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Abstract
Given the complexity of human minds and their
behavioral flexibility, it requires sophisticated data
analysis to sift through a large amount of human
behavioral evidence to model human minds and to
predict human behavior. People currently spend a
significant amount of time on social media such
as Twitter and Facebook. Thus many aspects of
their lives and behaviors have been digitally cap-
tured and continuously archived on these platforms.
This makes social media a great source of large,
rich and diverse human behavioral evidence. In this
paper, we survey the recent work on applying ma-
chine learning to infer human traits and behavior
from social media data. We will also point out sev-
eral future research directions.

1 Introduction
People currently spend a significant amount of time on social
media to express opinions, interact with friends and families,
share ideas and thoughts, provide status updates and orga-
nize/participate events and activities. According to Nielsen’s
2016 Social Media report, on average, Gen X (ages 35-49)
spent 6 hours and 58 minutes and Millennials (ages 18-34)
spent 6 hours and 19 minutes per week on social media in the
US. As a result, many aspects of their lives have been digitally
captured and continuously archived on social media.

With recent advent of big data analytics and the avail-
ability of a large amount of user-generated content, data-
driven human trait and behavioral analysis has increasingly
been used to better understand human minds and predict hu-
man behavior. Prior research has demonstrated that by ana-
lyzing the information in a user’s social media account, we
can infer many latent user attributes such as political lean-
ing [Pennacchiotti and Popescu, ; O’Banion and Birnbaum, ;
Kosinski et al., ; Benton et al., ], brand preferences [Pen-
nacchiotti and Popescu, ; Yang et al., a], emotions [Kosin-
ski et al., ], mental disorders [De Choudhury et al., ;
Vedula and Parthasarathy, ], personality [Kosinski et al., ;
Schwartz et al., ; Liu et al., ], substance use [Kosinski et al., ;
Ding et al., ] and sexual orientation [Kosinski et al., ]. In
addition, understanding individual traits and behavior has nu-
merous real life applications including public health [Giota

and Kleftaras, 2013], marketing [Yang et al., a; Ding and Pan,
2016] and politics [Chirumbolo and Leone, ].

We believe user generated data on social media is ideal for
data-driven user trait and behavior analysis due to its unique
characteristics: (1) large scale: it includes behaviors of a large
number of social media users (e.g., millions users); (2) com-
prehensive: it contains a large number of behavioral markers
from diverse sources (e.g., text posts, image posts, likes, and
friendship); (3) longitudinal: it follows behaviors of social
media users continuously over a long period of time (e.g.,
years); (4) objective: the analysis is based on the natural be-
havioral data automatically, continuously and objectively col-
lected in an open environment.

In this survey, we summarize the recent advances in auto-
mated human traits and behavior inference from social media
data. We included 24 studies published as full-length papers
at one of the top AI, data mining, social media and multi-
diciplinary behavior conferences and journals in the last ten
years. We focus on papers that employ machine learning
techniques to automatically infer or predict latent attributes
or behaviors of individuals from public social media data.

2 Overview of Studies
Table 1 lists the 24 papers included in our survey. For each
paper, we summarize information related to the dataset such
as the “Platform” from which the social media data were col-
lected (e.g., Twitter, Facebook, Reddit, Instagram and Quora)
and “Size”, which is the number of people with ground truth
labels in the dataset. In addition, we also lists “Source Data
Type”, to indicate the different types of social media data
used in the study. Here, text refers to user-generated text
data that include user posts (e.g., tweets or status update on
Facebook), profile description, and comments; like refers to
things a social media user likes such as books, people, music,
movies, TV shows, photos and products; user profile includes
demographic information (gender, age occupation, relation-
ship status etc.) and aggregated statistics of a user account
(the number of friends, followers, followings etc.); posting
activity which includes a set of statistics describing a user’s
posting behavior on social media such as the total number
of tweets/retweets, the average number of posts per day, the
number of likes/replies for each post; image which includes
the profile and background photos and also the iamge posts
shared on social media; social network which refers to social
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Table 1: Summary of Studies

Paper Platform Source Data Type Size Predicted Target
[Pennacchiotti and Popescu, ] Twitter tweet, user profile 10,338 political leaning

6,000 ethnicity
10,000 user preference

[Yang et al., b] Twitter tweet hashtag adoption
1,029 (Politic)
8,029 (Movie)
15,038 (Random)

[De Choudhury et al., ] Twitter post, social network, user profile 476 depression
[Zhang and Pennacchiotti, ] Facebook like 13,619 purchase behavior
[O’Banion and Birnbaum, ] Twitter tweet, social network political leaning

4,200 (Election day)
1,643 (Tweetcast)

[Kosinski et al., ] Facebook likes 58,000 age, gender,personality
46,027 relationship
1,200 substance use
18,833 religion
9,752 political leaning

[Schwartz et al., ] Facebook post 75,000 age,gender,personality
[Chen et al., ] Reddit post 799 human value
[Gao et al., 2014] Twitter tweet, retweet attitude

5,387 (Topic:Fracking)
2,593 (Topic:Vaccination)

[Wu et al., ] Facebook like 70,520 personality
[Yang et al., a] Twitter tweet 608 brand preference
[Preoţiuc-Pietro et al., a] Twitter tweet,user profile 5,191 occupation
[Lee et al., ] Twitter user profile, tweet, social network retweet action

1,902 (Public safety)
1,859 (Bird flu)

[Shen et al., ] Facebook like,tweet 1,327 personality
[Bhargava et al., 2015] Facebook post 488 interest
[Song et al., b] Twitter,Facebook,Quora post, bio description 1,607 interest
[Hu et al., ] Twitter tweet 9,800 occupation
[Song et al., a] Twitter,Facebook,Linkedin tweet, social network 5,436 volunteerism
[Liu et al., ] Twitter profile picture 66,000 personality
[Benton et al., ] Twitter tweet,social network 102,328 topic engagement

500 friend recommendation
383 age, gender
396 political leaning

[Ding et al., ] Facebook status, like 1,200 substance use
[Vedula and Parthasarathy, ] Twitter tweet, social network 3215 depression
[Preoţiuc-Pietro et al., b] Twitter tweet 3,938 political leaning
[Singh et al., ] Instagram caption, comments, image 699 cyberbullying

connections between different user accounts such as friend-
ship networks on Facebook and follower/following relations
on Twitter.

Although social media provide us an opportunity to easily
track a large number of heterogeneous user behavioral data,
the characteristics of social media data also bring significant
challenges to data analysis. For example, the text and images
are unstructured data. Making sense out of unstructured data
is alway a big challenge. User likes is very sparse and high
dimensional. For example, the likes data in [Ding et al., ] in-
cludes 10 millions unique like dimensions. It is also not easy
to search and analyze a large social network graph efficiently.

Finally, “Predicted Target” in Table 1 describes the pre-
dicted individual characteristics. We categorize them into

either explicit user characteristics or latent user characteris-
tics. Explicit User Characteristics refer to observable user
attributes that can be easily collected from a social media
platform. The most common explicit user characteristics in-
clude demographics (e.g., age, gender, race etc.), and user
preferences (e.g., likes). Latent User Characteristics refer to
user attributes that cannot be observed easily, and thus need to
be assessed by more sophisticated psychometric evaluations.
Typical latent user characteristics include personality, human
values, depression and addiction. Since typical psychometric
tests include dozens or even hundreds of questions (e.g. to
assess detailed personality, the IPIP-300 test has 300 ques-
tions), it is often difficult to collect the ground truth to assess
latent user characteristics at a large scale.



In summary, as shown in table 1, Twitter is the most
common social media platform used in these studies. This
is mainly due to the relative ease of accessing user data on
Twitter using its APIs. In terms of the type of user data in-
volved in these studies, text (e.g., tweets or status updates
on Facebook) is most common, followed by likes and social
networks. Since different types of user data require differ-
ent analysis techniques (e.g., using graph analytics for social
networks and natural language processing for text data), user
data type will have significant impact on the machine learn-
ing algorithms employed. The size of the datasets varies sig-
nificantly from as many as 100K people to as few as 383.
In general, user attributes declared directly on social media
(e.g., topic engagment on Twitter) can be obtained relatively
easily at a large scale. In contrast, for user traits/behavior that
require sophisticated psychometric evaluation (e.g., depres-
sion), their ground truth datasets tend to be smaller. Finally,
the predicted user characteristics are quite diverse, ranging
from demographics (e.g., age, gender, race, income and occu-
pation), latent user traits (e.g., personality and values), mental
disorders (e.g., addiction and depression) and online or real
world behaviors (e.g., purchase behavior and cyberbulling).

In the following, we summarize the typical data analysis
methods that are used to infer individual characteristics from
social media data.

3 Inference Methods
Figure 1 shows the typical architecture of such a system. One
or more types of user-generated data are extracted from a so-
cial media account. For each type of user data such as text
or image, a set of features are extracted (we call this “single-
view feature extraction/learning”). The features from each
view are then combined together to form a single user repre-
sentation (we call this “multiview feature learning”). Finally,
the combined user features are used to predict various human
traits and behaviors using typical machine learning methods
such as SVM classification or linear/logistic regression.

There are three main challenges when inferring user traits
and behavior from social media data: (1) small labeled train-
ing datasets since the ground truth human trait and behavior
data are hard to collect at a large scale. (2) unstructured and
high dimensional user data. For example, there could be mil-
lions of unigram and bigram features to represent the texts
from a user. (3) heterogeneous user data. Frequently we need
to combine user data from different modality (e.g., text and
images) and types (e.g., structured and unstructured) to paint
a complete picture of a user.

Based on how these challenges are addressed, we catego-
rize the studies in our survey along three dimensions. As
shown in Table 2, first, we categorize them based on whether
they employ a separate unsupervised feature learning stage
to take advantage of a large amount of unsupervised data
(2-stage) or they simply use labeled data directly in super-
vised feature extraction and prediction (1-stage). In gen-
eral, when the labeled ground truth dataset is small, unsu-
pervised feature learning can boost a system’s performance
significantly. To address the second challenge and avoid the
“curse of dimensionality” problem, we categorize these sys-

Figure 1: A Typical System Architecture

tems based on how they extract, select and learn a small num-
ber of features from unstructured data (e.g., text and image).
The features can be (a) “human engineered” where existing
domain/linguistic knowledge is used to construct and select a
small number of features or (b) constructed via “supervised
selection”, which refers to systems that select relevant fea-
tures based on their correlations with the ground truth; or (c)
constructed via “unsupervised feature learning”, which refers
to systems that automatically learn a small number latent fea-
tures based on unlabeled social media data. In terms of the
third challenge, we categorize these studies based on how
they combine features from different views together. If they
simply concatenate features from different views together, we
label them as “concatenate”. If they employ machine learn-
ing to fuse information from different views together, we la-
bel them as “fusion”. We also list different machine learning
algorithms employed for user traits and behavior prediction.

Since feature extraction, unsupervised feature learning and
multiview fusion play important roles in developing such a
system, in the following , we describe each topic in detail.

3.1 Basic Feature Extraction
Basic Feature extraction is often the first step that maps the
information in one’s social media account into a meaningful
and easy to manipulate feature representation. Here, we fo-
cus on extracting features from text and images since they are
unstructured information and thus more difficult to represent.
We will also briefly discuss how to extract features from so-
cial networks.

The most commonly used text features are uni-
grams [O’Banion and Birnbaum, ; Preoţiuc-Pietro et al., b]
and the LIWC (Linguistic Inquiry and Word Count) features.
A unigram is the term frequency computed for each vocab-



Table 2: Summary of Analysis Methods

Paper Stage Dimension Reduction Fusion Prediction Method

[Pennacchiotti and Popescu, ] 2-stage human engineered
unsupervised learning concatenation Decision Trees

[Yang et al., b] 1-stage human engineered NA SVM

[De Choudhury et al., ] 2-stage human engineered
unsupervised learning concatenation SVM

[Zhang and Pennacchiotti, ] 2-stage human engineered
unsupervised learning concatenation SVM, Naive Bayes

Logistic regression

[O’Banion and Birnbaum, ] 1-stage human engineered concatenation SVM

[Kosinski et al., ] 2-stage unsupervised learning NA Logistical/Linear regression

[Schwartz et al., ] 2-stage human engineered
unsupervised learning concatenation SVM, Linear regression

[Chen et al., ] 1-stage human engineered NA Logistic regression
Naive Bayes

[Gao et al., 2014] 1-stage supervised selection NA Lasso regression
Least squares regression

[Wu et al., ] 1-stage human engineered
supervised selection NA Lasso regression

[Yang et al., a] 1-stage human engineered NA SVM

[Preoţiuc-Pietro et al., a] 2-stage human engineered
unsupervised learning concatenation Gaussian Processes

[Lee et al., ] human engineered concatenation
SVM, Random Forest

Naive Bayes, Adaboost
Logistic regression

[Shen et al., ] 1-stage human engineered concatenation Linear Regression

[Bhargava et al., 2015] 1-stage human engineered NA Hierarchical clustering

[Song et al., b] 2-stage unsupervised learning fusion SVM, Least squares regression
Multi-view multi-task learning

[Hu et al., ] 2-stage human engineered
unsupervised learning NA SVM

[Song et al., a] 2-stage unsupervised learning fusion
SVM, Decision Trees

Random Forest
Graph-based Learning

[Liu et al., ] 1-stage human engineered NA Linear Regression

[Benton et al., ] 2-stage human engineered
unsupervised learning fusion SVM, Multi-task learning

[Ding et al., ] 2-stage unsupervised learning fusion SVM

[Vedula and Parthasarathy, ] 1-stage human engineered concatenation Decision Trees

[Preoţiuc-Pietro et al., b] 2-stage human engineered
unsupervised learning concatenation Logistic regression

[Singh et al., ] 1-stage human engineered
supervised selection concatenation Bagging classifier

ulary word in a text corpus (e.g., a corpus of all the Face-
book posts). Sometimes, unigrams can be weighted based
on their informativeness (e.g., based on Inverse Document
Frequency or IDF [Benton et al., ]). Since robust infer-
ence often requires repeated word occurrence, low-frequency

words are frequently filtered out. In addition to individual
words, meaningful phrases can be extracted by keeping only
ngrams (e.g., bigrams) with high point-wise mutual informa-
tion (PMI) [Schwartz et al., ; Hu et al., ].

LIWC features are human engineered features that are



constructed based on the psycholinguistic dictionary LIWC.
It groups words into psychologically meaningful categories.
Empirical results have confirmed that LIWC features are ca-
pable of detecting meaning and providing a broader range of
social and psychological insights such as feelings, personal-
ity, values and motivations. LIWC includes 81 features in
five categories such as psychological Processes (e.g., emo-
tional, cognitive, sensory, and social processes), Relativity
(e.g., words about time, the past, the future), Personal Con-
cerns (e.g., occupation, financial issues, health), and other di-
mensions ( e.g., punctuation and swear words). LIWC also
includes writing style features such as word complexity (e.g.,
words with more than 6 characters). Many of the systems in
our survey used LIWC features [Pennacchiotti and Popescu, ;
De Choudhury et al., ; Schwartz et al., ; Chen et al., ;
Preoţiuc-Pietro et al., b; Vedula and Parthasarathy, ; Singh
et al., ].

Sometimes, customized vocabulary is used to extract in-
formative words related to a prediction task. For example,
[Preoţiuc-Pietro et al., b] defined 12,000 political terms in or-
der to select informative unigrams pertaining to politics.

The image data such as profile pictures and photo posts,
may contain rich information about individual characteristics.
Each image is often represented as a vector of pixels, each
pixel is represented by a number (in black and white photos)
or three numbers using the RGB color scheme. In addition to
the raw image features, meaningful high-level features such
as color, facial expressions and postures can be extracted from
images [Liu et al., ], which are then correlated with a user’s
traits and behavior. Besides general image features, [Singh
et al., ] extracts demographics and a taxonomy-based object
categories (presence of tattoos, graffiti, drug) from Instagram
images to facilitate the detection of cyberbullying.

Egocentric social network features are frequently used to
characterize the social relations of a user [De Choudhury et
al., ; Hong et al., ; Benton et al., ; Vedula and Parthasarathy,
]. An egocentric network is defined as a network containing
a single actor (ego), all the actors that an ego is connected to
(alters), and all the links between the alters. For each ego, a
set of network features are frequently extracted such as net-
work size, betweenness centrality, normalized ego between-
ness, cluster coefficient and normalized brokerage. We may
also compute measures to assess network homophily such as
average age difference between the ego and the alters.

3.2 Unsupervised Single View Feature Learning
Although the ground truth user traits and behavior data are
costly to collect at a large scale. it is relatively easy to obtain
a large amount of unlabeled user data from social media. The
unsupervised feature learning algorithms are used to discover
latent features from unlabeled social media data. Here we
review typical unsupervised feature learning algorithms.

Singular Value Decomposition (SVD) is a mathemati-
cal technique that is frequently used for dimension reduc-
tion [De Lathauwer et al., ]. Given any m ∗ n matrix A,
the algorithm will find matrices U , V and W such that
A = UWV T . Here U is an orthonormal m ∗ n matrix, W is
a diagonal n∗n metric and V is an orthonormal n∗n matrix.
Dimensionality reduction is done by computing R = U ∗Wr

where Wr neglects all but the r largest singular values in the
diagonal matrix W .

Principle Component Analysis (PCA) is a popular dimen-
sionality reduction mechanism used to eliminate highly cor-
related variables. PCA can be implemented using SVD. SVD
and PCA have been used to learn a low-dimension repre-
sentation from a bag-of-word representation of social media
posts [Benton et al., ; Ding et al., ], likes [Kosinski et al., ;
Ding et al., ], and social networks [Benton et al., ].

Latent Dirichlet Allocation (LDA) is a generative graphi-
cal model that allows sets of observations to be explained by
unobserved latent groups [Blei et al., ]. In natural language
processing, LDA is frequently used to learn a set of topics
from a large number of documents. The topics are distribu-
tions of words that are frequently interpretable. In [Schwartz
et al., ; Ding et al., ], LDA is employed to learn topics from a
user’s social media posts.

GloVe is an unsupervised learning algorithm originally de-
signed to learn vector representations of words based on ag-
gregated global word-word co-occurrence statistics from a
text corpus [Pennington et al., ]. GloVe employs a global
log bilinear regression model that combines the advantages of
global matrix factorization with that of local context window-
based methods. GloVe has been applied to Facebook sta-
tus updates [Preoţiuc-Pietro et al., 2015; Ding et al., ] and
likes [Ding et al., ] to learn a dense feature vector for each
word/like. To summarize all the words or likes from a user,
we can use a vector aggregation functions such as average.

Recently, there is a new generation of neural network-
based feature learning methods that employs self-taught
learning to automatically derive a feature representation from
examples automatically constructed from a large amount of
unlabeled social media data.

Autoencoder (AE) is a neural network-based feature learn-
ing method [Hinton and Salakhutdinov, ]. It learns an identity
function so that the output is as close to the input as possi-
ble. Although an identity function seems a trivial function
to learn, by placing additional constraints (e.g,, to make the
number of neurons in the hidden layer much smaller than that
of the input), we can still force the system to uncover latent
structures in the data.

Word Embedding with Word2Vec is a neural network-
based method originally designed to learn dense vector rep-
resentations for words [Mikolov et al., ]. The intuition be-
hind the model is the Distributional Hypothesis, which states
words that appear in the same context have similar mean-
ings. There are two models for training a representation of
word: continuous bag of word (CBOW) and skipgram (SG)
model. CBOW predicts target word from one or more context
words, while SG predicts one or more context words from
target word. The models are frequently trained using either
a hierarchical softmax function (HS) or negative sampling
(NS) [Mikolov et al., ]. To process social media posts, the
word2vec model is applied to learn a vector representation of
each word. Then a simple average of all the word vectors by
the same user is used to represent all the posts of a user [Ben-
ton et al., ; Ding et al., ]. In addition, word embeddings can
be used to produce word clusters [Preoţiuc-Pietro et al., a;
Preoţiuc-Pietro et al., b] and domain lexicons (e.g., depres-



sion lexicon) [Vedula and Parthasarathy, ].
Document Embedding with Doc2Vec is an extension of

Word2Vec, which produces a dense low dimensional feature
vector for a sentence or a paragraph. There are two Doc2Vec
models: Distributed Memory (DM) and Distributed Bag-of-
Words (DBOW). Given a sequence of tokens, DM can si-
multaneously learn a vector representation for each individ-
ual word token and a vector for the entire sequence. In DM,
each sequence of words (e.g. a paragraph) is mapped to a
sequence vector (e.g., paragraph vector) and each word is
mapped to a unique word vector. The paragraph vector and
one or more word vectors are aggregated to predict a target
word in the context. DBOW learns a global sequence vector
to predict tokens randomly sampled from a sequence. Un-
like DM, DBOW only learns a vector for the entire sequence.
It does not learn vectors for individual tokens (e.g., words).
Neither does it use a local context window since the words for
prediction are randomly sampled from the entire sequence.
To characterize an individual’s social media posts, a docu-
ment for each user is created by aggregating every post of the
same user.

3.3 Multi-view Feature Fusion
To obtain a single, comprehensive and coherent user repre-
sentation based on all the social media data available, we need
to combine user features from different views together. In ad-
dition to simply concatenating features extracted from differ-
ent views, we can also apply machine learning algorithms to
systematically fuse them together. We categorize these fusion
methods into two types: (a) unsupervised feature learning that
doesn’t require any supervised data and (b) supervised multi-
task learning.

There are two types unsupervised learning algorithms for
multiview feature fusion : (1) Canonical Correlation Analysis
and (b) Deep Canonical Correlation Analysis.

Canonical Correlation Analysis (CCA) CCA is a sta-
tistical method that explores the relationships between two
multivariate sets of variables (vectors) [Hardoon et al., ].
Given two feature vectors, CCA tries to find a linear trans-
formation of each feature vector so that they are maxi-
mally correlated. CCA has been used in [Sargin et al., ;
Chaudhuri et al., ; Kumar and Daumé, ; Sharma et al., ;
Ding et al., ].

Deep Canonical Correlation Analysis (DCCA) DCCA
aims to learn highly correlated deep architectures, which can
be a non-linear extension of CCA [Andrew et al., ]. The in-
tuition is to find a maximally correlated representation of two
feature vectors by passing them through multiple stacked lay-
ers of nonlinear transformation [Andrew et al., ]. Typically,
there are three steps to train DCCA: (1) using a denoising
autoencoder to pretrain each single view. (2) computing the
gradient of the correlation of top-level representation. (3) tun-
ing parameters using back propagation to optimize the total
correlation.

The features learned from multiple views are often more
informative than those from a single view. Comparing with
single-view user feature extraction and learning, multi-view
learning achieved significantly better performance in predict-
ing demographics [Benton et al., ], politic leaning [Benton et

al., ] and substance use [Ding et al., ].
Multi-task learning (MTL) is a supervised learning

method to combine multi-view user data together. It tries
to jointly train multiple prediction tasks at the same time to
exploit the commonalities and differences across tasks. In
[Song et al., a], the authors collected multi-view user data
from different platforms (e.g., Twitter, Facebook, Linkedin
accounts of the same user) and predict volunteerism from two
tasks: user-centric analysis and network-centric analysis. Fi-
nally, they linearly fused these two components to enhance
the final prediction.

4 Discussion and Future Directions
Large-scale social media-based user trait and behavior analy-
sis is an emerging multidisciplinary field with the potential to
transform human trait and behavior analysis from controlled
small scale experiments to large scale studies of natural hu-
man behavior in an open environment. This provides us a new
opportunity to explore the interactions of a large number of
individual, social and environmental factors simultaneiously,
which would not be possible with traditional methods that use
small samples. The insight gained from these studies could be
valuable to help better understand the human minds and deci-
sion making process. It will also provide empirical evidence
to help public health providers and police makers to improve
mental health care and to combat public health threats (e.g.,
addiction and obese). Due to the privacy concerns on access-
ing user data on social media and the sensitive nature of the
inferred user characteristics, if not careful, there could be sig-
nificant privacy consequences and ethical implications. So
far, most of the studies in our survey focused primarily on
technical contributions. There should be more discussions on
ethical considerations when conducting research in this field.

There are also several promising directions for future re-
search. Since individual traits and behavior are highly cor-
related, building a prediction model that simultaneous infer
multiple correlated traits and behavior should yield better per-
formance than predicting each trait/behavior separately. Most
existing studies only predict one user attribute/behavior at
a time. More research should be conducted to jointly train
and predict multiple user attributes together for better perfor-
mance.

It is also common for a user to have multiple accounts on
different social media platforms. Recently, new technologies
have been developed to link different social media accounts of
the same user together [Abel et al., ]. With this linked data, it
is possible to perform novel cross-platform user trait and be-
havior analysis such as (1) domain bias analysis that focuses
on studying the impact of domain or social media platform
on user trait and behavior prediction, (2) domain adaptation
that addresses how to adjust prediction models trained on one
platform (e.g., Twitter) to predict the traits and behavior on
another platform (e.g., Facebook). So far, there is some ini-
tial work on domain bias analysis and correction in personal-
ity prediction [Kiliç and Pan, ]. More research is needed in
order to develop more robust tools for human trait and behav-
ior analysis.
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proach for multi-view spectral clustering. In ICML.

[Lee et al., ] K. Lee, J. Mahmud, J. Chen, M. Zhou, and J. Nichols.
Who will retweet this? detecting strangers from twitter to retweet
information. TIST, 6(3).

[Liu et al., ] L. Liu, D. Preotiuc-Pietro, Z. Samani, M. Moghaddam,
and L. Ungar. Analyzing personality through social media profile
picture choice. In ICWSM.

[Mikolov et al., ] T. Mikolov, I. Sutskever, K. Chen, G. Corrado,
and J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS.

[O’Banion and Birnbaum, ] S. O’Banion and L. Birnbaum. Using
explicit linguistic expressions of preference in social media to
predict voting behavior. In ASONAM.

[Pennacchiotti and Popescu, ] M. Pennacchiotti and A. Popescu. A
machine learning approach to twitter user classification. ICWSM,
11(1).

[Pennington et al., ] J. Pennington, R. Socher, and C. Manning.
Glove: Global vectors for word representation. In EMNLP, vol-
ume 14.

[Preoţiuc-Pietro et al., a] D. Preoţiuc-Pietro, V. Lampos, and
N. Aletras. An analysis of the user occupational class through
twitter content. In ACL, volume 1.

[Preoţiuc-Pietro et al., b] D. Preoţiuc-Pietro, Y. Liu, D. Hopkins,
and L. Ungar. Beyond binary labels: political ideology predic-
tion of twitter users. In ACL, volume 1.

[Preoţiuc-Pietro et al., 2015] D. Preoţiuc-Pietro, S. Volkova,
V. Lampos, Y. Bachrach, and N. Aletras. Studying user income
through language, behaviour and affect in social media. PloS
one, 10(9):e0138717, 2015.

[Sargin et al., ] M. Sargin, E. Erzin, Y. Yemez, and A. Tekalp. Mul-
timodal speaker identification using canonical correlation analy-
sis. In ICASSP, volume 1.

[Schwartz et al., ] A. Schwartz, J. Eichstaedt, M. Kern, L. Dz-
iurzynski, S. Ramones, M. Agrawal, A. Shah, M. Kosinski,
D. Stillwell, M. Seligman, et al. Personality, gender, and age
in the language of social media: The open-vocabulary approach.
PloS one, 8(9).

[Sharma et al., ] A. Sharma, A. Kumar, H. Daume, and D. Jacobs.
Generalized multiview analysis: A discriminative latent space. In
CVPR.

[Shen et al., ] J. Shen, O. Brdiczka, and J. Liu. A study of facebook
behavior: What does it tell about your neuroticism and extraver-
sion? Computers in Human Behavior, 45.

[Singh et al., ] V. Singh, S. Ghosh, and C. Jose. Toward multimodal
cyberbullying detection. In CHI.

[Song et al., a] X. Song, Z. Ming, L. Nie, Y. Zhao, and T. Chua.
Volunteerism tendency prediction via harvesting multiple social
networks. TOIS, 34(2).

[Song et al., b] X. Song, L. Nie, L. Zhang, M. Liu, and T. Chua.
Interest inference via structure-constrained multi-source multi-
task learning. In IJCAI.

[Vedula and Parthasarathy, ] N. Vedula and S. Parthasarathy. Emo-
tional and linguistic cues of depression from social media. In Pro-
ceedings of the 2017 International Conference on Digital Health.

[Wu et al., ] Y. Wu, M. Kosinski, and D. Stillwell. Computer-based
personality judgments are more accurate than those made by hu-
mans. PNAS, 112(4).

[Yang et al., a] C. Yang, S. Pan, J. Mahmud, H. Yang, and P. Srini-
vasan. Using personal traits for brand preference prediction. In
EMNLP.

[Yang et al., b] L. Yang, T. Sun, M. Zhang, and Q. Mei. We know
what@ you# tag: does the dual role affect hashtag adoption? In
WWW.

[Zhang and Pennacchiotti, ] Y. Zhang and M. Pennacchiotti. Pre-
dicting purchase behaviors from social media. In WWW.


	1 Introduction
	2 Overview of Studies
	3 Inference Methods
	3.1 Basic Feature Extraction
	3.2 Unsupervised Single View Feature Learning
	3.3 Multi-view Feature Fusion

	4 Discussion and Future Directions

