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Abstract

We investigate high performance solutions to the global illumination problem in
computer graphics. An existing CPU serial implementation using the radiosity method
is given as the performance baseline where a scene and corresponding form-factor co-
efficients are provided. The initial computational radiosity solver uses the classical
Jacobi method as an iterative approach to solving the radiosity linear system. We add
the option of using the modern BiCG-STAB method with the aim of reduced runtime
through a reduction in iteration count with respect to Jacobi for complex problems. It is
found that for the test scenes used, the convergence complexity was not great enough
to take advantage of mathematical reformulation through BiCG-STAB. Single-node
parallelization techniques are implemented through OpenMP-based threading, GPU-
offloading, and hybrid threading/GPU offloading and it is seen that in general OpenMP
is optimal by requiring no expense. Finally, we investigate the non-standard-array stor-
age style of the system to determine whether storage through arrays of structures or
structures of arrays results in better performance. We find that the usage of arrays
of structures in conjunction with OpenMP results in the best performance except for
small scene sizes where CUDA shows the minimal runtime.

1 Introduction

We investigate optimization of existing software through parallel execution techniques and
mathematical reformulations in the global-illumination computer graphics problem. The
radiosity method is given as the solution approach to solving the global illumination problem,
where a 3D scene with diffusive surfaces and its corresponding form-factor coefficients are
prepared as known variables and used in our parallel solutions.

Given the cutting edge and hybrid cluster here at UMBC, we test different parallel
computing approaches including MPI, GPU offloading with CUDA (Compute Unified Device
Architecture), and multi-threading with OpenMP (Open Multi-Processing). The compute
nodes used for code implementation and timing trials are located in the High Performance
Computing Facility (HPCF) at UMBC. Released in Summer 2014, the current machine in
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HPCF is the 240-node distributed-memory cluster maya. The newest components of the
cluster are the 72 nodes with two eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and
64 GB memory. These nodes include 19 hybrid nodes with two state-of-the-art NVIDIA K20
GPUs with 2496 computational cores designed for scientific computing as well as 19 hybrid
nodes with two cutting-edge 60-core Intel Phi 5110P accelerators. These nodes are connected
by a high-speed quad-data rate (QDR) InfiniBand network to a central storage of more than
750 TB.

We identified the computationally intensive portion of the program by evaluating the
execution time for each computation stage and processing multiple test scenes using the
CPU radiosity implementation. Instead of using a Jacobi method with a fixed number
of iterations, we propose to use a modern iterative linear solver as a optimization to the
numerical solution. The BiCG-STAB method is chosen given the characteristics of the linear
system in question to decrease the iteration count needed for below tolerance solutions to
complex systems. Hybrid parallel computing approaches are adopted to significantly improve
performance of the solver. Specifically, we introduce a hybrid solution by fully utilizing dual-
socket multi-core nodes available through multi-threading techniques with the help of the
OpenMP API, and exploit access to massively parallel hardware through GPU-offloading
with CUDA. The combination of GPU-offloading and CPU-threading is explored through a
hybrid CPU/GPU compute implementation.

Performance metrics are executed and are compared through scalability studies and ab-
solute runtime results. By varying the patch count and scene complexity, we investigate
memory allocation and transfer times and the utility of mathematical reformulations.

To motivate the use of GPUs, we actually start by exploring the classical test problem
of solving the Poisson equation by the conjugate gradient method. Specifically, we compare
the performance of the code for using either several nodes and processes with MPI to using
one GPU with cuBLAS.

The outline of the report is the following. Section 2 is devoted to explanation of back-
ground and problem statement. We will first introduce the Poisson equation as motivational
problem, then discuss the radiosity method. An in-depth description of the open-source
package RRV (Radiosity Renderer and Visualizer) follows. Section 3 will explain the meth-
ods used and parallel implementation. First we solve the Poisson equation using different
methods, including MPI approach, GPU offloading with CUDA, and multi-threading with
OpenMP. Then we give a detailed examination of the radiosity computation provided by
RRV. We identify the computationaly intensive portion of the program, then solve it with
GPU offloading with CUDA and multi-threading with OpenMP. In Section 4, it will be
demonstrated that our approach with GPU offloading and OpenMP greatly speed up the
Poisson equation and radiosity calculations. Results using array of structures and structure
of arrays will be discussed respectively. Section 5 summarizes our conclusions and motivates
future work.
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2 Background and Problem Statements

2.1 The Poisson Equation as Motivational Problem

We begin with the Poisson equation as a motivational problem, since it provides insights
to the performance of linear solvers, which can later be used in the radiosity problem. We
want to determine the run times for the Poisson equation over multiple sets of processes and
nodes. In theory, for every increase in p processes, the time should decrease by a factor of
p. In order to perform performance tests we use the Poisson equation with homogeneous
Dirichlet boundary conditions

−∆u = f in Ω

u = 0 on ∂Ω
(2.1)

on the domain Ω = (0, 1) × (0, 1) ⊂ R2 where ∂Ω is the boundary of the domain. In
order to solve the problem numerically the domain was discretized into (N + 2) points in
each dimension with spacing h = 1/(N + 1) where N is the mesh size. Equation (2.1) was
approximated

∂2u(xk1
,xk2

)

∂xk1
2 +

∂2u(xk1
,xk2

)

∂xk2
2 ≈ −uk1−1,k2

+2uk1,k2
−uk1+1,k2

h2 +
−uk1,k2−1+2uk1,k2

−uk1,k2+1

h2 (2.2)

for ki = 1, 2, ..., N and i = 1, 2. With these N2 unknowns we can create a linear system of
N2 equations for the finite difference approximation of (2.1) and following [4] we can use
the conjugate gradient (CG) method to produce a solution with a given ε error bound. An
explicit matrix is also not needed as the matrix-vector product for updating just requires
application of the approximation in (2.1).

2.2 Radiosity

Global illumination problems are omnipresent in computer graphics. Early methods such as
ray tracing produced visually pleasing renderings but suffered from a need to recompute the
solution for any change of view point. The radiosity method introduced by Cindy Goral et
al. [2] removed the need to recompute environmental lighting during a perspective change
and allowed illumination of a statically lit scene to be computed once for any viewpoint. The
radiosity method solves for the steady-state energy (light) distribution in an environment.
One limitation of radiosity method is that all reflection is assumed to be diffuse. In other
words, the energy (light) flux given off from the surface is equal in all directions. This diffuse
reflection assumption limits the radiosity equation’s application to only matte surfaces.

Radiosity is defined as the total energy given off from a surface (the sum of emitted and
reflected energy) and is given by

Bi = Ei + ρi

N∑
j=1

BjFi,j for i = 1, 2,. . . , N, (2.3)

where
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• Bi (radiosity) is the total energy leaving the surface (radiosity) of the ith patch (en-
ergy/unit time/unit area),

• Ei (emission rate) is the rate of energy leaving the ith patch (energy/unit time/unit
area),

• ρi (reflectivity) is the reflectivity of the ith patch (unitless). The reflectivity depends
on the wavelength of light,

• Fi,j (form factor) is the fraction of energy emitted from patch j that reaches patch i
(unitless), and

• N is the number of patches.

When a given system is discretized into N patches and realizing that Fi,j = 0 a system
of linear equations results that can be written

B1

B2
...
BN

 =


E1

E2
...
EN

 +


0 ρ1F1,2 · · · ρ1F1,N

ρ2F2,1 0 · · · ρ2F2,N
...

...
. . .

...
ρNFN,1 ρNFN,2 · · · 0



B1

B2
...
BN

 (2.4)

In order to solve this system to acceptable values of B1, B2, . . . , BN we solve the system for
steady-state 

1 −ρ1F1,2 · · · −ρ1F1,N

−ρ2F2,1 1 · · · −ρ2F2,N
...

...
. . .

...
−ρNFN,1 −ρNFN,2 · · · 1



B1

B2
...
BN

 =


E1

E2
...
EN

 (2.5)

which can be written as a linear system

Ab = e (2.6)

with

A =


1 −ρ1F1,2 · · · −ρ1F1,N

−ρ2F2,1 1 · · · −ρ2F2,N
...

...
. . .

...
−ρNFN,1 −ρNFN,2 · · · 1

 , b =


B1

B2
...
BN

 , e =


E1

E2
...
EN

 .

2.3 Form Factors

The form factor Fi,j is defined as the fraction of energy emitted from Aj that is incident on

Ai (Figure 2.1). The sum
∑N

i=1 Fi,j is defined to be 1. The form factor (Fi,j) is given as

Fi,j =
1

Ai

∫
Ai

∫
Aj

cos(φi) cos(φj)

πr2
dAj dAi. (2.7)
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Figure 2.1: Illustration of the form-factor geometry [3]. Used under ACM Non-Commercial
Permissions.

Geometrically speaking, the form factor is the fraction of a circular patch i covered by a
projection from patch j onto hemisphere around i followed by a orthogonal projection onto
the plane of i.

Equation (2.7) does not take into account a patch-to-patch projection that is partially
or fully blocked by an intermediate object. A term HIDi,j is added to (2.7) to take this into
account to yield

Fi,j =
1

Ai

∫
Ai

∫
Aj

cos(φi) cos(φj)

πr2
HIDi,j dAj dAi. (2.8)

2.4 Method of Hemicubes

In order to numerically solve for the form factor Fi,j, hemicubes [3] are used in (2.8) by
replacing the idea of a hemisphere with a cube known as a hemicube. A patch i is chosen
and the origin is chosen to be the center of the patch with the positive z-direction chosen
to be normal to the plane of patch. A half cube, or hemicube, is centered on the patch
(Figure 2.2) and the hemicube is discretized to a desired mesh size. All other environment
patches are projected onto the hemicube at i with each mesh point having one corresponding
environmental patch. The form factor at patch i is the sum of all appropriately weighted
mesh points. A new patch is then chosen and the process repeats until all form-factors are
calculated.

2.5 Radiosity Renderer and Visualizer

The open-source package RRV (Radiosity Renderer and Visualizer) [1] is a global-illumination
solving and visualizing suite written in C++ and OpenGL. The radiosity computation en-
gine uses a Jacobi Iterative Method with a fixed number of iterations. The RRV-compute

program is used in conjunction with an .xml scene description format of the geometric
components (i.e., primitives, such as polygons) that make up the scene, to compute the
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Figure 2.2: Illustration of the hemicube [3]. Used under ACM Non-Commercial Permissions.

global illumination for visualization with RRV-visualize. The radiosity algorithm solving
RRV-compute program is the focus. The source code for RRV is available for download at
http://dudka.cz/rrv.

3 Methodology and Parallel Implementation

3.1 MPI Poisson

Distributed-memory parallelization on the CG method was accomplished through the use
of a parallel dot-product, parallel vector-scaling, and parallel matrix-vector-product. The
N×N problems are divided evenly among the p processors available to the task. In terms of
the discretization space the problem is divided along the x2 (y) axis, which translates to con-
tiguous memory arrays for each process, but since we use a 5-point stencil process-boundary
points need information from another process’s memory and thus process-to-process commu-
nication is needed between adjacent processes. This was accomplished with point-to-point
communication with the MPI_Isend and MPI_Irecv or MPI_Send and MPI_Recv, respec-
tively [6].

3.2 CUDA Poisson

Given the complexity of the Poisson equation, executing this problem over the GPUs was
the next logical step. GPUs can handle larger problems where N × N meshes increase, we
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would observe a larger speed up vs. using CPU code. GPUs allow for thousands of the
same processes to be executed simultaneously in order to complete redundant tasks quickly.
In this case, the scenario of vector multiplication is redundant, therefore we can parallelize
it across a given number of processes. The basic idea is that a Kernel (CUDA jargon for
function) is created by passing through a number of blocks per grid and threads per block, see
(Figure 3.1). A block is a virtual arrangement of threads and can be arranged in dimensions
between 1 and 1024, the maximum number of threads per block. For example a block could
be arranged in the manner like (32, 32, 1), having 1024 threads each with respective x and
y coordinates. Additionally it could be arranged (1024, 1, 1) or in any other arrangements,
as long as the blocks do not exceed 1024 threads. Each thread then executes the kernel
code. Grids therein are composed of blocks but grid arrangements must be arranged in a
2-D or 1-D structure [5]. So in theory one could have a 2 × 2 grid containing blocks of size
(32, 32, 1). This scenario produces 4096 threads to execute the kernel. Arrangements can
vary based upon different requirements. Note that it is illogical to make a non-square block
arrangement of threads. If one were to make a block arrangement of (16, 15, 1) CUDA would
automatically make enough threads for a (16, 16, 1) block arrangement. In this situation, 16
threads are left idle and wasted. With our code, we used a (16, 16, 1) block arrangement and
created a grid dynamically by dividing the N×N size of the matrix by the size of our blocks.
Thus in this arrangement we are able to accommodate two-dimensional square mesh sizes.
For example, in a 1024 × 1024 mesh size, we would divide the mesh size by 16 and then we
would have a grid of 64 (16, 16, 1) blocks. We arrange ours in 1-D, but the implementation
could have been executed in 2-D. Different block sizes could have been used, however, the
16 × 16 block size was optimal for our purposes.

CUDA is NVIDIA’s C-based library designed for leveraging the massively parallel archi-
tecture of NVIDIA based GPUs. With our CUDA implementation of C code, we observed
considerably faster times over CPU times of one node. We used one node as we thought
that processes 1 to 16 would provide the most equitable comparison to the GPU (Graphics
Processing Unit). The GPUs that we used for are test were Tesla K20 NVIDIA GPUs with
5 GB of shared memory. Because of the memory limit regarding space of the GPU, we were
forced to limit our comparison test to mesh sizes of 8192×8192. For our CUDA implementa-
tions, we ran two separate test. The cuBLAS 1 run time utilizes only one cuBLAS function;
the cuBLASDdot function. We were forced to use the cuBLASDdot function because CUDA
does not have an atomic add function for double precision. For comparison, in cuBLAS 2,
we used only cuBLAS functions. Here we used the cuBLASDaxpy function instead of our
axby kernel. Our axpby out performed full cuBLAS functions for all N ×N meshes that we
computed. The largest causes for this seems to stem from the function cuBLASDscale which
scales the vector,but requires a considerable amount of time.

3.3 OpenMP Poisson

OpenMP (Open Multi-processing) is an API (application programming interface) for efficient
and cross-platform shared-memory parallelization. So-called shared memory is memory that
is shared across all workers (threads). Threads can also have private memory if a variable is
marked thread-private with a specific flag. Parallelization is accomplished via #pragma omp

declarations followed by specific parallel specifications. OpenMP also supports simd decla-
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Figure 3.1: Breakdown of the Memory. Provided by NVIDIA [7].

rations for specific vectorization of functions or loops. The loop-dominate functions in the
conjugate gradient method were parallelized using these OpenMP declarations.

3.4 Workflow for RRV

The source code for RRV was investigated prior to attempts at parallelization. The RRV
work flow is given as follows:

1. Given an appropriately scene description file (in .xml format), a Scene object is created
and the Scene class’s load function is called on the given scene.

2. During the load call an EntitySet is populated from the environment descriptors in
the input scene description.

3. The applyEmission function is called on our Scene instance which sets a patch’s
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radiosity value to its emission value if the emission value is greater. This step allows
for faster convergence.

4. Scene instance is divided such that triangles are at a maximum of size scale which
has a default value of 1 but can be set by the --scale input flag.

5. A RadiosityRenderer is created from the Scene object with given steps, form-factor
threshold, and maximum cache size. This creates a PatchSequenceEnumerator, which
is a wrapped std::vector<> object, that holds the Triangle objects that represent
the input file.

6. The compute function is called on our RadiosityRenderer object. This function does
the radiosity computation via (2.4) and runs for stepCount steps with a default value
of 32 steps and a user chosen value via the --steps argument. See 3.5 for more details.

7. The result is saved to an output xml file to be viewed with RRV-visualize.

3.5 Radiosity Computation

The radiosity computation stage is broken down as follows.

1. The compute function is called on a Scene- initialized RadiosityRenderer object. This
function loops stepCount_ times calling the computeStep function on the instance of
RadiosityRenderer that compute was called on. stepCount_ is set to a default value
of 32 unless the argument --steps was provided.

2. Inside computeStep a loop runs over all patchCount_ number of Triangle objects and
sets the previous radiosity to the the current radiosity value. Then for each Triangle

the current step radiosity value is set following (2.3):
radiosity = reflectivity · totalRadiosity(currentPatch_) + emission , where
currentPatch = 0, 1, ..., patchCount_-1 .

3. The totalRadiosity method is the routine that computes the summation compo-
nent of (2.3). The totalRadiosity method is called on a PatchCache object. The
method checks for stored form factor data in the form of a PatchCacheLine for
the current patch. If it does not exist the PatchCacheLine is computed with the
FormFactorEngine fillCacheLine method. The summation in (2.3) is computed by
calling the PatchCacheLine totalRadiosity method on the current PatchCacheLine
object cacheLine along with the current patch index.

(a) The PatchCache class contains a reference to all the Triangle structures along
with a std::vector to hold PatchCacheLine instances.

(b) The PatchCacheLine class is a std::vector of std::pair objects that hold a
reference to a Triangle’s (previous) radiosity field along with a form factor. This
class caches data for quicker computation of the summation component of (2.3)
since the form factors only need to be computed once.
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(c) The FormFactorEngine object ffe_ is created by the RadiosityRenderer con-
structor and contains a reference to the
std::vector holding all Triangle structures.

4. If the PatchCacheLine does not exist for this patch, the PatchCacheLine is computed
by calling fillCacheLine on the PatchCache instance of the FormFactorEngine ffe_.
The fillCacheLine method renders the environment based on the perspective of the
current patch. A container, map, is created from a call inside fillCacheLine to the
getFF method. The map is traversed and used to populate the PatchCacheLine’s
std::vector.

(a) FormFactorEngineis a class that uses OpenGL/X11 to render and display patch-
perspective views using the hemicube method. Given a patch the patch’s center
and normal are used to draw the patch’s perspective in 5 views.

A perspective is picked and the transform matrix is created with the aforemen-
tioned point and vector with the help of OpenGL functions gluPerspective and
gluLookAt. The container of Triangle objects is traversed and each is drawn
to the current perspective’s sub screen following a transformation and a depth
check. The next perspective is chosen and the process is repeated.

5. The getFF function reads the on-screen color data to a buffer and maps the form factor
coefficients onto this buffer. The buffer is then traversed and the map is populated.
Pixels of the on-screen data is composed of index-encoded colors. This means that
during the draw stage when Triangle i is drawn the (24 bit) color is chosen to be
0x00ffffff & i such that the red component is 0xff & i the green component is
(i>>8) & 0xff and the blue component is (i>>16) & 0xff. This nontraditional color
encoding allows a patch’s reflection-component contributors to be computed once for
faster rendering.

3.6 Scene Pre-processing

The computation can be conceptually split into two main activities: form factor computation,
and radiosity computation. The form-factor computation relies on OpenGL functions to
compute transformation matrices. The computation also renders patch-viewpoint images
to a X11 window for each side of the hemicube. This process is not only computationally
expensive, but it also depends on an OpenGL context, requiring a window to be opened. The
form factors were theoretically persistent throughout the execution scope, but the method
of storage required an unnecessary degree of spatial complexity that was too high. Because
of this, the entire form factor space could not (in reality) be stored in memory for larger
scenes. In order to decrease the spatial complexity and facilitate faster rendering through
preservation of form factor values with future work-distribution in mind, the methods of both
form-factor and Triangle structure storage were re-implemented with the use of dynamically
allocated arrays of type float and type Triangle respectively.

With this new storage mechanism for the form factor values, a new method was added to
the FormFactorMatrix class and this method computes and populates a row-major matrix of
form factors. At this point it was realized that the OpenGL/X11 requirements for form factor
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computation was inhibitive for server-side rendering as a server-to-client communication was
required for each patch-view render and this became a major bottle-neck causing execution
time to increase beyond that on a local machine of much lower computational power. The
OpenGL/X11 paradigm is also not scalable in a desirable way as parallelization would suggest
multiple rendering environments to bring about a decrease in the matrix computation time
but since each of these environments would require a separate OpenGL context and hence
another window which ultimately leads to decreased performance.

Since the form factors of given scene does not change under varied lighting or reflectivity
properties, and are computed once when a scene description is given, we decide to put the
focus of our project on the radiosity computation. As a result, the form factors of all the test
scenes are computed off-line and stored in files. This allows us to remove the requirement for
OpenGL contexts while still allowing for dynamic lighting. Through this process a new data
structure, SceneStructure, was created to handle loading into and saving of the Triangle

array, loading and saving of the form factor matrix, and a wrapper for radiosity computation.
Two separate programs are generated by the definition FF_FROM_SOURCE supplied with

the -D compiler flag. If the definition is provided the resulting executable will generate the
form factor matrix and save it as a binary file with the name .ff_mat appended to the input
file’s name. Without the definition a form factor matrix with the above naming scheme is
assumed to exist and this file is loaded and the radiosity of the scene is computed through
a call to quick_compute followed by a saving of the resultant scene radiosity to an .xml file
(named output.xml by default) to be visualized with RRV-visualize.

3.7 Iterative Methods for Radiosity Computation

The radiosity equation can be setup as in (2.6) so the computation of a solution involves
solving a linear system. We first consider the original method of solving (2.6) which was a
fixed-iteration count Jacobi Method. This Jacobi Method was implemented by a nested for

loop structure where the outer loop ran for a fixed number of iterations and the inner loop
computed the current iterator’s radiosity element-by-element following (2.3).

Given the radiosity linear system (2.6), the linear system can be defined as (3.1):

Ab = e (3.1)

we pick F = I − A or A = I − F , so (3.1) becomes

(I − F ) b = e (3.2)

and then iterate
b(k+1) = e+ F b(k) (3.3)

for k = 1, 2, ...,M where M is fixed. We decided to switch from element-by-element updating
to a series of function calls to matrix-vector and axpby methods to take greater advantage of
automatic loop-vectorization. We created a class linsolve, where all linear algebra functions
would be stored. Elements in the vectors e and b for the original AOS implementation are
tuples of color components (r, g, b) so use of efficient methods such as those in BLAS
were initially out of the question. Since the original Jacobi implementation ran for a fixed

11



Figure 3.2: Example of Structure of Arrays vs. Arrays of Structures.

number of iterations, a residual calculation is performed so solutions could be quantitatively
analyzed. This also cut down on unnecessary iterations for an acceptable solution being
reached prior to the specified iteration constant.

The Jacobi method can be slow to converge for complex systems so another iterative
method, BiCG-STAB (Biconjugate Gradient Stabilized), was added with the aim of faster
convergence and runtime. The BiCG-STAB method does take twice as much work per
iteration because of the need for two matrix-vector products per iteration but for complex
systems the convergence iteration count for BiCG-STAB should be much less than half the
iterations needed for Jacobi, where only one matrix-vector product is needed, resulting in
shorter runtimes.

3.8 Distributive Computing Methods

Distributive Computing is the second technique that we used in order to optimize the ra-
diosity computation. This secondary methodology focuses on separating the computation-
ally intensive portions of the program among several processes to benefit from parallelism.
Throughout the optimization process, we used CUDA kernels, OpenMP, and CUDA with
cuBLAS. The cuBLAS library is a efficient package designed for solving linear systems on
NVIDIA GPUs. Given the plethora of options, we have separated our implementations into
two categories: Arrays of Structures (AOS) and Structures of Arrays (SOA). We created a
Struct of Arrays implementation as it is a typical technique for performance improvements
because all elements in the array are contiguous in memory. CUDA and OpenMP both have
implementations for SOA and AOS.
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3.8.1 Distributive Computing with CUDA

For distributive computing with CUDA we performed a technique known as GPU off-loading,
this entails the computationally expensive applications of the program being executed on the
GPU while the results and information are returned to the CPU. In this manner, CPU’s are
only used for the basic operations such as file reading, kernel calls and printing. All ma-
trix and vector operations, including, but not limited to matrix-vector multiplication, dot
products and vector scaling are handled on the GPU. In the cuBLAS implementation we
utilized the SOA design because it has native float oriented functions for vector-matrix mul-
tiplication and dot products known as cuBLASSgemv and cuBLASSdot respectively. Whereas,
when we arranged a AOS implementation we used our own dot product and matrix-vector
multiplication because cuBLAS is only designed to work with arrays of floats not structs.

3.8.2 Distributed Computing with OpenMP

The serial version of both SOA and AOS RRV were reimplemented with OpenMP with the
goal of speedup. The form factor coefficient matrix can be large so the shared memory model
of OpenMP was advantageous so it did not have to be copied around. We only needed to
thread computational expensive code portions so only the linear algebra portions of RRV
were modified by adding pragma declarations to the matrix-vector product, dot product,
axpby, and element-wise vector scaling.

3.8.3 Hybrid Distributed Computing

When either CUDA or CPU threading are used exclusively the full power of the compute
node is not leveraged. Work distribution was implemented by dividing the Jacobi step
update process to both threaded CPU methods and GPU-offloading methods. After each
step of Jacobi the device and host are synchronized through device-to-host and host-to-device
copies.

4 Results

4.1 MPI Poisson

Non-blocking MPI functions on one node were used to solve the Poisson equation in (2.1).
As we expected increasing the number of processes per node (Table 4.1) reduced runtime.
Minimal runtime reduction is observed when moving from 4 process per node to 8 processes
per node. This lack of increase is probably caused by our version of MPI requesting 8
processes on one socket instead of two sockets each with 4 processes, when 8 processes per
node is specified. The reason this could result in minimal performance gains is that each
socket only has 4 memory channels and so when 8 processes want to access memory there
will be a queue for the memory channels. We see that using 16 processes per node results
in the best performance.

13



2000

4000

6000

1024 2048 4096 8192
Mesh Resolution

O
bs

er
ve

d 
W

al
l T

im
e p = 1

p = 2

p = 4

p = 8

p = 16

Cublas 1

Cublas 2

CPU vs GPU

Figure 4.1: Poisson run on one compute node with p processes compare to using GPU with
CuBLAS.

Table 4.1: Run times in seconds using p processes and Cuda cuBLAS. The cuBLAS dot
product function was used for cuBLAS 1. To compute y = ax + by in cuBLAS 1 we used
our own kernel. In cuBLAS 2, however, we used all cuBLAS functions.

N p = 1 p = 2 p = 4 p = 8 p = 16 cuBLAS 1 cuBLAS 2
1024 12.54 7.66 3.96 1.08 0.62 1.836455 2.070277
2048 151.32 103.94 71.86 41.41 19.94 11.897842 13.157421
4096 777.49 745.99 535.98 306.48 163.76 91.892439 102.139394
8196 6299.00 6101.40 4351.30 2475.50 1270.70 747.196718 829.230494

4.2 Single-Node Poisson

Our GPU code clearly outperformed our CPU code. Throughout the tests we were able to
see substantial improvements from at a maximum runtime of 6299 seconds to a minimum
runtime of 747 seconds with our CPU/GPU codes (Table 4.1). During the implementation
of the Poisson equation with CUDA we observed that our own kernels outperform the na-
tive cuBLAS kernels. Throughout all cases this is evident; however, for the smallest mesh
sizes, GPU code is outperformed by CPU code, probably due to host-to-device communica-
tion times. GPU-aided Poisson also show favorable runtime scaling compared to CPU-only
Poisson (Figure 4.1).

4.3 Iterative Methods for Radiosity Computation

The radiosity computation is solved with our proposed iterative method. Figure 4.2 presents
the results in rendering at different iteration. OpenMP multithreaded versions of the Jacobi
and the BiCG-STAB methods were compared with a relative residual tolerance of 10−6,
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Figure 4.2: Test scene rendering at different iteration.

Table 4.2: Computing Methods Jacobi vs. BiCG-STAB: Time Results for OpenMP with
multiple Iterative Methods.

Patch Jacobi BiCG-STAB
Scene ID count iter runtime iter runtime

1 1312 8 0.009 3 0.010
2 3360 28 0.045 16 0.058
3 9680 36 0.410 17 0.435
4 17128 32 0.993 17 1.157

as shown in Table 4.2. BiCG-STAB ran slower in all cases, even with a lower iteration
count. The slower runtimes are a result of BiCG-STAB’s higher computational complexity
per iteration relative to Jacboi. It seems that our scenes were not complex enough to benefit
from the reduction in iterations needed for convergence upon swtiching from Jacobi to BiCG-
STAB. Therefore, the change in computational methods was ineffective in our project.
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Table 4.3: AOS Jacobi Methods: Time Results for All AOS Implementations.

Scene ID Patch Count Original Serial CUDA OpenMP
1 1312 0.028 0.031 0.006 0.009
2 3360 0.857 0.677 0.115 0.045
3 9680 10.072 6.973 1.209 0.410
4 17128 27.855 19.394 3.415 0.993

Table 4.4: SOA Jacobi Methods: Time Results for All SOA Implementations.

Scene ID Patch Count Original (AOS) Serial CUDA OpenMP
1 1312 0.028 0.040 0.128 0.014
2 3360 0.857 0.913 0.159 0.135
3 9680 10.072 8.821 0.493 0.975
4 17128 27.855 26.809 1.185 2.594

4.4 Distributed Computing for Radiosity Computation and Ar-
rays of Structures

When we used an array of structures both CUDA (no cuBLAS) and OpenMP showed marked
improvements on the serial code (Table 4.3). OpenMP show better results than CUDA with
the exception of scene 1. We think that communication times from the host to device became
inhibitive on larger scene sizes since a device synchronization was required before a transfer
could be performed. This removed the performance-gaining asynchronous nature of GPU
relative to CPU execution.

4.5 Distributed Computing for Radiosity Computation and Struc-
tures of Arrays

CUDA (using cuBLAS libraries) and OpenMP showed marked improvements over our serial
code (Table 4.4). CUDA was actually faster than OpenMP for larger problem sizes but
performed poorly on small problems. Contrary to general performance enhancement theory,
our SOA version for CUDA is faster than our AOS version for CUDA. We speculate that this
is due to the lack of a required atomic addition kernel because cuBLAS natively provides
matrix-vector and dot product kernels to address these issues. Transfer times with CUDA
impede performance due to the fact that all implementations outperform CUDA. Transfer
time, in our CUDA scenarios, are greater than the computational time required to reach a
solution; however, when larger problem sizes are introduced, the CUDA implementation is
clearly justified.

4.6 Hybrid Distributing Computing for Radiosity Computation
and Arrays of Structures

A hybrid CPU/GPU Jacobi method was tested by varying the load distribution factor from
0.0 (all CPU, no GPU) to 1.0 (all GPU, no CPU). The execution times (Table 4.5) show
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Table 4.5: AOS Hybrid Jacobi Methods: Time Results for Scene 4.

Distribution Factor 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Runtime (s) 1.950 1.458 1.571 1.477 1.695 2.014 2.221 2.502 2.930 3.185 3.515

favorable improvements when using load distribution with respect to the 0.0 and 1.0 dis-
tribution cases but for our experiments the device-to-host and host-to-device transfer times
could not be overcome to make the hybrid version faster than singularly distributed imple-
mentations.

5 Conclusions

We used both computational methods and parallelization techniques to find an optimal so-
lution path for solving for near-real to real time global illumination solutions to the radiosity
algorithm. Given the scenes we tested, OpenMP and CUDA both show substantial runtime
improvements while the change from the Jacobi method to the BiCG-STAB method actually
resulted in increased runtime due to the methods complexity, even while exhibiting faster
convergence. It appears that global illumination problems are not in general best suited for
mathematical reformulations, though parallelization techniques are quite appropriate and
give favorable speedups compared to initial serial code.
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