzification rules for Resolution Time

MEDIUM

0

0.5

1

1.5

0.0 0.8 1.5 2.3 3.0 3.8 4.5 5.3

Resolution T ime (in hours)

P
er

fo
rm

an
ce

LO W

0

0.5

1

1.5

0
0.
5

1.
5

2.
5

3.
5

4.
5

5.
5

6.
5

Resolution Time (in hours)

P
e
rf

o
rm

a
n

c
e

HIGH

0

0.5

1

1.5

0.
0

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

Resolution T ime (in hours)

P
e
rf

o
rm

a
n

c
e

Graph 3: Fuzzification rules for Tracking Solution
Accuracy

determined the fuzzy rules for our performance measures,

we can create linguistic rules for the service that will help

us determine the Service Quality. We are listing below

some linguistic rules for the Helpdesk Service.

1. If {(CRM software performance is LOW) OR

(Agent‟s performance is LOW) OR (ACD

performance is LOW)} then the Helpdesk service

performance is LOW

2. If {(CRM Software loosely coupled with

Knowledgebase service) AND (Knowledgebase

service performance is LOW)} then CRM Software

performance is MEDIUM.

3. If {(CRM Software tightly coupled with

Knowledgebase service) AND (Knowledgebase

service performance is LOW)} then CRM Software

performance is LOW

4. If {(Agent‟s proficiency is tightly coupled with

Knowledgebase) AND (Knowledgebase service

solution accuracy is LOW)} then Solution Accuracy

is LOW

5. If {(Agent‟s proficiency loosely coupled with

Knowledgebase) AND (Knowledgebase service

solution accuracy is LOW)} then Solution Accuracy

is MEDIUM

6. If {(CRM software is tightly coupled with Database

service) AND (Database service performance is

LOW)} then the CRM Software performance is LOW

7. If {(Database service is tightly coupled with Network

service) AND (Network service performance is

LOW)} then the Database service performance is

LOW.

8. If {(ACD Software tightly coupled with

Telecommunication service) AND

(Telecommunication service performance is LOW)}

then the ACD software performance is LOW

9. If ACD software performance is LOW then

Response Time is LOW

10. If ACD software performance is LOW then Call

Abandon Rate is HIGH

11. If CRM software performance is LOW then

Resolution Time is HIGH

12. If {(Agent is loosely coupled with Expert‟s service)

AND (Expert‟s Performance is LOW)} then Agent‟s

Proficiency is MEDIUM

13. If {(Agent is tightly coupled with Expert‟s service)

AND (Expert‟s performance is LOW)} then Agent‟s

Proficiency is LOW

14. If {(Agent is tightly coupled with Expert‟s service)

AND (Expert‟s Solution Accuracy is LOW)} then

Solution Accuracy is LOW

15. If {Helpdesk Service performance is LOW} then

Customer Satisfaction is LOW

16. If {(Response Time is LOW) OR (Call Abandon Rate

is HIGH)} then Customer Satisfaction is LOW

17. If {Resolution Time is HIGH} then Customer

Satisfaction is LOW

18. If {(Agent‟s Proficiency is LOW) OR (Solution

Accuracy is LOW)} then Customer Satisfaction is

LOW

Again, each of these performance rules should be

evaluated for the service whose quality is being measured

to determine if the Service is performing at its desired

level or not.

3.4. Example for Infrastructure as a Service

Infrastructure as a Service (IaaS) is an instance that allows

a user to request an appliance (hardware, Operating

System, and applications or a subset of those) from a

catalog of pre-defined solutions. Present incarnations of

IaaS have varying levels of sophistication, for example, a

simple implementation may allow a user to specify the

size of the individual components (a Blade with 2 CPUs

with 2 Cores/CPU, x GB RAM, y GB of attached storage,

Linux, and DB2) while a more sophisticated

implementation might allow the specification to be in

terms of performance (something that will allow for a

throughput of 100 transactions/minute with the ability to

dynamically resize for 25% additional demand). Simpler

implementation might also fulfill the request based on a

first fit basis while more sophisticated implementations

might optimize the provisioning to optimize resources or

to implement look-ahead to fulfill anticipated requests.

Typically, IaaS involves all three service elements i.e.

human agents, actual software that encodes the service,

and other services/resources. For a typical IaaS

implementation, there is a portal front end which allows

the user to log a request. The request is routed for the

necessary approvals and the request is fulfilled once the

approvals are in place. IaaS typically relies on multiple

supporting services and the coupling is far too extensive

for the scope of this paper. We rather take a subset of the

supporting services to elucidate the applicability of the

proposed framework. The subset of the services, for

example, includes agents who resolve user problems that

are logged into a ticketing system, provisioning and

virtualization software that encodes the service, and other

services which are relied upon to deliver IaaS (such as

Disaster Recovery, System and User Management

Services, Account and User Management, Metering,

License Management, and so on).

Table 3 lists some of the metrics that may be used to

measure IaaS service quality.

The availability metrics in IaaS are the most complex

which impact the provider as well as the consumer. This

requires a careful planning of the infrastructure and

accurate predictions of the distribution of the demand.

Table 3: Some performance metrics used by IaaS

services

Metric Measures what

Availability

Metrics

Both in terms of uptime as well as the

availability of a resource of a specific

type (e.g. 128 core machine may not

be available).

Utilization

Metrics

Utilization factors of each resource

type and whether utilization is

skewed (large fraction of clients

require compute resources leading to

idling of network bandwidth)

Metering

and Pricing

Metrics

The pricing for the minimum

committed resource usage and the

pricing for dynamic sizing if

available.

Latency

Metrics

The time taken to fulfill the request or

dynamically resize a request Catalog.

The catalog defines the

configurations that a user may

request. A larger and richer catalog is

typical of sophisticated IaaS

installations.

First choice

allocation

rate

What percentage of the provisioning

requests were accommodated

Mean time to

resolution

Average Time it takes to resolve a

problem

First fix rate Percentage of problems that are fixed

at first attempt

The utilization metrics reflect the quality of the original

predictions of the distribution of demand though it can

deteriorate due to the skewed nature of the on-boarded

clients. When dynamic resizing is available to meet

temporal peaks in the workload, how resource utilization

is metered and priced, how long does it take to respond to

the dynamic resizing requirement are all backend metrics

that translate into front end metrics (for example, the

richness of the available appliances, the rate of first

allocations, etc.). The mean time to resolution and first fix

rate are more traditional client end (front stage) metrics.

It is obviously now possible to create linguistic rules that

relate the metrics in Table 3 to service quality. Some

examples of rules appear below.

1. If {(Availability Metrics are LOW) OR (Utilization

metrics are skewed)} then Time to fulfill request is

HIGH

2. If {Utilization metric skewness is HIGH } then First

choice allocation rate is MEDIUM.

3. If {frequent need for dynamic sizing is HIGH} then

Latency is HIGH and allocated resource usage is

LOW.

4. If {frequent need for dynamic sizing is HIGH} the

billing report complexity is HIGH the client‟s IT

expenditure plan complexity is HIGH.

4. Ongoing Work

In this paper we presented a framework that can be

used to relate metrics of the backstage in a service

orchestration to the metrics at the frontstage. To the best

of our knowledge, this is the first such effort, and it is

critical since the front end is what the customer or the

consumer sees, and on which SLAs and terms of the

contract between the client and the service provider are

typically negotiated. The framework is flexible, and

allows instances to be created with rules elicited from

domain experts. In ongoing work, we seek to validate this

framework by applying it to not just transactional data, but

also to elicit rules that capture business leaders‟ insights

into how service accounts as a whole can provide quality.

5. Acknowledgement

 The authors would like to thank C.H. Murthy, Nithya

Rajamani, and Guruduth Banavar of IBM India Research

Labs for the comments and feedback on the proposed

approach.

6. References

[1] M Xu, Z Hu, W Long, W Liu, Service virtualization:

Infrastructure and applications - The Grid: Blueprint for a
New Computing Infrastructure By Ian Foster, Carl
Kesselman, Morgan Kaufman, 2004

[2] LJM Coulthard, Measuring service quality: A review and
critique of research using SERVQUAL, International
Journal of Market Research, 2004

[3] A Parasuraman, VA Zeithaml, A Malhotra, ES-QUAL: a
multiple-item scale for assessing electronic service quality,
Journal of Service Research, 2005

[4] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous & Practical Approach. 2nd edn. Reading, 1997.

[5] N. Fenton and A. Melton, Deriving Structurally Based
Software Measures, Journal of System Software, (12) 1990,
pp. 177–187.

[6] H Dhama, Quantitative models of cohesion and coupling in
software Journal of Systems and Software, Volume 29,
Issue 1, April 1995, pp. 65-74

[7] G. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and
applications, Prentice Hall, 1995.

[8] P. Jain, R. Kothari, K. Ponnalagu, Association Rule
Mining for Autonomic Solutions, Working paper.

