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We have investigated and experimentally demonstrated the applicability of the Bloch vector for one-
dimensional, nonlinear, finite, dissipative systems. The case studied is the second harmonic generation from
metallodielectric multilayer filters. In particular, we have applied the Bloch vector analysis to Ag/Ta2O5 thin-film
multilayer samples and shown the importance of the phase matching calculated through the Bloch vector.
The nonlinear coefficients extracted from experimental results are consistent with previous studies. Nowadays,
metal-based nanostructures play a fundamental role in nonlinear nanophotonics and nanoplasmonics. Our results
clearly suggest that even in these forefront fields the Bloch vector continues to play an essential role.
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I. INTRODUCTION

The Bloch theorem and the Bloch vector are central in
many fields of physics, ranging from solid-state physics [1] to
optics and photonics [2]. Anywhere the periodic repetition
of elements in one, two, or three dimensions (1D, 2D,
3D)—be they atoms, molecules, thin layers of materials,
or any generic building block—gives rise to allowed and
forbidden bands for wave propagation, the Bloch vector plays
a leading role in describing the band structure [1,2]. In this
article we focus on simple 1D periodic systems (layered
structures or Bragg gratings [2]) because of their intrinsically
simpler fabrication procedures and easier theoretical analysis
than multidimensional systems, although they retain many of
the characteristics of more complicated structures. A Bragg
grating or 1D photonic crystal (PC) in its simplest realization
is basically made of a periodic repetition of two layers of
materials with different refractive indices which form the
elementary cell (or building block) of the structure. This
periodic repetition gives rise to allowed and forbidden bands
for light propagation [2] in analogy with the allowed and
forbidden bands for electronic propagation in semiconductors
[1]. We can distinguish purely dielectric Bragg gratings and
metallodielectric (MD) structures, both can be fabricated by
standard sputtering or thermal evaporation techniques [3]. The
Bloch vector for a 1D periodic structure comes directly from
the Bloch theorem and can be written as [4]

Kβ (kx, ω) = 1

�
cos−1

[
1

2
(m11 + m22)

]
, (1)

where cos−1 is the inverse cosine (arccosine) function; kx

is the transverse wave vector along the x axis, that is, in
the direction perpendicular to the periodicity (z axis); � is
the length of the elementary cell of the structure; and M̂ =
(m1,1,m1,2; m2,1,m2,2) is the transfer matrix (or scattering
matrix) of the elementary cell. Equation (1) comes from the
Bloch theorem, which is applicable for a strictly periodic
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potential. One may ask what happens when the structure
under investigation is made of so few periods that it is
intrinsically finite and periodic boundary conditions cannot
be applied (finite structure). Moreover, what happens when
the materials involved are dissipative and nonlinear? These
deceptively simple questions have been the subject of intense
theoretical investigation over the last two decades [5–12].
One simple way to approach the problem is to note that a
Bloch vector defined as in Eq. (1) can be always calculated,
regardless of the strict applicability of the Bloch theorem,
because it depends on the trace of the scattering matrix of
the elementary cell. In other words, Eq. (1) can be calculated
no matter the number of the elementary cells that actually
compose the structure and whether the structure is dissipative
or has a nonlinear response. Of course, the question that arises
is whether this “generalized Bloch vector” continues to give
useful information, especially when, as in our case, one deals
with nonlinear, dissipative structures of only few periods in
length. In order to shed some light on the question, we study
the second harmonic generation (SHG) processes from three
MD structures and examine the possibility of interpreting the
results in the framework of a Bloch vector analysis. The article
is organized as follows: In Sec. II we describe the samples
preparation and the experimental setup. In Sec. III we
outline the theoretical model used for SHG and compare the
experimental and theoretical results. In Sec. IV we interpret
the results in the framework of a Bloch vector analysis and in
Sec. V we give our conclusions.

II. SAMPLES PREPARATION AND EXPERIMENTAL
SETUP

The three samples [sample (a), sample (b), and sample
(c)] are made of N = 5 periods of alternating layers of Ag
and Ta2O5. The elementary cells of the samples are: (a)
Ag (∼21 nm)/Ta2O5 (∼122 nm), (b) Ag (∼18 nm)/Ta2O5

(∼152 nm), (c) Ag (∼18 nm)/Ta2O5 (∼169 nm). Note that
in all three samples the amount of Ag is roughly the same.
All depositions were carried out by magnetron sputtering
onto 1-mm-thick, optically flat (λ/20) glass substrates. After
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deposition was completed, a linear optical characterization
of the samples was carried out. The transmittance spectra
were recorded at normal incidence in the visible-NIR range
by spectrophotometer and the experimental curves were
modeled with a standard transfer-matrix method [4]. The
optical constants for Ag used to fit the data were taken
from the book of Palik [13], and the optical constants for
Ta2O5 were taken from previously measured data [14] of
the reflectance of a single Ta2O5 film deposited on Si with
a Filmetrics reflectometer having a lower wavelength range of
600 nm and extrapolated to shorter wavelengths. Details of the
sample fabrication are provided in Ref. [14]. The measured
linear transmission spectra are in good agreement with the
theoretical fits [14]. In particular, we take the relative permit-
tivity of the materials as follows: εAg (800 nm) = −27.95 +
1.52i, εAg (400 nm) = −3.77 + 0.67i, εTa2O5 (800 nm) =
4.6 + 0.027i and εTa2O5 (400 nm) = 4.84 + 0.088i.

The optical constants for Ta2O5 are consistent with pub-
lished data [15]. Note that all the materials have an imaginary
part of the permittivity and therefore have some degree of dis-
sipation both at the fundamental frequency (FF) and the second
harmonic (SH) frequency. In our samples the only source of
quadratic nonlinearity is assumed to be in the metal layers.
We measured the reflected SH signal at 400 nm for different
polarization states of the fundamental input beam, intensities,
and incident angles. The fundamental beam was provided by
the output of a femtosecond Ti:sapphire laser (λ = 800 nm,
1 kHz repetition rate, 150 fs pulse width), focused close to
the sample with a lens of 150 mm focal length. The sample
was placed on a rotational stage which allowed setting of the
incidence angle with a resolution of 0.5◦. The transverse profile
of the fundamental beam was measured to be Gaussian with
a spot size w of ∼600 µm, corresponding to a peak power of
∼6 GW/cm2. Fundamental and generated beam polarization
states can be selected by rotating a half-wave plate and a
linear analyzer, respectively. A long pass filter was used after
the half-wave plate in order to avoid the spurious SH signal
produced by the plate’s crystals themselves due to the short
pulse duration. After being reflected by the sample, the funda-
mental beam was suppressed, thus ensuring that only the SH
beam was directed to the photomultiplier tube, and then
analyzed with a 500-MHz digital oscilloscope. The calibration
curve of the photomultiplier response was accurately per-
formed with a reference β barium borate crystal. Experimental
measurements performed under different polarization states
of the FF show that the largest signal is recorded when the
polarization of fundamental beam is set to p̂ (transverse
magnetic), while the SH signal is p̂ polarized for both

�

s

(transverse electric) and
�

p fundamental beam polarization, as
expected [16]. This first set of measurements on all the samples
was done by increasing the FF peak power and verifying the
quadratic dependence of the SH signal on the FF peak power.

III. THEORETICAL MODEL AND EXPERIMENTAL
RESULTS

The theoretical model to explain the SHG in the MD
structure follows the classical approach outlined by Shen [17].
The quadratic nonlinearity of metals is described through two
terms: the Lorentz term and the surface term. The Lorentz

term is

(Lorentz term) = 2iωγ (z)( �Eω × �Hω), (2)

where γ (z) = γ in the metal layers and γ (z) = 0 in the
dielectric layers. As is obvious from its name, it accounts
for the Lorentz force exerted on the free electrons of the metal.
The surface term is

(surface term) = d
(2)
S

∑
k

δ(z − zk) : �E �E, (3)

where δ(z − zk) is the Dirac delta function calculated at the
kth metal-dielectric interface just inside the metal, and the
symbol “:” denotes the tensor product [17]. The surface
term accounts for the second-order susceptibility at each
metal-dielectric interface due to symmetry breaking. For
TM polarization, in a Cartesian, right-handed, reference
system (x, y, z) where z is the direction of the stratification
of the structure, considering only the (z, z, z) component
of the nonlinearities (i.e., TM → TM SH emission), the
Helmholtz equation in meter-kilogram-second ampere units
for the SH H field polarized along the y axis can be
written as

d2Hy,2ω

dz2
+

{[
2ω

c
n2ω(z)

]2

− [
2k(in)

x,ω

]2

}
Hy,2ω

= 4ωk(in)
x,ω

[
ε0d

(2)
s

∑
k

δ(z−zk)E2
z,ω+ 2iω

c2
γ (z)Ex,ωHy,ω

]
,

(4)

where k(in)
x,ω = (nin,ωω/c) sin(ϑ) is the transverse momentum

of the incident FF pump field, ϑ is the incident angle of the
pump field on the sample, nin,ω is the refractive index of the
incident medium (air in our case) at the FF, n2ω(z) is the step-
varying, complex refractive index at the SH along the direction
of the stratification, ε0

∼= 8.85 × 10−12 F/m is the vacuum
permittivity, and c is the speed of light in vacuo. Ex,ω is the
x component of the FF electric field while Hy,ω is the FF
magnetic field. In our model, the two “free parameters” are
γ and the surface nonlinearity d

(2)
S , which will be compared

with previously published data on SHG from single Ag films
[18]. From Eq. (4) we note that we are looking for the SH
emission that conserves the transverse momentum; in other
words, the transverse momentum of the generated SH field
is supposed to be at twice the transverse momentum of the
incident pump field: kx,2ω = 2k(in)

x,ω. We suppose that the FF
field remains undepleted, allowing its calculation through a
standard, linear matrix transfer technique [4]. At each interface
the boundary conditions appropriate for TM polarization are
considered [4]. Note that in the Lorentz term at the right-hand
side of Eq. (4) we have included only the component oriented
along the z direction as it is the dominant term according
to experiments [18]. In the undepleted regime, Eq. (4) can
be solved using a Green function approach for multilayered
structures developed in Ref. [19,20] and adapted in this case
to handle TM polarization. In particular, the SH magnetic field
inside the multilayer located between z = 0 and z = L can be
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expressed as

Hy,2ω(z)=4ωk(in)
x,ω

∫ L

0

G
(TM)
2ω (z, ξ )

ε2ω(ξ )

[
ε0d

(2)
s

∑
k

δ(ξ−zk)E2
z,ω(ξ )

+ 2iω

c2
γ (ξ )Ex,ω(ξ )Hy,ω(ξ )

]
dξ, (5)

where ε2ω(ξ ) is the relative permittivity profile at the SH, and
G

(TM)
2ω (z, ξ ) is the Green function for the multilayer calculated

according to theory developed in Refs. [19,20], generalized
here for TM polarization:

G
(TM)
2ω (z, ξ ) = εout,2ω

2ikout
z,2ωtout

2ω

×
{

�
(+)
2ω (ξ )�(−)

2ω (z), 0 � z � ξ

�
(+)
2ω (z)�(−)

2ω (ξ ), ξ � z � L

(6)

In Eq. (6), εout,2ω is the relative permittivity at the SH
of the output medium, the glass substrate in our case;
tout
2ω is the complex, linear, transmission function of the

multilayer at the SH calculated in the output medium; kout
z,2ω =√

(k0,2ωnout,2ω)2 − (2k
(in)
x,ω)2 is the longitudinal momentum at

the SH calculated in the output medium, k0,2ω = 2ω/c is the
vacuum wave vector at the SH; and �

(+/−)
2ω (z) are, respectively,

the left-to-right (LTR)/right-to-left (RTL) linear modes of the
structure at the SH calculated by a standard matrix transfer
technique supposing a magnetic field of unitary amplitude
incident onto the structure from LTR/RTL, respectively, with
a transverse momentum 2k(in)

x,ω in both cases [19,20].
The experimental data of the conversion efficiency of the

reflected SHG versus incident angle ϑ for the three samples
are reported in Fig. 1, which also shows the comparison
with the theoretical predictions. The polarization direction
of both fundamental and SH-generated electric fields lay in
the plane of incidence (TM → TM). For all the investigated
multilayer structures, the SH signal displays a maximum
value at an incidence angle of ∼55◦, instead of ∼70◦, which

is expected for the single Ag layer [16]. The figure also
has a table of the fitted values of the nonlinearity for the
three samples. We note that sample (a) and sample (b) have
approximately the same values of nonlinearity, although the
maximum conversion efficiency of sample (a) is one order of
magnitude greater than the maximum conversion efficiency of
sample (b). We also note that sample (c) appears to have much
smaller values of the nonlinearities with respect to the first two
samples.

SHG efficiency from single Ag films is highly depen-
dent on the surface properties of the Ag [18]. Samples
(a), (b), and (c) have multiple Ag films which could ex-
acerbate any surface anomaly in the individual samples.
We point out that in our approach the parameters γ and
d

(2)
S must be intended as “phenomenological parameters”

in some way similar to those introduced in Ref. [21].
Nevertheless, by considering an effective component of the
(z, z, z) nonlinearity d

(2)
⊥ ≈ (1/2)[γ + d (2)

s ] as the dominant
nonlinearity for TM → TM emission, in agreement with the
experimental results of Ref. [18], we find that the three
samples have, respectively, the following values of effective
nonlinearity: d

(2)
⊥ ≈ 3 × 10−19 m2/V [sample (a)], d

(2)
⊥ ≈ 6 ×

10−19 m2/V [sample (b)], d
(2)
⊥ ≈ 5 × 10−20 m2/V [sample

(c)]. Those values are, everything considered, in good agree-
ment with the values experimentally measured for silver in
Ref. [18].

IV. BLOCH VECTOR ANALYSIS

We now proceed to the interpretation of the results in
the framework of a Bloch vector analysis. To this end, in
Fig. 2 we show the Bloch vector as defined in Eq. (1) and
the linear transmittance for the three samples. Both quantities
are calculated for TM polarization and an incident angle of
55◦, which is approximately the angle where the SH emission
shows its maximum for all the samples. The first thing we
note is that, differently from nondissipative structures, the
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FIG. 1. (Color online) Reflected SH con-
version efficiency vs incident angle for TM →
TM emission. Theory (dashed line), exper-
iment (squares). The incident intensity is
∼6 GW/cm2. The table shows estimated
values of the quadratic nonlinearities.
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FIG. 2. (Color online) Left column, real part
(continuous line) and imaginary part (dashed
line) of the Bloch vector vs wavelength. Right
column, lineart transmittance vs wavelength for
the three samples. Both quantities are calculated
for TM polarization and an incident angle of 55◦.

Bloch vector has an imaginary part even outside the band
gaps. We also note that the real part of the Bloch vector
(continuous line) closely resembles that one associated with
an ideal nondissipative structure. We remark once again that,
clearly, the Bloch theorem does not apply to such structures
due to the dissipation and to the limited number of periods, but
still a Bloch vector can be defined according to Eq. (1). Now the
question is raised as to whether this generalized Bloch vector
is sturdy enough to continue to give useful information on
the physical phenomenon investigated even in these extreme
circumstances.

In Table I we summarize the values of the real part of
the Bloch vector at the FF and SH frequency and the first
reciprocal lattice vector G1 for the three samples. The phase
matched case with first reciprocal lattice vector is highlighted
in bold characters.

As we have already noted, if we compare sample (a) with
sample (b) we find that, although they have approximately
the same values of nonlinearity, sample (a)’s SH emission is
one order of magnitude higher than sample (b) emission. The
reason for this strong difference in the SH emission of samples
(a) and (b) is clear if we resort to the Bloch vector analysis
and in particular to the generalized longitudinal momentum-
conservation condition (phase matching) for SH generation in
periodic structures that in this case we write by resorting to
the real part of the Bloch vector,

±ReKβ(SH) ∓ 2ReKβ(FF) = mG1, (7)

where G1 = 2π/� is the first reciprocal lattice vector, and
m is an integer that runs over all the positive and negative
numbers including zero. The choice of the sign in front of
the two Bloch vectors can be done independently of each

TABLE I.

ReKβ,FF ReKβ,SH G1 ReKβ,SH − 2ReKβ,FF ReKβ,SH + 2ReKβ,FF

(µm−1) (µm−1) (µm−1) (µm−1) (µm−1)

Sample a 8.1 26.7 43.6 10.5 42.9
Sample b 11.7 29.5 36.7 6.1 52.9
Sample c 13.1 30.6 33.8 4.4 57.4
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FIG. 3. (Color online) Left column,

power spectrum of the SH field for the three
samples. Right column, power spectrum of
three hypothetical structures having the same
elementary cell and same nonlinearities as the
three samples, but different number of peri-
ods (N = 15). The positions of ±Kβ (SH) (•),
±2Kβ (FF) (�), and ±G1(�) are indicated.

other, giving, therefore, four cases: (+,−) forward SH/forward
FF coupling, (−,+) backward SH /backward FF, (+,+)
forward SH/backward FF, and (−,−) backward SH/ forward
FF. From Eq. (7) and Table I we can realize that sample
(a) is phase matched with the first reciprocal lattice vector:
±[ReKβ(SH) + 2ReKβ(FF)] ∼= ±G1, while sample (b) does
not satisfy any of the conditions summarized in Eq. (7). This
finding by itself should confirm the applicability of the Bloch
vector and clearly shows the signature of the periodicity even in
finite, nonlinear, dissipative systems. However, there is more to
say if we look at the power spectrum of the SH fields calculated
inside the structure for the incident pump at 55◦.

In Fig. 3 for kz > 0 the absolute maximum for all
the figures corresponds to the spectral component of the
forward SH emitted in the glass substrate (ns ∼ 1.5): kz =
(2π/λSH)

√
n2

s − sin2(55◦) ∼= 19.7 µm−1, while, obviously, for
kz < 0 the absolute maximum corresponds to the backward
SH emitted in air, kz = −(2π/λSH) cos(55◦) ∼= −13.5 µm−1.
Apart from these two obvious components that give us
information about the wave vector of the SH field outside
the sample, the other peaks are the most important because
they tell us the spectral components of the field inside the
sample. In Fig. 3 (left column) we note that sample (a) in
the backward direction has two spectral peaks of emission
centered, respectively, at −Kβ (SH) and −G1 with the emission
at −Kβ(SH) predominant. In the forward direction the peaks

of emission are at 2Kβ(FF) and G1 with the peak of emission at
2Kβ(FF) predominant. This peak at 2Kβ(FF) is the signature
of the bound (also called inhomogeneous) SH, which, as is
well known [22,23], represents the particular solution of the
inhomogeneous wave equation and is generated at twice the
wave vector of the pump beam, in contrast with the standard
“free SH” that is generated at the wave vector of the SH.
It is interesting to note that in this case the bound SH is
generated at twice the pump Bloch vector; this is strong
evidence of the applicability of the Bloch vector even for the
inhomogeneous SH. In samples (b) and (c), all the emissions
fall under the same peak and so at this stage it is not possible
to discriminate which one, if any, is favored. In order to assess
which of the three possible emission directions the periodicity
is actually favoring, for samples (b) and (c) in particular,
we have calculated the SH generated by three hypothetical
structures [structures (a), (b), and (c), as shown in the right
column in Fig. 3] with the same elementary cell and the same
nonlinearities as our three samples, but with N = 15 periods.
As we may expect, structure (a) follows the same path traced
by sample (a); that is, the forward SH is peaked at 2Kβ(FF)
and the backward SH is peaked at −Kβ(SH). Structures (b)
and (c) in this case do discriminate between the possible
emissions. For sample (b) in the backward direction, the most
favored emission is at −G1, while in the forward direction the
emission at 2Kβ(FF) (bound SH) and at G1 are approximately
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equally favored. Finally, for sample (c) the forward/backward
emissions at ±G1 are predominant.

V. CONCLUSIONS

In conclusion, we have given experimental evidence that
the Bloch vector, as defined in Eq. (1), continues to play
a key role even in nonlinear phenomena involving finite,
dissipative systems, such as SH generation in MD structures.
Although we have reduced our study to simple 1D structures,
we believe that similar considerations could be applied to
multidimensional systems. In this regard, in a slightly different

context with respect to the present work, the theoretical
analysis carried out in Ref. [24] where 2D dissipative gap
solitons are studied is noteworthy. Nowadays, when metal-
based periodic nanostructures are of central importance in the
field of nanophotonics [25], our results clearly suggest that the
Bloch vector still remains fundamental.
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