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Abstract
The purpose of this work is to develop a new methodology that uses the minimum numbers of strain gauges, strain
grids, and measurement channels to calculate the bending moment and torque in a slender circular beam under com-
bined loading from measured strains in it. In general, each independent variable requires a minimum of one independent
measurement. Two grids of a single-rosette strain gauge located at 45� and 245� from the longitudinal axis of the beam
are used in conjunction with two measurement channels to gather all measurements and form a combined loading trans-
ducer. A theoretical set of equations of the new methodology is developed to minimize numbers of strain grids and mea-
surement channels, and an experimental configuration was tested in a variety of scenarios. Calibration factors were
independently developed for the bending moment and torque of the beam by separately loading it in their respective
directions. These calibration factors were applied to different combined loading scenarios, where errors were found to
be on average 1.6% for moment comparison and 6.7% for torque comparison.
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Introduction

A transducer is a measuring device that can produce vary-
ing electrical outputs when varying loads are applied to a
structure.1 Strain gauges are used to form a transducer in
this work. Strain gauges contain small wires arranged in
strain grids that experience small changes in resistance
when loads are applied to the structure.2 With external
electrical circuitry in each measurement channel of the
device and calibration, these resistance changes can be
converted to experienced stresses.3

A uniaxial strain gauge that contains a single-strain
grid, as shown in Figure 1, is the simplest strain gauge

and provides measurement in one direction with a sin-
gle channel. It can be useful for measuring loading
along this direction.4 Multiple uniaxial strain gauges
can be arranged at various positions for more compli-
cated strain measurements. One such advanced case
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would be using multiple uniaxial strain gauges to build
a strain gauge-based force transducer to measure static
or dynamic loading on a simply supported beam.5 It
has been shown in Bednarz and Zhu6 that the strain
gauge-based force transducer can be applied to a large-
scale bridge. Uniaxial strain gauges can also be utilized
to measure static or dynamic pressure.7 There are two
other main types of strain gauge configurations that
are shown below.

A shear strain gauge shown in Figure 2 contains two
strain grids each of which mounted at 45� off the longi-
tudinal axis of the gauge. It is arranged in a half-bridge
configuration, so that only one measurement channel is
needed. This configuration allows strain measurements
to be subtracted from each other. This is particularly
useful in measurement of a torque due to torsional
loading, since a torsional stress is directly proportional
to the difference of measured strains.8 If there are
enough shear strain gauges on a beam, a strain gauge–
based force transducer can be constructed.9 Locations
and magnitudes of multiple applied loads on the beam
can then be calculated from measured strains.

A rosette strain gauge shown in Figure 3 contains
three strain grids positioned at known angles such as
45�, 0�, and 245� off the centerline of the gauge. With
three measurements, the maximum and minimum
strains can be calculated regardless of the orientation
at which the gauge is mounted. However, three sepa-
rate measurement channels are needed to record strains
at these known angles.

Almost all scenarios in real-world applications
involve loading along multiple axes. However, loads on
cross sections of a slender beam are usually approxi-
mated as uniaxial loads on it, due to costs of more
transducers needed to measure strains at multiple
points of the beam and multiple angles of strain grids.
Patent 6,295,878 was issued as a configuration of six
strain gauges and six strain grids to measure loading
along three axes.10 Patent 6,354,155 allows for mea-
surement of the force and moment along each of the
three axes;11 however, 12 strain gauges and an equal
number of strain grids are needed for this setup. Patent
9,772,237 calculates the magnitude and position of a

load with the use of several strain gauges.12 A multi-
functional sensor network using 27 rosette strain
gauges was previously developed.13

This work intends to develop and test a new metho-
dology for a combined loading transducer that uses the
minimum numbers of strain gauges, strain grids, and
measurement channels to calculate the bending moment
and torque in a slender circular beam under combined
loading from measured strains in it. A single-rosette
strain gauge, two strain grids oriented at 45� from the
centerline of the gauge that is aligned with that of the
beam, and two measurement channels are used. An
advantage of the combined loading transducer is that
one can calculate two variables, that is, the bending
moment and torque in the beam, using strain measure-
ments from only two strain grids and two measurement
channels, which are the minimum possible numbers.

The rest of this article is organized as follows: deri-
vation of the theoretical methodology is developed in
section ‘‘Theoretical methodology’’ to minimize num-
bers of strain gauges, strain grids, and measurement
channels. An experimental setup is constructed and

Figure 1. Uniaxial strain gauge.

Figure 2. Shear strain gauge.

Figure 3. Rosette strain gauge that contains three strain grids.

2 International Journal of Distributed Sensor Networks



calibrated in section ‘‘Experimental calibration.’’ Once
calibrated, three different combined loading scenarios
are tested: the scenario with an increasing bending
moment and torque at the same rate is presented in sec-
tion ‘‘Moment and torque that were increased at equal
rates,’’ that with a constant bending moment and an
increasing torque is presented in section ‘‘Moment held
constant while the torque was increased,’’ and that with
a constant torque and an increasing bending moment is
shown in section ‘‘Moment was increased while the tor-
que was held constant.’’ Finally, conclusions are pre-
sented in section ‘‘Conclusion.’’

Theoretical methodology

Consider a cantilever beam with a loading arm, at the
end of which a transverse force F is applied, as shown
in Figure 4. The bending moment M at the cross section
of the beam at the fixed boundary can be written as the
product of the transverse force F and the length of the
beam L

M =FL ð1Þ

The torque T applied on the beam is

T =FD ð2Þ

where D is the length of the loading arm.
When the beam is slender with linear, elastic, and

isotropic material, the bending stress sx at the top of
the cross section of the beam at the fixed boundary is

sx =
Mc

I
ð3Þ

where c is the distance from the neutral axis of the beam
to the top of the cross section at which the stress is cal-
culated and I is the area moment of inertia of the cross
section of the beam. A torsional shear stress txy on a
cross section of a beam with a circular cross section can
be written as

txy =
Tr

J
ð4Þ

where J is the polar area moment of inertia of the cross
section of the beam and r is the radius of the cross sec-
tion. While the formula in equation (4) for the torsional
shear stress is only applicable for circular cross sec-
tions, this methodology can be easily modified for
other shapes of cross sections. Equation (4) would be
replaced with an applicable relationship between the
torque and the shear stress that is valid for the particu-
lar shape of a cross section used. For the methodology
presented here with a single normal or bending stress
sx and a shear or torsional stress txy, the stress element
can be seen in Figure 5.

A rosette strain gauge is used in this work to mea-
sure strains at the fixed boundary of the beam and cal-
culate the bending moment and torque on it. The strain
e2 measured by the middle strain grid in Figure 3 is
aligned with the longitudinal or x-axis of the beam.
The strains e1 and e3 measured by the left and right
strain grids in Figure 3, located at 45� and 245� from
the longitudinal axis, respectively, can be expressed by

e1 =
s0x
E
� ns0y

E
ð5Þ

e3 =
s0y
E
� ns0x

E
ð6Þ

where E is Young’s modulus of the beam, s0x and s0y are
normal stresses of the beam at a desired angle of rota-
tion u of strain grids in the x and y axes, respectively, as
shown in Figure 6, and n is Poisson’s ratio.

From the normal bending stress and the torsional
shear stress calculated in equations (3) and (4), respec-
tively, a stress tensor s½ � can be created14

Figure 4. Cantilever beam with a loading arm at the end of
which a transverse force F is applied.

Figure 5. Stress element that contains the normal stress sx

and the shear stress txy .
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s½ �= sx t

t sy

� �
ð7Þ

where sx and sy are normal stresses of the beam in the
x and y axes, respectively, and t is the torsional stress
of the beam. Since the strain gauges are not aligned to
the longitudinal axis, a two-dimensional planar rotation
matrix

R½ �= cos uð Þ sin uð Þ
sin uð Þ cos uð Þ

� �
ð8Þ

can be used to calculate the rotated normal stress tensor
s0½ � of the beam at a desired angle of rotation of strain
grids

s0½ �= R½ � s½ � R½ �T ð9Þ

Due to orientations of the strain grids, desired strains
here are for a plane that is rotated u= 458 from the
longitudinal axis. Use of equations (7)–(9) yields

s0x t0

t0 s0y

� �
=

cos 458
� �

sin 458
� �

sin 458
� �

cos 458
� �

" #
sx t

t sy

� �

cos 458
� �

�sin 458
� �

sin 458
� �

cos 458
� �

" # ð10Þ

where t0 is the torsional stress of the beam at the desired
angle of rotation of the strain grids. Matrix operation in
equation (10) yields the following set of equations

s0x =
sx +sy

2
+ t ð11Þ

t0=
sy � sx

2
ð12Þ

s0y =
sx +sy

2
� t ð13Þ

Since there is no stress applied in the y-axis, one has

sy = 0 ð14Þ

Therefore

s0x =
sx

2
+ t ð15Þ

s0x =
sx

2
� t ð16Þ

Substituting equations (15) and (16) into equations (5)
and (6), respectively, yields

e1 =
1� nð Þsx

2E
+

1+ nð Þt
E

ð17Þ

e3 =
1� nð Þsx

2E
� 1+ nð Þt

E
ð18Þ

Adding equations (17) and (18) yields

e1 + e3 =
1� nð Þsx

E
ð19Þ

Applying equation (3) to equation (19) yields

M =
EI

c 1� nð Þ e1 + e3ð Þ ð20Þ

A linear calibration constant can be used to connect
the applied moment and measured strains. The cali-
bration factor for moment is defined by bM . This cali-
bration factor only depends on geometric and
material properties of the beam and should be a con-
stant throughout the experiment that follows. Using a
single variable to represent all the known constants
allows for easier calculation and demonstration of the
methodology

bM =
EI

c 1� nð Þ ð21Þ

Applying equations (21) to (20) yields

M =bM e1 + e3ð Þ ð22Þ

Subtracting equation (18) from equation (17) yields

e1 � e3 =
2 1+ nð Þt

E
ð23Þ

Applying equation (4) to equation (23) yields

T =
EJ

2r 1+ nð Þ e1 � e3ð Þ ð24Þ

Similarly, a linear calibration constant can be used to
connect the torque and measured strains. The calibra-
tion factor for the torque is defined by bT . This calibra-
tion factor only depends on geometric and material
properties of the beam and should be a constant

Figure 6. Rotation of the x-y coordinate system in Figure 3 by
the angle u.
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throughout the experiment that follows. Similar to the
procedure for bM , a single variable is used to represent
geometric and material properties of the beam

bT =
EJ

2r 1+ nð Þ ð25Þ

Applying equation (25) to equation (24) yields

T =bT e1 � e3ð Þ ð26Þ

Experimental investigation

An experiment is conducted on a 31.75 mm outer dia-
meter, 1.59 mm wall thickness, aluminum 6061-T6
round tubing. It is secured on one end to a workbench
in a cantilever configuration with a fixed boundary con-
dition, via a fillet weld, and the other end of the round
tubing has a loading arm to apply torsional and bend-
ing loadings, as shown in Figure 7. The length of each
end of the loading arm was 29.53 cm, and the length of
the cantilever beam is also 29.53 cm. The rosette strain
gauge was positioned at 28.58 mm from the fixed
boundary, as can be seen in Figure 8. Consistent with
the theory in section ‘‘Theoretical methodology,’’ e2 is
aligned with the longitudinal axis of the cantilever
beam, as can be seen in Figure 3. Therefore, e1 and e3

are at 45� and 245� with respect to the longitudinal
axis, respectively. The strain gauge wires are connected

to a Vishay P3 strain indicator, which contains an inter-
nal Wheatstone bridge circuit.

Experimental calibration

The first set of experiments was used to calibrate the
combined loading transducer. The goal was to find bM

and bT corresponding to the moment and torque,
respectively, which were subsequently used in the rest
of the experiments. The maximum error was minimized
by adjusting the calibration factors. Microsoft Excel
Solver was used in this work, but other applicable soft-
ware would suffice. The calibration factor bM was cal-
culated to be equal to 97,731 N m, which is a deviation
of 212.1% from the theoretical value from equation
(21). This is reasonable because of manufacturing toler-
ances in both the diameter of the shaft and the wall
thickness. Young’s modulus and Poisson’s ratio are
‘‘known’’ constants; however, they can vary by small
amounts depending on the specific alloy composition.15

Moment calibration consisted of two equal weights
hanging equidistant from the center of the cantilever
beam, as shown in Figure 7. Therefore, positive and
negative torques created cancel out and only a
moment remains. From experimental data, the
applied moment is compared to the sum of measured
strains e1 + e3, as can be seen in Figure 9. A highly
linear function can be seen with a slope equal to the
optimized bM .

Figure 7. Experimental setup.
Figure 8. Strain gauge located on the cantilever beam.

Socha et al. 5



Torque calibration was conducted next by hanging a
weight on only one side of the loading cantilever beam,
as can be seen in Figure 10. A support block was then
installed under the center of the cantilever beam to can-
cel any moment, as shown in Figure 11. Similarly, bT

was found such that there was the lowest maximum
error between the calculated torque from the torsional
stress and the theoretical torque in equation (2). This
was optimized to be 49,500 N m, which is a deviation
of 211.6% compared to the theoretical value from
equation (25). Reasons for this deviation were the same
as those described in moment calibration.

From experimental data, the applied torque is com-
pared to the difference of measured strains e1 � e3, as
can be seen in Figure 12. A highly linear function can

be seen with a slope equal to the optimized bT . Once
the calibration factors bM and bT were found, other
scenarios could be tested using these same values
throughout the remaining experiments.

Moment and torque that were increased at equal
rates

The first experiment had the torque and moment that
were increased at equal rates, which is a combined load-
ing scenario. This was done by hanging a weight to only
the left or right side of the loading beam. A weight on
the left side of the loading beam can be seen in Figure
13. Measured values of the weight can be seen in Table
1 and calculated values in Table 2.

From calculated combined loading data, the maxi-
mum error in the moment measurements was seen to be
2.9% compared to the theoretical values from equation
(1) and the error in the torque was 5.4% compared to
the theoretical values from equation (2). These are both
reasonably low for the experimental setup.
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Figure 9. Calibration of moment.

Figure 10. Torque test setup.

Figure 11. Support block.
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Moment held constant while the torque was
increased

The second experiment was also a combined loading
scenario; however, this time the moment was held

constant while the torque was increased. This was
accomplished by using a single weight of 133 N and
varying the distance from the weight to the center on
the loading arm, which is similar to what can be seen in
Figure 10. Measured values of the weight can be seen
in Table 3 and calculated values in Table 4.

The maximum error between the measured moment
calculated from equation (22) and the theoretical moment
was 3.2%. The maximum error between the measured
torque from the torsional stress calculated from equation
(26) and the theoretical torque was 14.1%.

Moment was increased while the torque was held
constant

The final experiment was a combined loading scenario
where the torque was held constant while the moment
was increased. This was accomplished using different
weights to create different moments, which is similar to
what can be seen in Figure 10. The distance from the
weight required to the center of the cantilever beam
was then calculated to maintain a constant torque.
Measured values of the weight can be seen in Table 5
and calculated values in Table 6.

From calculated combined loading data, the maxi-
mum error in the moment measurements was seen to be

Figure 13. Combined loading test setup.

Table 1. Measured values of the weight from combined loading test with equal moment and torque increments.

Trial number Mass at left (kg) Mass at right (kg) Force (F) (N) Distance (d) (cm) Length (L) (cm) e1 (me) e3 (me)

1 2.27 0 22.24 29.53 26.67 100 –39
2 4.54 0 44.48 29.53 26.67 193 –75
3 6.80 0 66.72 29.53 26.67 292 –113
4 9.07 0 88.96 29.53 26.67 402 –158
5 11.34 0 111.20 29.53 26.67 499 –197
6 13.61 0 133.44 29.53 26.67 592 –233
7 15.88 0 155.68 29.53 26.67 697 –273
8 18.14 0 177.92 29.53 26.67 806 –314
9 20.41 0 200.16 29.53 26.67 899 –351
10 22.68 0 222.40 29.53 26.67 1008 –395

Table 2. Calculated values of the weight from combined loading test with equal moment and torque increments.

Trial number Moment (M)
actual (N m)

Moment calculated
(N m)

Magnitude of
moment error

Torque (T) actual
(N m)

Torque calculated
(N m)

Magnitude of
torque error

1 5.93 5.97 0.50% 6.57 6.88 4.60%
2 11.87 11.54 2.90% 13.14 13.27 1.00%
3 17.80 17.49 1.70% 19.71 20.05 1.70%
4 23.73 23.85 0.50% 26.27 27.72 5.20%
5 29.66 29.52 0.50% 32.84 34.45 4.70%
6 35.60 35.10 1.40% 39.41 40.84 3.50%
7 41.53 41.45 0.20% 45.98 48.03 4.30%
8 47.46 48.09 1.30% 52.55 55.45 5.20%
9 53.39 53.57 0.30% 59.11 61.88 4.50%
10 59.33 59.92 1.00% 65.69 69.46 5.40%
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6.2% and the error in the torque was 11.4%. These are
both reasonably low for the experimental setup.

Conclusion

The experiments in this work have proven the metho-
dology of the combined loading transducer. Only one
strain gauge, two measurement channels, and two

strain grids were needed to independently measure the
moment and torque. Two strain grids of a single-rosette
strain gauge were used to accurately calculate the
moment from the bending stress and the torque from
the torsional shear stress in the combined loading sce-
narios. Calibration factors were independently found
from loading tests of the moment and torque and used
throughout other combined loading scenarios.

Table 3. Measured values of the weight from combined loading test with the moment held constant and the varying torque.

Trial number Mass at left (kg) Mass at right (kg) Force (F) (N) Distance (d) (cm) Length (L) (cm) e1 (me) e3 (me)

1 13.61 0 133.44 7.62 26.67 300 65
2 13.61 0 133.44 9.53 26.67 333 34
3 13.61 0 133.44 11.43 26.67 355 11
4 13.61 0 133.44 13.34 26.67 385 –18
5 13.61 0 133.44 15.24 26.67 413 –45
6 13.61 0 133.44 17.15 26.67 442 –75
7 13.61 0 133.44 19.05 26.67 465 –98
8 13.61 0 133.44 20.96 26.67 493 –126
9 13.61 0 133.44 22.86 26.67 520 –155
10 13.61 0 133.44 24.77 26.67 549 –184
11 13.61 0 133.44 26.67 26.67 577 –210
12 13.61 0 133.44 28.58 26.67 598 –231

Table 4. Calculated values of the weight from combined loading test with the moment held constant and the varying torque.

Trial number Moment (M)
actual (N m)

Moment
calculated (N m)

Magnitude
of moment
error (%)

Torque (T)
actual (N m)

Torque
calculated
(N m)

Magnitude of
torque error (%)

1 35.60 35.67 0.20 10.17 11.64 12.60
2 35.60 35.88 0.80 12.71 14.80 14.10
3 35.60 35.78 0.50 15.26 17.03 10.40
4 35.60 35.88 0.80 17.80 19.96 10.80
5 35.60 35.97 1.00 20.34 22.68 10.30
6 35.60 35.88 3.20 22.88 25.59 10.60
7 35.60 35.88 0.80 25.43 27.88 8.80
8 35.60 35.88 0.80 27.97 30.65 8.70
9 35.60 35.67 0.20 30.51 33.41 8.70
10 35.60 35.67 0.20 33.05 36.28 8.90
11 35.60 35.88 0.80 35.60 38.96 8.60
12 35.60 35.88 0.80 38.14 41.04 7.10

Table 5. Measured values of the weight from combined loading test with the torque held constant and the varying moment.

Trial number Mass at left (kg) Mass at right (kg) Force (F) (N) Distance (d) (cm) Length (L) (cm) e1 (me) e3 (me)

1 13.61 0 133.44 11.43 26.67 356 11
2 11.66 0 114.31 13.34 26.67 339 –9
3 10.21 0 100.08 15.24 26.67 311 –29
4 9.07 0 88.96 17.15 26.67 292 –44
5 8.16 0 80.06 19.05 26.67 284 –58
6 7.44 0 72.95 20.96 26.67 276 –67
7 6.80 0 66.72 22.86 26.67 269 –75
8 6.31 0 61.83 24.77 26.67 255 –80
9 5.85 0 57.38 26.67 26.67 245 –86
10 5.44 0 53.38 28.58 26.67 236 –89
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The moment had an average magnitude error of
1.6% over the three combined loading scenarios. The
torque error was higher at 6.7% mainly due to the sys-
tem calibration and setup. It is also possible that there
was some deflection with the support system at the
boundary, allowing for an unaccounted moment in the
torque test. While in theory, the cantilever beam is con-
nected to an immovable boundary, in practice there
could have been a small deflection at the boundary.
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Appendix 1

Notation

c distance from the neutral axis of the beam
to a location where the strain is measured

D length of the torsional loading arm of the
beam from the point where the
concentrated force is applied to its vertical
axis

E Young’s modulus of the beam

Table 6. Calculated values of the weight for combined loading test with the torque held constant and the varying moment.

Trial
number

Moment (M)
actual (N m)

Moment
calculated (N m)

Magnitude of
moment error (%)

Torque (T)
actual (N m)

Torque
calculated (N m)

Magnitude of
torque error (%)

1 35.60 35.88 0.80 15.26 17.07 10.70
2 30.51 32.26 5.40 15.26 17.23 11.40
3 26.69 27.56 3.20 15.24 16.84 9.40
4 23.73 24.24 2.10 15.26 16.63 8.30
5 21.36 22.09 3.30 15.26 16.93 9.90
6 19.42 20.43 4.90 15.26 16.98 10.10
7 17.80 18.96 6.20 15.26 17.03 10.40
8 16.44 17.11 3.90 15.27 16.59 7.90
9 15.27 15.54 1.80 15.27 16.39 6.80
10 14.22 14.37 1.00 15.23 16.09 5.30
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F concentrated force applied to the beam
I cross-sectional area moment of inertia of

the beam
J cross-sectional polar moment of inertia of

the beam
L distance from the torsional arm of the

beam to a location where strains are
measured

M bending moment of the beam at the strain
gauge location

r radius of a circular cross section of the
beam

R½ � rotational matrix of a stress tensor
T torque of the beam

bM calibration factor for bending moment
calculation

bT calibration factor for torque calculation
e1 strain at 245� from the longitudinal axis

of the strain gauge

e3 strain at 45� from the longitudinal axis of
the strain gauge

u desired angle of rotation
n Poisson’s ratio of the beam
s½ � stress tensor of the beam

sx normal stress of the beam along the x-axis
sy normal stress of the beam along the y-axis
½s0� stress tensor of the beam at a desired

angle of rotation of strain grids
s0x normal stress of the beam at a desired

angle of rotation of strain grids along the
x-axis

s0y normal stress of the beam at a desired
angle of rotation of strain grids along the
y-axis

t torsional stress of the beam
t0 torsional stress of the beam at a desired

angle of rotation of strain grids
txy torsional stress of the beam in the xy plane
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