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Abstract
Background: In V. cholerae, the biogenesis of capsule polysaccharide is poorly understood. The
elucidation of capsule structure and biogenesis is critical to understanding the evolution of surface
polysaccharide and the internal relationship between the capsule and LPS in this species. V. cholerae
serogroup O31 NRT36S, a human pathogen that produces a heat-stable enterotoxin (NAG-ST), is
encapsulated. Here, we report the covalent structure and studies of the biogenesis of the capsule
in V. cholerae NRT36S.

Results: The structure of the capsular (CPS) polysaccharide was determined by high resolution
NMR spectroscopy and shown to be a complex structure with four residues in the repeating
subunit. The gene cluster of capsule biogenesis was identified by transposon mutagenesis combined
with whole genome sequencing data (GenBank accession DQ915177). The capsule gene cluster
shared the same genetic locus as that of the O-antigen of lipopolysaccharide (LPS) biogenesis gene
cluster. Other than V. cholerae O139, this is the first V. cholerae CPS for which a structure has been
fully elucidated and the genetic locus responsible for biosynthesis identified.

Conclusion: The co-location of CPS and LPS biosynthesis genes was unexpected, and would
provide a mechanism for simultaneous emergence of new O and K antigens in a single strain. This,
in turn, may be a key element for V. cholerae to evolve new strains that can escape immunologic
detection by host populations.

Background
Vibrio cholerae has three forms of surface polysaccharide,
although some strains do not express all three forms: a
lipopolysaccharide (LPS) inserted in the outer membrane,

a capsule composed of high molecular weight polysaccha-
ride that forms a dense thick coat outside of the bacterial
cells, and a loose slime-like exopolysaccharide. Unlike V.
cholerae of serogroup O1, which causes cholera, most non-

Published: 15 March 2007

BMC Microbiology 2007, 7:20 doi:10.1186/1471-2180-7-20

Received: 30 August 2006
Accepted: 15 March 2007

This article is available from: http://www.biomedcentral.com/1471-2180/7/20

© 2007 Chen et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17362509
http://www.biomedcentral.com/1471-2180/7/20
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Microbiology 2007, 7:20 http://www.biomedcentral.com/1471-2180/7/20
O1 isolates have capsular polysaccharide (CPS) in addi-
tion to LPS. The LPS of V. cholerae is a protective antigen
for cholera [1,2], with over 200 serogroups identified
based on the O-antigen of the LPS. The O-antigen biogen-
esis loci of 4 serogroups (O1, O139. O22, O37) have been
sequenced and characterized, and have been found to
reside between two genes, gmhD and rjg, in the genome
[3-7]. More than 85% of non-O1 V. cholerae isolates have
a capsule that is critical for virulence in extraintestinal
infections [8]. However, in contrast to E. coli, in which
extensive work has been done on capsule structure and
genetics (with associated classification into groups by
Whitfield and Roberts [9]), structures and the genetics of
CPS in V. cholerae are poorly understood.

The one strain for which data on capsule structure and
genetics are available is the newly emerged epidemic
strain V. cholerae O139. This strain has a capsule that
appears to have arisen from the replacement of the O1
antigen biosynthetic region with a new gene cluster in the
genetic background of an O1 strain [5,6], resulting in
emergence of a strain to which the human population did
not yet have immunity. The capsule in O139 is unusual in
that it shares the same repeating subunit as the O-antigen
[10-12]. Therefore, the polysaccharide in O139 appears as
both capsule and LPS and resembles the KLPS in the group
4 E. coli capsule [9].

There are limited studies on the genetics of polysaccharide
biogenesis for the genus Vibrio. In V. vulnificus the CPS is
a primary virulence factor and hence has been the target of
more intensive study [13]. An operon including genes
wza, wzb and wzc was identified as part of the CPS genes
for V. vulnificus strain M06-24 [14,15], consistent with the
presence of a group 1 capsule. The genetic loci for CPS
were also identified in another strain of V. vulnificus 1003
[16]. A wzx/wzy system was present for polymerization
and exporting the CPS. However, the genetic region
responsible for LPS biosynthesis has not been identified
in V. vulnificus.

The elucidation of capsule structure and biogenesis is crit-
ical to understanding the evolution of surface polysaccha-
ride and the internal relationship between the capsule and
LPS in this species. It also has clear implications for under-
standing the behavior of this species within human popu-
lations, as the ability to change these surface antigens to
avoid host immunologic detection is a key feature under-
lying the ability of V. cholerare to survive. Here, we report
the covalent structure and studies of the biogenesis of the
capsule in V. cholerae NRT36S.

Results and discussion
Structure of the CPS
Gas chromatography
Carbohydrate analysis was done by gas chromatography
of the trimethyl silyl methyl glycosides and the absolute
configurations were determined by gas chromatography
of the + and - 2-butyl glycosides as the trimethyl silyl
derivatives. Both experiments were performed at the Com-
plex Carbohydrate Research Center (CCRC) at the Univer-
sity of Georgia. The results indicated L-rhamnose (Rha),
D-glucosamine (GlcNAc), D-glucuronic acid (GlcA) and
D-galactose (Gal). The results of methylation analysis,
also performed at CCRC, are given in Table 1. These
results indicate that the major components of the hydro-
lyzed sample of methylated CPS sample represent 3-
linked L-rhamnose, 4-linked D-glucosamine, 4- and 6-
linked D-glucosamine and galactose in various linkages
including 3-linked, 4-linked and 3,4 -linked. The D-glu-
curonic acid residue cannot be detected by this analysis
because the uronic acids are converted to a sodium salt in
the standard protocol [17].

Nuclear magnetic resonance (NMR) results
NMR spectra of the native polysaccharide are complex,
showing a number of peaks in the anomeric region that
are not in simple stoichiometric ratios. Likewise, the
acetyl methyl region (2.0 – 2.3 ppm) shows approxi-
mately 10 peaks not in simple ratios suggesting that the
polysaccharide may be heterogeneously substituted with
O-acetyl functions. Therefore the sample was treated with
aqueous ammonium hydroxide, which is expected to
cleave O-acetyl groups by mild base catalyzed hydrolysis.
The NMR spectra of the resulting sample (de-O-acetyl
polysaccharide) showed only two peaks in the acetyl
methyl region (2.06 and 2.09 ppm) and a greatly simpli-
fied pattern in the anomeric region with four distinct sig-
nals in the C-H HSQC (heteronuclear single quantum

Table 1: Results of methylation analysis.

Glycosyl residue Percentage present

3-linked Rha 25
terminal Gal 4

3,4-linked Rha 2
3-linked Gal 13
4-linked Gal 8
4-linked Glc 3

2- and 4-linked Gal 3
3- and 4-linked Gal 4
3- and 6-linked Gal 4
4- and 6-linked Gal 1
Terminal GlcNAc 2
4-linked GlcNAc 17

4- and 6-linked GlcNAc 14
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correlation) spectrum. We show below that the peaks at
2.06 and 2.09 arise from N-acetyl groups.

The HSQC spectrum (Figure 1A&1B) indicates four sugar
residues in the repeating subunit of the polysaccharide
and the four signals were arbitrarily assigned identifying
letters, A, B, C and D for the purpose of individual sugar
identification using homonuclear 1H spin correlation.
Experiments used to identify the sugar ring spin systems
included COSY (correlation spectroscopy), TOCSY (total
correlation spectroscopy), HMBC (heteronuclear multiple
bond coherence) and NOESY (nuclear Overhauser spec-
troscopy). Residue C is identified as rhamnose by the
characteristic methyl resonance of the 6-deoxy sugar at
1.33 ppm in combination with the equatorial configura-
tion of H2 indicated by its small homonuclear coupling
constants. The anomeric configuration is identified as β –
by large NOESY peaks between H1, H3 and H5 as well as
by 1JCH = 162 Hz. Residues B and D are identified as
amino sugars by the characteristic chemical shift of C2
and as glucosamine by homonuclear coupling values. Res-
idue B has the α-anomeric configuration as indicated by
small JH1-H2 and by 1JCH = 172 Hz while residue D has the
β – configuration as indicated by large JH1-H2 and by 1JCH =
158 Hz. The fourth residue, A, is identified as α-glu-
curonic acid. 1JCH for the anomeric signal is 168 Hz. and
JH1-H2 is small, but the coupling constants of H3, H4 and
H5 are all large as expected for the gluco configuration.
No crosspeaks can be detected for H6 but an HMBC spec-
trum selective for the carbonyl region shows crosspeaks
between both H4 and H5 and a carbonyl resonance at
176.7 ppm consistent with α-glucuronic acid. The central
part and the anomeric region of the HSQC spectrum of
the de-O-acetyl polysaccharide are shown in Figure
1A&1B and the complete 1H and 13C resonance assign-
ments are given in Table 2. The glycosidic linkages
between the four residues were determined from HMBC
and NOESY data as indicated in Table 3. While no HMBC
peaks could be observed for the D-B linkage, the nuclear
Overhauser data clearly indicate a β-1–6 linkage and the
downfield chemical shift of B-C6 at 68.9 ppm confirms
this linkage assignment. The proposed structure of the tet-
rasaccharide repeating unit is given in Figure 2.

Having determined the structure of the sugar backbone,
we turned to the acetylated forms of the polysaccharide.
While interpretation of their complex spectra was made
difficult by heterogeneity, it was possible given the basic
sugar structure. Base hydrolysis milder than that required
to produce the de-O-acetyl polysaccharide yielded a sam-
ple with NMR spectra having peaks in stoichiometric
ratios (mono-O-acetyl polysaccharide). The single O-
acetyl group is assigned by carbonyl-selective HMBC to
the 2-position of rhamnose (C), a position resistant to
base hydrolysis due to the absence of a neighboring

hydroxyl function. A complete set of homonuclear and
heteronuclear NMR spectra of a sample of this form of the
polysaccharide in H2O solution allowed assignment of
signals of the amide protons of residues B and D confirm-
ing that they are N-acetyl amino sugars. The complete
assignment of the NMR spectrum of the mono-O-acetyl
polysaccharide is given in Table 4.

The acetate methyl region of the NMR spectrum of the
native, untreated, polysaccharide shows a number of
peaks including those assignable to the amides of residue
B and D and of the 2-O-acetyl group of residue C along
with smaller peaks indicating partial O-acetylation at
other positions. Using HMBC spectra, it was possible to
correlate methyl proton signals, through carbonyl carbon
resonances, to sugar ring protons indicating positions of
acetyl substitution. In addition to the 2-O-acetyl of resi-
due C, it was possible to identify an O-acetyl group on the
3-position of residue B to the extent of about 50% as indi-
cated in Table 4. Anomeric resonances of residue A were
split into three peaks in the native polysaccharide suggest-
ing partial O-acetylation of that residue but the exact posi-
tions could not be definitively assigned.

Although the chromatographic data indicate that the sam-
ple contains galactose, it is not part of the capsular
polysaccharide. The NMR data of Figure 1 are consistent
with four residues per repeating subunit and no sign of
any galactose. Although the NMR spectra show minor
peaks at approximately 10% level, none are characteristic
of carbohydrates and they show no connection to the
peaks assigned for the polysaccharide structure by NOESY
or HMBC spectra.

The structure proposed here for the NRT36S capsule
repeating subunit is very similar to that reported for the V.
cholerae O6 lipopolysaccharide [18]. The polysaccharide
backbones are identical differing only in the degrees of O-
acetylation. Bergstrom et al reported stoichiometric O-
acetylation at both C2 of rhamnose and at C3 of α-Glc-
NAc while our structure for native capsular polysaccharide
of V. cholerae NRT36S is only partially substituted at C3 of
α-GlcNAc along with lower degrees of acetylation at other
positions. In spite of these differences, the NMR data
reported by Bergstrom et al [18] are quite close to those
reported for our native structure in Table 4.

Transposon mutagenesis and mutant selection
The conjugations between wild type Vibrio cholerae
NRT36S and donor strain E. coli S17λpir/putKm-2 gener-
ated 20,615 mutants of NRT36S, each carrying a single
copy of the transposon Km-2 in its genome. Among these
mutants, 411 colonies displayed a translucent phenotype
on LB agar. This phenotype suggests that genes involved in
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Panel A shows the HSQC spectrum of the de-O-acetylated capsular polysaccharide from NRT36SFigure 1
Panel A shows the HSQC spectrum of the de-O-acetylated capsular polysaccharide from NRT36S. The strong signal at 3.78, 60 
ppm is a low molecular weight impurity. Panel B shows the signal from the anomeric region. The methyl group region is not 
shown.
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B.
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capsule biogenesis have been disrupted by the transposon
[19].

DNA analysis of mutants
Genomic DNA was isolated from the translucent mutants
and analyzed by inverted polymerase chain reaction
(PCR) and sequencing, identifying 13 unique insertion
sites in 11 genes. Since NRT36S can also undergo sponta-
neous phase variation between transluscent and opaque
colony morphologies, isolates with the 13 insertions were
tested for complement resistance [19]. Nine insertions in
eight genes were sensitive to serum killing and showed no
reversion to the opaque morphology (Table 5). Isolates
with insertions in the other 3 genes reverted to opaque
colonies and were resistant to serum killing and therefore
were excluded from further analysis. Only four of the sta-
ble mutant genes related to sugar modification and
processing and were considered as putative structural
genes for the biogenesis of the NRT36S capsule. The func-
tion of the other genes was unclear. One of the putative
structural genes had a homolog in the fully sequenced
genome of V. cholerae N16961, a serogroup O1 pandemic
strain. Orf23, a homolog of VC0262, an UDP-glucose 4-
epimerase (galE) was disrupted in translucent colony TR3.
TR3 was restored to opaque phenotype and resistant to
serum killing when complemented with gal E gene. The

other three structural genes identified by transposon
mutagenesis did not have homologs in the genome of V.
cholerae N16961. In translucent colony TR17, a glycosyl-
transferase gene was disrupted and a rhamnosyltrans-
ferase gene was disrupted in both TR43 and TR287. An
ABC transporter system integral membrane protein gene
wzm was disrupted in TR296. The VC0262 homolog and
the 3 other genes are typical of genes commonly found in
polysaccharide biogenesis.

Immuno blotting and size exclusion chromatography (SEC)
SEC data indicated that the molecular weight of the
NRT36S capsule is greater than 670k Dalton (Figure
3A&3B). The antiserum raised against the whole cell of V.
cholerae NRT36S did not detect anything close to that
molecular weight of CPS in the immuno blot (Figure 4),
indicating that the antibodies did not react with the cap-
sule. This result was consistent with the previous finding
[20]. Nevertheless, the antibodies detected some polysac-
charides that formed a ladder pattern in the molecular
weight range of 20k to 40k Dalton (Figure 4). We believed
these were the LPS. Interestingly, the amount of reactive
LPS to the antibody was reduced in mutants TR3, TR17,
and TR296. Analysis of the capsule preps by SEC from the
mutants showed that three of the mutants, TR3, Tr287
and TR43 had completely lost the high molecular weight
peaks corresponding to the capsule while in TR17 and
TR296, the amount of capsule was significantly reduced
(Figure 3B).

Electron microscopy (EM)
We evaluated thin sections of wild type V. cholerae
NRT36S and several translucent mutants stained with
polycationic ferritin by EM. Representative profiles are
shown in Figure 5. As seen before ([19], NRT36S dis-
played a heavy, complete capsule surrounding the cell
(Figure 5A). TR3 did not have a complete capsule, but had
some patches of capsule materials (Figure 5B). Both of
TR17 and TR296 had a much thinner capsule compared to

Table 2: Complete assignment of the NMR spectra of the de-O-acetylated polysaccharide

NRT36 (deOAc) ~50°C (321 K) H-1 H-2 H-3 H-4 H-5 H-6, H-6'

C-1 C-2 C-3 C-4 C-5 C-6

A: α-D-GlcA 5.19 3.66 3.67 3.50 3.97 -
101.9 72.7 73.8 72.7 74.1 176.7

B: α-D-GlcNAc 5.01 3.93 4.05 3.64 4.16 4.09, 3.71
95.5 53.9 72.0 80.2 69.9 68.6

C: β-L-Rha 4.85 4.16 3.61 3.42 3.40 1.33
101.3 68.6 79.1 71.2 72.9 17.6

D: β-D-GlcNAc 4.42 3.78 3.67 3.67 3.49 3.83, 3.92
102.3 56.3 74.7 77.6 75.3 61.7

Table 3: Residue linkages for the capsular polysaccharide of V. 
cholerae NRT36S

Linkage HMBC NOESY

A-B AC1-BH4
AH1-BC4

B-C BH1-CC3 BH1-CH2
BH1-CH3

C-D CH1-DC4 CH1-DH4
D-B DH1-BH6

DH1-BH6'
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opaque NRT36S (Figure 5C&5D). EM pictures for all three
mutants were consistent with the amounts of capsule
observed by SEC (Figure 3B).

Sequencing of the V. cholerae NRT36S genome
V. cholerae NRT36S genome was sequenced by the com-
pany 454 Life Sciences. The sequencing runs have gener-
ated 1,082,967 reads and output 104,531,256 bases of
sequence. The estimated coverage depth was 26X. The
draft genome consisted of 184 contigs with total length of
3.9 million bases. The average GC (guanine-cytosine)
content for the draft genome was 47.5%. The draft
genome was annotated [21,22]. For the purpose of the
discussion in this paper, only those features related to the
polysaccharide biogenesis will be discussed.

Genetics of the polysaccharide biogenesis
O-antigen region
In previous studies, the O-antigen biogenesis genes for V.
cholerae had been identified to cluster at one locus in the
genome, between genes gmhD and rjg [3,4,6,23]. After
aligning the contigs of the draft genome of V. cholerae
NRT36S to the fully sequenced genome of V. cholerae
N16961 [24], we found that 3 contigs (contigs 34, 19, 78)

of NRT 36S can partially align to the O-antigen region of
N16961. Contig 34 contains gmhD gene and contig 78
contains rjg gene. Contig 19 falls into the middle of contig
34 and 78. The sequence information from analyzing the
transposon mutagenesis mutants was able to pick up two
more contigs (contig 98 and 43) and connect them to
contig 19. Therefore gmhD and rjg were separated by 5
contigs in the NRT36S genome. The gaps between these
contigs were filled and we ratified this region, between
gmhD and rjg, as the putative O-antigen biogenesis region
(Figure 6) for V. cholerae NRT36S. The sequence between
gmhD and rig was deposited into GenBank (accession
DQ915177).

CPS region
We located the capsule biogenesis genes identified by
transposon mutagenesis in the NRT36S genome (Table
5). To our surprise, the 4 putative capsule structural genes
identified by transposon mutagenesis were all located
between the genes gmhD and rjg, the region considered to
encode O-antigen biogenesis (Figure 6). Theses four genes
were knocked out by at least one of 5 independent trans-
position events and caused the translucent phenotype
associated with the loss of the capsule in each case. There-

Proposed structure of NRT36S CPS repeating unitFigure 2
Proposed structure of NRT36S CPS repeating unit. Parentheses indicate partial O-acetylation of residue B at the 3-position.
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fore, we believe that the O-antigen biogenesis region in V.
cholerae NRT36S is also the capsule biogenesis region.

Global features
The locus of CPS/O-antigen was 49,916 base pairs in
length between genes gmhD and rjg. There were 46 open
reading frames (orf) (Figure 6). The annotation for each
orf is listed along with a match from Genbank and its per-
cent amino acid identity/positive, the species and the E-
value (Table 6). Twelve genes were glycosyltransferases,
16 genes were recognized as pathway genes for synthesis
of the nucleotide sugar precursor for external polysaccha-
ride, and 6 other genes were recognized as polysaccharide
processing and translocation genes. The function of the
other 12 genes was unknown. A JUMPstart site [25] was
located just downstream from the gmhD gene. The GC
content of this region was 41.2%, lower than the 47.5%
GC content of the genome. The disruption by transposon
in orf5 (wzm), an ABC transporter gene, orf8, a glycosyl-
transferase gene, orf23, an UDP-glucose-epimerase, (galE)
and orf43, a rhamnosyltransferase gene had caused the

non-encapsulation of NRT36S (Figure 3). The comple-
mentation by galE gene reverted the translucent mutant
TR3 to opaque phenotype and the complemented colo-
nies were resistant to serum killing.

Glycosyltransferases
There were 12 glycosyltransferase genes identified. The
precise function of most of them remained to be eluci-
dated. Orf45 (wecA) was an undecaprenylphosphate N-
acetylglucosamine 1-phosphate transferase gene. WecA
was putatively the initial transferase to catalyze the trans-
fer of N-acetylglucosamine 1-phosphate to undecaprenyl-
phosphate in the capsule polysaccharide synthesis.

Synthesis genes
The structural data for V. cholerae NRT36S indicate that
the capsule contains, one residue each of rhamnose and
glucuronic acid and two N-acetyl-glucosamine residues,
genes for whose synthesis are present in the CPS region.
There are two sets of genes that are almost identical (orf1-
4, and orf33-36) for L-rhamnose synthesis; they were

Table 5: CPS genes (bold print) identified by transposon mutagenesis

Clone # Gene in CPS region Putative gene functions Best hit (AAI)

TR2 not CYS regulon transcriptional activator V. cholerae (100%)
TR23 not FadR fatty acid metabolism regulator protein V. cholerae (100%)
TR286 not Adenylate cyclase V. cholerae (100%)
TR301 not Ubiquinol cytochrome C reductase V. cholerae (100%)
TR3 Orf23 (galE) Nucleoside-diphosphate sugar epimerase V. cholerae(98%)
TR17 Orf8 Glycosyltransferase Nitrosospira multiformis(40%)
TR43, TR287 Orf43 Rhamnosyltransferase Shewanella sp. (66%)
TR296 Orf5 (wzm) ABC transporter system integral membrane protein Raoultella terrigena(55%)

Table 4: Complete assignment of the NMR spectra of the mono-O-acetylated polysaccharide

NRT36 Mono-O-Acetyl ~50°C H-1 H-2 H-3 H-4 H-5 H-6, H-6'

C-1 C-2 C-3 C-4 C-5 C-6

A: α-D-GlcA 5.15 3.63 3.67 3.51 3.95 -
101.9 72.7 73.8 72.7 74.1 176.7

B: α-D-GlcNAc 4.99 (5.01) 3.91 (4.05) 3.99 (5.27) 3.63 (3.87) 4.14 4.09, 3.71
94.9 (94.1) 53.9 (52.6) 71.6 (74.3) 80.3 68.6 68.4

C: β-L-Rha 5.04 5.53 3.80 3.48 3.49 1.36
99.9 69.9 76.3 71.6 73.2 17.6

D: β-D-GlcNAc 4.39 3.77 3.66 3.69 3.43 3.90, 3.88
102.1 56.3 74.7 77.8 75.1 61.7

a.) Shifts enclosed in parentheses are those of the 3-O-acetylated B residue in the native polysaccharide.

assignment of NAc's, OAc's NH C = O CH3

B: α-D-GlcNAc 7.79 174.9 22.93; 2.03
D: β-D-GlcNAc 8.09 175.2 23.19; 2.08
C: β-L-Rha OAc 173.9 21.26; 2.21
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rmlB, rmlA, rmlC, and rmlD in the order. L-rhamnose is
commonly present in bacterial polysaccharides and the
genes to synthesize it are normally clustered. For example
in V. cholerae isolates with LPS serotypes O6, O12, O14,
O19 and O151, the 4 orfs following gmhD are rmlB, rmlA,
rmlC, and rmlD [26]. Orf43 may be the rhamnosyltrans-
ferase to catalyze the addition of rhamnose to the CPS
backbone. The disruption orf43 by the transposon both
resulted in the loss of the capsule. This observation is con-
sistent with the presence of rhamonse in the repeating
polysaccharide backbone of the capsule. Orf23 was gene
galE; its product UDP-glucose 4-epimerase catalyzed the
conversion of UDP-glucose to UDP-galactose. Disruption
of galE gene in mutant TR3 caused the loss of the capsule.
Orf24 (wbeW) transfers galactose to the capsule complex.
Orf 41, a sugar O-acetyltransferase homologue could be
involved in the observed O-acetylation of the capsule, but
this modification of bacterial polysaccharides is not well
understood and other genes may be involved as well.

Orf11, 12, 22, 37, 41 and 44 were also putative pathway
genes for the synthesis of nucleotide sugar precursors, but
their precise functions were not clear to us.

Translocation and processing genes
An ABC-2 type transporter system consisted of wzm and
wzt were present in the CPS/O-antigen region. When wzm
was disrupted by transposon mutagenesis, the mutant was
non-capsulated (Table 5). Orf38 was predicted as a
polysaccharide translocase gene wzx. Orf40 was predicted
to have several transmembrane domains by the Dense
Alignment Surface (DAS) program [27] and were assigned
as putative wzy. Three genes wza, wzb and wzc were also
present in the CPS/O-antigen region. The proteins Wza,
Wzb and Wzc in E. coli formed a system that was involved
in the exportation of E. coli group 1 capsular polysaccha-
rides [28].

The disruption of an ABC transporter system integral
membrane protein gene wzm had significantly reduced
the amount of capsule (Figure 3B) in our experiments and
resulted in the translucent colonies that were susceptible
to serum killing. Examination of the CPS region also
revealed the existence of wzt, which is another component
of the ABC transporter system. Our results suggest that the
processing and translocation of the capsule in V. cholerae
NRT36S involves the ABC transporter system. There was a

Immuno blot of NRT36S antiserum against external polysac-charide preparations from various strainsFigure 4
Immuno blot of NRT36S antiserum against external polysac-
charide preparations from various strains.

Size exclusion chromatography of the capsule prepFigure 3
Size exclusion chromatography of the capsule prep. A). Cap-
sule prep from control (NRT36S and A5) compared to puri-
fied CPS of NRT36S. The size was estimated by 
thyroglobulin. The arrow indicates the peak of the capsule at 
about 13.2 minutes retention time, which corresponds to 
about 670 k Dalton molecular weight. B). Capsule prep from 
mutants and control.
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recent report that an ABC transporter system was involved
in the transportation of hetero-polysaccharides in the O-
antigen of E. coli O52 [29]. Our results may be another
case where an ABC transporter system was involved in the
transportation of a hetero-polysaccharide.

Sharing of the same region by CPS and LPS
The O-antigen genes had been identified for several sero-
groups in V. cholerae, including O1, O139, O22 and O37
[3,4,6,7,23]. In these serogroups, the gene cluster for O-
antigen biogenesis all resided between the genes gmhD
and rjg. In our study of V. cholerae NRT36S genome, there
was a gene cluster identified as the LPS core biogenesis
region upstream of the gmhD gene (data not shown).
There was also another gene cluster in the genome that
was identified as the rugose-associated exopolysaccharide
biosynthesis region (data not shown). The homologs of
these genes were recognized as exopolysaccharide genes
that related to the rugose phenotype in V. cholerae O1 El
Tor [30]. Besides these regions, i. e., the LPS core genes
and the rugose exopolysaccharide genes, there were no
other significant gene clusters for polysaccharide synthesis
in the genome of V. cholerae NRT36S. All of this evidence
supported the conclusion that the CPS region, i.e. the
region between gmhD and rjg genes, is indeed also the O-
antigen gene cluster. The immuno blot showed that the
LPS had been altered in the non-encapsulated mutants.
That not only confirmed the sharing of the CPS and LPS
region, but also indicated that some genes may be shared
by the biogenesis of the two polysaccharide structures. A

potential test of this suggestion would be to determine
whether the genes other than those encoding rhamnose
synthesis involved in the O6 LPS serotype are related to
the genes in NRT36S since the two organisms have LPS
and capsule structures that are nearly identical.

The known O-antigen and now CPS regions from V. chol-
erae shared remarkably few genes. The sequences between
gmhD and rjg are known for O1, O22, O37, O139 and
now O31 (Figure 7). Only the three genes are found in all
five sequences wzm, galE and wbeW. Our mutagensis
experiments revealed that both wzm and galE were essen-
tial for capsule production, but enigmatically O1,
although it has the genes, it does not have a capsule.
Galactose is part of the polysaccharide backbone in O139
for both the LPS and the CPS, but it is not part of the back-
bone in either O1 LPS or O31 CPS. The structure of O37
is not known. Of note, the O31 region is the first not to
contain an IS element.

CPS and O-antigen shared the same genetic locus in V.
cholerae NRT36S. This differs from the organization of
CPS and O-antigen gene clusters in E. coli. In E. coli, CPS
gene clusters and the O-antigen gene clusters are different
[9]. The CPS genes from other gram-negative bacteria
including Haemolyticus influenza, Salmonella typhi and
Neisseria meningitidis have been cloned and characterized
[31-36]. The organizations of most of them resemble E.
coli. No LPS genes have been reported to embed inside the
CPS gene cluster for these species except in N. menin-
gitides. In N. meningitides group B, the mutations of two
CPS biosynthesis genes (synX or synC) and another gene
next to the CPS region, galE gene, were shown to affect the
lipooligosaccharide structure [33,36]. The CPS and O-
antigen in group 4 E. coli consist of the same molecule.
This arrangement is also seen in V. cholerae O139 where
CPS and O-antigen are encoded by the same genetic locus
and have identical repeating subunits. NRT36S is an O31
serogroup. Kondo's group found that the LPS of O31 in V.
cholerae contains L-glycero-D-mannoheptose, glucose,
fructose, galactose, glucosamine and an unknown amino
sugar A2 [37]. L-rhamnose was not found in the LPS,
while our study found L-rhamnose in the CPS, suggested
that CPS and LPS are two distinct structures in V. cholerae
NRT36S. The antiserum against NRT36S detected LPS but
not the capsule, again suggested that the O-antigen and
CPS were two different entities. Our finding represents a
new type of genetic organization of polysaccharide genes
and raises a question of differential regulation of the genes
for expression of capsule and O-antigen polysaccharides.

Conclusion
The genes for bacterial surface polysaccharide biogenesis
were typically found in a cluster with an atypical GC con-
tent compared to the rest of the genome [38]. It had been

Thin sections of V. cholerae NRT36S and its translucent mutants stained with polycationic ferritinFigure 5
Thin sections of V. cholerae NRT36S and its translucent 
mutants stained with polycationic ferritin. (A) NRT36S; (B) 
TR3; (C) TR296; (D) TR17. Bar, 200 nm.
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suggested that bacteria could convert to a new serogroup
by acquiring a new O-antigen biogenesis region. There
was abundant evidence that V. cholerae O139 arose from
an O1 strain by receiving a new O-antigen gene cluster
[5,39,40]. The sharing of CPS and O-antigen in V. chol-
erae, as indicated in our findings, makes this region one
interchangeable unit. It is possible that V. cholerae can
acquire a new gene cluster and give rise to a new strain
with an O-antigen and K-antigen at the same time, both
unrecognizable to the host immune system. This, in turn,
may be a key element in its ability to survive, permitting
rapid emergence of new strains that can escape immuno-
logic detection by host populations.

Methods
Bacterial strains and culture conditions
V. cholerae NRT36S is an isolate originally cultured from a
Japanese patient with travelers' diarrhea. It is serogroup
O31, cholera toxin negative and produces a heat stable
enterotoxin NAG-ST [41]. When fed to volunteers this
strain caused diarrhea, including, in one patient, a 5.3-
liter diarrheal purge [5]. Wild type V. cholerae NRT36S
produces a capsule [19]. This strain is resistant to poly-
myxin B but sensitive to kanamycin.

Transposon mini-Km2 was carried in the plasmid putKm-
2 and maintained in the host strain E. coli S17λpir. Mini-
Km2 was found to randomly transpose into the genome
of the recipient strain with a single transposition. Mini-
Km2 encodes a gene for kanamycin resistance. [42,43]

Cultures were maintained in L broth with 15% glycerol at
-70°C. Bacteria were cultured in broth or agar at 37°C
unless otherwise stated. Appropriate antibiotics were
added in concentrations: 50 mg/ml kanamycin, 50 unit/
μl polymyxin B.

Isolation and purification of CPS
Frozen stock of NRT36S was streaked for isolation on L
agar in 150-mm Petri dishes and incubated overnight. A
single bacterial colony from the plate was inoculated into
10 ml of L-broth for 18 h of growth. One ml of the culture
was then inoculated into 1-liter L-broth and incubated
overnight. Bacterial cells from eight 1-liter batches of cul-
ture were pelleted at 10,000 g and resuspended in 120 ml
of 0.5X phosphate-buffered saline (PBS) pH 7.5 and
shaken at 200 rpm on a rotary shaker for 2 h at room tem-
perature. The bacterial suspensions were centrifuged to
remove cell debris at 16,000 g for 20 minutes at 4°C and

Map of the CPS/O-antigen region of V. cholerae NRT 36sFigure 6
Map of the CPS/O-antigen region of V. cholerae NRT 36s. JUMPstart site is indicated by a diamond. Transposon insertion sites 
are indicated by black arrows. Design patterns of open reading frames indicate different classes of genes: vertical lines, pathway 
genes; diagonal lines, processing and transportation genes; grey box, glycosyltransferase; white box, functions not clear.
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Table 6: Genes in the CPS/O-antigen biogenesis region

orf symbol annotated %AA identity/positive species E-Value

0 gmhD ADP-L-glycero-D-mannoheptose-6-epimerase 99/99 Vibrio cholerae 1.00E-180
1 rmlB DTDP-D-glucose-4,6-dehydratase 99/99 Vibrio cholerae 0
2 rmlA Glucose-1-phosphate thymidylyltransferase 100/100 Vibrio cholerae 1.00E-167
3 rmlD DTDP-6-deoxy-L-mannose-dehydrogenase 99/99 Vibrio cholerae 1.00E-169
4 rmlC DTDP-6-deoxy-D-glucose-3,5-epimerase 100/100 Vibrio cholerae 1.00E-104
5 wzm ABC transporter system integral membrane protein 55/77 Raoultella terrigena 1.00E-81
6 wzt ABC transporter system ATPase component 43/59 Nitrosospira multiformis 8.00E-86
7 glycosyltransferase 32/49 Rubrobacter xylanophilus 2.00E-24
8 glycosyltransferase 40/57 Nitrosospira multiformis 1.00E-125
9 glycosyltransferase 41/57 Burkholderia fungorum 1.10E-127
10 glycosyltransferase 38/56 Burkholderia sp. 8.00E-56
11 dTDP-glucose-4-keto-6-deoxy-D-glucose reductase 39/64 Actinobacillus actinomycetemcomitans 4.00E-21
12 probable acetyl transferase by domain 30/46 Cellulophaga sp. 0.049
13 hypothetical protein
14 3-hydroxybutyryl-CoA dehydrogenase 48/68 Pseudoalteromonas haloplanktis 2.00E-70
15 Hypothetical protein
16 glycosyltransferase 27/44 Syntrophus aciditrophicus 9.00E-06
17 Hypothetical protein
18 hypothetical protein
19 putative glycosyl transferase 55/69 Pseudomonas fluorescens 8.00E-97
20 UDP-N-acetylglucosamine 2-epimerase 67/82 Yersinia intermedia 1.00E-147
21 glycosyltransferase 96/97 Vibrio cholerae 2.00E-93
22 nucleoside-diphosphate sugar epimerase 99/99 Vibrio cholerae 0
23 galE UDP-glucose 4-epimerase VC0262 98/99 Vibrio cholerae 0
24 wbeW galactosyl-transferase VC0263 99/99 Vibrio cholerae 4.00E-91
25 Trypsin-like serine proteases 96/97 Vibrio cholerae 1.00E-123
26 wbfB hypothetical protein 99/99 Vibrio cholerae 0
27 wbfC hypothetical protein wbfC, periplasmic 97/97 Vibrio cholerae 1.00E-141
28 wbfD hypothetical protein wbfD 98/98 Vibrio cholerae 1.00E-112
29 hypothetical protein 52/58 Vibrio cholerae 6.00E-12
30 wza Periplasmic protein involved in capsular polysaccharide 

export
67/82 Vibrio splendidus 1.00E-151

31 wzb Protein-tyrosine-phosphatase 75/88 Vibrio vulnificus 6.00E-59
32 wzc Putative tyrosine-protein kinase Wzc 75/87 Vibrio vulnificus 0
33 rmlB dTDP-D-glucose-4,6-dehydratase 98/98 Vibrio cholerae 0
34 rmlA glucose-1-phosphate thymidylyltransferase 100/100 Vibrio cholerae 1.00E-167
35 rmlD dTDP-6-deoxy-L-mannose-dehydrogenase 99/99 Vibrio cholerae 1.00E-169
36 rmlC DTDP-6-deoxy-D-glucose-3,5-epimerase 92/94 Vibrio cholerae 1.00E-88
37 O-acetyltransferase 38/58 Enterococcus faecalis 8.00E-17
38 wzx O-antigen translocase 30/48 Pelodictyon luteolum 2.00E-39
39 glucosyltransferase 34/53 Pseudoalteromonas tunicate 1.00E-39
40 wzy Putative saccharide polymerase
41 Putative sugar acetyltransferase 51/72 COG0110, Cytophaga hutchinsonii 7.00E-43
42 glycosyltransferase 29/53 Cytophaga hutchinsonii 5.00E-41
43 Rhamnosyltransferase 66/77 Shewanella sp. 1.00E-113
44 Ugd UDP-glucose 6-dehydrogenase 81/90 Vibrio sp. 0
45 wecA Undecaprenylphosphate N-acetylglucosamine 1-

phosphate transferase
96/99 Vibrio cholerae 1.00E-157

46 Hypothetical protein 96/96 Vibrio cholerae 2.00E-63
47 rjg Predicted exonuclease of the beta-lactamase fold 

involved in RNA processing
98/99 Vibrio cholerae 0
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the supernatant dialyzed with multiple changes of dis-
tilled water and concentrated two fold by ultra filtration
(100,000-nominal-molecular-weight stirred cell; Amicon,
Beverly, Mass). The retentates were then ultra centrifuged
at 154,000 g for 2 h at 20°C and the supernatants were
removed and digested with RNase A (100 ug/ml) and
DNase 1 (50 ug/ml plus 1 mM MgCl2) for 2 h followed by
a 3 h digestion with proteinase K(250 ug/ml) and phenol-
chloroform extraction. The aqueous layer was dialyzed as
described above, and the resultant sample was lyophi-
lized. Purity of the CPS was assessed by bicinchoninic acid
protein assay (MicroBCA, Pierce Chemical Co., Rockford
Ill.), and Limulus amoebocyte lysate assay (Sigma Chem-
ical Co., St. Louis, Mo.) and by NMR.

Deacylation and preparation of samples for NMR
A sample of 15 mg of CPS in 0.6 ml D2O was subjected to
deacylation by 0.3 M ammonium hydroxide for 6 days at
25 C. The 1D 1H spectrum was monitored daily and the
sample was lyophilized, exchanged with 99.9% D2O and

made up with 0.6 ml pure D2O (de-O-acetyl polysaccha-
ride). A second sample was prepared with milder base
treatment in 0.03 M ammonium hydroxide for 5 days at
4°C (mono-O-acetyl polysaccharide). For detection of
amide protons, a sample was subjected to deacylation
(without D2O exchange) and made up with 0.6 ml 90:10
(v/v) H2O:D2O.

NMR spectroscopy
NMR experiments were performed on Bruker 500 MHz
DRX AVANCE spectrometer equipped with cryoprobe,
with a Bruker 800 MHz DMX AVANCE spectrometer. All
Bruker data were processed with NMRPipe and NMRDraw
under Linux. All spectra were taken at 50°C due to
dynamic properties of the polysaccharide. The following
experiments were recorded using standard sequences: 1D:
1H spectrum, 13C spectrum; 2D: ge-DQF-COSY (E/A), ge-
TOCSY (DIPSI-2 mixing times 30 and 70 ms, E/A), ge-
NOESY (mixing time 50 ms), ge-HSQC (decoupled, E/A),
ge-HMBC (long-range evolution time 30 ms, magnitude

Pictorial representation of the genes in the LPS/CPS regions of O1, O37, O22, O139 and O31 Vibrio choleraeFigure 7
Pictorial representation of the genes in the LPS/CPS regions of O1, O37, O22, O139 and O31 Vibrio cholerae. The galE and 
wbeW genes found in common between all five sequences are marked in blue. The housekeeping genes gmhD and rjg that delin-
eate the region are marked in black. The genes in common between O22 aand O139 are marked in grey. The transport genes 
and the IS elements are labeled. The unlabeled genes represented by white boxes are not found in common across the regions.
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mode), HSQMBC (long-range evolution time 15 ms), ge-
HMQC-COSY (E/A), ge-HSQC-TOCSY (decoupled,
DIPSI-2 mixing time 30 ms, E/A). Also the direct 31P and
1D 31P spin-echo difference spectra were measured. For
detection of amide protons, the following experiments
were recorded on a sample of mono-O-acetyl polysaccha-
ride in 90% H2O/10% D2O solution: 1D: 1H spectrum;
2D: ge-TOCSY (DIPSI-2 mixing time 50 ms, E/A, WATER-
GATE 3–9–19 combined with presaturation). All chemi-
cal shifts are reported relative to internal standard acetone
set to 2.225 ppm (1H) and 30.1 ppm (13C).

Methylation analysis
Methylation analysis was done by means of gas chroma-
tography-mass spectroscopy of partially methylated aldi-
tol acetates (performed at Complex Carbohydrate
Research Center at University of Georgia). Two hundred
μg aliquot of the sample was permethylated following
Ciucanu and Kerek [44]. The sample was treated with
NaOH and methyl iodide in dry DMSO. The permethyla-
tion was repeated twice in order to completely methylate
the polymer. Following the permethylation, the sample
was hydrolyzed using 2 M HCl for 3 hours at 100°C. Then
it was reduced with NaBD4 and acetylated using acetic
anhydride/pyridine. The resulting partially methylated
alditol acetates were analyzed on HP 5890 GC connected
to mass selective detector in ESI ionization mode. The sep-
aration was done on 30 m Supelco DB-1 2330 bonded
phase fused silica capillary column (0.25 mm ID).

Transposon mutagenesis
Conjugations were performed between V. cholerae
NRT36S as the recipient strain and E. coli S17λpir/putKm2
as the donor strain. Ten μl overnight culture of V. cholerae
NRT36S was spotted on LB agar and let dry, 10 μl over-
night culture of S17λpir/putKm2 was then spotted on top.
After overnight incubation at room temperature, the mix-
ture was re-suspended in 1 ml of LB broth; 50 μl of the
suspension was plated onto LB agar with kanamycin and
polymyxin B to select for V. cholerae mutants.

DNA analysis
DNA flanking the transposon in the mutants was ampli-
fied and sequenced by a modified inverse PCR protocol
[45]. Genomic DNA was isolated with PrepMan™
(Applied Biosystems) according to the manufacturer's
instruction. Two μl genomic DNA of the above prepara-
tion was digested with 5 units of Nla III (New England
Biolab) in a 20 μl reaction overnight followed by denatur-
ing at 65°C for 15 minutes. Two μl of the digested DNA
was self-ligated with 5 units of T4 DNA ligase (Invitrogen)
in a 10 μl reaction. One μl of this solution was used as
PCR template. Two primers were designed to anneal to the
transposon mini-Km2, pointing outwards to amplify the
flanking sequence of the mutant genomic DNA. The

sequences of the primers are, L8 (Reverse), GTAC-
CGAGCTCGAATTCGGCCTAG; and L9 (forward), GGA-
GAAAACTCACCGAGGCAGTTC. PCR was performed in a
30 μl reaction containing 100 μM of each dNTP, 1.5 mM
of MgCl2, 1x PCR buffer (Invitrogen) and 1 unit of Taq
DNA polymerase (Invitrogen). PCR products were puri-
fied with the Multiscreen PCR plates (Millipore) and
sequenced using the BigDye® Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems). The resulting frag-
ments were separated and recorded in an ABI 3730 × l
automatic sequencer (Applied Biosystems). DNA
sequence was then analyzed by the PHRED, PHRAP and
CONSED software [46-48].

Complement resistance and EM
Translucent colonies were challenged with complement
in human serum as previously described [19]. EM was
also performed as described [19].

SEC
Capsule preps were analyzed by SEC using a Beckman
Coulter 32 Karat HPLC, with TSK gel column (JOSO-
HAAS; G3000SWxL; 10 um; 30 cm × 7.5 mm), and
detected at 200 nm wavelength. Purified NRT36S capsule
was the same sample as used for NMR and methylation
analyses. Capsule preps were prepared as followed: 109

cells were harvested into 0.5X PBS and shaken for 2 hours
in a rotary shaker at 250 rpm followed by centrifuge at
12000 g for 20 min. The supernatant was treated with
Dnase I and Rnase, followed by protease. The supernatant
was then extracted with phenol-chloroform and precipi-
tated with ethanol. The pellet was resuspended in water
and 1/3 of the amount was loaded.

Immuno blotting
Immuno blotting was performed as described [23]. Circa
5 × 106 bacterial cells were treated with DNase I, RNase
followed by protease. Washed whole cell lysates were run
on 16% SDS-polyacrylamide gel and transferred to
Immun-Blot PVDF membrane (BioRad, Hercules, CA).
Blots were blocked in PBS containing 3% non-fat dry milk
and then incubated for 1 h in 1:1000 rabbit antiserum
specific for V. cholerae NRT36S. The blots were washed
three times with PBS and incubated with alkaline phos-
phatase-conjugated goat anti-rabbit immunoglobin G
(Sigma) at 1:10,000 in PBS for 1 h. The blot was washed
five times with PBS and developed with Western Blue
colorimetric detection solution (Promega).

Sequencing of V. cholerae NRT36S genome
The genome of NRT36S was sequenced by the company
454 Life Science (454 Life Science, Branford, CT) [45]. The
contigs of the draft genome was compared and aligned to
the fully sequenced genome of V. cholerae N16961 [24] by
Blastn [49]. Gaps between contigs were filled only for the
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capsule biogenesis region, which contained the genes
identified by transposon mutagenesis. Primers were
designed for PCR to amplify the fragments of the gaps.
PCR products were then sequenced.

Sequence analysis and annotation
Open reading frames were predicted by the program
GLIMMER[48] using the DasSarma Laboratory Autoanno-
tation Pipeline (DLAP) (http://halo.umbi.umd.edu/. Das-
Sarma et al., manuscript in preparation). The settings in
Glimmer were as in default, with the minimum gene size
to be 90 bps and overlapping to be less than 30 bps.
BlastX program [49]was used for a similarity search
against the protein database in NCBI. We also used
Artemis [50] to edit and confirm the results of GLIMMER.
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