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ABSTRACT. This study addresses the mechanics of a cracked cantilever beam subjected to a transverse force applied 
 In this Part A of a two Part series of papers, emphasis is placed on the development of a four-beam 

model for a beam with a fully embedded horizontal sharp crack. The beam aspect ratio, crack length and crack centre 
location appear as general model parameters. Rotary springs are introduced at the crack tip cross sections as needed to 
account for the changes in the structural compliance due to the presence of the sharp crack and augmented load transfer 
through the near-tip transition regions.  

Guided by recent finite element findings reported elsewhere, the four-beam model is advanced by recognizing two key 
observations, (a) the free surface and neutral axis curvatures of the cracked beam at the crack center location match 
the curvature of a healthy beam (an identical beam without a crack under the same loading conditions),  (b) the neutral 
axis rotations (slope) of the cracked beam in the region between the applied load and the nearest crack tip matches the 
corresponding slope of the healthy beam. The above observations led to the development of close form solutions for the 
resultant forces (axial and shear) and moment acting in the beams above and below the crack. Axial force and bending 
moment predictions are found to be in excellent agreement with 2D finite element results for all normalized crack 
depths considered. Shear force estimates dominating the beams above and below the crack as well as transition region 
length estimates are also obtained. The model developed in this study is then used along with 2D finite elements in 
conducting parametric studies aimed at both validating the model and establishing the mechanics of the cracked system 
under consideration. The latter studies are reported in the companion paper Part B-Results and Discussion. 

 

Introduction. Over the last two decades, the frequency response [1-5] of a component or a 

detection [6-13] and structural health monitoring. In most of such studies, the effects of damage on 
the structural frequency response has been explored using a cantilever beam geometry. With the 
above in mind, diffused damage detection studies have been developed [7-13] using optimization 

 
calculated by comparing the experimentally measured frequencies of the structure [8] to the 
respective frequencies predicted by a physics based model that solves a problem of the same 
structural geometry but with reduced localized properties at a prescribed location [9]. Often, the 
optimization algorithms identify the model structure that best matches the experimental results, thus 
identifying the likely location and degree of structural damage manifested through the EI, structural 
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stiffness reduction. For example, Xu et al. [8] developed a damage detection algorithm that 
monitors the changes in the first 10 transverse frequencies of a vibrating beam as a means of 
detecting the location and degree of damage along the axis of the beam as measured through a 
reduced localized structural stiffness. The promising outcomes of their initial studies have been 
validated through model experiments and have sparked new interest in expanding the studies to 
include detection of diffused damage in more complicated structures such a frames and bolted joints 
[11-15].  

While the above efforts address damage assumed to be diffused over a prescribed region, in recent 
years a few studies have attempted to address the effects of sharp cracks on the modal response of a 
structure [16-27], a few of which employ basic fracture mechanics concepts [22-27]. Such studies 
require prior knowledge of the fracture mechanics stress fields and related stress intensity factors. 
The near-tip fracture quantities are thought to be required in assessing the energy changes due to the 
introduction of a crack and the related changes in the structural compliance or associated stiffness 
changes induced by the presence of a sharp crack. As a result, fracture mechanics based studies 
have been limited to systems with edge cracks for which the stress intensity factors [28-32] 
dominating the crack tip region is known. Furthermore, most such studies also assume the presence 

violated due to non-linear crack surface contact effects. More recently, Jing et al. [27] employed a 
variation of the model presented in this work in obtaining the natural frequencies of a cantilever 
beam containing a horizontal crack capable of relative crack surface sliding but not opening. 

 

 

 

 
 

Fig. 1. Normalized top surface beam 
curvatures for a healthy and cracked beams 
generated using 2D finite elements.  

Fig. 2. Normalized (a) deflections, (b) slope 
and (c) curvature differences between a 
cracked and 
end loading .  

 

Recently, Two-Dimensional (2D) Finite Element (FE) studies [33-35] on the cantilever specimen 
shown in Figs. 1-4, suggest that predominately mode II conditions dominate both crack tip regions 
for a fully embedded horizontal sharp crack subjected to the loading conditions shown in Fig. 1b. 
As such, and under ideally flat crack surface condition, surface contact should minimally affect the 
overall load transfer and deformation mechanics of the specimen shown in Fig. 3. Furthermore, 
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finite element findings reported in [33, 34] (see Figs. 1-3) led to the following two key 
observations; (a) the free surface and neutral axis curvatures of the cracked beam at the crack 
center location match the curvature of a healthy beam, i.e., an identical beam without a crack under 
an end force condition, and (b) the neutral axis rotations (slope) of the cracked beam in the region 
between the applied load and the nearest crack tip matches the corresponding slope of the healthy 
beam.  

Guided by the above finite element findings, in this study a four-beam model [33] is developed in 
an effort to establish simple but effective physics based models capable of predicting the load 
transfer and deformation mechanics as well as the near tip fracture conditions, the frequency and 
modal response of structures with fully embedded cracks of the type shown in Fig. 4. The 
development of the four-beam model shall be presented next. 

 

 

 

 
 

Fig. 3. Normalized curvature differences between a 
cracked and a healthy beam extracted for the top beam 
surface using 2D finite element models. In this 
simulation for the cracked beam, a horizontal sharp 
crack of normalized length was placed at 
the center of the beam as shown in (a) above. The beam 
aspect ratio used was . The results support 
the existence of transition regions of equal length 
at the left and right crack tips. 

Fig. 4. Schematics highlighting the four beam 
model development. Rotary springs are 
introduced at the interfaces between beams 1 
and 2, 2 and 4, 1 and 3, and 3 and 4. (a) A 
schematic showing the geometry and boundary 
conditions applied on the cracked beam. (b) 
The identification of the four beams. (c) The 
four beams connected through rotary springs at 
their interfaces. 

 

Development of the four-beam model. The results presented in Figs. 1-3 were obtained as part of 
a broad finite element study aimed at establishing the deformation and fracture mechanics of a 
cantilever beam containing a fully embedded sharp crack positioned at any admissible location and 
orientation within the beam domain. The results of those studies are reported in greater detail 
elsewhere [33]. In Fig. 1, the curves shown represent the curvatures of a healthy and a cracked 
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beam extracted from respective finite element models at the top beam surfaces. As indicated in Fig. 
1, the results correspond to a beam of aspect ratio , with the cracked beam containing a 
horizontal through thickness sharp crack of length located at the center of the beam at 

 The curvature results for the healthy beam i.e., a beam without a crack but otherwise 
geometrically identical to the one with the crack, are represented by the rectangular open symbols. 
As expected, away from the ends, the healthy beam curvatures form a linear profile with position x 
consistent with the bending theory prediction of , where  represents the 
deflection of the beam neutral axis, is the bending moment at location ,  is the elastic 
modulus and  is the second moment of inertia with respect to the bending axis. On the other hand, 
the top surface curvatures predicted for the cracked beam are shown using the solid blue symbols. 
As shown in Fig. 1, the curvature results for the cracked beam deviate from those of the healthy 
beam only in the crack region exhibiting a sinusoidal-like profile over a distance  that appears to 
be approximately two to three times the crack length size. Most importantly for this study, one 
observes that the curvature of the cracked beam intersects the healthy beam curvature profile at the 
center of the crack consistent with Figs. 1-3. This observation has been validated through broad 
parametric studies reported in [33]. In fact, the observation has been found to hold true for curvature 
estimates for the top and bottom beam surfaces as well as for the mid-planes above and below the 
crack in the crack region. Informed by the above observations, the following hypothesis used in 
constructing the proposed four-beam model is put forward. 

Proposed deformation hypothesis. For any cantilever beam system containing a horizontal sharp 
crack and subjected to an end transverse loading, the curvatures of the mid-planes above and 
below the crack match the curvature of the healthy beam at the crack center location. 

 in Fig. 4a. The 
beam has a length , height  while containing a horizontal sharp crack of length  located at 
position  from the fixed end at depth  from the top surface. In this study, the above domain is 
divided into four sub-domains, each forming a beam as shown in Fig. 4b labeled Beam-1, Beam-2, 
Beam-3 and Beam-4. As will be discussed later on in this work and as suggested by finite element 
studies reported in [33] and in Figs 1-3, a transition region exists between Beam-1 and Beams 2 and 
3 at the left crack tip and the same Beams 2 and 3 and Beam-4 at the right crack tip. While the 
effects of the transition regions will be incorporated into the four-beam model, at present we shall 
focus on the mechanics of Beams 2 and 3 since their response appears to be directly linked to the 
deformation hypothesis stated above. 
shown in Fig. 5.  

As shown, at the crack center cross sections, Beam-2, i.e., the beam above the crack plane, is 
subjected to an axial force resultant Nt, shear force resultant Vt and bending moment resultant Mt. 
Similarly, Beam-3 also referred to in this study as the bottom beam denoted by a subscript b, is 
subjected to force and moment resultants Nb, Vb and Mb respectively. Meanwhile, Section/Interface 
1, which is the left end of the top beam, is subjected to the force and moment resultants N1, V1 and 
M1 whereas the right end of the same beam is subjected to N2, V2 and M2 at Interface 2. Similarly, 
the bottom beam or Beam-3 is subjected to end forces and moments N3, V3 and M3 at 
Section/Interface 3 and N4, V4 and M4 at Section 4 as shown in Fig. 5c. 

Based on the proposed deformation hypothesis, the curvature of Beams 2 and 3 at the center of the 
crack should be equal to the curvature of the healthy beam, i.e., 
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 at  (1) 

 

where   is the mid-plane deflection of Beam 2; 

  is the mid-plane deflection of Beam 3; 

 is the mid-plane deflection of the healthy beam.  

 

 
Fig. 5. Schematics used in the development of the analytical model capturing the mechanics of the 
beams above and below the crack, i.e., Beams 2 and 3 shown in Fig. 4. (a) The cracked beam with 
Beams 2 and 3 highlighted along with Interfaces 1-4. (b) A section through the center of the crack 
exposing the force and moment  (c) Free body 

at their corresponding Interfaces 1-4. 

 

Consistent with beam theory [36-37], it can be shown that the above differential equations can be 
expressed in terms of the bending moments acting in each beam at the cross section of interest and 
the bending stiffness El for each beam, i.e., 

 

      (2) 

 

where the subscripts t and b denote quantities for the top (Beam 2) and bottom (Beam 3) beams 
respectively.  

The above simple equations for the moment resultants at the center of the crack are general, in that, 
they yield the moment resultants in the top and bottom beams at the center of the crack as a function 
of the bending moment experienced by the healthy beam at the same location, i.e., 

 



Mechanics, Materials Science & Engineering, July 2016  ISSN 2412-5954 
 

MMSE Journal. Open Access www.mmse.xyz 
137 

and 
 
    (3)  

 

where for a downward load P the bending moment at the crack center location in the healthy beam 
is . With the bending moments acting in the top and bottom beams know, an 
expression for the axial forces Nt and Nb is then obtained through a global moment equilibrium 
enforced over the right half of the beam (see Fig. 5b), such that, 

 

 yields      (4) 

Force equilibrium in the x direction for either half of the beam shown in Fig. 5b results in the 
obvious outcome that the axial force in the bottom beam should be equal and opposite to its 
counterpart acting in the top beam, i.e., . The latter finding along with Eqns (3) and (4) 
yield a general expression for the axial forces Nt and Nb as follows, 

 

     (5) 

 

where l, lt and lb are the second moments of inertia with respect to the bending axis of the healthy 
beam, top beam or Beam-2 and bottom beam or Beam-3 respectively; 

h  is the beam height  

Mc  as before is the bending moment acting at the crack center location in the healthy beam. 

Further enforcing force equilibrium in the  direction for either half of the beam shown in Fig. 5 
yields, 

 

      (6) 

 

Now, by enforcing force and moment equilibrium within the top and bottom beams shown in Figs. 
5c and 6a, one can easily establish the following relations between the cross sectional resultants 
acting at the beam interfaces 1, 2, 3 and 4 shown in Fig. 5c, 

 

  (7) 

 

The above analysis suggests that in the presence of a horizontal crack, load transfer across the 
cracked cross section is enabled by the development of a force couple subjecting the beams above 
and below the crack into compression and tension respectively for an upwardly applied load  
Meanwhile, the same beams experience a linearly varying bending moment between Interfaces 1 
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and 2 for the upper beam and 3 and 4 for the lower beam. In the same interval, and over the length 
of each beam which is equal to the length of the horizontal crack, both the axial and shear resultant 
forces  remain constant and equal to the values attained at the crack center cross 
sections. Thus far, the shear force resultants  and  dominating the top and bottom beams are the 
only remaining unknowns in determining the load transfer mechanics across the beam crack region. 
These quantities are established below along with other problem variables using beam compatibility 
conditions. 

Beam compatibility conditions. Compatibility conditions are required in enforcing displacement 
and cross sectional rotation conditions at the interfaces between two beams. It is common to cast a 
beam problem using the second order differential equation of the elastic curve of the beam along 
with deflection and beam slope boundary and matching conditions. In this study, for simplicity 
purposes we shall employ the method of linear superposition in addressing the deformation 
mechanics of the four-beam model presented in Fig. 4. More specifically, in this formulation each 
beam will be treated as a Timoshenko beam thus accounting in the general formulation for shear 
effects. The deformation of each beam (deflections, cross sectional rotations and slope of neutral 
axis, will be accounted for by superimposing the local deformations of a cantilever beam subjected 
to end transverse force and moment shown in Fig. 6b, to the deformations caused by the 

 In doing so, the 
deflection , cross section rotation  and slope of the neutral axis  at the free end of a typical 
Timoshenko beam shown in Fig. 6b will be used. For a beam of constant cross section, 
homogeneous material properties and the loading shown in Fig. 6b, the above quantities are given 
by [37], 

 

  (8) 

 

 
Fig. 6. (a) -2 showing the force and 
moment resultants acting at interface 1 and mid-section at the crack center. The above schematic 
along with similar schematics shown in Fig. 5 were used in obtaining the equilibrium equation (7). 
(b) A Timoshenko cantilever beam subjected to end transverse force and moment loading. The 



Mechanics, Materials Science & Engineering, July 2016  ISSN 2412-5954 
 

MMSE Journal. Open Access www.mmse.xyz 
139 

deformed configuration is drawn to distinguish between the beam slope  at the free end and the 
rotation of the cross section denoted by  used in the compatibility equations. 

 

Where the Timoshenko constant [38] appears to influence the deflection  and slope , but not 
the rotation of the cross section measured by . For clarity purposes, it may be important to note 
that in a Euler-Bernoulli [39] beam, the deformed cross section remains perpendicular to the neutral 
axis and thus its rotation is equal to the slope of the beam. However, due to shear effects, in a 
Timoshenko beam the normal to the deformed cross section may not align with the deformed 
neutral axis and thus  may not be equal to  as suggested by Eqn. (8) above and shown 
schematically in Fig. 6b. With the above in mind, the compatibility at beam interfaces put forward 
below will be enforced on the cross sectional normal  and not on the beam slope  which may 
exhibit discontinuities at beam interfaces due to shear effects. 

Supported by 2D finite element studies [33], a key 
contribution of this study is the hypothesis that load transfer through Interfaces 1 through 4 shown 
in Fig. 5b, takes place in a more convoluted manner within relatively confined transition regions at 
each of the four-beam interfaces as shown schematically in Figs. 4, 7 and 8. In fact, as will be 
discussed in this section, the load transfer mechanics through the transition region are shown to 
result in additional rotations of the cross sections at the crack tip which in this study are captured 
through rotary and Timoshenko shear springs.  

moment resultants , which can be calculated in terms of  as discussed above. 
Meanwhile, the left edge of the transition region at cross section  located at a distance  from 
the left crack tip ought to be subjected to either the deformation or traction conditions obtained 
through the beam bending theory as shown in Fig. 7. The force and moment resultants acting on the 
left edge of the transition region can thus be calculated using the normal and shear stress profiles at 
Section  as follows (see Fig. 7). 
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When comparing the above results to those given by Eqns (3), (5) and (7), one realizes that 
appreciable gradients in the axial, shear and bending moment resultants must exist in the transition 
region. For example, the bending moment at A can be expressed in terms of the bending moment at 
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the crack center location , the applied force  and the distance from the crack center (see Figs. 7 
and 8) such that, 

 

      (10) 

 

where as before  is the bending moment acting at the crack center location in the healthy beam; 

  is a downward transverse load as shown in Fig. 4; 

  is half the crack length; 

  is the length of a transition region as shown in Figs. 7 and 8.  

With the aid of Eqns (5), (7) and (9), one can show that 

 

  and 

  (11) 

 

In the case when the horizontal crack is located on the mid-plane of the healthy beam, i.e., 
 it can be shown that  and thus the axial force and bending moment 

differences between the quantities at cross section  and Interface 1 are calculated through Eqn. 
(11) to be, 

 and   (12) 

 

In the case of , the above equations suggest that both the force and moment resultants 
transferred through the mid-plane of the beams above and below the crack plane would exhibit 
inadmissible discontinuities in the absence of any external load changes. In fact, in accordance with 
Eqn. (12) under the condition of , i.e., absence of any transition region, the force and moment 
discontinuities also shown schematically in Fig. 7, are predicted to be  and 

. These findings form the foundation for the introduction of the transition 
regions shown in Figs. 7-9.  

While the presence of the transition regions would allow the smooth transition of the force and 
moment resultants from the healthy beam response at section A to the cracked beam mechanics 
predicted in the crack region, their presence also has a profound effect on the deformation and 
fracture mechanics of the cracked beam.  

In order to better understand the effects of the transition region on the overall beam deformation 
g. 7. The 

bottom half of the above figure shows a section of the beam in the crack region above the neutral 
axis of the healthy structure. It includes the left half of the top beam above the crack, or Beam-2 as 
well as its adjacent transition region labele  The transition region is of 
length  with  being the half crack length. At Interface 1, the resultant forces and moment 
applied at the mid-plane of the top beam are . At the left edge of Transition Region 1, 
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the resultant forces and moment  are obtained with the aid of Eqn. (9). Profiles of the 
axial force and bending moment predicted by Eqns (9) through (12) are sketched on the top half of 
Fig. 7. The profiles shown in solid black lines are predicted using Eqn. (9) for the healthy beam 
whereas the solid blue line profiles are those obtained with the aid of Eqns (3) through (7) for the 
crack region. As shown, at Interface 1, the moment and axial force predicted at the left edge of 
Transition Region 1, i.e., as , do not match those predicted by the crack beam model at 
Interface 1. As discussed earlier, the existence of the transition region is required for the smooth 
force and moment transition between Section  and Interface 1.  

 

 

 
 

 
 

 
Fig. 7. Schematics showing the profiles of the 
bending moment and axial force transmitted 
through the mid-plane of the beam region above 
the crack plane. The linear profiles on the top left 
are consistent with the beam theory for the 

 The heavy blue lines on the top 
right represent the profiles predicted by the 
model developed in this study (see Eqns (3) and 
(5)). The two results do not match at interface 1 
leading to the conclusion that transient profiles 
are required for the smooth transition between 
the two profiles. In this study it is postulated that 
the discrepancy between the two profiles leads to 

transition region accounted for through rotary 
springs employed in this study. 

Fig. 8. Schematics showing the relative axial 
deformations and cross sectional rotations of 
reference points along the mid-planes of the 

adjacent transition regions. Points 
 shown in (b) deformed to locations 

 

to locations  as shown in 
(a). Similarly, points  
deformed to  in the 

 in the 

schematics also highlights the accumulation of 
 and  in the left 

 and  in the right 
transition regions. 
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angle of rotation and deflection compatibility conditions from reference section A to reference 
section B. Also shown are Transition Regions 1-4. 

 

It is reasonable to assume that both the force and moment transitional profiles would be of the 
general type shown by the transitional profiles in dash black lines in Fig. 7. Under such conditions, 
reduction in both the force and moment resultants relative to the healthy beam, would result in 
lower axial strains along the mid-plane of the transition region and thus a comparatively lower 
extension of the transition region mid-plane relative to its healthy counterpart. This would appear in 
the cracked beam as a change in the rotary compliance giving rise to an additional angle of rotation 

 at Interface 1 as shown schematically in Figs. 7 and 8. A similar load transfer and deformation 
mechanism would exist in Transition Region 3 connecting Section  to the left end of the bottom 
beam at Interface 3. However, the axial force in the bottom beam being the opposite of that 
dominating the top beam would result in an added rotation in the same sense as that for Interface 1. 
The actual amount of added rotations should depend on the extent and thickness of the transition 
region and should be proportional to the cross sectional resultants . Since the axial 
force  with  linearly depending on  through Eqn. (5), while 1M  and  are linearly 
related through  in Eqn. (7), the following rotary and shear deformation equations are 
proposed for each transition region, 

 

 For Transition Region 1  (13a) 

 

 For Transition Region 2  (13b) 

 

 For Transition Region 3  (13c) 
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 For Transition Region 4  (13d) 

 

where are the normalized rotary spring stiffness constants to be determined through 
compatibility conditions; 

 are Timoshenko shear constants for the top and bottom beams respectively. 

In postulating the above relations, it was assumed that the rotary and shear spring constants for 
Interfaces 1 and 2 are the same as well as those of Interfaces 3 and 4. It may be of importance to 
note that due to the anti-symmetry of the force and moment resultants jumps between Sections  
and Interface 1 at the left crack tip and Interface 2 and Section  at the right crack tip as shown in 
Fig. 8, the added rotations capture by the above equations and occurring in Transition Region 1 
would be offset by the added rotations at Interface 2 induced by the load and deformation 
mechanics in Transition Region 2. In fact, this observation has been validated using 2D finite 
elements and will be used as one of the compatibility conditions needed to determine the rotary and 
shear spring constants. 

The above observation is further clarified with the aid of Figs. 8 and 9. In the above figures, 
emphasis is placed on the axial deformation of two reference lines, i.e., the mid-plane line segment 
of the top beam passing through the reference points and its bottom beam 
counterpart passing through points . The red solid symbols represent the 
deformed position of the respective points in the cracked beam if the reference line was to stay 
straight whereas the open white symbols represent the corresponding deformed location of the same 
reference points in the healthy beam. In Fig. 8, all deformations are sketched relative to those at a 
reference cross section at . For a downward applied load  
subjected to tension whereas the one below the crack is subjected to compression. Consistent with 
the gradient force and moment profiles shown in Fig. 7 and discussed above, the line segment 

 in Transition Region 1, would stretch less than its healthy beam counterpart. Thus the 

relative cracked beam and healthy beam deformed states are different as denoted by the 
positions with the latter being further to the right. Since no overall tension is applied to the beam 
structure, the neutral axis of the healthy beam would remain inextensible. When connecting the 
deformed reference points of the cracked beam and the healthy beam to their neutral axis 
counterpart a differential  angle of rotation is obtained when comparing the cracked and 
healthy beam systems. As discussed above, this rotation is postulated in this study to depend 
linearly on the cross sectional moment resultant , the transition region length , while 
inversely proportional to an effective bending stiffness  multiplied by a proportionality constant 

m
1  given by Eqn. (13a). Interestingly enough, a similar effect appears at Interface 3 through the 

compression and reduction of length arguments for line segment  in Transition Region 3. In 
both instances, changes in the effective rotation of Interfaces 1 and 3 relative to the rotation of the 
healthy beam are predicted. At this stage, it is not apparent as to whether the predicted extra 
rotations  and  are related to each other and what that relationship is. As such,  is 
postulated to be proportional to the moment resultant  at Interface 3 and inversely proportional 

to the effective bending stiffness b
mEI3 .  
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While a differential rotation between the healthy and the cracked beam is predicted at Interfaces 1 
and 3, it can be shown that the line segments  in the beam above the crack (top beam) and 

 in the beam below the crack (bottom beam) experience identical stretching or shrinkage in 
the cracked and healthy beams. This can be proven by integrating the axial strain along the 
respective paths in the cracked and healthy beams such that, 

 

   (14) 

 

In light of the above, the differential rotations between the cracked and healthy beam associated 
with Interfaces 1 and 3 remain as such at Interfaces 2 and 4. However, given the anti-symmetry of 
the force and moment resultant difference between the healthy and cracked beams relative to the 
crack center, differential rotations take place in Transition Regions 2 and 4 in the opposite sense of 
those occurring in Transition Regions 1 and 3 fully offsetting one another at reference point B as 
suggested by the 2D Finite Element results reported elsewhere [33] and in Fig. 2. In this study, the 
transition crack lengths in all four transition regions are assumed to be equal while making the 
added rotations to be linearly dependent on the respective bending moment resultants as reflected 
by Eqn. (13). All rotary spring stiffness proportionality constants, i.e., and  along with the 
transition region length parameter  are to be determined through the compatibility conditions 
which shall be implemented next.  

Compatibility of cross-sectional rotations. Cross sectional rotation and neutral axis deflection 
compatibility shall be enforced between Sections  and  following two separated paths along the 
top ( ) and bottom ( ) beams as shown in Fig. 9. More specifically, 
for compatibility purposes, it is required that, 

 

4/3/4/32/1/2/1 BAABAAB    (15) 

 

where and  are the rotations of Sections  and  respectively while ,  and  
represent the relative rotations between Sections 1 and , 2 and 1, and and 2 respectively as 
shown schematically in Fig. 10.  

The above equation is equivalent to state that , or the change of the cross sectional 
rotation from  and  calculated through the mechanics of Transition Region 1, Beam-2 and 
Transition Region 2 should be identical to that calculated through the mechanics of Transition 
Region 3, Beam-3, and Transition Region 4. Thus, after eliminating appearing at both sides of 
Eqn. (15) the above compatibility equation simplifies to, 

 

    (16) 

 

As discussed earlier in this study, when a Timoshenko beam is used, the rotational compatibility 
condition is imposed on the rotation of the cross section and not the slope of the beam consistent 
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with Eqn. (8). The individual terms appearing in Eqn. (16) can be obtained using the postulated 
transition region equation (13) and the Timoshenko beam equation (8) as follows, 

 

 

 
 

 
and 

 (17)

 

 

 
 

 to 
the reference cross section  highlighting the relations between cross sectional rotations and 
deflections along the compatibility path  shown in Figs. 8 and 9. 

 

In the above equations, the assumption was made that . When substituting 
Eqn. (17) into (16), the following relationship is obtained, 

 

    (18) 

 

Now utilizing Eqn. (2), i.e., IMIbMIM Cbtt /// , the above relation yields, 
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 (19) 

 

Compatibility of deflections. Assisted by the deformation schematic shown in Fig. 10, the 
deflection at section  of the cracked beam can be obtained using the principle of linear 
superposition as follows, 

 

 using the A  path 

or       (20) 

 using the A  path 

 

The relative deflections  are related to the load transfer and deformation 
mechanics within the four transition regions. As discussed earlier in this work, the axial force and 
bending moment transition region effects lead to a postulated change in the angle of rotation at 
Interfaces 1 through 4. As such, the relative deflection due to shear in the same transition region 
should be related to the application of the total resultant shear force which in the system under study 
equals the applied load . Thus, the relative deflections at the mid-plane at Interfaces 1 and 3 at 
the left tip and Interfaces 2 and 4 at the right crack tip ought to be equal and most likely given by 
the Timoshenko shear term. In any case, since , the deflection 
compatibility condition must take the form, 

 

      (21) 

 

which can be expressed as follows, 

 

   (22) 

 

Again using the Timoshenko formulas given in Eqn. (8), the individual terms appearing in Eqn. 
(22) are given in terms of the cross sectional resultants and beam geometry and structural stiffnesses 
as follows, 
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and 

 

(23) 

 

where   are the Timoshenko constants for Beam-2 and Beam-3 respectively.  

By substituting the rotations and deflections given by Eqn. (23) into their respective equivalents in 
(22) and by making use the moment relations given in Eqn. (7), we arrive at the following 
deflection compatibility equation, 

 

  (24) 

It has already been established that  (see Eqn. (19)), and given the fact that 
, the above equation further simplifies to the following shear force ratio 

equation. 

 (25) 

 

It is obvious that in order to establish the above shear force ratio,  need to be determined 
through additional conditions as will be discussed below. However, it is worth noting that when 
ignoring the Timoshenko shear effects, i.e., letting , then the following simple form 
for the shear force ratio is obtained, 

 

  (26) 
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It is also noteworthy to observe for systems in which the crack is on the beam neutral axis (i.e., 
), both Eqns. (25) and (26) predict that the shear force ratio between the shear resultants in 

the top and bottom beam is  and thus from the global equilibrium enforced by Eqn. (6), it 
can be shown that  As will be discussed later, shear force predictions obtained by the 
present model were found to compare very well with 2D finite element results. 

Calculating the normalized  

rotary spring stiffness. Of the two remaining unknowns, i.e., , the normalized rotary 

spring stiffness can be estimated using the second key observation from 2D finite elements (see 
Fig. 2), i.e., the neutral axis rotation (slope) of the cracked beam in the region between the applied 
load and the nearest crack tip matches the corresponding slope of the healthy beam. The above 
observation leads to the following condition, 

 

 (27) 

 

where the superscripts  denote quantities for the cracked and healthy beams respectively. 
The left hand side of the above equation is equal to the left hand side of Eqn. (18). Thus, the above 
relation can be written in terms of the moment and shear force resultants as follows, 

  (28) 

 

where  and .  

In light of the above, Eqn. (28) above takes the form, 

 

    (29) 

 

Again utilizing Eqn. (2), i.e., , the above equation reduces to 

 

1    toleads     which02
1

1

m
m

C

EI
aM    (30) 

 

The above finding along with Eqn. (19) suggest that  and thus the rotary spring 
stiffnesses are as follows, 
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   (31) 

 

where  is the extent of the transition regions to be determined next. 

On the transition region. The above findings reflected through Eqn. (31), highlight the importance 
of the transition regions in understanding the load transfer and deformation mechanics in a beam 
with a horizontal sharp crack. The postulated rotations at Interfaces 1 through 4 at the left and right 
crack tips are found to depend on the extent or length of the transition region . Thus, the full 
development of the four-beam model proposed in this study requires the determination of the 
transition region length . As will be presented later on in this section, in this study we make use 
of an independent beam deflection estimate at the free end obtained numerically via the method of 
finite elements. Thus by matching the beam deflection estimated through the beam model to that 
obtained through finite elements, a non-linear equation in  is obtained through which estimates for 
the normalized transition region length. However, before developing the consistency equation in , 
it may be of value to this and subsequent studies to consider the load transfer and deformation 
mechanics in the transition regions. For example, let us consider the mechanics of Transition 
Region 1, shown in Fig. 11. As shown in the above figure, on the left edge of the above transition 
region, the force and moment resultants would be those obtained from the bending theory consistent 
with Eqn. (9) as discussed earlier. On the right edge, different moment and force resultants are 
applied consistent with the mechanics of the cracked beam presented earlier in this study. As 
discussed earlier, the rotary beam changes relative to the healthy. 

can be attributed to the load transfer through the transition region in which the resultants obtained 
on the left edge must transition to the resultants estimated for the right edge. At this point one has to 
also account for the singular stress field dominating the crack tip region. For example, based on the 
crack tip region reference system  shown in Fig. 11, the normal stress  acting on the 
vertical interface 1 in the crack tip region can be obtained by evaluating the respective crack tip 
stress at , i.e., 

 

 

  (32) 
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Fig. 11. Schematics of potential transition region stress fields that are superimposed onto those of 
the healthy beam. These fields are shown to conform to the near-tip mixed mode fields near the 
crack tip region and to the macro-mechanical field differences sufficiently away from the crack tip. 
As shown, a change of moment  is induced by the mode  component of the stress intensity 
factor on the crack plane ahead of the left crack tip. An equal and opposite moment change then 

moment and associated curvature profile at the start of the transition region as shown in Fig. 3.  

 

The above singular stress profile is shown in Fig. 11 with a heavy solid line in the proximity of the 
crack tip continuing with a light dash line away from the singular region. Meanwhile, sufficiently 
away from the crack tip region, the same stress component must follow the linear mechanics of 
material profile predicted by the system macro mechanics. As shown in Fig. 11, a stress transition 
region must also exist as needed for the smooth transition of the  component between the two 
fields. It is reasonable to expect that such a stress profile that accounts for both the finite macro 
mechanics profile as well as the singular near-tip profile would cause a shift of the plane on which 
the force resultant is effectively acting. A similar argument can be made for the shear stress acting 
on the same vertical plane (i.e., Interface 1) as well as for the normal  and shear  
profiles acting on the horizontal transition region edge ahead of the crack tip. Such observations 
would naturally lead to the conclusion that a rather convoluted stress field dominates the transition 

 associated with the related crack tip. With this in mind, it is expected that the extent of the 
transition region  should include information related to the crack-tip domain and thus could 
depend on the structure of the mixed mode [40-45] singular fields and possibly the magnitude of the 
related stress intensity factor.  

Another relevant observation is that the presence of even a slight mode  component would induce 
a tensile normal stress if  associated with crack tip opening, or compressive if  
associated with crack surface contact as shown schematically in Fig. 11. The presence of such a 
stress close to the crack tip will need to be offset by an opposite stress resultant away from the crack 
tip in the transition region. Such a stress profile would then induce a net moment on the plane 
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ahead of the crack tip in the transition region which ought to be counter-balanced by an equal and 
opposite moment on the vertical left edge of the transition region. Such a moment change could 

 Thus, the 
mage in the vicinity of 

such a measurement used in non-model damage detection methods [46-49].  

Given the above qualitative considerations regarding the mechanics of the transition region, several 
methods can be employed in calculating the relationship between  and the various problem 
variables that may affect the local stress intensities. One such method is to evaluate the crack-tip 
stress intensities and or associated energy release rate using either a compliance method [28-31, 50] 
or a -integral approach [40] based on the model findings of this study. Those estimates can then 
be compared to independent estimates obtained for example using the method of finite elements 
which will then yield a consistency equation in . Yet, another possible approach is to extract the 
transition domain and conduct rigorous numerical and possibly theoretical studies in solving the 
requisite boundary value problem thus required to establish the load transfer and deformation 
mechanics of the transition region. Such an approach would allow for parametric studies needed to 
establish the relative deformation of the right edge of the transition region relative to the left. Such 
estimates would be used in determining the differential deformation between the cracked and 
healthy structures thus giving estimates of the rotary changes induced by the introduction of the 
crack and thus obtained estimates of the rotary spring stiffnesses which can then be used to obtain 
the transition length constant  through Eqn. (31). Such studies are currently being pursuit which 
are expected to be presented in future works. In this work however, we employ a beam deflection 
matching alternative in determining the transition length constant  as discussed below. 

Beam deflection matching. The global mechanics of a beam with a crack includes the effects of the 
crack tip regions. Thus, the beam deformations anywhere in its domain including the deflection at 
its free end include the effects of the dominant stress intensity factors at both crack tips. Thus, one 
can use a known solution obtained by any other method including experimental techniques and 
numerical approaches such as the method of finite elements, to calibrate the four-beam model 
developed in this study as an effective way to calculating the transition length constant . 
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Fig. 12. A schematics showing (a) the original cracked beam with its un-deformed neutral axis and 
(b) the deformed neutral axis configuration of the four beam model. The relationship between the 
deflections and rotations at key reference points of the beam are also shown in (b). The 
deformations and rotations between Sections  and  include the transition region effects captured 
by the rotary spring and Timoshenko shear effects. 

 

With the aid of Fig. 12, the deflection of the beam at its free end at  is given by, 

 

     (33) 

 

where and   are the deflection and angle of rotation at the cross section  at the start of the 
transition region at the left crack tip; 

and   are the deflection and angle of rotation respectively of Section  at the end 
of the transition region at the right crack tip relative to ; 

and   is the deflection of the free end at  relative to . 

It is important to note that in this analysis, the effects of the transition regions are included in the 
relative terms and , and thus do not appear directly in Eqn. (33) above. Using the 
Timoshenko formulas for the deflection and rotations of a cantilever beam given in Eqn. (8) along 
with the outcomes on the relative deformations of Section  relative to  used earlier in this study 
the individual terms appearing in Eqn. (33) take the form, 

 

 and  (34a) 

 (34b) 

 (34c) 

 (34d) 

 

where , , , , and 
. Also in the above formulas,  consistent with Eqn. (30) while  can be 

expressed in terms of the load and the shear force ratio  given by Eqn. (25). Furthermore, in 
Eqn. (34), the constants  are the Timoshenko shear constants for the healthy beam and 
Beam-2 above the crack respectively. Thus using the above equations and after normalizing each 
term with respect to a characteristic deflection , the following consistency condition in 
which the only unknown is the transition region length constant  is obtained, 
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  (35) 

 

Where the  symbol denotes normalized quantities with all length quantities normalized with 
respect to the beam length  and  is used to convert the beam plane stress to its 

plane strain equivalent solution. Also in the above consistency equation,  is the absolute value 
of the deflection of the cracked beam at its free end obtained through non-dimensional FE 
simulations as will be discussed later in the study. In light of the above normalization, the following 
expanded form of the consistency equation in  is obtained, 

 

 (36) 

 

As established earlier (see Eqn. (25), the shear force ratio can be expressed as follows, 

 

 (37) 

where  

 (38) 

 

Clearly, when , and the Timoshenko constants , the factor  and thus  
which yields . It is also worth noting that when ignoring the Timoshenko shear effects, 
i.e., , then  and the ratio  and thus  become independent of . 
Regardless, the consistency equation given by (36) takes on the following form in , 

 

     (39) 
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where the equation coefficients are functions of  either explicitly as shown below or implicitly 
through the beam lengths  and are given by, 

 

, 

, 

    (40) 

 

In the above equation, the finite element term is divided by the  factor as needed to match 
the beam plane stress and the 2D FE plane strain solutions. The above consistency equation in  
will be solved for several cases wherein the horizontal crack is placed at different locations along 
the length and height of the beam. However, in order to carry out this task, finite element solutions 
for the non-dimensional deflection of the beam at the free end will need to be obtained. Thus, a 
brief description of the finite element models used in these simulations would be discussed in the 
second part, i.e., Part B of this report. 

Summary. This study represents the first part of a two-part study aimed at modeling the mechanical 
response of a cantilever beam containing an embedded horizontal crack and subjected to end 
transverse force condition. Informed by 2D finite element findings reported elsewhere [33] and 
summarized in this work, a four-beam mechanics of materials model has been developed capable of 
predicting the load transfer and deformation mechanics of a cracked cantilever beam discussed 
above. The model employs the transition regions associated with four rotary springs as a means of 
accounting for the load transfer through the regions adjacent to the crack tips. The rotary springs 
account for relative cross sectional rotations in the transition region induced by changes in the axial 
force and bending moments through the crack region.  

Initially, the load transfer through the crack region was addressed. Finite element observations 
reported elsewhere [33] of matching curvatures enabled the development of analytical models 
capable of predicting the bending moment and axial force transmitted through the beams above and 
below the crack. The above quantities were then incorporated into the four-beam model which was 
used to obtain estimates of the transition region length as well as estimates of the shear force 
distribution in the beams above and below the crack. Deflection and cross-sectional rotation 
compatibility conditions were used in establishing the effective rotary spring stiffnesses, which 
capture the effects of the transition region. The transition region length is obtained via non-linear 
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equation derived by matching the free end deflection of the cracked beam predicted by the current 
model to independent estimates obtained via the method of finite elements. The finite element 
model formulation along with the results obtained through broad parametric studies and related 
discussion is presented in a Part-B companion paper. 
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