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Abstract. Chemical ionization mass spectrometry (CIMS)
enables online, rapid, in situ detection and quantification
of hydroxyacetone and glycolaldehyde. Two different CIMS
approaches are demonstrated employing the strengths of
single quadrupole mass spectrometry and triple quadrupole
(tandem) mass spectrometry. Both methods are generally
capable of the measurement of hydroxyacetone, an ana-
lyte with known but minimal isobaric interferences. Tan-
dem mass spectrometry provides direct separation of the
isobaric compounds glycolaldehyde and acetic acid using
distinct, collision-induced dissociation daughter ions. The
single quadrupole CIMS measurement of glycolaldehyde
was demonstrated during the ARCTAS-CARB (Arctic Re-
search of the Composition of the Troposphere from Aircraft
and Satellites - California Air Resources Board) 2008 cam-
paign, while triple quadrupole CIMS measurements of gly-
colaldehyde and hydroxyacetone were demonstrated during
the BEARPEX (Biosphere Effects on Aerosols and Photo-
chemistry Experiment) 2009 campaign. Enhancement ratios
of glycolaldehyde in ambient biomass-burning plumes are
reported for the ARCTAS-CARB campaign. BEARPEX ob-
servations are compared to simple photochemical box model
predictions of biogenic volatile organic compound oxidation
at the site.

1 Introduction

Carbonyl compounds make a large contribution to the pro-
duction of free radicals and photooxidants in the atmo-
sphere. Hydroxyacetone (H3CC(O)CH2OH) and glycolalde-
hyde (HC(O)CH2OH) have both biogenic and biomass-
burning sources. Both species are important oxidation prod-
ucts of isoprene (2-methyl-1,3-butadiene), and glycolalde-
hyde is also produced during the oxidation of 2-methyl-3-
buten-2-ol (MBO). Isoprene is produced by deciduous plants
and is the single largest source of nonmethane hydrocar-
bons to the atmosphere (Guenther et al., 1995) while MBO
is emitted in large quantities from several species of pine
(Goldan et al., 1993; Harley et al., 1998). Photooxidation of
isoprene in the presence of NO produces methyl vinyl ketone
(MVK) and methacrolein (MACR) (Tuazon and Atkinson,
1990a; Paulson et al., 1992). MVK and MACR are further
oxidized to produce second-generation isoprene photooxi-
dation products glycolaldehyde, hydroxyacetone, methylgly-
oxal (H3CC(O)CH(O)), and formaldehyde (CH2O) (Tuazon
and Atkinson, 1989, 1990b). Recent studies suggest addi-
tional prompt sources of hydroxyacetone and glycolaldehyde
during the isomerization of alkoxyradicals formed from iso-
prene photooxidation (Dibble, 2004a, b; Paulot et al., 2009a;
Karl et al., 2009; Galloway et al., 2011; Peeters and Nguyen,
2012). Oxidation products of biogenic volatile organic com-
pounds play a significant role in tropospheric ozone produc-
tion (Chameides et al., 1988; Atkinson and Arey, 2003) and
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formation of secondary organic aerosol (Kroll et al., 2006).
Hydroxyacetone and glycolaldehyde are also emitted during
biomass burning, and measurements of both have been re-
ported for laboratory and field fires of various fuels (e.g.,
Akagi et al., 2011, 2012; Yokelson et al., 2013; Johnson et
al., 2013).

Hydroxyacetone and glycolaldehyde are precursors of
other atmospherically relevant species. Major products
of hydroxyacetone and glycolaldehyde photooxidation are
methylglyoxal and glyoxal (OCHCHO), respectively (Gros-
jean et al., 1993; Niki et al., 1987). Additionally,
Butkovskaya et al.(2006a, b) found oxidation of hydroxy-
acetone and glycolaldehyde by OH yields formic acid while
OH oxidation of hydroxyacetone also produces acetic acid.

Previous atmospheric measurements of hydroxyacetone
and glycolaldehyde have been made using a range of an-
alytical techniques. The most common of these involve
ambient sample collection, derivatization with a chem-
ical agent, separation of compounds, and detection by
HPLC (high-performance liquid chromatography), GC–MS
(gas chromatography–mass spectrometry), or GC-FID (gas
chromatography–flame ionization detection) (Lee et al.,
1993, 1995; Zhou et al., 2009; Moortgat et al., 2002; Spauld-
ing et al., 2003; Matsunaga et al., 2003). Two shortcom-
ings of these techniques are the intensive sample process-
ing required and the time lag between sample collection
and concentration measurement. Typical measurement peri-
ods are 5 min–2 h. In contrast, both single quadrupole and
triple quadrupole (tandem) chemical ionization mass spec-
trometry (CIMS) enable online, rapid, in situ measurements
with no sample processing. In these techniques, the ambi-
ent sample enters the instrument directly and reaches the de-
tector rapidly (<1 s), enabling immediate detection of these
compounds and providing a potentially high temporal reso-
lution data set. Both the Caltech single quadrupole and tan-
dem CIMS instruments can quantitatively measure hydrox-
yacetone, an analyte with a known but minor isobaric in-
terference (propanoic acid) in the atmosphere. The Caltech
tandem CIMS instrument enables direct separation of mass
analogues glycolaldehyde and acetic acid. A similar method,
proton-transfer-reaction mass spectrometry (PTRMS), has
been used byKarl et al. (2009) to measure hydroxyace-
tone concentrations in the Amazon Basin. Infrared absorp-
tion has also been used to measure atmospheric glycolalde-
hyde and hydroxyacetone, particularly for biomass-burning
plumes (Johnson et al., 2013). FTIR (Fourier Transform In-
frared) spectroscopy provides a direct measurement with a
faster measurement cycle than the derivatization techniques,
though it cannot match the measurement cycle and sensitivity
of the CIMS technique.

We present two sets of in situ measurements: airborne,
boundary layer measurements of glycolaldehyde over por-
tions of California; and tower-based measurements of glyco-
laldehyde and hydroxyacetone at a site approximately 80 km
northeast of Sacramento, California. The first set of measure-

ments was made in June of 2008 from the NASA DC-8 air-
craft platform using the Caltech single quadrupole CIMS in-
strument during the California portion of the NASA-CARB
(California Air Resources Board) Arctic Research of the
Composition of the Troposphere from Aircraft and Satellites
(ARCTAS-CARB) field experiment. The four ARCTAS-
CARB flights included in this study (18, 20, 22, and 26 June)
occurred during daytime hours. Enhancement ratios of gly-
colaldehyde in biomass-burning plumes are presented and
compared to literature values for laboratory and field fire
data. The second set of measurements was made during the
Biosphere Effects on Aerosols and Photochemistry Experi-
ment (BEARPEX) 2009 field experiment from 28 June to 20
July using the Caltech tandem CIMS instrument. The site is a
ponderosa pine plantation (38◦53′42.9′′ N, 120◦37′57.9′′ W,
elevation 1315 m), located near the University of California’s
Blodgett Forest Research Station, on the western slope of
the Sierra Nevada. The site is approximately 5 h downwind
of Sacramento and has been described in detail previously
by Goldstein et al.(2000) and Dreyfus et al.(2002). The
measurements presented here were conducted from the top
platform of the north tower; the instrument inlet was located
17.8 m above the ground. Concentrations of hydroxyacetone
and glycolaldehyde are compared to results from a simple
photochemical box model used to estimate the contribution
of biogenic sources to the budget of glycolaldehyde and hy-
droxyacetone at the site.

2 Instrumentation

2.1 Instrument description

Negative ion chemistry of CF3O− has been shown to provide
sensitive detection of many atmospheric trace gases (Huey et
al., 1996; Amelynck et al., 2000a, b; Crounse et al., 2006;
Spencer et al., 2009; Paulot et al., 2009a, b; St. Clair et al.,
2010) and was exploited in this work to detect hydroxy-
acetone, glycolaldehyde, acetic acid, and hydrogen cyanide
(HCN). The measurement of HCN by the Caltech single
quadrupole CIMS has been described previously (Crounse
et al., 2006, 2009). The use of CF3O− to detect hydroxy-
acetone and glycolaldehyde was introduced briefly byPaulot
et al. (2009a) and Chan et al.(2009) and is described in
detail here. Hydroxyacetone and glycolaldehyde react with
CF3O− via clustering between the reagent ion and the an-
alyte through Reactions (R1) and (R2), respectively; mass-
to-charge ratio is denoted bym / z. Acetic acid reacts with
CF3O− via fluoride ion transfer through Reaction (R3) and
clustering through ReactionR4, providing two distinct ion
signals. Reactions (R1–R4) are complicated by competing
reactions with CF3O− water cluster (CF3O−

· H2O).

CF3O−
+ H3CC(O)CH2OH → (R1)

CF3O−
· H3CC(O)CH2OH (m/z 159)
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CF3O−
+ HC(O)CH2OH → (R2)

CF3O−
· HC(O)CH2OH (m/z 145)

CF3O−
+ H3CC(O)OH → (R3)

H3CC(O)O−
· HF (m/z 79) + CF2O

CF3O−
+ H3CC(O)OH → (R4)

CF3O−
· H3CC(O)OH (m/z145)

The two Caltech CIMS instruments are described in brief be-
low. A more detailed description of the single quadrupole
and tandem CIMS instruments are available inCrounse et
al. (2006) and St. Clair et al.(2010), respectively. Sample
air enters the flow tube of the Caltech single quadrupole
CIMS instrument and is diluted approximately 1 : 4 with
ultra-high purity N2. Flow tube pressure is maintained at
35 hPa. The reagent ion, CF3O−, is generated by flowing a
mixture of ultra-high purity N2 and the reagent ion precur-
sor, CF3OOCF3, through a Po-210 source. The CF3O− is
introduced perpendicular to the sample flow. Ions are sam-
pled from the ion–molecule reaction volume into high vac-
uum where they are guided to a quadrupole mass filter and
detected with a channel electron multiplier. Each mass-to-
charge ratio is observed for∼0.5 s. HCN, glycolaldehyde,
and acetic acid masses were monitored once every∼15 s dur-
ing ARCTAS-CARB. As in the single quadrupole CIMS in-
strument, the flow tube of the tandem CIMS instrument is
maintained at 35 hPa total pressure. During the BEARPEX
campaign, ambient air was diluted 1: 7 with liquid nitro-
gen boil-off. The tandem CIMS instrument contains three
quadrupoles. The first quadrupole filters ions for a spe-
cific mass-to-charge ratio. These ions then enter the second
quadrupole, which serves as a collision-induced dissociation
(CID) chamber. The pressure in this quadrupole is main-
tained at 2.7× 10−3 hPa N2. Ions that reach this chamber
collide with N2 molecules and fragment into daughter ions.
The third quadrupole selects for a specific daughter ion. Each
mass-to-charge ratio is observed for∼1 s. Hydroxyacetone,
glycolaldehyde, and acetic acid masses were monitored once
every∼25 s.

2.2 Calibration and sensitivity

Due to differences in the reactivity of the analyte with
CF3O− and CF3O−

· H2O, the sensitivity of the Caltech
CIMS instrumentation to the ion products of Reactions (R1–
R4) varies with the mixing ratio of water vapor present in
the flow tube. H2O can also displace (ligand switching) or
hydrolyze the analyte anion. The dependence of instrument
sensitivity on water vapor mixing ratio was quantified dur-
ing laboratory calibrations. The ion signal was determined as
a function of humidity to obtain a water-dependent sensitiv-
ity curve. In all calibrations, mass flow controllers were used
to control the flow tube humidity by adjusting the ratio of

moist N2 to dry N2. Humidity was quantified by FTIR spec-
troscopy using HITRAN (high-resolution transmission) line
lists (Rothman et al., 2005) and the nonlinear fitting software
NLM4 developed byGriffith (1996). All analyte sensitivities
were corrected for background signals.

For calibrations, hydroxyacetone and glycolaldehyde stan-
dards were prepared by serial dilution. Gas-phase hydrox-
yacetone was produced by flowing dry N2 over commer-
cially available, 95 % pure hydroxyacetone (Alfa Aesar) into
a 150 L Teflon bag. Additional dry N2 was added to the
bag such that the final concentration of hydroxyacetone was
150 ppmv (parts per million by volume). Initially, the hy-
droxyacetone concentration was determined by both FTIR
absorption (Orlando et al., 1999) and quantification of the
mass loss of the liquid. These methods agreed within 25 %;
the concentration determined by mass loss was higher than
that determined by FTIR absorption. In calibration exper-
iments, hydroxyacetone concentration was determined by
mass loss alone as the FTIR instrument was dedicated to the
determination of water vapor concentration. From the 150 L
bag, 150 mL were quantitatively transferred to a 400 L Teflon
bag. A known quantity of dry N2 was added such that the
concentration of hydroxyacetone was 50 ppbv (parts per bil-
lion by volume) in the 400 L bag.

Similarly, gas-phase glycolaldehyde was transferred to a
100 L Teflon bag by flowing dry N2 over glycolaldehyde
dimer (Fluka Analytical) while gently heating the compound.
Additional dry N2 was added to the bag such that the concen-
tration of glycolaldehyde was 100 ppmv. The glycolaldehyde
concentration was determined by both FTIR absorption (Tu-
azon and Atkinson, 1989) and quantification of the mass loss
of the solid. These methods agreed within 45 %; the concen-
tration determined by mass loss was higher than that deter-
mined by FTIR absorption. During calibration experiments,
as mentioned above for hydroxyacetone, the FTIR was used
to determine water vapor concentration and so the glyco-
laldehyde concentration was determined by mass loss alone.
From the 100 L bag, 300 mL were quantitatively transferred
to a 400 L Teflon bag. Dry N2 was added to give a final gly-
colaldehyde concentration of 75 ppbv.

For acetic acid calibrations, a13C isotopically labeled
standard was used. The acetic acid evolved from a perme-
ation tube that was held at a constant temperature (Washen-
felder et al., 2003), and the permeation rate was determined
by mass loss.

Calibrations of hydroxyacetone, glycolaldehyde, and
acetic acid were conducted separately, but the method was
similar for all calibrations. A known quantity of analyte
from the standards discussed above was combined with wa-
ter vapor and N2 dilution gas in the instrument flow tube.
The CIMS instrument signal was monitored as a function
of water vapor in the flow tube to develop the instrument
sensitivity curve. The sensitivities of the single quadrupole
CIMS instrument to the cluster channel of hydroxyacetone
(m/z159), the cluster channel of glycolaldehyde (m/z145),
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Fig. 1. Single quadrupole CIMS instrument sensitivity curves for
hydroxyacetone (red), glycolaldehyde (green), acetic acid fluoride
transfer product (blue), and acetic acid cluster product (black) as
a function of H2O mixing ratio in the instrument flow tube. The
sensitivity curves are used to calculate the final concentrations of
the analytes.

the fluoride transfer channel of acetic acid (m/z79), and the
cluster channel of acetic acid (m/z145) are shown in Fig.1.
The sensitivity of the tandem CIMS instrument to the hy-
droxyacetone daughter ion (m/z = 159→ m/z = 85), gly-
colaldehyde daughter ion (m/z = 145→ m/z = 85), acetic
acid fluoride transfer daughter ion (m/z = 79→ m/z = 59),
and acetic acid cluster daughter ion (m/z = 149→ m/z =

79) are shown in Fig.2. Daughter ions produced in the CID
chamber of the Caltech tandem CIMS instrument are dis-
cussed below in Sect.3.2. Sensitivity is expressed in ion
counts, normalized by the ion counts of the sum of13C and
17O isotopes of the reagent ion and its one-water cluster,
per pptv (parts per trillion by volume) of analyte. Daughter
ions m/z = 86→ m/z = 86, m/z = 104→ m/z = 86, and
m/z = 104→ m/z = 104 of the reagent ions are used in nor-
malization of the tandem CIMS instrument ion counts.

Post-field-campaign laboratory calibrations for hydroxy-
acetone, glycolaldehyde, and acetic acid were conducted for
both the single quadrupole CIMS instrument and the tandem
CIMS instrument. During the ARCTAS-CARB flights and
the BEARPEX experiment, isotopically labeled acetic acid
from the permeation tube was periodically added to the flow
tube of the CIMS instruments to quantify the instrument sen-
sitivity. The sensitivity of the single quadrupole CIMS instru-
ment to acetic acid during the ARCTAS-CARB campaign
was consistent with that of laboratory calibrations. The con-
sistent sensitivity of the tandem CIMS instrument was simi-
larly confirmed during the BEARPEX campaign and labora-
tory calibrations.

In the absence of hydroxyacetone, glycolaldehyde, and
acetic acid, ion signals at their respectivem/zare nonzero.
Background signals were measured during field experiments
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Fig. 2.Tandem CIMS instrument sensitivity curves for hydroxyace-
tone daughter ionm/z = 159→ m/z = 85 (red), glycolaldehyde
daughter ionm/z = 145→ m/z = 85 (green), acetic acid fluoride
transfer daughter ionm/z = 79→ m/z = 59 (blue), and acetic acid
cluster daughter ionm/z = 145→ m/z = 79 (black) as a function
of the H2O mixing ratio in the instrument flow tube. The sensitivity
curves are used to calculate the final concentrations of the analytes.
Typical H2O mixing ratio values in the instrument flow tube were
approximately 1500 ppmv during the BEARPEX campaign.

by periodically passing ambient air through a filter consisting
of a few alumina pellets coated with palladium followed by
nylon wool coated with sodium bicarbonate, quantitatively
removing hydroxyacetone, glycolaldehyde, and acetic acid.
This technique is described inCrounse et al.(2006). Back-
ground signals were monitored approximately every 20 min
during the ARCTAS-CARB flights and approximately every
45 min during the BEARPEX campaign.

3 Determination of analyte concentration

3.1 Single quadrupole CIMS Instrument

The single quadrupole CIMS instrument was used to con-
duct ambient measurements in and around California during
the ARCTAS-CARB campaign. Determination of the ambi-
ent mixing ratios of glycolaldehyde, acetic acid, and HCN is
discussed below. Ambient mixing ratios of these trace gases
are calculated from the analyte ion signal after normaliza-
tion by the amount of reagent ion signal, subtraction of back-
ground signals, and application of the appropriate sensitivity
factor.

3.1.1 Hydroxyacetone

Hydroxyacetone clusters with the reagent ion CF3O− and is
detected atm/z159. There is a known atmospheric interfer-
ence at thatm/z: propanoic acid. Analogous to usingm/z79 to
remove the acetic acid contribution tom/z145 (Sect.3.1.2),
it is possible to usem/z 93 to remove the propanoic acid

Atmos. Chem. Phys., 14, 4251–4262, 2014 www.atmos-chem-phys.net/14/4251/2014/



J. M. St. Clair et al.: Quantification of hydroxyacetone and glycolaldehyde 4255

15 16 17 18 19 20 21 22
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

UTC (hours)

N
or

m
al

iz
ed

 c
ou

nt
s 

(a
rb

. u
ni

ts
)

 

 

Acetic acid signal
Glycolaldehyde signal

Fig. 3. A time series of the contribution of acetic acid and gly-
colaldehyde to them/z 145 signal detected by the Caltech single
quadrupole CIMS instrument during the 18 June 2008 flight. The
m/z145 signal due to acetic acid is estimated from them/z79 acetic
acid signal. The signal due to glycolaldehyde is determined by sub-
tracting the signal due to acetic acid from the totalm/z145 signal.

contribution tom/z159. Because propanoic acid has not been
observed in large quantities relative to hydroxyacetone out-
side of biomass-burning plumes, them/z159 data can gener-
ally be used for hydroxyacetone without correction.

3.1.2 Glycolaldehyde

The quantification of glycolaldehyde is complicated by
a significant interference due to acetic acid, an exact
mass analogue of glycolaldehyde. Both species undergo
CF3O− clustering chemistry and are detected atm/z 145.
Thus, them/z 145 signal due to acetic acid in the form
CF3O−

· H3CC(O)OH must be accounted for when deter-
mining the ambient glycolaldehyde concentration. This is ac-
complished by estimating them/z145 acetic acid signal from
the acetic acid signal detected atm/z79.

As discussed above, acetic acid also reacts with CF3O−

via fluoride ion transfer and is detected as H3CC(O)O−
· HF

at m/z 79 (R3). There are no known interferences at this
mass-to-charge ratio. The ratio of fluoride transfer ions
(m/z 79) to clustering ions (m/z 145) for acetic acid is de-
pendent on the amount of water in the instrument flow tube
(Fig. 1). The ratio is determined experimentally via the labo-
ratory and field calibrations discussed above. Them/z 145
signal due to acetic acid is estimated by multiplying the
m/z79 acetic acid signal by the water-dependent ratio of the
acetic acidm/z145 signal to the acetic acidm/z79 signal.
The average acetic acid contribution to the totalm/z145 sig-
nal ranged from 40 to 60 % over the four ARCTAS-CARB
flights. The contributions of acetic acid and glycolaldehyde

to them/z145 signal are shown for the 18 June 2008 flight in
Fig. 3.

Them/z145 signal due to glycolaldehyde is calculated by
subtracting them/z145 signal due to acetic acid from the to-
tal m/z145 signal detected by the single quadrupole CIMS
instrument. The corrected glycolaldehyde signal is converted
to concentration by application of the laboratory-determined
instrument sensitivity factor for glycolaldehyde (Fig.1, green
curve). The uncertainty in the single quadrupole glycolalde-
hyde measurements is approximately±(60 % + 50 pptv).
The uncertainty reflects the sum of the data precision deter-
mined by the counting statistics of the ions, the variability of
the background signal, and the uncertainty in the sensitivity
factors for glycolaldehyde and acetic acid shown in Fig.1.

3.2 Tandem CIMS instrument

The tandem CIMS instrument was used to conduct ambient
measurements at a tower site about 5 h downwind of Sacra-
mento during the BEARPEX 2009 campaign. Determination
of the ambient mixing ratios for hydroxyacetone, glycolalde-
hyde, and acetic acid is discussed below. Similar to measure-
ments made using the single quadrupole instrument, ambi-
ent concentrations of these trace gases are calculated from
the ion signals after normalization by the amount of reagent
ion signal, subtraction of background signals, and applica-
tion of the appropriate sensitivity factor. An advantage of tan-
dem CIMS lies in the ability to differentiate between isobaric
species provided their fragmentation patterns are sufficiently
unique.

3.2.1 Hydroxyacetone

The MS/MS ion signalm/z = 159→ m/z = 85 was used
to measure hydroxyacetone with the tandem CIMS instru-
ment. The uncertainty in the tandem hydroxyacetone mea-
surements is approximately±(40 % + 50 pptv). The uncer-
tainty reflects the sum of the precision of the data determined
by the counting statistics of the ions, the variability of the
background signal, and the uncertainty in the sensitivity fac-
tor shown in Fig.2.

3.2.2 Glycolaldehyde

The advantages of tandem mass spectrometry are demon-
strated in the separate quantification of the isobaric com-
pounds glycolaldehyde and acetic acid. The sequence of
quadrupole mass filter, CID chamber, and second quadrupole
mass filter enables the decomposition of isobaric ions into
daughter ion fragments. As discussed above, while operating
in tandem MS mode, ions of a selected mass-to-charge ratio
pass through the first quadrupole mass filter and into the CID
chamber, where they collide with N2 molecules and fragment
into daughter ions. The second quadrupole mass filter selects
daughter ions of a certain mass-to-charge ratio.

www.atmos-chem-phys.net/14/4251/2014/ Atmos. Chem. Phys., 14, 4251–4262, 2014
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A.

B.

Fig. 4.Collision-induced dissociation fragmentation pattern of gly-
colaldehyde(A) and acetic acid(B) including the percentage of
m/z145 parent ions that fragment to each of the daughter ions. The
orthogonality of daughter ions enables confident differentiation of
glycolaldehyde and acetic acid.

Glycolaldehyde and acetic acid CF3O− cluster ions frag-
ment differently due to differences in the stabilities of
their clusters and the resultant daughter fragments. Sig-
nificant daughter ion signals were observed atm/z 79,
m/z85, andm/z145 and are denotedm/z = 145→ m/z =

79,m/z = 145→ m/z = 85, andm/z = 145→ m/z = 145,
respectively. Figure4 shows the parent ions – glycolaldehyde
and acetic acid – and their significant daughter ion fragments
for the collision energies used here. The daughter ion signals
are reported relative to the sum of the three significant daugh-
ter ion signals for each compound. As shown in Fig.4a, 90 %
of glycolaldehydem/z 145 parent ions fragment tom/z 85
daughter ions, and 0 % fragment tom/z 79 daughter ions.
The predominate daughter ion of acetic acidm/z 145 par-
ent ions ism/z79 (72 %) (Fig.4b). Ten percent of acetic acid
m/z145 parent ions fragment tom/z85. Ten percent of gly-
colaldehyde and 18 % of acetic acidm/z145 parent ions do
not fragment and are detected atm/z = 145→ m/z = 145.
Acetic acid also fragments tom/z = 145→ m/z = 59, but
the ion signal is a factor of ten less than that observed at
m/z = 145→ m/z = 79.

Based on the fragmentation patterns, ambient signals due
to glycolaldehyde and acetic acid are separated. Them/z =

145→ m/z = 85 signal is mainly due to glycolaldehyde, and
the small contribution due to acetic acid is accounted for dur-
ing data analysis. The signal atm/z = 145→ m/z = 85 due
to acetic acid is calculated by multiplying the acetic acid sig-
nal atm/z = 145→ m/z = 79 by the laboratory-derived ra-
tio of acetic acid signal atm/z = 145→ m/z = 85 to acetic
acid signal atm/z = 145→ m/z = 79. Them/z = 145→

m/z = 85 signal due to glycolaldehyde is calculated by sub-
tracting the acetic acidm/z = 145→ m/z = 85 signal from
the totalm/z = 145→ m/z = 85 signal.
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Fig. 5. ARCTAS-CARB flight tracks colored by glycolaldehyde.
Data presented are those when pressure altitude is less than 1.5 km.
Observed concentrations of glycolaldehyde are lowest along the
coast and highest further inland, closer to biomass-burning and bio-
genic sources.

Glycolaldehyde concentrations are calculated using the
corrected glycolaldehydem/z = 145→ m/z = 85 ion signal
and the corresponding tandem CIMS instrument sensitivity
curve. Acetic acid concentrations are calculated using both
them/z = 79→ m/z = 59 andm/z = 145→ m/z = 79 ion
signals and their respective sensitivity curves. The uncer-
tainty in the tandem CIMS glycolaldehyde measurements
is approximately±(50 % + 50 pptv). The uncertainty in the
tandem CIMS acetic acid measurements is approximately
±(40 % + 50 pptv). The uncertainties reflect the sum of the
precision of the data determined by the counting statistics of
the ions, the variability of the background signal, and the un-
certainty in the sensitivity factors shown in Fig.2.

3.3 Comparison of the two CIMS techniques

The Caltech single quadrupole CIMS instrument has higher
ion transmission, and consequently higher sensitivity, than
the tandem CIMS instrument. Measurement of an analyte by
the single quadrupole instrument is therefore preferable to
measurement by the tandem CIMS instrument, when there
are no interferences at the observedm/z. For analytes such as
glycolaldehyde, the benefit of the higher precision for the sin-
gle quadrupole CIMS is offset by the uncertainty introduced
by subtracting a portion of the signal due to interfering com-
pounds. As the signal from the interfering compound consti-
tutes a larger fraction of the total observed signal, the uncer-
tainty in the final glycolaldehyde mixing ratio increases. Be-
cause acetic acid is much more prevalent in the atmosphere
than propanoic acid, relative to glycolaldehyde and hydrox-
yacetone, respectively, the tandem CIMS technique benefits
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Fig. 6. Concentrations of acetic acid (m/z = 145→ m/z = 79,
red), glycolaldehyde (m/z = 145→ m/z = 85, blue), and hydrox-
yacetone (m/z = 159→ m/z = 85, black) measured using the Cal-
tech tandem CIMS instrument during the BEARPEX 2009 cam-
paign.

the measurement of glycolaldehyde more than the measure-
ment of hydroxyacetone.

4 Observations

Aircraft observations indicate a range of glycolaldehyde con-
centrations in California. Low altitude (<1.5 km pressure al-
titude) DC-8 flight tracks over northern and central Califor-
nia colored by observed glycolaldehyde concentrations are
shown in Fig.5. Observed concentrations range from several
hundred pptv along the coast to concentrations greater than
10 ppbv further inland, closer to biomass-burning and bio-
genic sources. Ground-based measurements of hydroxyace-
tone, glycolaldehyde, and acetic acid concentrations during
BEARPEX 2009 are shown in Fig.6.

5 Results and discussion

5.1 ARCTAS-CARB 2008

During the ARCTAS-CARB 2008 campaign, glycolaldehyde
concentrations are well correlated with HCN, an atmospheric
tracer of biomass-burning emissions (e.g.,Li et al., 2003),
as shown in Fig.7 for low altitude measurements (< 1.5 km
pressure altitude). Linear regression, using theYork et al.
(2004) method that takes into account errors in both the ab-
scissa and ordinate values, gives a slope of 2.5 andR2

=

0.84. Significant glycolaldehyde concentrations occur only
in air masses with elevated HCN (≥ 250 pptv).

Individual enhancement ratios (Akagi et al., 2011) were
calculated for three biomass-burning plumes in which glyco-
laldehyde, HCN, and CO were measured. A list of biomass-
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Fig. 7. Correlation between glycolaldehyde and HCN during the
ARCTAS-CARB 2008 campaign. The slope of the linear regression
is 2.5, withR2 = 0.84.

burning plumes encountered by the DC-8 during the ARC-
TAS campaign can be found inHornbrook et al.(2011). Pos-
sible biomass-burning plumes are identified by time periods
of elevated biomass-burning tracer mixing ratios. Plumes are
defined by HCN greater than 400 pptv, acetonitrile (CH3CN)
greater than 200 pptv, and CO greater than 175 ppbv. Ele-
vated mixing ratios of NOx and toluene, anthropogenic trac-
ers, were used to exclude plumes sampled in urban regions.
Multiple samplings of a plume were grouped together and
are referred to as a single plume. The plumes analyzed in
this work were encountered at 18:27–18:30 UTC (Univer-
sal Time Coordinated) and 18:38–18:41 UTC on 18 June,
21:08–21:12 UTC and 21:23–21:44 UTC on 22 June, and
14:32–14:35 UTC, 15:34–16:17 UTC, and 16:39–16:57 UTC
on 26 June. The correlation of glycolaldehyde with CO, a
long-lived plume tracer, was determined by linear regression
using theYork et al.(2004) method. Calculated enhancement
ratios, associatedR2 values, and the estimated plume age of
the three plumes are given in Table1.

A number of studies have reported emission ratios or emis-
sion factors for laboratory and field measurements of glyco-
laldehyde from biomass burning (Akagi et al., 2011, 2012;
Yokelson et al., 2013; Johnson et al., 2013). The observed
fires span a range of fuel types and modified combustion ef-
ficiencies (MCE). Emission ratios range from 14 (pptv gly-
colaldehyde / ppbv CO) for a tropical forest (Akagi et al.,
2011) to 1.87× 10−2 for chaparral in California (Akagi et al.,
2012), with most values between 1 and 10. The mean calcu-
lated enhancement ratio of glycolaldehyde for the biomass-
burning plumes encountered in California and discussed in
this work is 5.7. These ratios were determined for fires with
different plume ages and various fuel types. Post-emission
chemistry is expected to affect enhancement ratios, and
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Table 1. Calculated enhancement ratios and the associatedR2 val-
ues (given in parentheses) of HCN and glycolaldehyde (GLYC)
relative to long-lived plume tracer CO for three biomass-burning
plumes encountered during the 2008 ARCTAS-CARB campaign.

Flight date 1GLYC(pptv)
1CO (ppbv) Plume age (days)a

18 June 4.6 (0.91) 1
22 June 5.7 (0.56) 0.1
26 June 6.8 (0.93) 1

a Hornbrook et al.(2011).

previous work has observed an increase in glycolaldehyde
relative to CO with plume age (Akagi et al., 2012). The
ARCTAS-CARB observations are consistent with the previ-
ously reported observations of glycolaldehyde in biomass-
burning plumes.

5.2 BEARPEX 2009

The BEARPEX ground site is located on the western slope
of the Sierra Nevada in a ponderosa pine plantation. The
site is approximately 5 h downwind of Sacramento, and a
band of oak forest is located approximately halfway between
Sacramento and the site. The prevailing daytime wind pat-
tern transports anthropogenic volatile organic compounds
(VOCs) and NOx emissions from Sacramento and the Cen-
tral Valley to the site. Isoprene, emitted from the band of oak
forest, and MBO, emitted locally by the ponderosa pine for-
est, are added to the mixture. Wind direction reverses at night
and brings clean air from the mountains to the site. Further
details of the BEARPEX site can be found inGoldstein et al.
(2000) andDreyfus et al.(2002).

Hydroxyacetone and glycolaldehyde concentrations are
well correlated during the BEARPEX 2009 campaign
(Fig. 8). The slope of the linear regression is 1.42± 0.01,
and the intercept is−1.9± 5 pptv, withR2

= 0.91. The high
correlation is consistent with the hypothesis that hydroxy-
acetone and glycolaldehyde have similar sources (isoprene
second-generation photooxidation) and sinks (reaction with
OH and photolysis). The average ambient temperature was
∼5 K higher for days after the day-of-year (DOY) 195 com-
pared to those prior (Fig.6). This is a likely explanation
for the increase in observed hydroxyacetone, glycolaldehyde,
and acetic acid concentrations after DOY 195 as emissions
of isoprene and MBO are light and temperature dependent
(Baker et al., 1999; Lamanna et al., 1999; Schade et al., 2000;
Schade and Goldstein, 2001; Gray et al., 2005). The mean
hydroxyacetone concentration measured during BEARPEX
2009 was 774 pptv, and the mean glycolaldehyde concentra-
tion was 986 pptv.Spaulding et al.(2003) measured similar
hydroxyacetone and glycolaldehyde concentrations (420 and
690 pptv, respectively) during an 8-day sampling period at
the same site in August and September of 2000.
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Fig. 8. Correlation between glycolaldehyde and hydroxyacetone
during the BEARPEX 2009 campaign. Point color represents data
density, with hotter colors being higher density. The slope of the
linear regression is 1.42, and the intercept is−1.9 pptv.R2 = 0.91.
The correlation is consistent with the hypothesis that hydroxyace-
tone and glycolaldehyde have similar sources and sinks.

A simple box model was employed to provide the context
for the BEARPEX measurements of glycolaldehyde and hy-
droxyacetone. VOCs represented in the model are isoprene
and MBO; the concentrations of these VOCs simulate an
isoprene source between Sacramento and the measurement
site (the suburban oak tree belt) and a local source of MBO
from the ponderosa pine plantation. The model was devel-
oped such that emissions from Sacramento (located at time
0) and the suburban oak tree belt (located at time≈ 150 min)
are processed en route to the BEARPEX site (located at time
≈ 300 min). The magnitude of the emissions is constructed
such that the concentrations of isoprene and MBO are consis-
tent with measurements conducted at the site. The time cho-
sen as representative of the measurement site, 300 min, con-
sistent with a 5 h transport time from Sacramento to the site.
Modeled concentrations of isoprene and MBO are shown in
Fig. 9a. At 300 min, isoprene and MBO concentrations are
both 2 ppbv.

Reaction rate constants are taken from IUPAC (Interna-
tional Union of Pure and Applied Chemistry) (Atkinson et
al., 2004, 2006) and JPL (Jet Propulsion Laboratory) (Sander
et al., 2006) compilations. The rate constants for the reac-
tions of isoprene-derived RO2 and HO2 suggested byJenkin
et al.(1997) have been used. Photolysis rates were calculated
using the Tropospheric Ultraviolet and Visible (TUV) ra-
diation model (http://cprm.acd.ucar.edu/Models/TUV/). The
isoprene oxidation mechanisms ofPaulot et al.(2009a,
b) have been followed with modifications and additions
to mechanisms based on recent laboratory chamber exper-
iments. The yield of hydroxyacetone from methacrolein
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Fig. 9. Ratio of the production of glycolaldehyde to the production
of hydroxyacetone and concentration of isoprene and MBO(A) as
predicted by a simple box model of the BEARPEX 2009 campaign.
Ratio of glycolaldehyde concentration to hydroxyacetone concen-
tration (B). As the BEARPEX site is approximately 5 h downwind
of Sacramento, CA, model oxidation time of 300 min is expected to
correspond to site conditions. The observed ratio of glycolaldehyde
to hydroxyacetone is marked at 300 min (red dot).

oxidation in the presence of NOx has been increased to 0.43,
consistent with the findings ofOrlando et al.(1999) andGal-
loway et al.(2011). The mechanism describing MBO oxi-
dation in the presence of NOx from Chan et al.(2009) has
been followed. A 0.15 yield of glycolaldehyde from MBO
oxidation under low-NOx conditions has been used as sug-
gested by recent laboratory chamber experiments performed
at Caltech. A unimolecular isomerization pathway from the
hydroxyperoxy radical of MACR that yields hydroxyacetone
has been added and is the dominant formation pathway for
hydroxyacetone in the model (Crounse et al., 2012). The
model includes a smaller yield of hydroperoxide (0.3) from
MVK RO2+HO2 chemistry than recommended by the Mas-
ter Chemical Mechanism, MCM v3.2 (Jenkin et al., 1997;
Saunders et al., 2003), and a large yield (0.6) of glycolalde-
hyde. The model does not include deposition.

Absolute concentrations of glycolaldehyde and hydroxy-
acetone calculated by the model are 1.1 and 0.9 ppbv, re-
spectively, at 300 min and are similar to the mean observa-

tions from the campaign. The ratio of the glycolaldehyde
concentration to hydroxyacetone concentration predicted by
the model is shown in Fig.9b. The predicted ratio result-
ing from only isoprene oxidation ranges from 1.1 to 1.2. The
initial ratio is determined by the prompt formation of glyco-
laldehyde and hydroxyacetone via radical rearrangement as
proposed by theoretical work (Dibble, 2004a, b; Peeters and
Nguyen, 2012) and recent laboratory chamber experiments
(Paulot et al., 2009a; Galloway et al., 2011) and suggested
by field observations (Karl et al., 2009). The ratio increases
when glycolaldehyde from MVK oxidation and hydroxyace-
tone from MACR oxidation are the dominant formation path-
ways. Since glycolaldehyde is formed from MBO oxidation
and hydroxyacetone is not, the glycolaldehyde / hydroxyace-
tone ratio increases from 1.2 to 1.6 as more MBO is oxi-
dized to form glycolaldehyde (250–600 min). The ratio of
the production rate of glycolaldehyde to that of hydroxyace-
tone is shown in Fig.9a and is mostly affected by increased
glycolaldehyde production from MBO oxidation. Late in the
model, oxidation of dihydroxyepoxides (IEPOX) of isoprene
contributes to both hydroxyacetone and glycolaldehyde con-
centrations (Bates et al., 2014), highlighting the potential im-
portance of the late-generation isoprene oxidation chemistry
at the site. The observed ratio of glycolaldehyde to hydroxy-
acetone at the BEARPEX site is 1.4 (Fig.8), indicating pre-
dictions based only on isoprene and MBO chemistry are con-
sistent with observations.

6 Conclusions

Chemical ionization mass spectrometry provides robust de-
tection and quantification of hydroxyacetone and glycolalde-
hyde. The Caltech single quadrupole and tandem mass spec-
trometers are equally capable of the measurement of hydrox-
yacetone. Tandem mass spectrometry provides direct sep-
aration of the daughter ions of glycolaldehyde and acetic
acid, enabling the differentiation of these mass analogues.
This online method enables fast, in situ measurements with
no sample processing. Ambient measurements of glycolalde-
hyde were conducted during the ARCTAS-CARB 2008 cam-
paign using the Caltech single quadrupole CIMS instrument.
Enhancement ratios of glycolaldehyde were calculated for
three biomass-burning plumes encountered in California dur-
ing June 2008. Ambient measurements of hydroxyacetone
and glycolaldehyde concentrations from the oxidation of bio-
genic emissions were conducted during the BEARPEX 2009
campaign using the Caltech tandem CIMS instrument. The
observed ratio of glycolaldehyde to hydroxyacetone mixing
ratios is consistent with predictions from a simple box model
in which isoprene and MBO are the only VOCs represented.

www.atmos-chem-phys.net/14/4251/2014/ Atmos. Chem. Phys., 14, 4251–4262, 2014



4260 J. M. St. Clair et al.: Quantification of hydroxyacetone and glycolaldehyde

Acknowledgements.G. S. Diskin and G. W. Sachse pro-
vided ARCTAS-CARB water measurements and CO measure-
ments. BEARPEX 2009 water measurements were provided by
A. H. Goldstein. Isoprene and MBO measurements were provided
by G. W. Schade. The authors wish to thank the ARCTAS-CARB
science team, the DC-8 crew, and the ARCTAS-CARB support
team. The authors also wish to thank the BEARPEX science team
and the UC Blodgett Forest Research staff. The hydroxyacetone,
glycolaldehyde, and acetic acid measurements and their interpreta-
tion were made possible with the financial support of NASA (NAG:
NNX-08AD29G) and the NSF (ATM-0934408).

Edited by: V. F. McNeill

References

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J.,
Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emis-
sion factors for open and domestic biomass burning for use
in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072,
doi:10.5194/acp-11-4039-2011, 2011.

Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokel-
son, R. J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld,
J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of
trace gases and particles emitted by a chaparral fire in California,
Atmos. Chem. Phys., 12, 1397–1421, doi:10.5194/acp-12-1397-
2012, 2012.

Amelynck, C., Van Bavel, A. M., Schoon, N., and Arijs, E.: Gas
phase reactions of CF3O− and CF3O−

· H2O and their rele-
vance to the detection of stratospheric HCl, Int. J. Mass Spec-
trom., 202, 207–216, 2000a.

Amelynck, C., Schoon, N., and Arijs, E.: Gas phase reactions of
CF3O−and CF3O−

· H2O with nitric, formic, and acetic acid,
Int. J. Mass Spectrom., 203, 165–175, 2000b.

Atkinson, R., and Arey, J.: Gas-phase tropospheric chemistry of
biogenic volatile organic compounds: A review, Atmos. En-
viron., 37, S197–S219, doi:10.1016/S1352-2310(03)00391-1,
2003.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hamp-
son, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.:
Evaluated kinetic and photochemical data for atmospheric chem-
istry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx
species, Atmos. Chem. Phys., 4, 1461–1738, doi:10.5194/acp-4-
1461-2004, 2004.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hamp-
son, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.:
Evaluated kinetic and photochemical data for atmospheric chem-
istry: Volume II – gas phase reactions of organic species, At-
mos. Chem. Phys., 6, 3625–4055, doi:10.5194/acp-6-3625-2006,
2006.

Baker, B., Guenther, A., Greenberg, J., Goldstein, A., and Fall, R.:
Canopy fluxes of 2-methyl-3-buten-2-ol over a ponderosa pine
forest by relaxed eddy accumulation: Field data and model com-
parison, J. Geophys. Res.-Atmos., 104, 26107–26114, 1999.

Bates, H. B., Crounse, J. D., St. Clair, J. M., Bennett, N. B., Nguyen,
T. B., Seinfeld, J. H., Stoltz, B. M., and Wennberg, P. O.: Gas
phase production and loss of isoprene epoxydiols, J. Phys. Chem.
A, 118, 1237—1246, doi:10.1021/jp4107958, 2014.

Butkovskaya, N. I., Pouvesle, N., Kukui, A., and Le Bra, G.: Mech-
anism of the OH-initiated oxidation of glycolaldehyde over the
temperature range 233–296 K, J. Phys. Chem. A, 110, 13492–
13499, doi:10.1021/JP064993K, 2006a.

Butkovskaya, N. I., Pouvesle, N., Kukui, A., Mu, Y. J., and Le Bras,
G.: Mechanism of the OH-initiated oxidation of hydroxyacetone
over the temperature range 236–298 K, J. Phys. Chem. A, 110,
6833–6843, doi:10.1021/JP056345R, 2006b.

Chameides, W. L., Lindsay, R. W., Richardson, J., and Kiang, C.
S.: The role of biogenic hydrocarbons in urban photochemical
smog: Atlanta as a case study, Science, 241, 1473–1475, 1988.

Chan, A. W. H., Galloway, M. M., Kwan, A. J., Chhabra, P. S.,
Keutsch, F. N., Wennberg, P. O., Flagan, R. C., and Seinfeld, J.
H.: Photooxidation of 2-Methyl-3-Buten-2-ol (MBO) as a poten-
tial source of secondary organic aerosol, Environ. Sci. Technol.,
43, 4647–4652, doi:10.1021/ES802560W, 2009.

Crounse, J. D., McKinney, K. A., Kwan, A. J., and Wennberg, P. O.:
Measurement of gas-phase hydroperoxides by chemical ioniza-
tion mass spectrometry, Anal. Chem., 78, 6726–6732, 2006.

Crounse, J. D., DeCarlo, P. F., Blake, D. R., Emmons, L. K., Cam-
pos, T. L., Apel, E. C., Clarke, A. D., Weinheimer, A. J., Mc-
Cabe, D. C., Yokelson, R. J., Jimenez, J. L., and Wennberg,
P. O.: Biomass burning and urban air pollution over the Cen-
tral Mexican Plateau, Atmos. Chem. Phys., 9, 4929–4944,
doi:10.5194/acp-9-4929-2009, 2009.

Crounse, J. D., Knap, H. C., Ornso, K. B, Jorgensen, S., Paulot,
F., Kjaergaard, H. G., and Wennberg, P. O.: Atmospheric fate
of methacrolein. 1. peroxy radical isomerization following ad-
dition of OH and O2, J. Phys. Chem. A, 9, 5756–5762,
doi:10.1021/jp211560u, 2012.

Dibble, T. S.: Intramolecular hydrogen bonding and double H-atom
transfer in peroxy and alkoxy radicals from isoprene, J. Phys.
Chem. A, 108, 2199–2207, doi:10.1021/JP0306702, 2004a.

Dibble, T. S.: Prompt chemistry of alkenoxy radical products of the
double H-atom transfer of alkoxy radicals from isoprene, J. Phys.
Chem. A, 108, 2208–2215, doi:10.1021/JP0312161, 2004b.

Dreyfus, G. B., Schade, G. W., and Goldstein, A. H.: Ob-
servational constraints on the contribution of isoprene ox-
idation to ozone production on the western slope of the
Sierra Nevada, California, J. Geophys. Res.-Atmos., 107, 4365,
doi:10.1029/2001JD001490, 2002.

Galloway, M. M., Huisman, A. J., Yee, L. D., Chan, A. W. H., Loza,
C. L., Seinfeld, J. H., and Keutsch, F. N.: Yields of oxidized
volatile organic compounds during the OH radical initiated oxi-
dation of isoprene, methyl vinyl ketone, and methacrolein under
high NOx conditions, Atmos. Chem. Phys., 11, 10779–10790,
doi:10.5194/acp-11-10779-2011, 2011.

Goldan, P. D., Kuster, W. C., Fehsenfeld, F. C., and Montzka, S. A.:
The observation of a C5 alcohol emission in a North American
pine forest, Geophysical Research Letters, 20, 1039–1042, 1993.

Goldstein, A. H., Hultman, N. E., Fracheboud, J. M., Bauer, M.
R., Panek, J. A., Xu, M., Qi, Y., Guenther, A. B., and Baugh,
W.: Effects of climate variability on the carbon dioxide, water,
and sensible heat fluxes above a ponderosa pine plantation in the
Sierra Nevada (CA), Agr. Forest Meteorol., 101, 113–129, 2000.

Gray, D. W., Goldstein, A. H., and Lerdau, M. T.: The influence
of light environment on photosynthesis and basal methylbutenol
emission fromPinus ponderosa, Plant Cell Environ., 28, 1463–
1474, 2005.

Atmos. Chem. Phys., 14, 4251–4262, 2014 www.atmos-chem-phys.net/14/4251/2014/

http://dx.doi.org/10.5194/acp-11-4039-2011
http://dx.doi.org/10.5194/acp-12-1397-2012
http://dx.doi.org/10.5194/acp-12-1397-2012
http://dx.doi.org/10.1016/S1352-2310(03)00391-1
http://dx.doi.org/10.5194/acp-4-1461-2004
http://dx.doi.org/10.5194/acp-4-1461-2004
http://dx.doi.org/10.5194/acp-6-3625-2006
http://dx.doi.org/10.1021/jp4107958
http://dx.doi.org/10.1021/JP064993K
http://dx.doi.org/10.1021/JP056345R
http://dx.doi.org/10.1021/ES802560W
http://dx.doi.org/10.5194/acp-9-4929-2009
http://dx.doi.org/10.1021/jp211560u
http://dx.doi.org/10.1021/JP0306702
http://dx.doi.org/10.1021/JP0312161
http://dx.doi.org/10.1029/2001JD001490
http://dx.doi.org/10.5194/acp-11-10779-2011


J. M. St. Clair et al.: Quantification of hydroxyacetone and glycolaldehyde 4261

Griffith, D. W. T.: Synthetic calibration and quantitative analysis of
gas-phase FT-IR spectra, Appl. Spectrosc., 50, 59–70, 1996.

Grosjean, D., Williams, E. L., and Grosjean, E.: Atmospheric chem-
istry of isoprene and of its carbonyl products, Environ. Sci. Tech-
nol., 27, 830–840, 1993.

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C.,
Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A.,
Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Tay-
lor, J., and Zimmerman, P.: A global-model of natural volatile
organic-compound emissions, J. Geophys. Res.-Atmos., 100,
8873–8892, 1995.

Harley, P., Fridd-Stroud, V., Greenberg, J., Guenther, A., and Vas-
concellos, P.: Emission of 2-methyl-3-buten-2-ol by pines: A
potentially large natural source of reactive carbon to the atmo-
sphere, J. Geophys. Res.-Atmos., 103, 25479–25486, 1998.

Hornbrook, R. S., Blake, D. R., Diskin, G. S., Fuelberg, H. E.,
Meinardi, S., Mikoviny, T., Sachse, G. W., Vay, S. A., Wein-
heimer, A. J., Wiedinmyer, C., Wisthaler, A., Hills, A., Riemer,
D. D., and Apel, E. C.: Observations of volatile organic com-
pounds during ARCTAS – Part 1: Biomass burning emissions
and plume enhancements, Atmos. Chem. Phys., 11, 11103–
11130, doi:10.5194/acp-11-11103-2011, 2011.

Huey, L. G., Villalta, P. W., Dunlea, E. J., Hanson, D. R., and
Howard, C. J.: Reactions of CF3O− with atmospheric trace
gases, J. Phys. Chem., 100, 190–194, 1996.

Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric
degradation of volatile organic compounds: A protocol for mech-
anism development, Atmos. Environ., 31, 81–104, 1997.

Johnson, T. J., Sams, R. L., Profeta, L. T. M., Akagi, S. K., Burl-
ing, I. R., Yokelson, R. J., Williams, S. D.: Quantitative IR spec-
trum and vibrational assignments for glycolaldehyde vapor: gly-
colaldehyde measurements in biomass burning plumes, J. Phys.
Chem. A, 117, 4096–4107, doi:/10.1021/jp311945p, 2013.

Karl, T., Guenther, A., Turnipseed, A., Tyndall, G., Artaxo, P., and
Martin, S.: Rapid formation of isoprene photo-oxidation prod-
ucts observed in Amazonia, Atmos. Chem. Phys., 9, 7753–7767,
doi:10.5194/acp-9-7753-2009, 2009.

Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Se-
infeld, J. H.: Secondary organic aerosol formation from iso-
prene photooxidation, Environ. Sci. Technol., 40, 1869–1877,
doi:10.1021/ES0524301, 2006.

Lamanna, M. S., and Goldstein, A. H.: In situ measurements of
C2–C10 volatile organic compounds above a Sierra Nevada pon-
derosa pine plantation, J. Geophys. Res.-Atmos., 104, 21247–
21262, 1999.

Lee, Y. N., and Zhou, X. L.: Method for the determination of some
soluble atmospheric carbonyl compounds, Environ. Sci. Tech-
nol., 27, 749–756, 1993.

Lee, Y. N., Zhou, X. L., and Hallock, K.: Atmospheric carbonyl
compounds at a rural Southeastern U.S. site, J. Geophys. Res.-
Atmos., 100, 25933–25944, 1995.

Li, Q. B., Jacob, D. J., Yantosca, R. M., Heald, C. L., Singh,
H. B., Koike, M., Zhao, Y. J., Sachse, G. W., and Streets, D.
G.: A global three-dimensional model analysis of the atmo-
spheric budgets of HCN and CH3CN: Constraints from aircraft
and ground measurements, J. Geophys. Res.-Atmos., 108, 8827,
doi:10.1029/2002JD003075, 2003.

Matsunaga, S., Mochida, M., and Kawamura, K.: Growth of organic
aerosols by biogenic semi-volatile carbonyls in the forestal at-

mosphere, Atmos. Environ., 37, 2045–2050, doi:10.1016/S1352-
2310(03)00089-X, 2003.

Moortgat, G. K., Grossmann, D., Boddenberg, A., Dallmann, G.,
Ligon, A. P., Turner, W. V., Gab, S., Slemr, F., Wieprecht, W.,
Acker, K., Kibler, M., Schlomski, S., and Bachmann, K.: Hydro-
gen peroxide, organic peroxides and higher carbonyl compounds
determined during the BERLIOZ campaign, J. Atmos. Chem.,
42, 443–463, 2002.

Niki, H., Maker, P. D., Savage, C. M., and Hurley, M. D.: Fourier
transform infrared study of the kinetics and mechanisms for the
Cl-atom- and HO-radical-initiated oxidation of glycolaldehyde,
J. Phys. Chem., 91, 2174–2178, 1987.

Orlando, J. J., Tyndall, G. S., Fracheboud, J. M., Estupinan, E.
G., Haberkorn, S., and Zimmer, A.: The rate and mechanism of
the gas-phase oxidation of hydroxyacetone, Atmos. Environ., 33,
1621–1629, 1999.

Paulson, S. E., Flagan, R. C., and Seinfeld, J. H.: Atmospheric pho-
tooxidation of isoprene Part 1: The hydroxyl radical and ground-
state atomic oxygen reactions, Int. J. Chem. Kin., 24, 79–101,
1992.

Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J.
H., and Wennberg, P. O.: Isoprene photooxidation: New insights
into the production of acids and organic nitrates, Atmos. Chem.
Phys., 9, 1479–1501, doi:10.5194/acp-9-1479-2009, 2009a.

Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kurten, A., St. Clair,
J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide
formation in the gas-phase photooxidation of isoprene, Science,
325, 730–733, doi:10.1126/science.1172910, 2009b.

Peeters, J. and Nguyen, T. L.: Unusually fast 1,6-H shifts of enolic
hydrogens in peroxy radicals: formation of the first-generation
C2 and C3 carbonyls in the oxidation of isoprene, J. Phys. Chem.
A, 116, 6134–6141, doi:10.1021/jp211447q, 2012.

Rothman, L. S., Jacquemart, D., Barbe, A., Benner, D. C., Birk,
M., Brown, L. R., Carleer, M. R., Chackerian, C., Chance, K.,
Coudert, L. H., Dana, V., Devi, V. M., Flaud, J. M., Gamache,
R. R., Goldman, A., Hartmann, J. M., Jucks, K. W., Maki, A. G.,
Mandin, J. Y., Massie, S. T., Orphal, J., Perrin, A., Rinsland, C.
P., Smith, M. A. H., Tennyson, J., Tolchenov, R. N., Toth, R. A.,
Vander Auwera, J., Varanasi, P., and Wagner, G.: The HITRAN
2004 molecular spectroscopic database, J. Quant. Spectrosc. Ra-
diat. Transf., 96, 139–204, 2005.

Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moort-
gat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R.,
Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and
Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use
in Atmospheric Studies, Evaluation Number 15 JPL Publication
06-2, NASA Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, 2006.

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M.
J.: Protocol for the development of the Master Chemical Mech-
anism, MCM v3 (Part A): Tropospheric degradation of non-
aromatic volatile organic compounds, Atmos. Chem. Phys., 3,
161–180, doi:10.5194/acp-3-161-2003, 2003.

Schade, G. W., Goldstein, A. H., Gray, D. W., and Lerdau, M. T.:
Canopy and leaf level 2-methyl-3-buten-2-ol fluxes from a pon-
derosa pine plantation, Atmos. Environ., 34, 3535–3544, 2000.

Schade, G. W., and Goldstein, A. H.: Fluxes of oxygenated volatile
organic compounds from a ponderosa pine plantation, J. Geo-
phys. Res.-Atmos., 106, 3111–3123, 2001.

www.atmos-chem-phys.net/14/4251/2014/ Atmos. Chem. Phys., 14, 4251–4262, 2014

http://dx.doi.org/10.5194/acp-11-11103-2011
http://dx.doi.org/10.5194/acp-9-7753-2009
http://dx.doi.org/10.1021/ES0524301
http://dx.doi.org/10.1029/2002JD003075
http://dx.doi.org/10.1016/S1352-2310(03)00089-X
http://dx.doi.org/10.1016/S1352-2310(03)00089-X
http://dx.doi.org/10.5194/acp-9-1479-2009
http://dx.doi.org/10.1126/science.1172910
http://dx.doi.org/10.1021/jp211447q
http://dx.doi.org/10.5194/acp-3-161-2003


4262 J. M. St. Clair et al.: Quantification of hydroxyacetone and glycolaldehyde

Spaulding, R. S., Schade, G. W., Goldstein, A. H., and Charles,
M. J.: Characterization of secondary atmospheric photooxidation
products: Evidence for biogenic and anthropogenic sources, J.
Geophys. Res.-Atmos., 108, 4247, doi:10.1029/2002JD002478,
2003.

Spencer, K. M., McCabe, D. C., Crounse, J. D., Olson, J. R., Craw-
ford, J. H., Weinheimer, A. J., Knapp, D. J., Montzka, D. D.,
Cantrell, C. A., Hornbrook, R. S., Mauldin, R. L., and Wennberg,
P. O.: Inferring ozone production in an urban atmosphere us-
ing measurements of peroxynitric acid, Atmos. Chem. Phys., 9,
3697–3707, doi:10.5194/acp-9-3697-2009, 2009.

St. Clair, J. M., McCabe, D. C., Crounse, J. D., Steiner, U., and
Wennberg, P. O.: Chemical ionization tandem mass spectrometer
for the in situ measurement of methyl hydrogen peroxide, Rev.
Sci. Inst., 81, 094102, doi:10.1063/1.3480552, 2010.

Tuazon, E. C., and Atkinson, R.: A product study of the gas-phase
reaction of methyl vinyl ketone with the OH radical in the pres-
ence of NOx, Int. J. Chem. Kin., 21, 1141–1152, 1989.

Tuazon, E. C., and Atkinson, R.: A product study of the gas-phase
reaction of isoprene with the OH radical in the presence of NOx,
Int. J. Chem. Kin., 22, 1221–1236, 1990a.

Tuazon, E. C., and Atkinson, R.: A product study of the gas-phase
reaction of methacrolein with the OH radical in the presence of
NOx, Int. J. Chem. Kin., 22, 591–602, 1990b.

Washenfelder, R. A., Roehl, C. M., McKinney, K. A., Julian, R.
R., and Wennberg, P. O.: A compact, lightweight gas standards
generator for permeation tubes, Rev. Sci. Inst., 74, 3151–3154,
doi:10.1063/1.1570949, 2003.

Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stock-
well, C. E., de Gouw, J. , Akagi, S. K., Urbanski, S. P., Veres,
P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T.,
Johnson, T. J., Hosseini, S., Miller, J. W., Cocker III, D. R., Jung,
H., and Weise, D. R.: Coupling field and laboratory measure-
ments to estimate the emission factors of identified and uniden-
tified trace gases for prescribed fires, Atmos. Chem. Phys., 13,
89–116, doi:10.5194/acp-13-89-2013, 2013.

York, D., Evensen, N. M., Martinez, M. L., and Delgado, J.
D.: Unified equations for the slope, intercept, and standard
errors of the best straight line, Am. J. Phys., 72, 367–375,
doi:10.1119/1.1632486, 2004.

Zhou, X. L., Huang, G., Civerolo, K., and Schwab, J.:
Measurement of atmospheric hydroxyacetone, glycolaldehyde,
and formaldehyde, Environ. Sci. Technol., 43, 2753–2759,
doi:10.1021/ES803025G, 2009.

Atmos. Chem. Phys., 14, 4251–4262, 2014 www.atmos-chem-phys.net/14/4251/2014/

http://dx.doi.org/10.1029/2002JD002478
http://dx.doi.org/10.5194/acp-9-3697-2009
http://dx.doi.org/10.1063/1.3480552
http://dx.doi.org/10.1063/1.1570949
http://dx.doi.org/10.5194/acp-13-89-2013
http://dx.doi.org/10.1119/1.1632486
http://dx.doi.org/10.1021/ES803025G

	ScholarWorksCoverSheet3.0
	acp-14-4251-2014

