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Abstract In 2016, we published “A test of general relativ-
ity using the LARES and LAGEOS satellites and a GRACE
Earth’s gravity model. Measurement of Earth’s dragging of
inertial frames [1]”, a measurement of frame-dragging, a fun-
damental prediction of Einstein’s theory of General Relativ-
ity, using the laser-ranged satellites LARES, LAGEOS and
LAGEOS 2. The formal error, or precision, of our test was
about 0.2% of frame-dragging, whereas the systematic error
was estimated to be about 5%. In the 2017 paper “A com-
ment on “A test of general relativity using the LARES and
LAGEOS satellites and a GRACE Earth’s gravity model by
I. Ciufolini et al.”” by L. Iorio [2] (called I2017 in the follow-
ing), it was incorrectly claimed that, when comparing differ-
ent Earth’s gravity field models, the systematic error in our
test due to the Earth’s even zonal harmonics of degree 6, 8, 10
could be as large as 15%, 6% and 36%, respectively. Further-
more, I2017 contains other, also incorrect, claims about the
number of necessary significant decimal digits of the coeffi-
cients used in our test (claimed to be nine), in order to elim-
inate the largest uncertainties in the even zonals of degree 2
and 4, and about the non-repeatability of our test. Here we
analyze and rebut those claims in I2017.

a e-mail: ignazio.ciufolini@gmail.com; ignazio.ciufolini@unisalento.it
b e-mail: giampiero.sindoni@uniroma1.it

1 Introduction

The dragging of inertial frames, or frame-dragging, is a fun-
damental and intriguing prediction of Einstein’s theory of
General Relativity. It has a key role in a number of astrophys-
ical phenomena, including the orientation of jets from active
galactic nuclei and quasars and the emission of gravitational
waves from colliding black holes [3,4]. In General Relativity,
the angular momentum of a central body causes a secular shift
of the nodes of a satellite (the intersections of its orbit with
the equatorial plane of the central body), and of its periastron
(the closest point of its orbit to the central body) around that
central body. This is called Lense-Thirring effect ([5]). In a
number of papers [6–13], we described how, by combining
the orbital elements of a number of satellites with suitable
coefficients, it would be possible to test frame-dragging and
the Lense-Thirring effect with an accuracy depending on the
number of the satellites’ orbital observables used in the anal-
ysis and on their accuracy. The technique is described in
detail in [13]; here we simply note that the major systematic
errors arise from errors in the Earth’s even zonal harmonics
(the Earth’s deviations from spherical symmetry which are
both symmetrical with respect to the Earth’s equatorial plane
and to its symmetry axis.) In particular the largest source of
systematic error is due to the largest deviation of the Earth
from spherical symmetry, its oblateness, described by the
even zonal harmonic of degree two, the Earth’s quadrupole
moment. Indeed each even zonal harmonic generates a clas-
sical (i.e. not General Relativistic) shift of the node of a satel-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-6303-1&domain=pdf
http://orcid.org/0000-0001-9166-7916
http://orcid.org/0000-0002-9726-7064
http://orcid.org/0000-0002-3047-5870
mailto:ignazio.ciufolini@gmail.com{;} ignazio.ciufolini@unisalento.it
mailto:giampiero.sindoni@uniroma1.it


880 Page 2 of 11 Eur. Phys. J. C (2018) 78 :880

lite and these shifts are dominated by the lowest degree even
zonal harmonics and especially by the Earth’s quadrupole
moment. An idea [7] was to use two laser-ranged satellites
with supplementary inclinations to eliminate the error due to
the uncertainties of all the even zonal harmonics (this tech-
nique will be achieved by the forthcoming LARES 2, Laser
Relativity Satellite 2, of ASI - the Italian Space Agency).
Another idea was then to use n observables, and in particular
the n nodes of n satellites to both measure the Lense-Thirring
effect and to eliminate the uncertainties due to the largest
n − 1 even zonal harmonics: “Another solution would be
to orbit several high-altitude, laser-ranged satellites, similar
to LAGEOS, to measure J2, J4, J6 etc., and one satellite to
measure �̇Lense−Thirring” (p. 3102 of [8]).

A number of tests [1,14–16] with ever increasing accu-
racy was then carried out using this last technique, first using
the two satellites LAGEOS (1976) of NASA and LAGEOS
2 of ASI and NASA (1992 [17]), both originally dedicated
to space geodesy, and then including LARES (Laser Rela-
tivity Satellite), launched in 2012 by ASI, dedicated to rel-
ativity and space geodesy. In 2016, we published [1] a test
of the Lense-Thirring effect using about 3.5 years of data of
LARES, LAGEOS and LAGEOS 2. This test used their three
nodal observables to eliminate the error due to the first two
largest even zonal harmonics, i.e., the Earth’s quadrupole
moment J2, of degree two, and the even zonal of degree
four J4, and to test the Lense-Thirring effect. The formal
error, or precision, of our test was about 0.2% of frame-
dragging, whereas the systematic error was estimated to be
about 5%. This systematic error was mainly due to the even
zonal harmonics of degree strictly higher than four and was
calculated by using the calibrated errors (i.e. including the
systematic errors) of the Earth’s gravity model GGM05S
[18,19] which we use to specify moderately low angular
components of the Earth’s gravity field. (In our analysis the
Earth’s model GGM05S provided the even zonal harmon-
ics of degree 2n = 6, 8, . . . , 90. The high-degree harmonics
have very little effect on the results.) GGM05S is a state-
of-the-art determination of the Earth’s gravity field, obtained
using the space mission GRACE (Gravity Recovery and Cli-
mate Experiment), launched in 2002 [20]. GRACE deter-
mined the Earth’s gravity field and its variations using two
spacecraft in polar orbit at an altitude of about 400 kilome-
ters. The pair extracted variations in the gravitational field by
accurate ranging to each other.

A recent paper “A comment on “A test of general relativ-
ity using the LARES and LAGEOS satellites and a GRACE
Earth gravity model by I. Ciufolini et al.”” by L. Iorio [2]
(called I2017 in the following), claims, based on a compari-
son among different Earth’s gravity field models, that the sys-
tematic errors of our 2016 test, due to the Earth’s even zonal
harmonics of degree 6, 8 and 10, can be as large as 15%, 6%
and 36%, respectively. We show below that I2017 is incorrect

in these claimed results. In fact, I2017 mentions the Earth’s
gravity model we use (GGM05S) only three times: once in
the abstract, once in Sect. 2.2 and once in the comment: “It
can be noted that Eq. (31) yields a realistic uncertainty for
C6,0 very close to the simple difference C6,0 between the
estimated coefficients of ITU_GRACE16 and GGM05S”.
ITU_GRACE16 is another Earth’s model. Eq. (31) in I2017
calculates a coefficient differencing ITU_GRACE16 and yet
another Earth’s model: GOCO05S. So, on its face, I2017
says nothing directly about the accuracy of GGM05S but
uses an arbitrary selection of models to infer the accuracy of
the degree 6, 8, and 10 zonal harmonics.

In Sect. 2.1 we show that the systematic errors reported
in the paper I2017 are incorrect by some substantial fac-
tors. In Sect. 2.2 we show that, with regard to the accu-
racy of the lowest even zonal harmonics, at least two of the
Earth’s gravity models used in I2017, i.e., JYY_GOCE04S
and ITU_GRACE16 are not comparable in accuracy with
the Earth’s gravity model GMM05S we use, obtained with
GRACE. In particular the lowest harmonics of the model
JYY_GOCE04S, obtained using data from the space mission
Gravity Field and Steady-State Ocean Circulation Explorer
(GOCE) [21] only, cannot be compared with the accuracy
of the lowest harmonics of the GRACE and Satellite Laser
Ranging (SLR) model GGM05S. GOCE was designed to
generate gravity field models with increased accuracy for
the higher degree harmonics of the Earth’s gravitational field
but is not comparable in accuracy to GRACE (about an order
of magnitude worse) for the lowest harmonics, the ones that
dominate the errors in the Lense-Thirring analysis.

I2017 contains other, incorrect, claims about the number
of significant decimal digits of the coefficients used in our
test (claimed to be nine), necessary to eliminate the largest
uncertainties in the even zonal of degree 2 and 4, and about
the non-repeatability of our test, and other minor claims. In
Sect. 3, we show that the claim of I2017 that nine signifi-
cant decimal digits in the coefficients are necessary for the
cancellation of the error due to J2 and J4 is not correct and
in fact, for a 1% test of frame-dragging, we only need two
or three significant decimal digits. Finally in Sect. 3.1, we
address the claim of I2017 about the non-repeatability of our
test of frame-dragging, and other minor claims.

2 Erroneous claims of the errors induced by the gravity
field uncertainties

In I2017 the even zonal harmonics C̄6,0, C̄8,0 and C̄10,0 of the
gravity field models ITU_GRACE16, ITSG_Grace2014S,
GOCO05S and JYY_GOCE04S are compared. The C̄2n,0

are related by a normalization to the even zonal harmonics
J2n . The explicit relation is given in Sect. 2.1. The differ-
ence between each normalized even zonal harmonic, C̄6,0,
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C̄8,0 and C̄10,0, of each pair of these gravity models is then
calculated (see tables 3, 5 and 7 of I2017), and these differ-
ences are then propagated into the combination of the nodes
of LAGEOS, LAGEOS 2 and LARES to produce a claimed
percent error in the measurement of the frame-dragging of
their nodes, i.e., of the Lense-Thirring effect (see tables 4, 6,
8 and 9 of I2017).

However, the findings of I2017 are affected by erroneous
claims, both numerical and conceptual, as we now show.

2.1 Numerical miscalculations in I2017

I2017 claims that the errors induced in the test of frame-
dragging by the differences in the coefficients C̄6,0, C̄8,0 and
C̄10,0 of the four above models are quite large and, for exam-
ple, the errors induced by the differences in C̄6,0 may be as
large as 15% of frame-dragging. Similar claims are made for
C̄8,0 and C̄10,0.

Let us concentrate on the errors due to C̄6,0. We use the
treatment of the standard text of space geodesy by Kaula [22];
we have also checked the results with the orbital estimator
GEODYN. We find that the secular rate of the node of a
satellite due to C̄6,0 can be easily calculated as follows.

The Lagrange equation for the rate of change of the node
� of a satellite as a function of a disturbing function R is
[22,23]:

d�

dt
= 1

na2(1 − e2)1/2 sin i

∂F

∂i
(1)

Where the force function F is given by F = G M⊕
2a + R,

G is the gravitational constant, M⊕ is the Earth mass, and
n, a, e and i are respectively mean motion, semimajor axis,
orbital eccentricity and inclination of an Earth’s satellite.

The disturbing function R depends on the Earth’s potential
V (not including the central term). The Earth’s potential V ,
real solution of the Laplace equation, can be written [22]:

V =
∞∑

l=0

l∑

m=0

1

rl+1 Plm(sin φ)[Clm cosmλ + Slm sinmλ]

where Plm(sin φ) are the Legendre associated functions, r ,
φ and λ are respectively radial coordinate, latitude and lon-
gitude measured eastward, l and m are degree and order of
the spherical harmonic, and Clm and Slm are respectively the
cosine and sine coefficients of the spherical harmonic poten-
tial term. The term Vlm of the Earth’s potential of degree
6 and order 0 due to the even zonal harmonic C̄6,0 can be
written [22–24]:

V60 = G M⊕ R6⊕
a6+1

6∑

p=0

F60p(i)

∞∑

q=−∞
G6pq(e)S60pq(ω, M,�) (2)

where:

S60pq = √
13 C̄6,0 cos[(6 − 2p)ω + (6 − 2p + q)M] (3)

and R⊕, ω and M are respectively Earth radius, satellite’s
argument of perigee and mean anomaly. C̄6,0 is the normal-
ized even zonal harmonic coefficient of degree 6 and order
0. The normalized even zonal harmonic coefficients, C̄2n, 0,
the ones usually provided in the Earth’s gravity field mod-
els, are related to the denormalized coefficients C2n, 0 by
the simple relation: C2n, 0 ≡ √

4n + 1C̄2n, 0). For example
C20 = −1.8264 · 10−3 and C̄20 = −4.8417 · 10−4, and
C6,0 = −5.40743 · 10−7 and C̄6,0 = −1.49975 · 10−7 i.e.,
for the degree six even zonal harmonic: C6,0 ≡ √

13C̄6,0,
(the non-normalized even zonal harmonic coefficients, usu-
ally written with the notation J2n are equal to the C2n, 0 coef-
ficients with a minus sign, e.g., the quadrupole coefficient J2

is J2 = 1.8264 · 10−3).
By considering the secular rate only of the nodes of a

satellite due to the even zonal harmonic of degree 6, C̄6,0, we
have then:

V60 = GM⊕
√

13C̄6,0

a

(
R⊕
a

)6

F603(i)G630(e) (4)

The functions F603(i) and G630(e) can be easily calcu-
lated using the recursive formulae of Kaula and are given
by F603 = − 5

16 + 105 sin2 i
32 − 945 sin4 i

128 + 1155 sin6 i
256 and

G630 = 1+5e2+ 15e4
8

(1−e2)11/2 :
Finally inserting F603(i) and G630(e) in Eqs. (1) and (4),

we have the secular nodal rate due to C̄6,0:

d�6,0

dt
=

105
(

1 + 5e2 + 15e4

8

)
nR6

√
13 C̄6,0

16a6(1 − e2)6

× cos i

(
1 − 9 sin2 i

2
+ 33 sin4 i

8

)
(5)

By inserting in the nodal rate the orbital parameters, semi-
major axis, a, eccentricity, e, and inclination, i , of the three
satellites: aLARES ∼= 7820 km, eLARES ∼= 0.0008, and
iL ARES ∼= 69.5◦; aLAGEOS ∼= 12, 270 km, eLAGEOS ∼=
0.0045, and iL AGEOS ∼= 109.84◦, and aLAGEOS 2 ∼=
12, 163 km, eLAGEOS 2 ∼= 0.0135, and iL AGEOS 2 ∼= 52.64◦;
we have:
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d�L AGEOS

dt
= −1.18019 · 1011 · C̄6,0 mas/year

d�L AGEOS 2

dt
= −1.78652 · 1011 · C̄6,0 mas/year

d�L ARES

dt
= 3.27064 · 1012 · C̄6,0 mas/year

where mas stands for milliarcsec. Combining the nodal rates
of LAGEOS, LAGEOS 2 and LARES due to C̄6,0 using the
formula to eliminate the C̄2,0 and C̄4,0 contributions to the
combined nodal rates [see formula (9) of Sect. 3], we have:

�̇
6,0
L AGEOS + c1�̇

6,0
L AGEOS2 + c2�̇

6,0
L ARES

= (−1.18019 · 1011 − c1 · 1.78652 · 1011

+ c2 · 3.27064 · 1012) · C̄6,0 mas/year

= 5.91029 · 1010 · C̄6,0 mas/year (6)

where c1 = 0.345 and c2 = 0.073.
Finally, the largest C6,0 difference in Iorios’s Table 3

(I2017) is GOCO05S - ITU_GRACE16: �C̄6,0 = 3.197 ×
10−11 in magnitude. Using this difference we get the error
in the combined nodal rates of LAGEOS, LAGEOS 2 and
LARES due to the difference between the C̄6,0 coefficients
of GOCO05S and ITU_GRACE16, that is 1.89 mas/year.

Since the combined frame-dragging effect is about
�

Lense−Thirring
combination = 30.657+c1 ·31.481+c2 ·118.421 mas/

year ∼= 50.16 mas/year , the final relative percent error is
just:

1.89 mas/year

50.16 mas/year
= 3.75% �̇

Lense−Thirring
combination (7)

an error about four times smaller than 15% as erroneously
claimed in I2017, and within our 5% estimated systematic
error. Other entries in I2017 Table 3 are smaller (or much
smaller) than GOCO05S - ITU_GRACE16; the effect on the
error is linear in the differences, so this result bounds the
Lense-Thirring error estimate derived from C6,0 differences.

Similar calculational/numerical errors affect the other val-
ues listed in tables 4, 6, 8 and 9 of I2017. To continue our
analysis of the difference, we find the percentage uncertainty
arising from the difference in C8,0 to be 3 × 10−3%, com-
pared to 2 × 10−2% in I2017. For the percentage uncer-
tainty arising from the C10,0 difference, we find, in agree-
ment with I2017, ≈ 3%. Obviously, adding the uncertainties
arising from C6,0, C8,0, and C10,0 would lead to ≈ 6.75%
added in absolute value, and about 4.8% added in quadrature.
The discussion just above concerns models GOCO05S and
ITU_GRACE16. Neither of these is the model GGM05S that
we use, but GOCO05S is very similar to GGM05S, and has
similar good low-multipole accuracy. ITU_GRACE16 has
much poorer low-multipole accuracy, and as we have just
seen, this leads to estimated frame dragging uncertainty in
the 5% to 7% range arising from differencing C6,0, C8,0, and
C10,0 between GOCO05S and ITU_GRACE16.

The strongest claim made in I2017 involves differences
involving C10,0 between the model JYY_GOCE04S and the
other three models considered in I2017. TheC10,0 differences
between the model JYY_GOCE04S and the others consid-
ered in I2017 would lead to frame dragging uncertainties of
order 30%. (However JYY_GOCE04S is about an order of
magnitude less accurate than state of the art models in the
low multipoles; see Fig. 1. I2017’s calculations are erroneous
also here. I2017’s Table 8, last column (JYY_GOCE04S)
should read 32%, 29%, 32%.) Once these and other com-
putational errors in I2017 are corrected, these ≈ 30% dif-
ferences dominate Iorio’s claims for large “uncertainties”.
But reviewing I2017’s Tables 6 and 8 most clearly shows
that model JYY_GOCE04S is an outlier; the fault lies with
JYY_GOCE04S (see Fig. 1). I2017’s claims based on this
outlier are not credible.

It is worth mentioning that in the comparison of ITU_
GRACE16 and GGM05S, the effective epoch of the zon-
als can be different, which is relevant if they have a linear
time dependence (seasonal and tidal variations do not have a
significant impact on the results). GGM05S was determined
with GRACE data spanning April 2003 to May 2013 (mak-
ing the effective epoch ∼ 2008), while ITU_GRACE16 used
GRACE data from April 2009 to October 2013 (making the
effective epoch ∼ 2011). Taking into account the linear drift
(as determined from the full GRACE time series currently
available) over the 3-year epoch difference in C6,0, C8,0, and
C10,0, we find that the differences between the two geopo-
tential models are in fact reduced by a factor of 3 or more,
suggesting an even closer level of agreement than simply the
difference in the coefficients as published.1

2.1.1 Other inconsistent results in the publications by Iorio

It is curious that the author of I2017, in similar past papers
[25–27], has produced results quite at variance with the
present one in I2017, and with each other. For example in
2005 [25], he used the same technique that we applied to get

1 A minor point is also that the absolute value of the differences of C̄6,0,
for example for GOCO05S and JYY_GOCE04S, and ITU_GRACE16
and JYY_GOCE04S, provided respectively with three and four sig-
nificant digits in I2017, are erroneous. Incidentally the value of
C̄6,0 for model GOCO05S is evaluated at epoch January 1, 2008,
neglecting annual variations. For model ITU_GRACE16 the C̄6,0
value represents a mean for the period April 2009 to October 2013,
and for model JYY_GOCE04S a mean for the period November
2009 to October 2013: C̄60GOCO05S = −1.499663394539 · 10−7,
C̄60I TU_GRACE16 = −0.149998273044598 · 10−6 and C̄60JYY_GOCE04S =
−0.1499850880263456 · 10−6. However, if their difference is built as
in I2017, we have: C̄60GOCO05S − C̄60JYY_GOCE04S = 1.87486 ·10−11 and
C̄60I TU_GRACE16 − C̄60JYY_GOCE04S = 1.3185 · 10−11. Nevertheless, in
table (3) of I2017, these differences are respectively incorrectly quoted
as 1.37 ·10−11 and 1.827 ·10−11, with four significant digits. These are
not major errors but do influence the results to some degree.
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a 5% test of frame-dragging [1] to predict a “reliable” 1%
test of frame-dragging: “. . . by inserting the new spacecraft
in a relatively low, and cheaper, orbit (a = 7500-8000 km,
i = 70◦) and suitably combining its node with those of
LAGEOS and LAGEOS II in order to cancel out the first
even zonal harmonic coefficients of the multipolar expan-
sion of the terrestrial gravitational potential J2, J4 along
with their temporal variations. The total systematic error due
to the mismodelling in the remaining even zonal harmonics
would amount to 1% and would be insensitive to departures
of the inclination from the originally proposed value of many
degrees” [25].

But in a 2009 paper [26] he claimed that the total measure-
ment uncertainty in the test of frame-dragging including the
LARES satellite, could range from 1000 to 100%: “The low
altitude of LARES, 1450 km with respect to about 6000 km
of LAGEOS and LAGEOS II, will make its node sensitive to
much more even zonals than its two already orbiting twins; it
turns out that, by using the sigmas of the covariance matrices
of some of the latest global Earth’s gravity solutions based
on long data sets of the dedicated GRACE mission, the sys-
tematic bias due to the mismodeled even zonal harmonics up
to l = 70 will amount to 100-1000%” [26]. Later on, in 2011
[27], for the same orbit of the LARES satellite: “If, instead,
one assumes Jl , l = 2, 4, 6, . . ., i.e., the standard deviations
of the sets of all the best estimates of Jl for the models consid-
ered here the systematic bias, up to l = 60, amounts to 12%
(SAV) [sum of absolute values] and 6% (RSS) [root sum
squared]. Again, also this result may turn out to be optimistic
for the same reasons as before.” Other similar papers pub-
lished an uncertainty of 29% for the LARES experiment [28].
Similar contradicting statements and huge differences for the
uncertainty in the test of frame-dragging with the LAGEOS
and LAGEOS 2 satellites, published between 2003 and 2011,
can be found in other papers by the same author. In summary
the author of I2017 has over about a decade published error
budgets of the same LARES experiment that go from 1000
to 1% with a number of figures in between.

2.2 Conceptual shortcomings of differencing the lowest
even zonals of different Earth’s gravity field models

In I2017 the difference between the even zonals of different
Earth’s gravity field models are calculated and then these dif-
ferences are propagated into the nodal rates to find the total
uncertainty in the measurement of frame-dragging. How-
ever, as we remarked in a number of papers [16], it makes
no sense to compare Earth’s gravity models obtained with
different techniques that have different intrinsic accuracies
(that is, including systematic errors and not simply formal
errors) and especially that have different accuracies of the
lowest harmonics. Indeed the accuracy of the lowest even
zonal harmonics of an Earth’s gravity field model obtained

with data of GOCE only, such as JYY_GOCE04S, cannot
be compared to the accuracy of the lowest harmonics of
models obtained with GRACE and SLR. Furthermore, the
accuracy of the lowest harmonics of a model obtained with
an energy integral method, such as ITU_GRACE16, should
not be compared to that of GGM05S; energy integral meth-
ods incorporate only instantaneous position determinations,
without equations of motion to interpolate between subse-
quent measurements. For this reason, of the four Earth’s
models (ITSG_Grace2014S, GOCO05S, ITU_GRACE16,
JYY_GOCE04S) used in I2017, only the lowest harmon-
ics of ITSG_Grace2014S and GOCO05s are comparable in
accuracy to those of GGM05S. (We reiterate that I2017 does
not carry out this comparison.)

Let us explain this point in detail. Satellite gravity gra-
diometry (SGG) is a very powerful technique for the direct
observation of higher order functionals of the gravitational
potential directly, rather than inferring them from their per-
turbing effects on satellite orbits. This is very nicely dis-
cussed in several articles, e.g., [29]. One of the drawbacks
of SGG however is the fact that the observations are primar-
ily sensitive to a range of frequencies of the geopotential,
those that correspond to the measurement band of the specific
instrument used. In the case of the GOCE mission, because of
restrictions on the development of the gradiometer, the use-
ful bandwidth was from 5 · 103 to 0.1 Hz. In the end the very
long wavelength components of the field cancel out in the
measurement process as common mode effects that cannot
rise over the noise of the instrument.

This results in SGG requiring some external information
for the long wavelength (low degree) part of the field. This is
the reason why those who use SGG data resort to adding-in
Satellite-to-Satellite Tracking (SST) data, from which they
can obtain the required information for the complete recov-
ery of the field, from the lowest to the highest degree possi-
ble. In most cases the SST part comes from high-low Global
Navigation Satellite System (GNSS) observations between
the spacecraft carrying the gradiometer and GNSS space-
craft, and in such cases, the orbits are usually done in Precise
Kinematic mode, which means that there are no equations of
motion involved and the positions are determined indepen-
dently at each observation point. This causes further degrada-
tion of the information contained in the very long wavelength
part of these models. In other cases the information is derived
from low-low SST, e.g. between the two GRACE spacecraft,
using the ultra-precise K/Ka-Band Ranging (KBR) system,
the same one used to produce the GRACE models. In that
case of course the resulting model is a mix of GRACE and
GOCE, where the long wavelength information comes from
the GRACE data and the higher degree part from GOCE,
with the intermediate wavelengths being a region where both
systems contribute.
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Fig. 1 We compare GGM05S, as well as two GOCE-only gravity mod-
els (GOSG01S [30] and JYY_GOCE04S), with EIGEN6C4 [31] (a
“combination model” which incorporates SST and SLR input to obtain
highly accurate low-degree geopotential coefficients—see text) [19,32–
34]. The square-root variance (or RMS) is plotted as a function of the
geopotential degree (the value of 2n in the symbol J2n of a multi-
pole). The lower degrees represent longer wavelength features of the
gravity field. Included on the plot are the estimated errors assigned to

JYY_GOCE04S and to GGM05S, which appear to be consistent with
the actual errors as realized by their differences with EIGEN6C4. At the
higher degrees, the GOCE-based models perform slightly better than
GRACE models, but for the purpose of the Lense-Thirring analysis,
only the lowest degrees are relevant. It is clear that for the GOCE-only
models, the lower degree terms are about an order of magnitude less
accurate. They obviously perform even worse for degrees 10 to 16

Over the past two decades it was also recognized that due
to the mass redistribution of the Earth’s System, the geopo-
tential field is not a static one, it rather exhibits variations
at all frequencies, spatial and temporal. Due to this, it is
now customary that when one develops a model, these varia-
tions should be either estimated simultaneously, or forward-
modeled on the basis of the best available models. For the
J2 component, representing the lowest degree zonal signal,
we use the 15-day series that we obtain from the analysis of
several SLR missions covering several years, since these are
part of the GRACE mission models and they are provided by
the project. Obviously, models that are based on kinematic
orbits (e.g. ITU_GRACE, JYY_GOCE) and use data over a
short period of time, are not able to determine these tempo-
ral variations, but even worse, in most cases they do not even
account for them, making it impossible to reference their
coefficients to a specific date for comparison with models
that are derived for a specific date (e.g. the GRACE mission
models). Because of the high precision of the new techniques
and the increase in modeling accuracy, temporal variations
are now clearly visible up to high degrees and orders, so that
comparison of models without careful consideration of these
variations does not make any sense. GRACE has dealt with
this issue by carefully developing a de-aliasing product that
accounts for atmospheric, oceanic and such variations, so
that the recovered variations can be ascribed to hydrological
sources. Due to this specificity, it is no longer meaningful
to use a single value and a linear rate to model even the
very long wavelength components of the field (e.g. J2). We
now use a time-series of 15-day averaged values (sometimes

even weekly estimates), in order to capture the effect of high
frequency modulations caused by mass redistribution. One
needs to be careful that these time series are derived using
the same higher order model as in the case of the GRACE
mission products, so that the ensemble represents the same
potential field at all times (including the tidal part of course).

It is in the nature of the gravity gradiometer data from
GOCE that the measurement errors dominate at the longer
wavelength (lower degree) components of the gravity field.
In Fig. 1, we compare GGM05S, as well as two GOCE-
only gravity models (GOSG01S and JYY_GOCE04S), with
the combination model EIGEN6C4 [31,35]. The square-root
variance (or RMS) is plotted as a function of the geopoten-
tial degree (the value of 2n in the symbol J2n of a multipole).
The lower degrees represent longer wavelengths and higher
degrees reflect the shorter wavelength features of the gravity
field. Included in the plot are the estimated errors assigned to
JYY_GOCE04S and to GGM05S, which appear to be con-
sistent with the actual errors as realized by their differences
with EIGEN6C4. At the higher degrees, the GOCE-based
models perform slightly better than GRACE-only models,
but for the purpose of the Lense-Thirring analysis, only the
lowest degrees are relevant. It is clear that for the GOCE-only
models, the lower degree terms are about an order of magni-
tude less accurate and cannot rationally be used to judge the
accuracy of gravity models that are based on GRACE data2

[19,32–34].

2 All models mentioned are available at: http://icgem.gfz-potsdam.de/
tom, along with the related documentation.
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Table 1 Difference of the even zonal harmonics C̄6,0, C̄8,0 and C̄10,0 of GGM05S with those of ITSG_Grace2014S and GOCO05S

C̄6,0 C̄8,0 C̄10,0

Difference (absolute value) of GGM05S with
ITSG_Grace2014S

5.72392 · 10−13 9.35295 · 10−13 2.80392 · 10−12

Difference (absolute value) of GGM05S with
GOCO05S

8.84729 · 10−12 2.74188 · 10−12 2.28925 · 10−12

Table 2 Error propagated into the node of LAGEOS, LAGEOS 2 and LARES due the differences between GGM05S and ITSG_Grace2014S and
GOCO05s for each coefficient C̄6,0, C̄8,0 and C̄10,0

C̄6,0 C̄8,0 C̄10,0

Absolute value of the error propagated into the combination of the nodes of
LAGEOS, LAGEOS 2 and LARES of the difference between GGM05S
with ITSG_Grace2014S in units of mas/year

0.0339082 0.00296451 0.258112

Absolute value of the error propagated into the combination of the nodes of
LAGEOS, LAGEOS 2 and LARES of the difference between GGM05S
with GOCO05S in units of mas/year

0.524109 0.00869065 0.210734

Naturally, the approach adopted in deriving a model and
the amount of proper accounting of other-than-gravity varia-
tions of the “observed” field affect the accuracy of the derived
model. The “formal” covariance that comes out as a product
of a least squares estimation has very little to do with the true
accuracy of the model. Calibrating this covariance matrix
is usually the most time-consuming effort for most of the
highest accuracy models and the developers make sure to
report that process in detail when delivering their models.
There are very few models that provide all the information
required to judge them in a relative comparison to other mod-
els with similar information. Unfortunately, a blindly exe-
cuted direct comparison ignoring all the details behind the
development of two models, the reference epoch of the har-
monic coefficients, the background models used, etc., most
certainly leads to incorrect and unacceptable conclusions.
Even models that are seemingly derived from similar data
and using even the same technique, if they are based on
data collected over two different time periods (even if of
equal length), will be significantly different if the temporally
varying parts are not appropriately handled in both cases.
This reason alone ought to be enough to force a very strict
approach in making comparisons between models. A sim-
ple difference of the corresponding coefficients is definitely
the wrong approach and especially one should not compare
the lowest harmonics of ITSG_Grace2014S and GOCO05S
with those of ITU_GRACE16 and JYY_GOCE04S (this last
gravity model being obtained with GOCE only), and then
should not propagate these differences into the nodal rates
to evaluate the uncertainty in the test of frame-dragging,
as done in I2017. ITSG_Grace2014S and GOCO05S are
models designed to be accurate for low order harmonics,
so for completeness, in the next section we report the results

Table 3 Total error (sum of each absolute value) propagated into the
combination of the nodes of LAGEOS, LAGEOS 2 and LARES relative
to the combined frame-dragging effect of LAGEOS, LAGEOS 2 and
LARES (about 50.465 mas/year)

Total percent error relative to the combined
frame-dragging effect

ITSG_Grace2014S 0.588%

GOCO05s 1.48%

of the errors obtained by differencing the lowest harmon-
ics of ITSG_Grace2014S and GOCO05S against the model
GGM05S we use and then propagating these differences into
the nodal rates. This approach fully confirms our error bud-
get in our test of frame-dragging. (To reiterate, I2017 did not
consider comparisons to GGM05S.)

2.3 Errors induced by the gravity field uncertainties

We wish to compare the gravity field models ITSG_
Grace2014S and GOCO05S with GGM05S. Therefore, we
took the differences between each of the harmonics C̄6,0, C̄8,0

and C̄10,0 of GGM05S with the corresponding harmonics of
the gravity field models ITSG_Grace2014S and GOCO05S
(the differences are reported in Table 1). We then propagated
these errors into the combination of the nodal rates, Table 2,
and we finally added the absolute values of the errors due to
each difference of each coefficient of these two gravity mod-
els and compared the result to the frame-dragging effect.
The results, shown in Table 3, obtained in this way, esti-
mate the uncertainty in the GGM05S measurement of frame-
dragging by modeling errors as (schematically) GMM05S -
ITSG_Grace2014S and GMM05S - GOCO05S. The results
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shown in Table 3 are fully consistent with the systematic error
budget of about 5%, or less, for our test of frame-dragging
[1]; in fact they are substantially smaller than that 5% esti-
mate.

3 The erroneous unnecessary number of decimal digits
of the coefficients c1 and c2 claimed to be necessary in
I2017

In I2017, it is claimed that “the numerical values of c1, c2 in
Eqs. (14), (15) are quoted with nine decimal digits in order to
assure a cancelation of J2 accurate to better than 1% level”.

Let us first explain why these coefficients are needed and
how they are calculated. Our analysis is performed in the
following way.

(1) We first obtain the residuals of the nodes of LAGEOS,
LAGEOS 2 and LARES by using the experimental data, i.e.,
the Satellite Laser Ranging (SLR) observations of these satel-
lites and by using, independently, the orbital estimators GEO-
DYN (NASA), EPOS-OC (GFZ) and UTOPIA (CSR-UT).
(The three estimators give consistent results.) The orbital
residuals are the difference between the observed orbital
elements of a satellite, obtained by fitting the SLR observa-
tions using the three independent orbital estimators, and the
calculated orbital elements, obtained by propagating their
orbits using the three orbital estimators containing a full set
of physical models among which is an Earth’s gravity field
model, such as GGM05S. The orbital residuals are mainly
due to errors in the modelling of the orbital perturbations,
such as errors in the spherical harmonic expansion of the
Earth’s gravity field, or to any perturbation not included at
all in the orbital estimators, such as the Lense-Thirring effect.
The main sources of error in the measurement of frame-
dragging (see Sects. 1 and 2.1, and [13,16]), which produce
non-zero orbital residuals, are due to the lowest order even
zonal harmonics of the Earth’s gravity field and in particular
to the Earth’s quadrupole moment C2,0 and to C4,0.

(2) We then consider the system containing the three equa-
tions of the measured nodal residuals of LAGEOS, LAGEOS
2 and LARES, δ�, in the three unknowns δC̄2,0, δC̄4,0 and
Lense-Thirring effect, parametrized by a parameter μ, where
μ is equal to unity in General Relativity. The three equations
for LAGEOS, LAGEOS 2 and LARES are:

δ�̇SAT = 3

2
nSAT

(
R⊕
aSAT

)2 cos ISAT
(

1 − e2
SAT

)2

×
{ √

5δC̄20 + √
9δC̄40

[
5

8

(
R⊕
aSAT

)2

×( 7 sin2 ISAT − 4 )
( 1 + 3

2 e
2
SAT )

(
1 − e2

SAT

)2

]
(8)

+	 N2n SAT × C̄2n 0

}

+μ�̇
Lense−Thirring
SAT

where SAT stands for LAGEOS or LAGEOS 2 or LARES,
nSAT is their mean motion, N2n SAT are the coefficients (in
the equation for the nodal rate) of the C̄2n,0 for 2n > 4,
and the C̄2n,0 are the normalized even zonal harmonic coef-
ficients.

(3) We then solve for the frame-dragging effect, one of the
three unknowns, together with δC̄20 and δC̄40, and we get the
frame-dragging effect as a function of the three residuals of
the nodes of LAGEOS, LAGEOS 2 and LARES. The result
for frame-dragging (normalized to one in General Relativity),
is:

μ = δ�L AGEOS + c1δ�L AGEOS 2 + c2δ�L ARES

�
Lense−Thirring
L AGEOS + c1�

Lense−Thirring
L AGEOS2 + c2�

Lense−Thirring
L ARES

(9)

Where the two coefficients c1 and c2 are c1 = 0.345 and
c2 = 0.073. The precise value of these two coefficients was
not provided in [1] since they are updated every 15-arc as
a function of the changes in the orbital parameters. Never-
theless, in [14] the values of these coefficients, in the case
of the LAGEOS and LAGEOS 2 test of frame-dragging,
were explicitly given. Now I2017 provides in Eqs. (14) and
(15) these coefficients with a large number of unnecessary
decimal digits, claiming that at least nine significant deci-
mal digits are needed for our test of frame-dragging. How-
ever I2017 missed the main point of the technique that we
used, as explained here and in a number of previous papers
(see, e.g., [14,16].) Indeed, the typical average size of the
nodal residuals of the LAGEOS and LAGEOS 2, using the
most recent determinations of the Earth’s gravity field, is of
the order of about 150 mas/year. Since the frame-dragging
effect has on LAGEOS and LAGEOS 2 a size of about 31
mas/year, for a 5% measurement of frame-dragging, thus
with an error of about ±1.5 mas/year, the coefficient c1 of
LAGEOS 2, must only be accurate, at the level of about
1%, i.e., two significant decimal digits of the c1 are enough
for a 5% test, similarly two/three significant decimal dig-
its of the LARES coefficient c2 are enough for a 5% test.
Thus, contrary to what is claimed in I2017 the two coeffi-
cients c1 and c2 are only needed at the level of two or three
significant decimal digits. I2017 misunderstood the analy-
sis technique, and missed also this basic point. Neverthe-
less we determined these two coefficients with many more
significant digits, thanks to the technique of SLR to mea-
sure all the orbital elements of LAGEOS, LAGEOS 2 and
LARES.
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Fig. 2 Percent error in the measurement of the Lense-Thirring effect,
due to the even zonal harmonics uncertainties, as a function of the incli-
nation and of the semimajor axis of LARES, using LARES, LAGEOS
and LAGEOS 2. The range of the semimajor axis of LARES is between
7400 and 8300 km and that of the inclination between 0 and 2π [adapted
from [36]

4 Brief review of the methods to combine the orbital
elements and results by other groups confirming our
test

The use of two passive laser-ranged satellites of LAGEOS
type, with supplementary inclinations, to test frame-dragging
was proposed in [6–13]. The combination of the nodes of a
number of satellites, used in [1] , was first proposed in [8]
(see p. 3102). Then in [13] it was first calculated the pre-
cise combination of the orbital elements of LAGEOS and
LAGEOS 2. In [14] the combination of the nodes of LAGEOS
and LAGEOS 2 was displayed and used to provide a test of
frame-dragging. In [36] the use of the nodes of LAGEOS
and LAGEOS 2 and of a similar satellite at a lower altitude
(LARES) was proposed; the uncertainty in the measurement
of frame-dragging using these three satellites was then cal-
culated as a function of the inclination and of the semimajor
axis of LARES (see Fig. 2). These calculations coupled with
the capabilities of the first qualifying launch of VEGA, led
to the precise orbit of the LARES successfully launched in
2012 by VEGA.

Furthermore in I2017 it is claimed “Finally, it is remark-
able that, after about twenty years since the first reported
tests with LAGEOS and LAGEOS II and four years since
the launch of LARES, nobody has yet published any gen-
uinely independent test of the LenseThirring effect with such
geodetic satellites in the peer-reviewed literature, especially
in view of how many researchers around the world consti-
tute the global satellite laser ranging community”. I2017
seems to be unaware of the fact that the three independent
orbital estimators GEODYN, EPOS-OC and UTOPIA have
been independently run, respectively by the three groups
of: (a) Universities of Salento (Lecce), Sapienza (Rome), and
Maryland BC/JCET (Joint Center for Earth Systems Tech-
nology); (b) Center for Space Research (CSR) of the Uni-
versity of Texas (UT) at Austin [37,38] and GFZ (German

Research Centre for Geosciences, Helmholtz Centre, Pots-
dam) [39,40], leading to the same results. Furthermore, the
test published in 2016 in [1] was fully confirmed by another
completely independent team and presented at an interna-
tional conference [41]. A similar test of frame-dragging, the
19% test of frame-dragging by Gravity Probe B [42], was
indeed published by one team only.

5 Conclusions

All the claims of I2017 are groundless. They are either numer-
ically and conceptually incorrect or are based on erroneous
assumptions and claims. In Sect. 2.1 we have shown that
the numerical figures of I2017 are erroneous by some large
factor; in Sect. 2.2 we have explained that the lowest har-
monics of different Earth’s gravity field models, e.g., those
obtained with GOCE only, such as JYY_GOCE04S, and
those obtained with GRACE and SLR, such as GGM05S,
cannot be compared and thus I2017 is flawed by the incorrect
assumption of comparing the lowest harmonics of different,
noncomparable, Earth’s gravity models. We also reported
that by comparison of low degree harmonics of suitable, com-
parable, gravity field models, the 5% systematic error esti-
mate of our Lense-Thirring analysis is confirmed. In Sect. 3
we showed that it is incorrect to claim that the coefficients
used in the combination of the satellites residual nodal rates
must be known with nine significant decimal digits, indeed
three significant decimal digits are enough for a 1% test of
frame-dragging. Finally, in Sect. 4, we evidenced that the
LARES test of frame-dragging was indeed repeated by inde-
pendent and different teams, contrary to the claims in I2017.

Acknowledgements We gratefully acknowledge the Italian Space
Agency for the support of the LARES and LARES 2 space mis-
sions under agreements No. 2017-23-H.0 and No. 2015-021-R.O. We
are also grateful to the International Laser Ranging Service (ILRS),
ESA, AVIO and ELV. ECP acknowledges the support of NASA Grants
NNX09AU86G and NNX14AN50G. RM acknowledges NASA Grant
NNX09AU86G and NSF Grant PHY-1620610 and JCR the support of
NASA Contract NNG17V105C. We thank an anonymous referee for
useful comments to improve the paper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. I. Ciufolini, A. Paolozzi, E.C. Pavlis, R. Koenig, J. Ries, V.
Gurzadyan, R. Matzner, R. Penrose, G. Sindoni, C. Paris, H.
Khachatryan, S. Mirzoyan, A test of general relativity using the
LARES and LAGEOS satellites and a GRACE Earth gravity model.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


880 Page 10 of 11 Eur. Phys. J. C (2018) 78 :880

Measurement of Earth’s dragging of inertial frames. Eur. Phys. J. C
76, 120 (2016). https://doi.org/10.1140/epjc/s10052-016-3961-8

2. L. Iorio, ‘A comment on “A test of general relativity using the
LARES and LAGEOS satellites and a GRACE Earth gravity model,
by I. Ciufolini et al. Eur. Phys. J. C 77, 73 (2017). https://doi.org/
10.1140/epjc/s10052-017-4607-1

3. K.S. Thorne, R.H. Price, D.A. Macdonald, The Membrane
Paradigm (Yale Univ. Press, NewHaven, 1986)

4. B.P. Abbott et al., Observation of gravitational waves from a binary
black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

5. J. Lense, H. Thirring, Über den Einfluss der Eigenrotation der Zen-
tralkorper auf die Bewegung der Planeten und Monde nach der
Einsteinschen. Phys. Z. 19, 156–163 (1918). (See also English
translation by B Mashhoon, F W Hehl, D S Theiss Gen. Rela-
tiv. Gravit. 16, 711-750 (1984))

6. I. Ciufolini, Theory and experiments in general relativity and other
metric theories. PhD Dissertation, Univ. of Texas, Austin (Pub. Ann
Arbor, Michigan, 1984)

7. I. Ciufolini, Measurement of the LenseThirring drag on high-
altitude laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–
281 (1986)

8. I. Ciufolini, A comprehensive introduction to the LAGEOS gravi-
metric experiment. Int. J. Mod. Phys. A 4, 3083–3145 (1989)

9. B. Tapley, J.C. Ries, R.J. Eanes, M.M. Watkins, NASA-ASI study
on LAGEOS III, CSR-UT publication n. CSR-89-3, Austin, Texas
(1989)

10. I. Ciufolini et al., ASI-NASA study on LAGEOS III, CNR, Rome,
Italy (1989)

11. J. C. Ries, Simulation of an experiment to measure the
LenseThirring precession using a second LAGEOS satellite. Ph.
Dissertation, (Univ. of Texas, Austin, 1989)

12. G.E. Peterson, Estimation of the lensethirring precession using
laser-ranged satellites. Ph. Dissertation (Univ. of Texas, Austin,
1997)

13. I. Ciufolini, On a new method to measure the gravitomagnetic field
using two orbiting satellites. Nuovo Cimento A 109, 1709–1720
(1996)

14. I. Ciufolini, E.C. Pavlis, A confirmation of the general relativis-
tic prediction of the Lense-Thirring effect. Nature 431, 958–960
(2004)

15. I. Ciufolini, E.C. Pavlis, R. Peron, Determination of frame-
dragging using Earth gravity models from CHAMP and GRACE.
New Astronom. 11, 527–550 (2006)

16. I. Ciufolini, E.C. Pavlis, J. Ries, R. Koenig, G. Sindoni, A. Paolozzi,
H. Neumayer, Gravitomagnetism and its measurement with laser
ranging to the LAGEOS satellites and GRACE Earth gravity mod-
els, in General Relativity and John Archibald Wheeler, vol. 367
(Springer Verlag GmbH, Berlino DEU), p. 371434 (2010)

17. S.C. Cohen, P.J. Dunn (Eds.), LAGEOS scientific results. J. Geo-
phys. Res. 90(B11), 9215 (1985)

18. B.D. Tapley, F. Flechtner, S.V. Bettadpur, M.M. Watkins, The status
and future prospect for GRACE after the first decade. Eos Trans.
Fall Meet. Suppl. Abstract G22A-01 (2013)

19. J. Ries, S. Bettadpur, R. Eanes, Z. Kang, U. Ko, C. McCullough,
P. Nagel, N. Pie, S. Poole, T. Richter, H. Save, B. Tapley, Develop-
ment and evaluation of the global gravity model GGM05, CSR-16-
02, Center for Space Research. The University of Texas at Austin
(2016)

20. B.D. Tapley, S. Bettadpur, M. Watkins, C. Reigber, The grav-
ity recovery and climate experiment: mission overview and early
results. Geophys. Res. Lett. 31, L09607 (2004). https://doi.org/10.
1029/2004GL019920

21. https://directory.eoportal.org/web/eoportal/satellite-missions/g/
goce , https://www.esa.int/Our_Activities/Observing_the_Earth/
GOCE/Instruments

22. W.M. Kaula, Theory of satellite Geodesy (Blaisdell, Waltham,
1966)

23. B. Bertotti, P. Farinella, Physics of the earth and the solar system
(Kluver, Illinois, 1990)

24. D.E. Pavlis et al., GEODYN operations manuals (Contractor
Report, Raytheon, ITSS, Landover MD, 1998)

25. L. Iorio, The impact of the new Earth gravity models on the mea-
surement of the Lense-Thirring effect with a new satellite. New
Astronom. 10, 616 (2005). arXiv:gr-qc/0502068

26. L. Iorio, Will the recently approved LARES mission be able to
measure the Lense-Thirring effect at 1%? Gen. Rel. Grav. 41, 1717
(2009). arXiv:0803.3278

27. L. Iorio, Phenomenology of the Lense-Thirring effect in the Solar
System. Astrophys. Space Sci. 331, 351 (2011). arXiv:1009.3225

28. L. Iorio, How accurate is the cancelation of the first even zonal
harmonic of the geopotential in the present and future LAGEOS-
based Lense-Thirring tests? Gen. Rel. Grav. 43, 1697–1706 (2011).
arxiv:1005.2073

29. R. Rummel, W. Yi, C. Stummer, J Geod 85, 777 (2011). https://
doi.org/10.1007/s00190-011-0500-0

30. X. Xu, A GOCE only gravity model GOSG01S based on the SGG
and SST observations. GFZ Data Services (2018). https://doi.org/
10.5880/icgem.2018.002

31. R. Shako, C. Foerste, O. Abrikosov, S.L. Bruinsma, J.C. Marty,
J.M. Lemoine, F. Flechtner, K.H. Neumayer, C. Dahle, EIGEN6C:
a high resolution global gravity combination model including
GOCE data, in F. Flechtner et al. (eds.), Observation of the System
Earth from Space CHAMP, GRACE, GOCE and future missions,
Advanced Technologies in Earth Sciences. https://doi.org/10.1007/
9783642321351_20, Springer, Berlin Heidelberg (2013)

32. X. Xu, Y. Zhao, T. Reubelt, T. Tenzer, A GOCE only gravity model
GOSG01S and the validation of GOCE related satellite gravity
models. Geodesy Geodyn.mics 8(4), 260–272 (2017). https://doi.
org/10.1016/j.geog.2017.03.013

33. W. Yi, R. Rummel, T. Gruber, Gravity field contribution analy-
sis of GOCE gravitational gradient components. Studia Geophys-
ica et Geodaetica 57(2), 174–202 (2013). https://doi.org/10.1007/
s11200-011-1178-8

34. Ch. Förste, S. Bruinsma, O. Abrikosov, J.-M. Lemoine, J. C. Marty,
F. Flechtner, G. Balmino, F. Barthelmes, R. Biancale, EIGEN-6C4:
the latest combined global gravity field model including GOCE data
up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse;
GFZ Data Services (2014). https://doi.org/10.5880/ICGEM.2015.
1

35. ICGEM International center for global gravity field models. http://
icgem.gfz-potsdam.de/home

36. I. Ciufolini, On the orbit of the LARES satellite.
arXiv:gr-qc/0609081v1. Accessed 20 Sep 2006

37. J.C. Ries, R.J. Eanes, M.M. Watkins, Confirming the frame-
dragging effect with satellite laser ranging. in 16th international
workshop on laser ranging, Poznan, Poland, 13–17 October 2008

38. J.C. Ries, Relativity in satellite laser ranging, American astro-
nomical society. IAU Symposium 261. Relativity in fundamental
astronomy: dynamics, reference frames, and data analysis (Virginia
Beach, VA, USA, 27 April - 1 May 2009)

39. R. König, B. Moreno-Monge, G. Michalak, Some aspects and
perspectives of measuring Lense-Thirring with GNSS and geode-
tic satellites. in Second International LARES Science Workshop,
Accademia dei Lincei, Rome (September 2012)

40. R. König, Measurement of Frame-Dragging with Geodetic Satel-
lites Based on Gravity Field Models from CHAMP, GRACE and
Beyond, in Proceedings of the RELGEO2016 conference on rela-
tivistic geodesy: foundations and applications, Bad Honnef, 14-18
March 2016 (Springer, 2018)

41. D.M. Lucchesi, C. Magnafico, R. Peron, M. Visco, L. Anselmo,
C. Pardini, M. Bassan, G. Pucacco, R. Stanga, The LARASE

123

https://doi.org/10.1140/epjc/s10052-016-3961-8
https://doi.org/10.1140/epjc/s10052-017-4607-1
https://doi.org/10.1140/epjc/s10052-017-4607-1
https://doi.org/10.1029/2004GL019920
https://doi.org/10.1029/2004GL019920
https://directory.eoportal.org/web/eoportal/satellite-missions/g/goce
https://directory.eoportal.org/web/eoportal/satellite-missions/g/goce
https://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/Instruments
https://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/Instruments
http://arxiv.org/abs/gr-qc/0502068
http://arxiv.org/abs/0803.3278
http://arxiv.org/abs/1009.3225
http://arxiv.org/abs/1005.2073
https://doi.org/10.1007/s00190-011-0500-0
https://doi.org/10.1007/s00190-011-0500-0
https://doi.org/10.5880/icgem.2018.002
https://doi.org/10.5880/icgem.2018.002
https://doi.org/10.1007/9783642321351_20
https://doi.org/10.1007/9783642321351_20
https://doi.org/10.1016/j.geog.2017.03.013
https://doi.org/10.1016/j.geog.2017.03.013
https://doi.org/10.1007/s11200-011-1178-8
https://doi.org/10.1007/s11200-011-1178-8
https://doi.org/10.5880/ICGEM.2015.1
https://doi.org/10.5880/ICGEM.2015.1
http://icgem.gfz-potsdam.de/home
http://icgem.gfz-potsdam.de/home
http://arxiv.org/abs/gr-qc/0609081v1


Eur. Phys. J. C (2018) 78 :880 Page 11 of 11 880

research program. State of the art on Modelling and Measurements
of General Relativity effects in the field of the Earth: a preliminary
measurement of the Lense-Thirring effect. in 2017 IEEE Interna-
tional Workshop on Metrology for AeroSpace (MetroAeroSpace),
pp. 131–145 (2017)

42. C.W.F. Everitt, Gravity probe B: final results of a space experiment
to test general relativity. Phys. Rev. Lett. 106, 22110 (2011)

123


	sheet3
	Ciufolini2018_Article_ReplyToACommentOnATestOfGenera
	Reply to ``A comment on ``A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model, by I. Ciufolini et al.''''
	Abstract 
	1 Introduction
	2 Erroneous claims of the errors induced by the gravity field uncertainties
	2.1 Numerical miscalculations in I2017
	2.1.1 Other inconsistent results in the publications by Iorio

	2.2 Conceptual shortcomings of differencing the lowest even zonals of different Earth's gravity field models
	2.3 Errors induced by the gravity field uncertainties

	3 The erroneous unnecessary number of decimal digits of the coefficients c1 and c2 claimed to be necessary in I2017
	4 Brief review of the methods to combine the orbital elements and results by other groups confirming our test
	5 Conclusions
	Acknowledgements
	References





