
MULTI-STAGE PATTERN REDUCTION I N LOSSLESS IMAGE
COMPRESSION

by

Mark Newman

THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

in the

GRADUATE SCHOOL

of

HOOD COLLEGE

May 2006

Accepted

Thesis Advispr p

3rge Dimitogloir', Ph.D.

Reading committee

Frank Sweeney, P ~ . D /

Dean of the Graduate School

Chairperson of the Computer
Science Department

Reading committee

UMI Number: 1439199

1439199
2007

Copyright 2007 by
Newman, Mark

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

All rights reserved.

 by ProQuest Information and Learning Company.

 2

COPYRIGHT WAIVER

I authorize Hood College to lend this thesis, or reproductions of it, in

total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

 3

ACKNOWLEDGEMENTS

I would like to thank my reading committee, who let me take the time

I needed to take to do my thesis and still responded in a timely

fashion.

I would like to thank Talbott Noyes, who was able to show me the

difference between summery and summary.

I would like to thank David Gurzick, who was able to show me how to

use MS Word to conform to the thesis guide lines without months of

tiny edits.

 4

Table of Contents

Copyright Waiver ..2

Acknowledgements ..3

Abstract ..10

1.0 Introduction ..11

1.1 Need for Image Compression ...11

1.2 Two types of Image Compression Algorithms - Lossless vs. Lossy12

1.3 Current Lossless techniques..13

1.3.1 Entropy encoding..13

1.3.2 Huffman Encoding ..14

1.3.3 Frequency Domain encoding..15

1.3.4 Haar Wavelet...16

1.3.5 Runtime Length Encoding...18

2.0 Multi-Stage Pattern Reduction ...18

3.0 Methods and Materials ...26

3.1 Hardware and software ..26

3.2 Images ...27

3.3 Methodology ...27

3.4 The Algorithms ...27

3.4.1 Shared Definitions..28

3.4.2 Algorithm 1: Philosophy..28

3.4.3 Algorithm 1: Pseudo Code..30

3.4.4 Algorithm 2: Philosophy..32

3.4.5 Algorithm 2: Pseudo Code..34

3.5 Algorithm Machinery ...35

3.5.1 Approach 1-6: Philosophy ..35

3.5.2 Approach 1-6: Pseudo code ...37

3.5.2.1 Approach 1 ...37

3.5.2.2 Approach 2 ...37

3.5.2.3 Approach 3 ...37

3.5.2.4 Approach 4 ...38

3.5.2.5 Approach 5 ...39

 5

3.5.2.6 Approach 6 ...39

3.5.3 Approach 7-12: Philosophy ..40

3.5.4 Approach 7-12: Pseudo code...42

3.5.4.1 Approach 7 ...42

3.5.4.2 Approach 8 ...42

3.5.4.3 Approach 9 ...42

3.5.4.4 Approach 10 ...43

3.5.4.5 Approach 11 ...44

3.5.4.6 Approach 12 ...44

3.5.5 Approach 13-18: Philosophy..45

3.5.6 Approach 13-18: Pseudo code ..46

3.5.6.1 Approach 13 ...46

3.5.6.2 Approach 14 ...47

3.5.6.3 Approach 15 ...47

3.5.6.4 Approach 16 ...48

3.5.6.5 Approach 17 ...49

3.5.6.6 Approach 18 ...49

3.5.7 Approach 19-24: Philosophy..50

3.5.8 Approach 19-24: Pseudo code ..51

3.5.8.1 Approach 19 ...51

3.5.8.2 Approach 20 ...52

3.5.8.3 Approach 21 ...52

3.5.8.4 Approach 22 ...53

3.5.8.5 Approach 23 ...54

3.5.8.6 Approach 24 ...54

3.5.9 Approach 25-30: Philosophy..55

3.5.10 Approach 25-30: Pseudo code ..56

3.5.10.1 Approach 25...56

3.5.10.2 Approach 26...57

3.5.10.3 Approach 27...57

3.5.10.4 Approach 28...58

3.5.10.5 Approach 29...59

 6

3.5.10.6 Approach 30...60

3.5.11 Approach 31-36: Philosophy ...60

3.5.12 Approach 31-36: Pseudo code ..62

3.5.12.1 Approach 31...62

3.5.12.2 Approach 32...62

3.5.12.3 Approach 33...63

3.5.12.4 Approach 34...64

3.5.12.5 Approach 35...65

3.5.12.6 Approach 36...65

3.5.13 Approach 37-42: Philosophy ...66

3.5.14 Approach 37-42: Pseudo code ..67

3.5.14.1 Approach 37...67

3.5.14.2 Approach 38...68

3.5.14.3 Approach 39...68

3.5.14.4 Approach 40...69

3.5.14.5 Approach 41...70

3.5.14.6 Approach 42...71

3.5.15 Approach 43-48: Philosophy ...72

3.5.16 Approach 43-48: Pseudo code ..73

3.5.16.1 Approach 43...73

3.5.16.2 Approach 44...74

3.5.16.3 Approach 45...74

3.5.16.4 Approach 46...76

3.5.16.5 Approach 47...77

3.5.16.6 Approach 48...78

4.0 Data Summary...79

4.1 Comparative Pictorial Summary of Approaches..79

4.2 Data Based Summary of Approaches..88

5.0 Results and Discussion...97

5.1 Approach 1-6..97

5.2 Approach 7-12. ..98

5.3 Approach 13-18. ..98

 7

5.4 Approach 19-24. ..98

5.5 Approach 25-30. ..99

5.6 Approach 31-36. ..99

5.7 Approach 37-42. ..100

5.8 Approach 43-48. ..100

5.9 General Remarks for Future Research..100

6.0 Conclusion...102

Appendix 1: Code ...103

Appendix 2: Images...104

Appendix 3: Screen Shots ..108

References ...110

 8

Table of Tables

Table 1. Sample of Word Table from Knowledge Base. ...21

Table 2. Sample of Phrase Table from Knowledge Base..22

Table 3. Sample of Concept Table from Knowledge Base ...23

Table 4: Approach 1-6 Data Results ..89

Table 5: Approach 7-12 Data Results..90

Table 6: Approach 13-18 Data Results..91

Table 7: Approach 19-24 Data Results..92

Table 8: Approach 25-30 Data Results..93

Table 9: Approach 31-36 Data Results..94

Table 10: Approach 37-42 Data Results ...95

Table 11: Approach 43-48 Data Results ...96

 9

Table of Figures

Figure 1: Approach 1-6 Pictorial Results...80

Figure 2: Approach 7-12 Pictorial Results ..81

Figure 3: Approach 13-18 Pictorial Results ..82

Figure 4: Approach 19-24 Pictorial Results ..83

Figure 5: Approach 25-30 Pictorial Results ..84

Figure 6: Approach 31-36 Pictorial Results ..85

Figure 7: Approach 37-42 Pictorial Results ..86

Figure 8: Approach 43-48 Pictorial Results ..87

Figure 9: Fluorescence ..104

Figure 10: Lenna ..105

Figure 11: Aruba1 ..106

Figure 12: Aruba2 ..107

Figure 13: Screen Shot ...109

 10

ABSTRACT

Lossless image compression is the process of compressing and

subsequently decompressing images without the loss of data.

Historically, image compression was carried out by treating images as

complex text [13]. Only in recent years have images been treated as

data collections that could be processed for compression and

decompression in a manner unique to images [1]. Even the best

modern lossless image compression techniques, however, yield less

than desirable results [5]. The biggest drawback for lossless image

compression is that images can only be reduced to about one-third of

their original image size. Lossy image compression algorithms, i.e.,

those techniques for compressing image size where image information

is lost upon decompression, are capable of reducing images to one-

tenth of their actual size with little or no humanly perceptual loss in

image detail.

Multi-stage pattern reduction is an emerging approach for encoding

data that has recently demonstrated efficient processing in the field of

natural-language processing. It relies on the ability to discern small

local patterns in a source, recreating a new source using these local

patterns and then reapplying the technique over multiple stages.

In this thesis, the value of using multi-stage pattern reduction to

compress images will be explored. The goal of this thesis is to create

 11

a lossless image compression algorithm by employing the techniques

of multi-stage pattern reduction and to determine if such an approach

can provide better compression on average than the current major

competing algorithms in the field.

1.0 INTRODUCTION

1.1 NEED FOR IMAGE COMPRESSION

As computers become faster and technological influences increase, the

demand for multimedia, and more specifically visual images, becomes

greater. Concordantly, the availability and use of high quality images

on the Internet is increasing at a rate far outpacing the ability for

users to retrieve such images in a reasonable amount of time [3, 7].

Therefore, the necessity for highly efficient image compression takes

on greater importance in current technological use. Image

transmitting accounts for some of the highest demands on Internet

resources. It is noteworthy that one of the major shifts in Internet

access is toward broadband use for many users accessing the Internet

from their homes. Any advances in increasing image compression

efficiency would result in reducing load on Internet traffic and

improving the user experience.

 12

1.2 TWO TYPES OF IMAGE COMPRESSION ALGORITHMS -
LOSSLESS VS. LOSSY

Lossless compression can be defined as the ability to uniquely retrieve

a series of bits from a source image from which one can exactly

duplicate the pre-compressed source image. Lossy compression can

be defined as the ability to retrieve a series of bits from a compressed

source that is close to, but not necessarily identical to, the pre-

compressed source. If lossless compression can yield bit for bit

equality then why is lossy compression even acceptable? Lossy

compression is almost always more efficient, that is to say

computationally faster and resulting in smaller output file, i.e. more

compressed, than lossless compression. Often lossy image

compression is visually indistinguishable from the original source.

However, this is not always the case. In fact, for some applications,

even a small amount of degradation is absolutely intolerable, such as

in medical imaging. Additionally, some compression algorithms get

progressively worse over many successive generations [2], where a

generation is defined as one compression and decompression cycle of

an image. The focus of this paper is on lossless algorithms.

 13

1.3 CURRENT LOSSLESS TECHNIQUES

Currently there are 3 categories of lossless image compression

techniques. They are:

1. Entropy encoding.

2. Frequency Domain encoding.

3. Runtime length encoding (RLE)

A brief overview of each technique and its main strengths and

weaknesses is given below along with a prominent algorithm from

each category.

1.3.1 ENTROPY ENCODING

Entropy encoding is the process of translating all current symbols in a

given source into new symbols such that the combined effects of new

symbols represent an overall length reduction for the entire source.

Entropy encoding is very efficient at encoding sources that have

distinct or well known frequencies, such as English language text, or

show a notable frequency increase in a few symbols as compared to

other symbols. Entropy encoding does not work in cases that have

symbols that display very similar frequencies, such as white noise, or

in cases that there are so many symbols that the translation

mechanism, most likely a fully complete table, grows faster than the

length reduction of valuable symbols decreases the source size.

 14

There are two main entropy encoding algorithms: Huffman encoding

and arithmetic encoding. Huffman encoding can be found in most entry

level algorithm books and will be described below for completeness

[6]. Arithmetic encoding, on the other hand, is patented by IBM and

therefore it is left to the interested reader to delve if so desired [11].

1.3.2 HUFFMAN ENCODING

The Huffman encoding algorithm is an O(NLogN+2L) algorithm where

N is the symbol count and L is the file length. Generally, this means

that N is 2^8 or one byte. However, the algorithm is valid on any

number of symbols, but the translation table tends to grow faster than

the algorithm reduces the source length.

Huffman encoding first finds the frequency of all the symbols in the

source. Next, the frequencies are sorted into a list in ascending order.

Next, the first two entries are combined into a single node with left

and right children, element one and element two respectively, whose

new frequency is the combined frequency of the first two elements.

The first two elements are then deleted and a new node is inserted

into the still sorted list in its appropriate place determined by the sum

of its left and right children’s frequencies. This node is treated as any

other element in the list. This process of removing two elements and

replacing them as one is continued until only one element is left. The

 15

resulting data structure is a tree. Bit string values are assigned to the

leaf nodes based on their left or right path from the root. These leaf

nodes are the literal symbols. The result is a translation table. A

second pass is made through the file, replacing the actual byte read in

from the source file with the bit string found on the translation table.

Finally, the translation table is stored. Decompression is as simple as

retrieving and reversing the translation table, thus restoring the

original source.

1.3.3 FREQUENCY DOMAIN ENCODING

Frequency Domain encoding uses a variety of mathematical techniques

to reduce the source into its component form. These component pieces

are generally easier to describe than the composite source and

therefore take up less space, thus, achieving compression. Frequency

Domain encoding works best on sources that have an underlying

frequency pattern. This is difficult, however, to discern from just a

cursory examination of the source. Frequency Domain encoding also

has the extremely useful quality of multiple resolution. This is to say

that, if less than lossless quality is desired then the computation

needed to derive the lossless data produces the lossy result along the

way. This is outside the purview of this thesis, but is mentioned for

completeness. Frequency Domain encoding is not suited for

 16

compression of a source that includes desirable high frequency data,

such as in the case of steganography, where the noise of a image is

the real desired information.

There are three main frequency domain encoding techniques: Discreet

Cosine Transformation (DCT), Fast Fourier Transformation (FFT), and

wavelets. In the case of real-valued sources, DCT and FFT are

mathematically related [9]. Their use in many sciences is well

documented and easily obtainable. Wavelets are recent additions to

frequency domain encoding and come in many forms. One of these,

the Haar Wavelet, will be described below. It is the easiest to

understand and allows for a better grasp of more advanced wavelet

concepts. The new JPEG-2000 compression uses these more advanced

wavelets as part of its overall algorithm.

1.3.4 HAAR WAVELET

Wavelet compression, and in particular Haar wavelet as described

below, is a group of recursive functions designed to break down a

series of numerical values into multiple bands describing aggregate

and detail information about the series. This allows for examination, or

compression, based on overriding features of the series of local

phenomena [12].

 17

The Haar wavelet is an averaging wavelet at its base. This is to say

that when you have 2 values next to each other they are averaged

then the remainder is determined, i.e. {6 12} -> (6+12)/2 = 9, 9-12

= -3 -> {9,-3}. The Haar wavelet provides a perfectly reversible map

from Integers to Reals. Very few point this out in their documentation.

The issue is that computers are geared to handle integers far better

than Reals, so some of the power of the Haar wavelet is lost. A better

example of what happens should be {5 12} -> floor((5+12)/2) = 8, 5-

12 = -7 -> {8,-7}. Using these and a small amount of simple logic we

can convert from Integers to Integers. Sadly, much of the converging

properties of wavelets are lost. Having discussed the problems, we

can move on to the recursion aspect of wavelets. Knowing, as we do,

how to manipulate the base wavelet we need to realize that recursion

is intended to pull from the aggregate values only. This is done with

simple reordering. If we have the original sequence {2 4 8 4 10 6 7 9}

performing The Haar wavelet on each of the pairs yields {3 -1 6 2 8 2

8 -1}, reordering to pull the aggregate data to the front of the list

yields {3 6 8 8 -1 2 2 -1} the Haar wavelet can then be preformed on

the sub list {3 6 8 8} and so on in recursive manner. Notice how I

chose the more naive Haar approach and chose my data to be friendly.

Specifically, note the choice of 8 elements over 7 or 9 elements.

 18

1.3.5 RUNTIME LENGTH ENCODING

Run length encoding is nearly ineffective on color images. Therefore it

will not be discussed in this thesis in any detail and is mentioned only

for completeness [10]. Run length encoding is used primarily as an

observed optimization for the bitmap format and in fax machines.

2.0 MULTI-STAGE PATTERN REDUCTION

Current lossless image compression techniques tend to achieve, on

average, on the order of 1.5 to 1 to 3.0 to 1 compression ratios [8],

and are often quite complex, both to code and to understand. The

primary goal of this thesis is to create a compression scheme that will

achieve greater compression ratios on average than the above

techniques.

Multi-stage pattern reduction has recently demonstrated efficient

processing in natural-language processing by limiting all possible

search spaces [4]. It relies on the ability to discern small local

patterns in a source, recreating a new source using these local

patterns and then reapplying the technique. Since this is also a goal

of image compression, the employment of this technique is a natural

extension of this work. The application of this technique to natural

language processing is described in detail below.

 19

Using multi-stage pattern reduction, there are two different parts to

the processor. One is the knowledge base, which is made up of three

tables, and the other is the actual algorithm used for navigating the

knowledge base to reduce a user’s input down to a concept with

parameters. Simply put, that is the goal of any natural language

processor, reducing the user’s input down to a concept. In the case of

all the different ways that we suggested one could come up with to

say, “Throw me the ball.” In natural language processing, we are now

working in the opposite direction where we are looking for a way to

take all of the different ways on the list of expressing this concept

(these are called surface structures) and reducing them down to a

single concept, “throw”, with a directionality of “to me”, with the

parameter of “ball” (this is called the deep structure).

For the purpose of understanding the processor, let us take the

example phrase:

“I would like to get my 401k account balance”

On the knowledge-base side of our process we have three tables. The

first table in the knowledge base contains the words and semantic

symbols for those words. For example, you will notice that the first

three entries all share the same semantic symbol. Likewise, “need”

and “want” also share the same semantic symbol of 024. This

 20

relationship between these two columns allows the processor to

perform the first step in semantic reduction. The individual patterns,

in the form of words, are identified and then reduced semantically.

In our first step we take the words in the input and arrange them into

a vector.

I Would like to Get my 401k account Balance

We then go to the first table and look up each word in the table.

WORD SEMANTIC SYMBOL

Can 009

Could 009

Would 009

Will 010

Shall 010

Got 011

Get 012

Find 012

Obtain 012

Acquire 012

Retrieve 012

I 019

We 019

Need 024

Want 024

To 031

 21

Do 034

Like 143

I’d 257

I’ve 258

My 038

401k 803

Account 695

Balance 217

TABLE 1. SAMPLE OF WORD TABLE FROM KNOWLEDGE BASE.

From this table we retrieve the semantic symbol for each word yielding

an array such as:

I Would like to get my 401k account Balance

019 009 143 031 012 038 803 695 217

This could also be expressed as a new vector of: 019 009 143 031 012

038 803 695 217. This represents the semantic reduction over words,

or the first pattern reduction step in our algorithm. It is important to

note that this single vector in some cases, where there are multiple

words representing each semantic value, might represent twenty or

more different ways to express this same deep structure. In the next

step we take our new vector and begin to search through the phrase

knowledge-base table from left to right for the largest represented

phrase on the table.

 22

PHRASE SEMANTIC SYMBOL

019 010 024 031 a002

019 024 031 a002

019 013 011 031 a002

019 009 024 031 a002

019 010 013 031 a002

034 019 024 031 a002

258 011 031 a002

257 024 031 a002

019 009 143 031 a002

257 143 031 a002

012 f110

038 803 695 217 m117

TABLE 2. SAMPLE OF PHRASE TABLE FROM KNOWLEDGE BASE

For example in the first pass we search for a match for the whole

vector, and finding no match we search for a match for the whole

vector minus the last semantic representation: 019 009 143 031 012

038, and finding no match we search for a match for the whole vector

minus the last two semantic representations: 019 009 143 031 012,

and we repeat this process until we finally a match for 019 009 143

031 and we take the semantic symbol a002 and save it in our phrase

vector. In searching for the next largest chunk we find that 012 yields

f110, and finally 038 803 695 217 yields m117, creating a new vector

for us of a002 f110 m117. The m117 phrase is a special type of

 23

phrase in that it represents an object, i.e. “401 k account balance” It

is interesting to note that it is also representing several other ways of

saying this such as “the 401k balance”, or “the balance in my 401k

account”.

From this table we retrieve the semantic symbol for each phrase

yielding this array:

I would like to get my 401k account Balance

019 009 143 031 012 038 803 695 217

A002 a002 a002 a002 f110 m117 m117 m117 m117

On average, after having gone through two stages of reduction, most

objects on the list such as m117 represent about six unique ways of

referral. The current demonstration application contains 46 such

objects or 276 (46 x 6) different ways of saying objects referenced in

the current application. This will become an important point later on.

So, we are now left with the phrase vector a002 f110 and the

identified object m117.

CONCEPT SEMANTIC SYMBOL

A002 f110 m* AA

A002 d004 f012 c001 AA

A002 f010 b001 f130 AA

TABLE 3. SAMPLE OF CONCEPT TABLE FROM KNOWLEDGE BASE

 24

We go to our Concept knowledge base and find a matching value for it

of AA. AA represents the deep structure for retrieval. We pass this

instruction (AA) along with the parameter “m117” along to our

application and it returns the balance in our 401k account. All this

might seem a bit mundane, until we look at the last step where we

matched a002 f110 of the concept table work and backwards through

our tables and discover that this one line represents over three

hundred difference ways that a user might ask for his/her 401k

account balance. Multiply this by the six ways the “401k balance” is

represented and we have accommodated 1800 different ways a user

might ask for a specific piece of information with a single table entry

and a complementary object. Crossed with all object in the current

demonstration application and we are looking at 82800 different ways

of asking for 46 unique pieces of information from one table entry.

From this table we retrieve the semantic symbol for each phrase

yielding this array:

I would like to get my 401k account Balance

019 009 143 031 012 038 803 695 217

A002 a002 a002 a002 f110 m117 m117 m117 m117

AA AA AA AA AA AA AA AA AA

There are in fact 43 different table entries in the concept

knowledgebase for AA the retrieval operation. If we assume that they

 25

represent just as many surface phrases (and in fact some of them

represent hundreds of thousands), then we can conservatively say that

our language processor can understand 3,560,400 different ways to

ask for 46 unique objects, all from a database with fewer than 1500

table entries across words, phrases, and concepts. Of course, there is

more than one deep structure in the concept table. There are in fact,

thirty-one. In total, 1500 table entries that represent over 100 million

user inputs, in 1.2 megabytes of space.

In the end, the algorithm as a whole may appear obvious or trivial.

This, however, would be a mistaken conclusion. While no grammatical

rules are visible, and no commonly seen statistical tables are exposed,

what our process has effectively done is map the pathways of

legitimate grammar through all of the possible combinations of words

used in a specific context. The specific rules required to create the

combinations of words in the form of phrases and combinations of

phrases to form a concept are inherently present in the employment of

the tables and are knowledge base. That is to say, these tables are

the end result of what one would find after employing the grammatical

rules that might be used in a parsing system under a specific

application context. But the multistage pattern reduction process

requires significantly less effort in all areas when compared to parsing.

 26

The power of our algorithm is most obvious in the 300 recognized

inputs yielded from a total of 31 word table entries in figure 4. Figure

4 contains both five word and four word combinations. There are

211,376 possible combinations of five word and four word phrases

when drawn from a table of 31 possible words. Figure 4 represents

the 300 legitimate combinations for a single table entry in the concept

table. In a sense, we have reduced the search space for all

combinations of words down to the legitimate representation of a

grammar. In this manner, the multi-stage pattern reduction algorithm

represents the best features of other approaches, i.e., parsing type

natural language processors and keyword/key-phrase processors

without the drawbacks. The grammatical rules required for

understanding in a parsing processor are inherently present, along

with the power of recognition of variability of expression inherent in

keyword/key-phrase processors.

3.0 METHODS AND MATERIALS

3.1 HARDWARE AND SOFTWARE

The algorithms were implemented in C# .net version 1.1, a software

language developed by Microsoft. The development environment is

Microsoft’s Visual Studio .net 2003. The development machine used

was a Dell XPS laptop running Microsoft Windows XP sp2

 27

3.2 IMAGES

The algorithm was tested on a variety of pictures. Images were

standard format of 8 bits per pixel. All pictures appear in the appendix

with individual citation captions.

3.3 METHODOLOGY

All images began as uncompressed 256 color bitmap files. They are

each then compressed into the JPG lossless compression format,

Huffman compression format, and the particular pattern reduction

format being tested and the compression ratios are noted. Finally,

each was uncompressed and checked against the original image to

verify true lossless image compression.

3.4 THE ALGORITHMS

The heart of this research is fundamentally to test the value of a new

image compression algorithm using recursive pattern reduction.

However, like many image compression techniques and practical

algorithms in general, there is a variety of machinery surrounding the

base algorithm itself. To this end I have broken out the algorithms and

their accompanying machinery into separate sections. Each section

follows with an accompanying description explaining the general

 28

philosophy behind the algorithm or machinery. Finally, pseudo code is

presented as an example.

3.4.1 SHARED DEFINITIONS

Image: An image is a 2 dimensional n*m array consisting of color

information. Each element of the array represents a unique pixel

whose value is the color at the given point. Image indexing is left to

right, top to bottom starting at (1, 1).

Stream: A stream is a list whose elements can range from zero and

up. Streams tend to have information deleted from them. Indexing is

from left to right, starting at 1.

Table: A table is a list whose elements are ordered pairs. Tables are

generally searched and appended to. Indexing is from left to right,

starting at 1.

3.4.2 ALGORITHM 1: PHILOSOPHY

The fundamental idea in recursive pattern recognition is that given a

series of symbols, the arrangements of those symbols is the actual

important piece of information as opposed to the importance of the

symbols themselves. The end results of the process yields a “bubbling

up” of valuable information and a virtual elimination of patterns that

never, or at the least extremely infrequently, occur. To this end, a

 29

static method was developed to take in pairs of pixels and view them

as a single unit instead of 2 distinct units. This was done in hopes that

there would be fewer new pixel units that actually occurred than the

strict combination of pixel pairs. Then these new pixel units could be

reefed recursively through the same algorithm to produce new units of

information.

To do this we flatten the image to a single stream of data, selecting

double pixel pairs. If we have seen the current pair we replace it with

a new pair. If not we replace it with a new symbol and place the pair in

a dictionary. We then apply this simple technique recursively on the

new encoded stream. Clearly, when applied recursively, this could

yield an end single, but this is just a minor annoyance, easily fixed

with clever coding. The dictionary, which is clearly unique for each

unique image, is then pre-pended to the front of the final recursively

encoded stream. Decoding the stream is simply a dictionary lookup

applied several times.

The real strength of this approach is that if a particular combination of

pixels is never next to each other their combination will never appear

and so need not be represented. This allows all the valid combinations

to be stored without storing any of the useless patterns.

 30

3.4.3 ALGORITHM 1: PSEUDO CODE

Please refer to the companion CD for the C# reference

implementation.

Step 1: Label the image stream0. Select a number greater than one

for the number of reduction steps labeled reduction1.

Step 2: Flatten the two-dimensional image source into a stream of

pixel information. Create an empty stream labeled stream1. Take the

pixel information from stream0 left to right, top to bottom and append

it to the back of stream1.

Note: Because stream0 is a rectangular n*m matrix it muse have an

even number of elements, therefore stream1 will have an even

number of elements.

Step 3: Create an empty table labeled table1. Create two empty

streams labeled count1 and pattern1.

Step 4: Look at the first pair of elements of stream1. Create an

ordered pair from those values labeled orderedpair1. If they are in

table1 then go to step 5. If not then append orderedpair1 to table1.

Step 5: Count out of stream1 ordered pairs starting at the beginning

of the stream, until an ordered pair doesn’t have the value as

orderedpair1. Delete those ordered pairs from stream1. Append the

 31

count to count1. Append the index value of ordered pair1 to pattern1.

If stream1 is empty, then go to step 6. Otherwise, go to step 4.

Note: Count1 and pattern0 have the same number of elements. The

maximum value of pattern1 is the size of table1. The sum of the

elements of count1 is equal to the size of stream0.

Step6: Create an empty table labeled tableX where X is 1+ the current

highest table number. Create an empty stream labeled patternX.

Step 7: Look at the first pair of elements in pattern(X-1). Create an

ordered pair labeled orderedpair1. If orderedpair1 is in tableX, append

its index value to patternX. If orderedpair1 is not in tableX, then

append it to tableX and append add its index value to patternX.

Delete orderedpair1 from pattern(X-1).

Step 8: If pattern(X-1) is empty, then go to step 9, otherwise, go to

step 7.

Step 9: If the X is equal to reduction1, then go to step 10. Otherwise,

goto step 6.

Step 10: Create an empty table labeled counttableX where X is 1+ the

current highest counttable number. Create an empty stream labeled

countX.

 32

Note: CounttableX starts at X equals 1 on step 10 whereas tableX

starts at X equals 2 on step 6 since table1 is used on step 1.

Note: Steps 6 through 9 could be preformed in parallel to steps 10

through 13.

Step 11: Look at the first pair of elements in count(X-1). Create an

ordered pair labeled orderedpair1. If orderedpair1 is in counttableX,

append its index value to countX. If orderedpair1 is not in

counttableX, then append it to counttableX and append add its index

value to countX. Delete orderedpair1 from count(X-1).

Step 12: If count(X-1) is empty, then go to step 12, otherwise, goto

step 7.

Step 13: If the X is equal to reduction1, then go to step 14.

Otherwise, go to step 10.

Step 14: Done.

3.4.4 ALGORITHM 2: PHILOSOPHY

This approach is very similar to algorithm 1 but takes features into

consideration found in Huffman encoding as well. This approach differs

from the first fundamentally in that it is a dynamic solution instead of

a static one. This allows for a better gauge of what constitutes a

worthwhile pattern. This also lets us ignore the troublesome unit one

 33

occurrence pattern that exists only once in a source image. By its

very nature, algorithm 1 must preserve these anomalies, where as

algorithm 2 allows us to skip the anomaly and continue on to

worthwhile patterns.

To do this we flatten the image to a single stream of data. We then

run a frequency count on the all pairs. There is a problem with pair

overlap in frequency counts, but this is solved easily as long as you

know to look for it. The highest frequency pattern of pixel pairs is

viewed as the most worthwhile pattern and encoded to a new value,

replacing all occurrences of that pair with the new value. This process

is then applied several times using the pixel values and encoded

values as source. The dictionary, which is clearly unique for each

individual image, is then pre-pended to the front of the final

recursively encoded stream. Decoding the stream is simply a

dictionary lookup applied in order several times.

The strength of this algorithm, like algorithm 1, is that if a particular

combination of pixels is never next to each other their combination will

never appear and so need not be represented. Unlike algorithm 1,

however, you need not represent existing combinations that add little

information. You may instead leave them as individual pixels and not

as encoded values.

 34

3.4.5 ALGORITHM 2: PSEUDO CODE

Please refer to the companion CD for the C# reference

implementation.

Step 1: Label the image stream0. Find the maximum value of stream0

and label it max1.

Step2: Select a number that is a power of 2 –1 and is greater than

max1 and label this number stop1.

Step 3: Flatten the two-dimensional image source into a stream of

pixel information. Create an empty stream labeled stream1. Take the

pixel information from stream0 left to right, top to bottom and append

it to the back of stream1.

Step 4: Examine stream1 for the pair of pixels with the greatest

frequency. Label this pair symbol1.

Note: Pair overlap can occur and prevent an accurate count of

frequencies. Example in the stream {1,1,1,2} the symbol {1,1} occurs

two times, but could only be replaced once. Therefore, it should only

be counted once.

Step 5: Search the stream for all occurrences of symbol1 and replace

it with the value of max1 + n, where n is the number of times step 4

has been completed.

 35

Step 6: If the value of max1 + n is equal to stop1 then stop.

Otherwise, go to step 4.

Step 7: Done.

3.5 ALGORITHM MACHINERY

Below are the different 48 different approaches used in conjunction

with the two algorithms to determine fitness. As described above

these are merely the surrounding equipment used to properly input,

format, or manipulate in some way the codes going into the main

algorithms. As above, they will be provided with a philosophy section

as well as a pseudo code section. However, unlike above they are

partitioned into logical groupings each sharing a common theme. This

is done to reduce needless representation of identical thoughts,

nothing more.

3.5.1 APPROACH 1-6: PHILOSOPHY

These approaches are the most basic and naive. It attempts to

directly convert the image into a pattern reduction step, possibly

feeding the reduction step into a Huffman compressor. Even though

this process is horribly naïve it is an important step in the thesis

research. It provides a baseline against which I can compare my

 36

results and also provides a foundation on which I can expand on to

come up with new surrounding processes.

Approach 1 works as a strict base line. Get the picture information in

as quickly as possible in the most undiluted form and start the

algorithms. Algorithm 2 expands this a little by Huffman encoding the

resulting values. This is nothing special, but it is interesting in that

Huffman is known to reduce the source toward its entropy, thus

allowing us to see if we have in fact seen reduction. It is important to

note that Huffman encoding can yield strange results when you include

the dictionary as part of the size consideration. We must do this,

however, since we are dealing with unique sources. Approach 3

manipulates JPG compression into giving us just the difference

between lossless and lossy compression to feed the algorithms.

Approach 4, like approach 2, adds Huffman compression to the result

of approach 3. Approach 5 attempts to derive pictorially linked units

(PLUs) from the source by claiming all values that are close should

really be considered the same value, synonyms for pixels as it were,

then reverts back to approach 1. Approach 6 follows the theory of

approaches 2 and 4 by adding Huffman compression to approach 5.

 37

3.5.2 APPROACH 1-6: PSEUDO CODE

3.5.2.1 APPROACH 1

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: For each plane, encode the values using one of the algorithms.

Step 4: Save the three compressed streams.

3.5.2.2 APPROACH 2

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: For each plane, encode the values using one of the algorithms.

Step 4: For each compressed stream, Huffman encode the values.

Step 5: Save the three double compressed streams.

3.5.2.3 APPROACH 3

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

 38

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

stream and the RGB stream.

Step 6: For each difference plane, encode the values using one of the

algorithms.

Step 7: Save the compressed difference streams

Step 8: Save the JPG image as raw JPG data.

3.5.2.4 APPROACH 4

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

stream and the RGB stream.

Step 6: For each difference plane, encode the values using one of the

algorithms.

 39

Step 7: For each compressed stream, Huffman encode the values.

Step 8: Save the double compressed difference streams

Step 9: Save the JPG image as raw JPG data.

3.5.2.5 APPROACH 5

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane for the original

image

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 4: For each of the planes encode the values using one of the

algorithms.

Step 5: Save the compressed streams.

3.5.2.6 APPROACH 6

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane for the original

image

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

 40

Step 4: For each of the planes encode the values using one of the

algorithms.

Step 5: For each compressed stream, Huffman encode the values.

Step 6: Save the double compressed streams

3.5.3 APPROACH 7-12: PHILOSOPHY

These approaches are a continuation of the naiveté above. It attempts

to directly convert the image into a pattern reduction step, possibly

feeding the reduction step into a Huffman compressor. These six

processes differ from above in that they change the color space from

RGB to YCrCb (color space used by televisions). Even though this

seems to be a trivial modification to the algorithms some research

suggests that it improves compression [3, 10] by provably reducing

the interdependence of the pixels. This can also be seen, pictorially, in

the comparison between approaches 1-6 vs. 7-12, while not all

achieve better compression, most do. Like the above it too provides a

baseline against which I can compare my results and also provides a

foundation on which I can expand on to come up with new surrounding

processes.

Approach 7 deals with a strict base line. Get the picture information in

as quickly as possible in the most undiluted form, then convert it to

the new color space and start the algorithms. Algorithm 8 expands

 41

this a little by Huffman encoding the resulting values. This is nothing

special, but it is interesting in that Huffman is known to reduce the

source toward its entropy, thus allowing us to see if we have in fact

seen reduction. Although, Huffman encoding can yield strange results

when you include the dictionary as part of the size consideration. We

must do this, however, since we are dealing with unique sources.

Approach 9 manipulates JPG compression into giving us just the

difference between lossless and lossy formats in the new color space.

This is done by first calculating the lossy jpg then converting it to the

new color space. Then the lossless original is converted to the new

color space. Then the difference is taken. This leaves us with a color

space difference which can then be processed by the algorithms.

Approach 10, like approach 8, adds Huffman compression to the result

of approach 9. Approach 11 attempts to derive pictorially linked units

(PLUs) from the source by claming all values that are close should

really be considered the same value, synonyms for pixels as it were,

then reverts back to approach 7. Approach 12 follows approaches 8

and 10 in concept by adding Huffman compression to approach 11.

 42

3.5.4 APPROACH 7-12: PSEUDO CODE

3.5.4.1 APPROACH 7

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane.

Step 3: For each plane, encode the values using one of the algorithms.

Step 4: Save the three compressed streams.

3.5.4.2 APPROACH 8

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane.

Step 3: For each plane, encode the values using one of the algorithms.

Step 4: For each compressed stream, Huffman encode the values.

Step 5: Save the three double compressed streams.

3.5.4.3 APPROACH 9

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the YCrCb color plane for the

compressed JPG image.

 43

Step 4: Partition the image into the YCrCb color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

stream and the YCrCb stream.

Step 6: For each difference plane, encode the values using one of the

algorithms.

Step 7: Save the compressed difference streams

Step 8: Save the JPG image as raw JPG data.

3.5.4.4 APPROACH 10

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the YCrCb color plane for the

compressed JPG image.

Step 4: Partition the image into the YCrCb color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

stream and the YCrCb stream.

Step 6: For each difference plane, encode the values using one of the

algorithms.

 44

Step 7: For each compressed stream, Huffman encode the values.

Step 8: Save the double compressed difference streams

Step 9: Save the JPG image as raw JPG data.

3.5.4.5 APPROACH 11

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane for the original

image

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 4: For each of the planes encode the values using one of the

algorithms.

Step 5: Save the compressed streams.

3.5.4.6 APPROACH 12

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane for the original

image

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

 45

Step 4: For each of the planes encode the values using one of the

algorithms.

Step 5: For each compressed stream, Huffman encode the values.

Step 6: Save the double compressed streams

3.5.5 APPROACH 13-18: PHILOSOPHY

These approaches are the beginning of the true research.

The above were primarily baselines; these are intended to change the

underlying data into a more compatible form to accommodate a

potential recursive step. It occurred to me that the simplest way to

accomplish this was to change the base of the underlying data. To this

end I converted the original base 256 values to base 2 values by

simply converting the single byte (8bits) into eight one bit units. I

have tried other combinations but omitted them from the research

since they also proved fruitless.

Approach 13 deals with a strict base line. Get the picture information

in as quickly as possible in the most undiluted form, convert it to the

base2 format, and start the algorithms. Algorithm 14 expands this a

little by Huffman encoding the resulting values. While this is not

unique, it is interesting in that Huffman is known to reduce the source

toward its entropy, thus allowing us to see if we have in fact seen

 46

reduction. Conversely, Huffman encoding can yield strange results

when you include the dictionary as part of the size consideration. We

must do this, since we are dealing with unique sources. Approach 15

manipulates JPG compression into giving us just the difference

between lossless and lossy formats. This result is then converted to

the new base2 format, then processed by the algorithms. Approach

16, like approach 14, adds Huffman compression to the result of

approach 15. Approach 17 attempts to derive pictorial linked units

(PLUs) from the source by claiming all values that are close should

really be considered the same value, synonyms for pixels as it were,

then reverts back to approach 13. Approach 18 follows approaches 14

and 16 in adding Huffman compression to approach 17.

3.5.6 APPROACH 13-18: PSEUDO CODE

3.5.6.1 APPROACH 13

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: Re-Code the color planes from base2^8 to base2^1.

Step 4: For each plane, encode the values using one of the algorithms.

Step 5: Save the three compressed streams.

 47

3.5.6.2 APPROACH 14

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: Re-Code the color planes from base2^8 to base2^1.

Step 4: For each plane, encode the values using one of the algorithms.

Step 5: For each compressed stream, Huffman encode the values.

Step 6: Save the three double compressed streams.

3.5.6.3 APPROACH 15

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

stream and the RGB stream.

Step 6: Re-Code the difference planes from base2^8 to base2^1.

 48

Step 7: For each difference plane, encode the values using one of the

algorithms.

Step 8: Save the compressed difference streams

Step 9: Save the JPG image as raw JPG data.

3.5.6.4 APPROACH 16

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

stream and the RGB stream.

Step 6: Re-Code the difference planes from base2^8 to base2^1.

Step 7: For each difference plane, encode the values using one of the

algorithms.

Step 8: For each compressed stream, Huffman encode the values.

Step 9: Save the double compressed difference streams

 49

Step 10: Save the JPG image as raw JPG data.

3.5.6.5 APPROACH 17

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane for the original

image

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 4: Re-Code the color planes from base2^8 to base2^1.

Step 5: For each of the planes encode the values using one of the

algorithms.

Step 6: Save the compressed streams.

3.5.6.6 APPROACH 18

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane for the original

image

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 4: Re-Code the color planes from base2^8 to base2^1.

 50

Step 5: For each of the planes encode the values using one of the

algorithms.

Step 6: For each compressed stream, Huffman encode the values.

Step 7: Save the double compressed streams.

3.5.7 APPROACH 19-24: PHILOSOPHY

These approaches are similar in scope and intent to approaches 7-12.

They are intended to show the difference that color space makes to

the algorithms. This might seem redundant since we already

established numbers for changing the base as well as changing the

color space. While I admit this was done primarily for completeness,

the results are significantly different between 1-6 and 7-12 vs. 13-18

and 19-24.

Approach 19 deals with a strict base line. Get the picture information

in as quickly as possible in the most undiluted form, convert it to the

new color space, then convert it to the base2 format, and then start

the algorithms after all the conversions are complete. Algorithm 20

expands this a little by Huffman encoding the resulting values. This is

nothing special, but it is interesting in that Huffman is known to reduce

the source toward its entropy, thus allowing us to see if we have in

fact seen reduction. Conversely, Huffman encoding can yield strange

results when you include the dictionary as part of the size

 51

consideration. We must do this since we are dealing with unique

sources. Approach 21 manipulates JPG compression into giving us just

the difference between lossless and lossy formats in the new color

space. This is done by first calculating the lossy jpg then converting it

to the new color space. Then the lossless original is converted to the

new color space. Then the difference is taken. This leaves us with a

color space difference which can then be converted to base2 format

and finally processed by the algorithms. Approach 22, like approach

20, adds Huffman compression to the result of approach 21. Approach

23 attempts to derive PLUs from the source by claiming all values that

are close should really be considered the same value, synonyms for

pixels as it were, then reverts back to approach 19. Approach 24

follows approaches 20 and 22 in adding Huffman compression to

approach 23.

3.5.8 APPROACH 19-24: PSEUDO CODE

3.5.8.1 APPROACH 19

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane.

Step 3: Re-Code the color planes from base2^8 to base2^1.

Step 4: For each plane, encode the values using one of the algorithms.

 52

Step 5: Save the three compressed streams.

3.5.8.2 APPROACH 20

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane.

Step 3: Re-Code the color planes from base2^8 to base2^1.

Step 4: For each plane, encode the values using one of the algorithms.

Step 5: For each compressed stream, Huffman encode the values.

Step 6: Save the three double compressed streams.

3.5.8.3 APPROACH 21

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the YCrCb color plane for the

compressed JPG image.

Step 4: Partition the image into the YCrCb color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

YCrCb stream and the YCrCb stream.

 53

Step 6: Re-Code the difference planes from base2^8 to base2^1.

Step 7: For each difference plane, encode the values using one of the

algorithms.

Step 8: Save the compressed difference streams.

Step 9: Save the JPG image as raw JPG data.

3.5.8.4 APPROACH 22

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the YCrCb color plane for the

compressed JPG image.

Step 4: Partition the image into the YCrCb color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

YCrCb stream and the YCrCb stream.

Step 6: Re-Code the difference planes from base2^8 to base2^1.

Step 7: For each difference plane, encode the values using one of the

algorithms.

Step 8: For each compressed stream, Huffman encode the values.

 54

Step 9: Save the double compressed difference streams.

Step 10: Save the JPG image as raw JPG data.

3.5.8.5 APPROACH 23

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane for the original

image

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 4: Re-Code the color planes from base2^8 to base2^1.

Step 5: For each of the planes encode the values using one of the

algorithms.

Step 6: Save the compressed streams.

3.5.8.6 APPROACH 24

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane for the original

image

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

 55

Step 4: Re-Code the color planes from base2^8 to base2^1.

Step 5: For each of the planes encode the values using one of the

algorithms.

Step 6: For each compressed stream, Huffman encode the values.

Step 7: Save the double compressed streams

3.5.9 APPROACH 25-30: PHILOSOPHY

These approaches continue the true research. As above, we have

attempted to force the underlying information to reveal itself so that

we might compress it. These approaches continue on the assumption

that a different underlying structure may provide a better

representation. Where approach 13-18 and 19-24 use a simple

modification to the underlying data, approach 25-30 moves to a very

different structure in the form of Huffman compression. While both

converting a single byte to eight one bit values and Huffman

compression yield bit streams, they are vastly different.

Approach 25 deals with a strict base line. Get the picture information

in as quickly as possible in the most undiluted form. Immediately run

the Huffman algorithm to produce a new sequence. Finally, run the

encoding algorithms. Algorithm 26 expands this a little by Huffman

encoding the resulting values. This is nothing special, but it is

 56

interesting in that Huffman is known to reduce the source toward its

entropy, thus allowing us to see if we have in fact seen reduction.

Conversely, it is important to note that Huffman encoding can yield

strange results when you include the dictionary as part of the size

consideration. We must do this since we are dealing with unique

sources. I am aware that compressing a Huffman stream is

considered pointless, but we have altered the intermediate values, so I

believe you should run the experiment since it really costs nothing.

Approach 27 manipulates JPG compression into giving us just the

difference between lossless and lossy compression to fed the

algorithms. Approach 28, like approach 26, adds Huffman compression

to the result of approach 27. Approach 29 attempts to derive PLUs

from the source then reverts back to approach 25. Approach 30

follows approaches 26 and 28 in adding Huffman compression to

approach 29.

3.5.10 APPROACH 25-30: PSEUDO CODE

3.5.10.1 APPROACH 25

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: For each plane, compress the values using Huffman.

 57

Step 4: For each stream, encode the values using one of the

algorithms.

Step 5: Save the three double compressed streams.

3.5.10.2 APPROACH 26

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: For each plane, compress the values using Huffman.

Step 4: For each stream, encode the values using one of the

algorithms.

Step 5: For each double compressed stream, Huffman encode the

values.

Step 6: Save the three triple compressed streams.

3.5.10.3 APPROACH 27

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

 58

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

stream and the RGB stream.

Step 6: For each difference plane, compress the values using Huffman.

Step 7: For each stream, encode the values using one of the

algorithms.

Step 8: Save the double compressed streams.

Step 9: Save the JPG image as raw JPG data.

3.5.10.4 APPROACH 28

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 5: For each plane, calculate the difference between the JPG

stream and the RGB stream.

Step 6: For each difference plane, compress the values using Huffman

 59

Step 7: For each stream, encode the values using one of the

algorithms.

Step 8: For each double compressed stream, Huffman encode the

values.

Step 9: Save the triple compressed difference streams.

Step 10: Save the JPG image as raw JPG data.

3.5.10.5 APPROACH 29

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane for the original

image.

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 4: For each plane, compress the values using Huffman.

Step 5: For each of the streams, encode the values using one of the

algorithms.

Step 6: Save the double compressed streams.

 60

3.5.10.6 APPROACH 30

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane for the original

image.

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 4: For each plane, compress the values using Huffman.

Step 4: For each of the streams, encode the values using one of the

algorithms.

Step 5: For each double compressed stream, Huffman encode the

values.

Step 6: Save the triple compressed streams

3.5.11 APPROACH 31-36: PHILOSOPHY

The remainder of the approaches starting with approaches 31-36 move

into the realm of modern image compression. By this I mean the use

of wavelets, namely the Haar wavelet, to compress images. It is

important to note that when I refer to the Haar wavelet I do not mean

the true Haar wavelet but a modified version. While it is known that

the Haar wavelet is uniquely reversible, a necessary quality in lossless

compression, it converts four bytes (4*2^8) to a single byte (1*2^8)

 61

and three floats (these can fit in 3*2^9). This is, on its face, a bad

idea when it comes to compression to first enlarge your space then try

to reduce past it. To this end I converted the Haar wavelet to one that

functions similarly to the original but producing slightly different

numeric results.

Approach 31 deals with a strict base line. Get the picture information

in as quickly as possible in the most undiluted form by converting it

using the modified Haar wavelet, and then starting the algorithms.

Algorithm 32 expands this a little by Huffman encoding the resulting

values. This is nothing special, but it is interesting in that Huffman is

known to reduce the source toward its entropy, thus allowing us to see

if we have in fact seen reduction. Conversely, Huffman encoding can

yield strange results when you include the dictionary as part of the

size consideration. We must do this since we are dealing with unique

sources. Approach 33 manipulates JPG compression into giving us just

the difference between lossless and lossy compression. This is then

converted using the modified Haar wavelet then fed into algorithms.

Approach 34, like approach 32, adds Huffman compression to the

result of approach 33. Approach 35 attempts to derive PLUs from the

source then reverts back to approach 31. Approach 36 follows

approaches 32 and 34 in adding Huffman compression to approach 35.

 62

3.5.12 APPROACH 31-36: PSEUDO CODE

3.5.12.1 APPROACH 31

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: For each plane, convert to the frequency domain using Haar

wavelets.

Step 4: For each plane, remember and remove the first value, it is an

artifact of the space domain.

Step 4: For each plane, encode the values using one of the algorithms.

Step 5: Save the three compressed streams.

3.5.12.2 APPROACH 32

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: For each plane, convert to the frequency domain using Haar

wavelets.

Step 4: For each plane, remember and remove the first value, it is an

artifact of the space domain.

Step 5: For each plane, encode the values using one of the algorithms.

 63

Step 6: For each compressed stream, Huffman encode the values.

Step 7: Save the three double compressed streams.

3.5.12.3 APPROACH 33

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 5: For each plane (both JPG and RGB), convert to the frequency

domain using Haar wavelets.

Step 6: For each plane (only RGB), remember and remove the first

value, it is an artifact of the space domain.

Step 7: For each plane, calculate the difference between the JPG

stream and the RGB stream.

Step 8: For each difference plane, encode the values using one of the

algorithms.

Step 9: Save the compressed difference streams

Step 10: Save the JPG image as raw JPG data.

 64

3.5.12.4 APPROACH 34

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 5: For each plane (both JPG and RGB), convert to the frequency

domain using Haar wavelets.

Step 6: For each plane (only RGB), remember and remove the first

value, it is an artifact of the space domain.

Step 7: For each plane, calculate the difference between the JPG

stream and the RGB stream.

Step 8: For each difference plane, encode the values using one of the

algorithms.

Step 9: For each compressed stream, Huffman encode the values.

Step 10: Save the double compressed difference streams

Step 11: Save the JPG image as raw JPG data.

 65

3.5.12.5 APPROACH 35

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane for the original

image.

Step 3: For each plane, convert to the frequency domain using Haar

wavelets.

Step 4: For each plane, remember and remove the first value, it is an

artifact of the space domain.

Step 5: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 6: For each of the planes, encode the values using one of the

algorithms.

Step 7: Save the compressed streams.

3.5.12.6 APPROACH 36

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane for the original

image.

Step 3: For each plane, convert to the frequency domain using Haar

wavelets.

 66

Step 4: For each plane, remember and remove the first value, it is an

artifact of the space domain.

Step 5: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 6: For each of the planes, encode the values using one of the

algorithms.

Step 7: For each compressed stream, Huffman encode the values.

Step 8: Save the double compressed streams

3.5.13 APPROACH 37-42: PHILOSOPHY

These approaches are the Haar wavelet corollary to approaches 7-12

and 19-24. The literature review failed to turn up any direct reference

to the combined effect of both. This set of approaches was devised to

determine the impact of that combination.

Approach 37 deals with a strict base line. Get the picture information

in as quickly as possible in the most undiluted form. Convert that to

new color space before passing the information off to the modified

Haar wavelet. Finally, allow the algorithms to run. Algorithm 38

expands this a little by Huffman encoding the resulting values. This is

nothing special, but interesting in that Huffman is known to reduce the

source toward its entropy, thus allowing us to see if we have in fact

 67

seen reduction. Conversely, Huffman encoding can yield strange

results when you include the dictionary as part of the size

consideration. We must do this since we are dealing with unique

sources. Approach 39 manipulates JPG compression into giving us just

the difference between lossless and lossy formats in the new color

space. This is done by first calculating the lossy jpg then converting it

to the new color space. Then the lossless original is converted to the

new color space. Finally the difference is calculated. This leaves us

with a color space difference which can then be converted using the

modified Haar wavelet and then processed by the algorithms.

Approach 40, like approach 38, adds Huffman compression to the

result of approach 39. Approach 41 attempts to derive PLUs from the

source then reverts back to approach 37. Approach 42 follows

approaches 38 and 40 in adding Huffman compression to approach 41.

3.5.14 APPROACH 37-42: PSEUDO CODE

3.5.14.1 APPROACH 37

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane.

Step 3: For each plane, convert to the frequency domain using Haar

wavelets.

 68

Step 4: For each plane, remember and remove the first value, it is an

artifact of the space domain.

Step 5: For each plane, encode the values using one of the algorithms.

Step 6: Save the three compressed streams.

3.5.14.2 APPROACH 38

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane.

Step 3: For each plane, convert to the frequency domain using Haar

wavelets.

Step 4: For each plane, remember and remove the first value, it is an

artifact of the space domain.

Step 5: For each plane, encode the values using one of the algorithms.

Step 6: For each compressed stream, Huffman encode the values.

Step 7: Save the three double compressed streams.

3.5.14.3 APPROACH 39

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

 69

Step 3: Partition the image into the YCrCb color plane for the

compressed JPG image.

Step 4: Partition the image into the YCrCb color plane for the

uncompressed RGB image.

Step 5: For each plane (both JPG and YCrCb), convert to the frequency

domain using Haar wavelets.

Step 6: For each plane (only YCrCb), remember and remove the first

value, it is an artifact of the space domain.

Step 7: For each plane, calculate the difference between the JPG

stream and the YCrCb stream.

Step 8: For each difference plane, encode the values using one of the

algorithms.

Step 9: Save the compressed difference streams

Step 10: Save the JPG image as raw JPG data.

3.5.14.4 APPROACH 40

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the YCrCb color plane for the

compressed JPG image.

 70

Step 4: Partition the image into the YCrCb color plane for the

uncompressed RGB image.

Step 5: For each plane (both JPG and YCrCb), convert to the frequency

domain using Haar wavelets.

Step 6: For each plane (only YCrCb), remember and remove the first

value, it is an artifact of the space domain.

Step 7: For each plane, calculate the difference between the JPG

stream and the YCrCb stream.

Step 8: For each difference plane, encode the values using one of the

algorithms.

Step 9: For each compressed stream, Huffman encode the values.

Step 10: Save the double compressed difference streams

Step 11: Save the JPG image as raw JPG data.

3.5.14.5 APPROACH 41

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane for the original

image

Step 3: For each plane, convert to the frequency domain using Haar

wavelets.

 71

Step 4: For each plane, remember and remove the first value, it is an

artifact of the space domain.

Step 5: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 6: For each of the planes, encode the values using one of the

algorithms.

Step 7: Save the compressed streams.

3.5.14.6 APPROACH 42

Step 1: Load the image into memory.

Step 2: Partition the image into the YCrCb color plane for the original

image

Step 3: For each plane, convert to the frequency domain using Haar

wavelets.

Step 4: For each plane, remember and remove the first value, it is an

artifact of the space domain.

Step 5: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new plane.

Step 6: For each of the planes, encode the values using one of the

algorithms.

 72

Step 7: For each compressed stream, Huffman encode the values.

Step 8: Save the double compressed streams.

3.5.15 APPROACH 43-48: PHILOSOPHY

These final 6 approaches were inspired by the JPG format. They look

at only a small region of any picture at a given instance. They then

interpret large pictures as a mosaic of much smaller picture tiles laid

side by side. The underlying concept is that while images may change

drastically, in a small region they probably change very little.

Approach 43 deals with a strict base line. Get the picture information

in as quickly as possible in the most undiluted form. This information

can then be tiled into 8x8 blocks. For all of the tiles, convert them

using the modified Haar wavelet then normalize all the tiles by

averaging their values at each of the 8x8 positions. After this start the

algorithms. Algorithm 44 expands this a little by Huffman encoding

the resulting values. While this is nothing special, it is interesting in

that Huffman is known to reduce the source toward its entropy, thus

allowing us to see if we have in fact seen reduction. Conversely,

Huffman encoding can yield strange results when you include the

dictionary as part of the size consideration. We must do this since we

are dealing with unique sources. Approach 45 manipulates JPG

compression into giving us just the difference between lossless and

 73

lossy compression. This is then converted using the modified Haar

wavelet, normalized, and then fed into the algorithms. Approach 46,

like approach 44, adds Huffman compression to the result of approach

45. Approach 47 attempts to derive PLUs from the source then reverts

back to approach 43. Approach 48 follows approaches 44 and 46 in

adding Huffman compression to approach 47.

3.5.16 APPROACH 43-48: PSEUDO CODE

3.5.16.1 APPROACH 43

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: For each plane, break up the plane into several 8 pixel by 8

pixel units called tiles

Step 3: For each tile, convert to the frequency domain using modified

Haar wavelets.

Step 4: For each tile, remember and remove the first value, as it is an

artifact of the space domain.

Step 5: For each plane, normalize the values of each tile across all

tiles values.

Step 6: For each plane, encode the values using one of the algorithms.

 74

Step 7: Save the three compressed streams.

3.5.16.2 APPROACH 44

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: For each plane, break up the plane into several 8 pixel by 8

pixel units called tiles

Step 3: For each tile, convert to the frequency domain using modified

Haar wavelets.

Step 4: For each tile, remember and remove the first value, it is an

artifact of the space domain.

Step 5: For each plane, normalize the values of each tile across all

tiles values.

Step 6: For each plane, encode the values using one of the algorithms.

Step 7: For each compressed stream, Huffman encode the values.

Step 8: Save the three double compressed streams.

3.5.16.3 APPROACH 45

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

 75

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 4: For each plane (both JPG and RGB), break up the plane into

several 8 pixel by 8 pixel units called tiles

Step 5: For each tile, convert to the frequency domain using Haar

wavelets.

Step 6: For each tile, remember and remove the first value, it is an

artifact of the space domain.

Step 7: For each plane, normalize the values of each tile across all

tiles values.

Step 9: For each tile, calculate the difference between the JPG tile and

the RGB tile.

Step 10: Concatenate all tiles back into their appropriate planes.

Step 11: For each difference plane, encode the values using one of the

algorithms.

Step 12: Save the compressed difference streams

Step 13: Save the JPG image as raw JPG data.

 76

3.5.16.4 APPROACH 46

Step 1: Load the image into memory.

Step 2: Calculate the JPG compressed image from the RGB image.

Step 3: Partition the image into the RGB color plane for the

compressed JPG image.

Step 4: Partition the image into the RGB color plane for the

uncompressed RGB image.

Step 4: For each plane (both JPG and RGB), break up the plane into

several 8 pixel by 8 pixel units called tiles

Step 5: For each tile, convert to the frequency domain using modified

Haar wavelets.

Step 6: For each tile, remember and remove the first value, it is an

artifact of the space domain.

Step 7: For each plane, normalize the values of each tile across all

tiles values.

Step 9: For each tile, calculate the difference between the JPG tile and

the RGB tile.

Step 10: Concatenate all tiles back into their appropriate planes.

 77

Step 11: For each difference plane, encode the values using one of the

algorithms.

Step 12: For each compressed stream, Huffman encode the values.

Step 13: Save the double compressed difference streams

Step 14: Save the JPG image as raw JPG data.

3.5.16.5 APPROACH 47

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new stream.

Step 4: For each plane, break up the plane into several 8 pixel by 8

pixel units called tiles

Step 5: For each tile, convert to the frequency domain using Haar

wavelets.

Step 6: For each tile, remember and remove the first value, it is an

artifact of the space domain.

Step 7: For each plane, normalize the values of each tile across all

tiles values.

Step 8: For each plane, encode the values using one of the algorithms.

 78

Step 9: Save the three compressed streams.

3.5.16.6 APPROACH 48

Step 1: Load the image into memory.

Step 2: Partition the image into the RGB color plane.

Step 3: Reduce the number of colors in each plane by removing the

least significant bit and store this bit as a new stream.

Step 4: For each plane, break up the plane into several 8 pixel by 8

pixel units called tiles

Step 5: For each tile, convert to the frequency domain using modified

Haar wavelets.

Step 6: For each tile, remember and remove the first value, it is an

artifact of the space domain.

Step 7: For each plane, normalize the values of each tile across all

tiles values.

Step 8: For each plane, encode the values using one of the algorithms.

Step 9: For each compressed stream, Huffman encode the values.

Step 10: Save the three double compressed streams.

 79

4.0 DATA SUMMARY

4.1 COMPARATIVE PICTORIAL SUMMARY OF APPROACHES

This section includes a comparative summary of all the results on a

given approach. They are grouped into 6 unit blocks for easy reference

to the approaches described in the previous section. This also allows

for a quick glance in order to determine the value of the approach. In

addition there are 2 indicator lines corresponding to normalized file

size and normalized average jpeg file size. As can be seen, every even

numbered approach has only 5 columns. This is because every even

numbered approach automatically included Huffman encoding as a

final procedure, so it is entirely redundant to include this data. The

graphs were rendered in Matlab for ease of research. A diligent reader

will note that the windows may not be labeled in order. This is an

artifact of the way Matlab titles modal windows, nothing more. The

graph title, however, is in fact correct.

 80

FIGURE 1: APPROACH 1-6 PICTORIAL RESULTS

 81

FIGURE 2: APPROACH 7-12 PICTORIAL RESULTS

 82

FIGURE 3: APPROACH 13-18 PICTORIAL RESULTS

 83

FIGURE 4: APPROACH 19-24 PICTORIAL RESULTS

 84

FIGURE 5: APPROACH 25-30 PICTORIAL RESULTS

 85

FIGURE 6: APPROACH 31-36 PICTORIAL RESULTS

 86

FIGURE 7: APPROACH 37-42 PICTORIAL RESULTS

 87

FIGURE 8: APPROACH 43-48 PICTORIAL RESULTS

 88

4.2 DATA BASED SUMMARY OF APPROACHES

This section includes the numeric results of the compression as

produced by my reference implementation. Personally, I feel that it is

better to display the data result as it is produced by the computer,

literally, as opposed to a doctored or edited version. However, there

are about 20 pages of output for each run, and as there are 48 runs, I

opted, for sake of compactness, to put a chart based version of the

numeric results here. They are just a replication of the graphical data,

but some prefer to review hard numbers as opposed to the quick

approximant information provided by a graph. As with Appendix I the

actual results appear on the companion CD.

89

TABLE 4: APPROACH 1-6 DATA RESULTS

Approach-Picture Algorithm 1
1 round

Algorithm 1
2 rounds

Algorithm 1 4
rounds

Algorithm 2
512 symbols

Algorithm 2
1024 symbols

Huffman
reference

1-Floressence 0.92416172 0.867289365 1.469315528 0.465866811 0.445334922 0.602149734
1-Lenna 1.0120765 1.71653278 3.804966649 0.953543992 0.921594281 0.917582767
1-Aruba1 0.98984593 1.556902071 3.33174689 0.938935468 0.930718705 0.959224167
1-Aruba2 0.97224227 1.524087448 3.133189376 0.910513513 0.895581361 0.949667312
2-Floressence 0.54216691 0.843851954 1.469318542 0.440370149 0.419398213 0
2-Lenna 1.00269935 1.716544223 3.804978092 0.879916489 0.857452008 0
2-Aruba1 0.8951614 1.556903633 3.331748452 0.873498929 0.841695929 0
2-Aruba2 0.83649754 1.52408901 3.133190939 0.805067105 0.787927683 0
3-Floressence 0.78257845 0.668812989 1.108663386 0.332994088 0.329684351 0.37111584
3-Lenna 0.80365194 1.227642959 2.721763642 0.698432013 0.701943836 0.603964978
3-Aruba1 0.75325717 0.674661904 1.475347627 0.518603471 0.516602101 0.504110205
3-Aruba2 0.70634008 0.651158652 1.340082402 0.480967019 0.479273805 0.481195142
4-Floressence 0.35731863 0.590472057 1.1086664 0.300584587 0.300278496 0
4-Lenna 0.65061425 1.227654402 2.721775086 0.628873241 0.638378814 0
4-Aruba1 0.48463018 0.64553492 1.475349189 0.471900437 0.468694043 0
4-Aruba2 0.46016062 0.597744917 1.340083964 0.439909244 0.436330632 0
5-Floressence 0.99730814 0.814080062 1.20472077 0.431592967 0.417014117 0.642760407
5-Lenna 1.00261543 1.380240716 3.059052545 0.887060927 0.874330884 0.91602902
5-Aruba1 1.03549741 1.262965764 2.744885204 0.900922977 0.878966412 0.9620698
5-Aruba2 1.00917908 1.303185005 2.717963408 0.861344876 0.822826487 0.949582764
6-Floressence 0.51942407 0.669668973 1.204726799 0.407931513 0.393706979 0
6-Lenna 0.86984257 1.351005612 3.059075432 0.837550827 0.833260859 0
6-Aruba1 0.83858311 1.232876115 2.744888329 0.831914423 0.807604755 0
6-Aruba2 0.80479263 1.272303524 2.717966533 0.784281189 0.757285956 0

90

TABLE 5: APPROACH 7-12 DATA RESULTS

Approach-Picture Algorithm 1
1 round

Algorithm 1
2 rounds

Algorithm 1
4 rounds

Algorithm 2
512 symbols

Algorithm 2
1024 symbols

Huffman
reference

7-Floressence 0.8896812 0.8413885 1.4278234 0.4444716 0.4226222 0.6236669
7-Lenna 0.9333275 1.7048008 3.7332693 0.9212662 0.8732565 0.8650643
7-Aruba1 0.9027539 1.1109148 2.3313801 0.747119 0.7051309 0.8291292
7-Aruba2 0.8505425 1.027785 2.0637973 0.6522326 0.6311076 0.7860468
8-Floressence 0.5303121 0.8413915 1.4278264 0.4191983 0.3987772 0
8-Lenna 0.9305417 1.7048123 3.7332807 0.833875 0.814003 0
8-Aruba1 0.7261255 1.1109163 2.3313816 0.6820288 0.6460759 0
8-Aruba2 0.6638988 1.0277865 2.0637989 0.5906097 0.5708481 0
9-Floressence 0.7829271 0.6679105 1.0946348 0.3322744 0.328814 0.3764507
9-Lenna 0.8065128 1.2175296 2.7402001 0.7014632 0.7027271 0.6054386
9-Aruba1 0.7748224 0.6834254 1.4142071 0.5082275 0.5052638 0.5121501
9-Aruba2 0.7279341 0.6569135 1.2715186 0.4616212 0.4597466 0.4874529
10-Floressence 0.3598732 0.5878381 1.0946378 0.3005481 0.2999024 0
10-Lenna 0.6582749 1.2175411 2.7402115 0.6304562 0.6397266 0
10-Aruba1 0.4875994 0.6434653 1.4142086 0.462395 0.4588375 0
10-Aruba2 0.4601985 0.6107618 1.2715202 0.4223891 0.4190169 0
11-Floressence 0.9708969 0.7983482 1.1800379 0.4173781 0.4030853 0.6643773
11-Lenna 0.9699359 1.3001821 2.9024725 0.8519529 0.8407232 0.8635398
11-Aruba1 0.9874798 0.9382817 1.8732514 0.6884152 0.6652495 0.8330436
11-Aruba2 0.9215544 0.937983 1.7193613 0.6173965 0.5954689 0.7905459
12-Floressence 0.521554 0.6709905 1.1800439 0.3946326 0.381761 0
12-Lenna 0.8173674 1.2709648 2.9024954 0.7989297 0.7983066 0
12-Aruba1 0.7077114 0.8834691 1.8732545 0.6384308 0.6150487 0
12-Aruba2 0.663075 0.850562 1.7193644 0.5690983 0.5503698 0

91

TABLE 6: APPROACH 13-18 DATA RESULTS

Approach-Picture Algorithm 1
1 round

Algorithm 1
2 rounds

Algorithm 1
4 rounds

Algorithm 2
512 symbols

Algorithm 2
1024 symbols

Huffman
reference

13-Floressence 1.499991 1.2500176 0.9269872 0.4877533 0.4739812 0.999999

13-Lenna 1.4999657 1.2500668 1.0246718 0.9893285 0.9730752 0.9999962

13-Aruba1 1.4999953 1.2500091 0.9912629 0.9821196 0.9696308 0.9999995

13-Aruba2 1.4999953 1.2500091 0.9748308 0.9404356 0.9297715 0.9999995

14-Floressence 0.8023511 0.6743189 0.5696622 0.4541218 0.4395895 0

14-Lenna 1.0964251 0.9781916 1.0246832 0.9042717 0.8933102 0

14-Aruba1 1.1050386 0.999555 0.9163945 0.887062 0.8684292 0

14-Aruba2 1.1047806 0.9963613 0.8602645 0.8442923 0.8266266 0

15-Floressence 1.3981369 1.1689955 0.8629013 0.371085 0.3659662 0.9398099

15-Lenna 1.4230361 1.1939653 0.9400498 0.7479256 0.7470533 0.9647266

15-Aruba1 1.2509016 1.0529981 0.7996951 0.5600451 0.5536085 0.8550713

15-Aruba2 1.1838264 0.9963394 0.7398387 0.528831 0.519299 0.8088292

16-Floressence 0.9488349 0.7491606 0.526206 0.3453539 0.3389816 0

16-Lenna 1.020069 0.8825739 0.9112775 0.6907803 0.6883149 0

16-Aruba1 0.8754414 0.7628323 0.6259447 0.519033 0.5087475 0

16-Aruba2 0.8513162 0.7624152 0.6080754 0.4914619 0.4792196 0

17-Floressence 1.5000013 1.2500501 1.0940454 0.4533753 0.441774 1.0000084

17-Lenna 1.5000051 1.2501901 1.3666016 0.9259466 0.9210208 1.0000318

17-Aruba1 1.5000007 1.250026 1.2090583 0.9333458 0.9194839 1.0000043

17-Aruba2 1.5000007 1.250026 1.1887231 0.9138588 0.896359 1.0000043

18-Floressence 0.8090885 0.687161 0.7744751 0.4219638 0.411901 0

18-Lenna 1.1008689 1.0057458 1.3666245 0.8597648 0.8624451 0

18-Aruba1 1.1055973 1.0077774 1.173256 0.8498219 0.8339646 0

18-Aruba2 1.1114208 1.0100416 1.1304792 0.8326196 0.8149991 0

92

TABLE 7: APPROACH 19-24 DATA RESULTS

Approach-Picture Algorithm 1
1 round

Algorithm 1
2 rounds

Algorithm 1
4 rounds

Algorithm 2
512 symbols

Algorithm 2
1024 symbols

Huffman
reference

19-Floressence 1.499993 1.2500186 0.8925335 0.476576 0.4602986 1
19-Lenna 1.6249647 1.3542326 1.1873511 1.036232 1.0071508 1.0833302
19-Aruba1 1.6249952 1.3541757 1.0463228 0.8113344 0.7820659 1.0833329
19-Aruba2 1.4374969 1.1979268 0.8854448 0.6942539 0.6753074 0.9583337
2-Floressence 0.9877389 0.7868523 0.5439881 0.445932 0.4289225 0
20-Lenna 1.1870752 1.0615052 1.1873625 0.95923 0.9354114 0
20-Aruba1 1.1857332 1.0432855 0.8915406 0.7570919 0.7220969 0
20-Aruba2 1.049037 0.929831 0.7175395 0.6366826 0.6149003 0
21-Floressence 1.3981369 1.1689955 0.8626578 0.3563361 0.3520414 0.9398099
21-Lenna 1.4230349 1.1939653 0.8414746 0.7741676 0.7729966 0.9647266
21-Aruba1 1.3134012 1.105081 0.8195684 0.5547504 0.5453728 0.8967376
21-Aruba2 1.246326 1.0484223 0.7744346 0.5148011 0.5058145 0.8504955
22-Floressence 1.012328 0.7757855 0.5282907 0.3303066 0.32489 0
22-Lenna 0.9744013 0.8020651 0.7840941 0.719789 0.7157623 0
22-Aruba1 0.9480968 0.8333502 0.6524592 0.5167783 0.503571 0
22-Aruba2 0.8724377 0.7647503 0.6140857 0.4804733 0.4681305 0
23-Floressence 1.5000044 1.2500521 1.072059 0.4338317 0.4228195 1.0000104
23-Lenna 1.6250079 1.3543572 1.1776484 0.9393479 0.922717 1.083367
23-Aruba1 1.6250011 1.3541927 1.0319889 0.7419007 0.7190771 1.0833379
23-Aruba2 1.4375027 1.1979442 1.0208106 0.6787303 0.6608662 0.9583391
24-Floressence 0.9959106 0.8626839 0.8053658 0.4048927 0.3950553 0
24-Lenna 1.156828 1.0231307 1.1179131 0.8817767 0.8730314 0
24-Aruba1 1.1560947 1.0185878 0.8395841 0.6889489 0.6631901 0
24-Aruba2 1.0286732 0.9353454 0.8780473 0.6268427 0.6074502 0

93

TABLE 8: APPROACH 25-30 DATA RESULTS

Approach-Picture Algorithm 1
1 round

Algorithm 1
2 rounds

Algorithm 1
4 rounds

Algorithm 2
512 symbols

Algorithm 2
1024 symbols

Huffman
reference

25-Floressence 0.7350834 1.0974452 2.3237373 0.5667798 0.5834226 0.6021487
25-Lenna 1.5862457 2.5229845 5.2100559 1.0017241 1.0759874 0.9175828
25-Aruba1 1.0924189 1.8299594 3.9250665 0.9999628 1.0688058 0.9592242
25-Aruba2 1.0837732 1.7203948 3.6417001 0.9548872 1.0154071 0.9496673
26-Floressence 0.7350864 1.0974482 2.3237404 0.5293503 0.5208597 0
26-Lenna 1.5862571 2.522996 5.2100673 0.9203393 0.9280903 0
26-Aruba1 1.0924205 1.829961 3.9250681 0.9202436 0.9128586 0
26-Aruba2 1.0837747 1.7203964 3.6417016 0.8877215 0.8675926 0
27-Floressence 0.5193303 0.7616976 1.5477506 0.3402954 0.3540307 0.3711158
27-Lenna 1.2349946 1.938229 3.8256205 0.6635541 0.717372 0.603965
27-Aruba1 0.6238843 1.0037319 2.0687747 0.5180278 0.5419473 0.5041102
27-Aruba2 0.5972489 0.9181638 1.8856502 0.4822059 0.5055538 0.4811951
28-Floressence 0.5193333 0.7617006 1.5477536 0.3151822 0.3152549 0
28-Lenna 1.2350061 1.9382405 3.825632 0.6115506 0.6223874 0
28-Aruba1 0.6238858 1.0037335 2.0687763 0.4811082 0.4795037 0
28-Aruba2 0.5972505 0.9181654 1.8856518 0.4478503 0.4465614 0
29-Floressence 0.786781 1.0816363 2.2236378 0.527636 0.5308576 0.5661147
29-Lenna 1.5524714 2.5011977 5.1289279 0.9763836 1.0320336 0.9139718
29-Aruba1 1.1954805 1.9317256 4.0933002 0.9715872 1.0273836 0.9544605
29-Aruba2 1.1787077 1.8259773 3.7927464 0.9144657 0.9718879 0.937402
30-Floressence 0.7720756 1.0816423 2.2236438 0.4973698 0.4863913 0
30-Lenna 1.5524943 2.5012206 5.1289508 0.9141574 0.9265403 0
30-Aruba1 1.1954836 1.9317288 4.0933033 0.9008469 0.8941222 0
30-Aruba2 1.1787108 1.8259805 3.7927495 0.8492011 0.8389189 0

94

TABLE 9: APPROACH 31-36 DATA RESULTS

Approach-Picture Algorithm 1
1 round

Algorithm 1
2 rounds

Algorithm 1
4 rounds

Algorithm 2
512 symbols

Algorithm 2
1024 symbols

Huffman
reference

31-Floressence 0.8933125 0.778832 1.3118072 0.6588891 0.357322 0.372724
31-Lenna 0.9328265 1.4097098 3.1955699 0.7558342 0.7370176 0.6284702
31-Aruba1 0.989107 1.4238599 3.0579061 0.8422529 0.7665402 0.6721529
31-Aruba2 0.9027141 1.45171 2.9984828 0.794124 0.733227 0.6547661
32-Floressence 0.4171263 0.7433271 1.3118102 0.338624 0.3077972 0
32-Lenna 0.814696 1.4097212 3.1955814 0.6474445 0.6585432 0
32-Aruba1 0.7532363 1.4238615 3.0579076 0.6558933 0.6571817 0
32-Aruba2 0.6843653 1.4517116 2.9984844 0.6205685 0.6247434 0
33-Floressence 0.8050246 0.6602431 1.0950119 0.328748 0.3257802 0.3371739
33-Lenna 0.8296715 1.2481964 2.7640492 0.7070043 0.7054811 0.604157
33-Aruba1 0.7531318 0.6623242 1.4470213 0.5032128 0.5031876 0.454243
33-Aruba2 0.70611 0.6276561 1.3122023 0.4606363 0.462167 0.4308982
34-Floressence 0.3382864 0.5641924 1.0950149 0.2919698 0.2933503 0
34-Lenna 0.6648599 1.2482079 2.7640606 0.6294174 0.6399008 0
34-Aruba1 0.448033 0.6203454 1.4470229 0.4509706 0.4510869 0
34-Aruba2 0.4194002 0.5560175 1.3122038 0.4166265 0.4163602 0
35-Floressence 0.9963835 0.796164 1.1249214 0.3643293 0.3548491 0.4170593
35-Lenna 0.9999415 1.1299604 2.5596285 0.7315451 0.7370786 0.6277391
35-Aruba1 1.0822194 1.1883366 2.5654384 0.7618323 0.7531759 0.6754565
35-Aruba2 1.0096779 1.2229941 2.5438018 0.7278909 0.7169249 0.6656932
36-Floressence 0.4070682 0.6063145 1.1249274 0.3199005 0.3211908 0
36-Lenna 0.7182035 1.1007507 2.5596514 0.6594116 0.6788131 0
36-Aruba1 0.7110074 1.1577371 2.5654416 0.6633045 0.6633672 0
36-Aruba2 0.675652 1.1904527 2.543805 0.6354602 0.6352642 0

95

TABLE 10: APPROACH 37-42 DATA RESULTS

Approach-
Picture

Algorithm 1
1 round

Algorithm 1
2 rounds

Algorithm 1
4 rounds

Algorithm 2
512 symbols

Algorithm 2
1024 symbols

Huffman
reference

37-Floressence 0.8601987 0.7156962 1.1990149 0.420074 0.3266462 0.3461523
37-Lenna 0.8789158 1.3391923 2.997335 0.7144298 0.7072459 0.6002739
37-Aruba1 0.8556467 0.9467932 1.9623875 0.5794473 0.5484582 0.5026755
37-Aruba2 0.8037874 0.9215613 1.8243365 0.517005 0.4962033 0.4687843
38-Floressence 0.3679826 0.6688987 1.1990179 0.2961493 0.2881119 0
38-Lenna 0.7240574 1.3392037 2.9973464 0.6230651 0.6339808 0
38-Aruba1 0.5172474 0.9263601 1.9623891 0.4770136 0.4765586 0
38-Aruba2 0.4648271 0.8740401 1.8243381 0.4314151 0.4323175 0
39-Floressence 0.8053585 0.655503 1.0737027 0.3254858 0.3221908 0.3339783
39-Lenna 0.8098034 1.2346183 2.7783368 0.7068085 0.7051302 0.603155
39-Aruba1 0.7536075 0.6665073 1.3876837 0.4872855 0.4856317 0.4475705
39-Aruba2 0.7065949 0.626716 1.2358073 0.43224 0.4327755 0.4175588
40-Floressence 0.3343005 0.5514799 1.0737057 0.2889692 0.290278 0
40-Lenna 0.669338 1.2346297 2.7783482 0.628432 0.6393019 0
40-Aruba1 0.4365259 0.6163017 1.3876853 0.4360027 0.4359739 0
40-Aruba2 0.4017544 0.5552323 1.2358089 0.391064 0.3908226 0
41-Floressence 0.9692187 0.7515343 1.0110153 0.3335014 0.3306549 0.3953138
41-Lenna 0.9208772 1.0070681 2.3951437 0.7017391 0.7095473 0.5999039
41-Aruba1 0.9668149 0.8671887 1.6145514 0.5523235 0.5497488 0.5168729
41-Aruba2 0.8999942 0.8541725 1.5074873 0.5011812 0.4993028 0.4934834
42-Floressence 0.3684029 0.5272183 1.0110213 0.298596 0.3011248 0
42-Lenna 0.6613125 0.9778623 2.3951666 0.6340138 0.6540701 0
42-Aruba1 0.5161151 0.7294006 1.6145545 0.4876315 0.4877788 0
42-Aruba2 0.477286 0.6885527 1.5074904 0.4443901 0.4449231 0

96

TABLE 11: APPROACH 43-48 DATA RESULTS

Approach-
Picture

Algorithm 1
1 round

Algorithm 1
2 rounds

Algorithm 1
4 rounds

Algorithm 2
512 symbols

Algorithm 2
1024 symbols

Huffman
reference

43-Floressence 0.8967381 0.8064435 1.3831053 0.6585619 0.3608795 0.3740518
43-Lenna 0.9425432 1.441203 3.2535684 0.7608146 0.744588 0.6321231
43-Aruba1 0.9950619 1.4428139 3.0879705 0.7945814 0.7578523 0.6714468
43-Aruba2 0.9068726 1.4636472 3.0116405 0.7377851 0.7115275 0.6558449
44-Floressence 0.4300722 0.7753411 1.3831113 0.3390807 0.310269 0
44-Lenna 0.8226758 1.4412259 3.2535913 0.6529678 0.6677284 0
44-Aruba1 0.7568884 1.442817 3.0879737 0.6541609 0.6575254 0
44-Aruba2 0.6895623 1.4636503 3.0116436 0.6165569 0.6184838 0
45-Floressence 0.7991295 0.6645498 1.1031742 0.3235907 0.3218137 0.3367141
45-Lenna 0.8238786 1.2585539 2.7858042 0.7086293 0.7113744 0.6019141
45-Aruba1 0.7489313 0.6625502 1.4462071 0.500305 0.500538 0.4534841
45-Aruba2 0.702595 0.6277818 1.3109224 0.4530098 0.4534048 0.4302621
46-Floressence 0.3397378 0.5832213 1.1031802 0.2875992 0.2900944 0
46-Lenna 0.6648752 1.2585768 2.7858271 0.6314696 0.6455067 0
46-Aruba1 0.4486776 0.6271361 1.4462102 0.4487927 0.4491925 0
46-Aruba2 0.4204183 0.5659147 1.3109256 0.4095293 0.4080786 0
47-Floressence 1.0599992 0.8712397 1.2458843 0.3848293 0.3781178 0.4446079
47-Lenna 1.0440822 1.1906925 2.7070946 0.7781919 0.7904133 0.6765855
47-Aruba1 1.1448828 1.2638562 2.6965582 0.7842029 0.7807246 0.7160648
47-Aruba2 1.0720457 1.297376 2.6611598 0.7345343 0.732919 0.7023287
48-Floressence 0.4284309 0.6458997 1.2457892 0.3376039 0.3416842 0
48-Lenna 0.7521596 1.1369242 2.706881 0.7028644 0.7282838 0
48-Aruba1 0.7302103 1.1998624 2.6959815 0.6906583 0.6910524 0
48-Aruba2 0.6904982 1.2285506 2.661166 0.6533873 0.6526618 0

97

5.0 RESULTS AND DISCUSSION

Unfortunately, none of the algorithms tested in this study yielded

results that produced better compression than today’s leading

compression schemes. In this section, a discussion is offered as to

why this may have occurred. The discussion ends with suggestions for

some additional approaches to the problem of lossless compression

that may be worthy of further research.

5.1 APPROACH 1-6.

Pictures with highly similar colors end up producing very similar codes,

thus enabling high compression rates. The issue here is that quite

often, except in contrived demos, images include a wide variety of

colors and in many combinations. Essentially, there were too few

unique patterns to justify the cost of creating the pattern in the first

place. There does not seem to be any straight forward way to proceed

except to remove the tables used to translate between a pattern and

its original source string from the compressed file. Even this seems a

waste, since so many images have a different color makeup as to

prevent any single color table from producing any real good.

Furthermore, a combined approach using many tables seems equally

unlikely to produce all but the most marginal improvements over a

single table design.

98

5.2 APPROACH 7-12.

As these approaches are direct extension of approaches 1-6 we expect

to see a similar result for these, and indeed we do. In fact they

produce nearly identical results. Any improvements we might make to

approach 1-6 are likely to be applicable to 7-12 and vice versa.

5.3 APPROACH 13-18.

In hind sight this approach was doomed to fail. The reason is that

when you convert to base2 from base8 the length of the sequence

increases 8 fold, but the file size remains the same. The cost comes in

the form of doubling the file size at the time the first pattern is added.

Since the value of the symbol replacing the pattern must be unique

from all other symbols in the file and since the next available pattern

is 2, this forces all symbols into the next highest base. Essentially,

over 3 recursive steps bytes have been rebuilt with entirely new

meaning, but with no compression worth noting. The only way to

remedy this is to find a way to represent all numbers in a series with

the lowest base available to them. To my knowledge no standard

algorithm does this. However, it could be accomplished by pre-

pending a marker to each symbol indicating its base.

5.4 APPROACH 19-24.

99

Given the extremely close nature of approaches 1-6 and 7-12,and also

that approaches 13-18 and 19-24 were designed to mirror these

algorithms, it is startling to see a significant dissimilar in the results

sets. This begs the question as to what a re-representation of the

data set looks like. Especially since the source data in the two groups

are identical. The only clue is that the YCrCb color space tends to

reduce the correlation between the color plains. While this certainty

bears further study it seams that the absolute gain in compression is

less than is gained in other approaches.

5.5 APPROACH 25-30.

Like approaches 19-24 this set of approaches defies immediate

explanation. Not even bothering with the correlation, these

approaches bear no resemblance what so ever to any approach 13-24.

I am at an utter loss to explain why this is so radically different from

the other 12 similar approaches.

5.6 APPROACH 31-36.

These approaches most likely failed due to how the modified Haar

wavelets are handled, as discussed above. Most of the narrowing

information of similar wavelet pairs is lost due to the integer to integer

constraint, and thus presumably, many patterns are also lost. It bears

100

research on how to effectively use wavelets to create similar patterns.

In addition, a pattern table, as described for use in approach 1-6,

seems to bear significant research. This is because, after completing

the main body of research as presented here, most images have been

observed to possess nearly identical Haar breakdowns for frequency.

5.7 APPROACH 37-42.

These approaches, like approaches 7-12, provide similar justification

for failure as well as for prospective research. As it appears, the

usefulness of moving to a different color space, considering the use of

the Haar wavelet, does not seem to provide any real benefit.

5.8 APPROACH 43-48.

These approaches, again, seem to be of dubious benefit considering

the results in approaches 31-36. However, they might benefit from a

multi tabled design. Since, in these approaches only a small region is

observed and compressed separately, we might be able to observe

several distinct styles of patterns allowing for a different type of

pattern not just a bigger pattern or pattern of smaller patterns.

5.9 GENERAL REMARKS FOR FUTURE RESEARCH.

At the inception of this thesis I had only the vaguest notion of how

pattern reduction worked. Having implemented several natural

101

language processors using multistage pattern reduction I am better

able to grasp new ways to find solutions to this problem.

First, as briefly mentioned above, external tables are mandatory.

Additionally, the table or set of tables must be universal, as in the

known frequency distribution of letters in English text for use in

Huffman compression. If they are not universal then they must be

transmitted with each file. If that is so the “cost” of any approach

similar to those presented in this thesis will not be worth the trouble.

This is why I am thrilled with the observed results of the modified Haar

wavelet. It seems to have a universally describable distribution that

can be externally coded.

Second, and most importantly, this research brought to light the

concept of generics. I was unfamiliar with this concept initially. That is

to say a pattern that in whole or in part accepts data it can’t deal with

itself, but remembers allowing for lossless reconstruction, yet a later

stage of reduction might know about, if only the unknown data is

masked. The tremendous advantage of this is that a pattern with a

generic can represent several similar patterns that would otherwise

take up a lot of space. In extension, a single pattern at a later stage

or structure of patterns, can be built that recognizes all of those

previous patterns plus, perhaps, even wholly unknown data.

102

6.0 CONCLUSION

I have produced to my satisfaction a new and innovative compression

scheme. It utilizes multiple passes to gather increasingly valuable

patterns and encodes them into a new stream. Even though I failed to

produce better compression than today’s leading compression

schemes, the fact that this technique produced results at all is very

promising. Moreover, in science, a failed result may provide as much

new information as a positive result.

Since starting this thesis in the summer of 2003 I have used

multistage pattern reduction successfully as an analysis technique. It

is an incredibly powerful way to get underlying information. So the

reason that I say that any compression, much less reasonable

compression, is so important is that we can now begin to understand

the fundamental structure of sight. When we look at any image, there

is a reason we can recognize what that image is, even if we have

never seen it before. This thesis allows a glimpse of insight into this

ability and a promise of better understanding of vision.

103

APPENDIX 1: CODE

I have, in this thesis, opted not to include the full source in this print

document as it is a significant amount of text, 12202 lines of code

across 11 files as counted by LineStats 1.0. However, I am including

the entire source as well as the Visual Studio build files on the

companion CD. This is, I believe, important because while the

documentation describes the algorithms in a fashion I feel is sufficient

to implement, a reference implementation assures cross compatibility

with other venders implementations. I came to believe this during the

thesis research itself. It seems to me that a few of the authors in the

references section, and many other authors in my initial literature

review, believe that something can be done and the solution is well

known. However, they do not seem to care if a student or someone

outside their realm of experience can understand how to make this

well known fact actually work.

104

APPENDIX 2: IMAGES

FIGURE 9: FLUORESCENCE

This is florescence. It is reproduced by Special Permission of Digital

Blasphemy. Copyright * by Digital blasphemy. I chose this picture as

a counter example for Dr. Ford. I wished to point out that while there

are distinct shapes and conceptually very few patterns (excellent for

pattern reduction) there is something to be said when black isn’t really

black. As it turns out, however, this was the picture that was the most

compressible.

105

FIGURE 10: LENNA

This is Lenna. It is reproduced by Special Permission of Playboy

magazine. Copyright © 1972 by Playboy. It is the sole standard

image in the field of image compression. Volumes have been written

on why this is an appropriate image for the standard and I will not

reproduce them for sake of brevity. It is included because all image

106

compression work has and should include it. Therefore, and there it no

better way to put this, this is Lenna.

FIGURE 11: ARUBA1

This is aruba1. It was taken by Dr. Ford on his 2004 trip to Aruba. I

selected this picture for its size and diversity of color. These are

important variables to take into consideration when evaluating image

compression techniques. As we can see from the picture there are

several pieces of nearly identical images. Under the assumption of

pattern reduction, these should allow for space savings.

107

FIGURE 12: ARUBA2

This is aruba2. It was taken by Dr. Ford on his 2004 trip to Aruba. I

selected this picture due to its lack of a color differential and high

conceptual pattern level. As is obvious there are only 4 or 5 truly

different things in this picture, but each of the individual pieces are

themselves, highly differentiable. This demonstrates that within each

pattern there are additional, or nested, sub patterns.

108

APPENDIX 3: SCREEN SHOTS

This Section is self explanatory. It’s a listing of all the screens I used

in my test environment. I feel that this is a necessary inclusion to the

thesis since the graphical user interface has become a ubiquitous part

of computer programming even if it has just recently gained

acceptance in main stream computer science research. However, I am

also of the opinion that since this is a research thesis on image

compression and not on graphical layout the presentation of the layout

in its spartan state is sufficient.

109

FIGURE 13: SCREEN SHOT

This is a screen shot of the application. The interface is pretty cut and

dry. There are no modal forms, other than the obligatory selecting files

dialogs, so this is in fact the only screens the user sees.

110

REFERENCES

1. The LOCO-I Lossless Image Compression Algorithm: Principals and

Standardization into JPEG-LS, in HP Publication No. HPL-98-193R1.

1998, Hewlett Packard: Palo Alto, CA.

2. Advameg, I., JPEG image compression FAQ. 1999.

3. Cruz, D.S., et al., The JPEG-2000 still image compression. 2001,

Joint Photographic Experts Group: Vancouver, BC, Canada.

4. Gurzick, D. and W.R. Ford. Using Pattern Reduction to

Accommodate Variability of Expression in Natural Language

Processing. in AVIOS 2006. 2006: Applied Voice Input Output Society.

5. Howard, P.G., The design and analysis of efficient lossless data

compression systems, in Computer Science. 1993, Brown University:

Providence, RI.

6. Huffman, D., A Method for the Construction of Minimum

Redundancy Codes. Proc. IRE, 1952. 40(9).

7. Kapoor, D., The.div loss less image compression algorithm.

8. m.a.goldburg, et al., Application of wavelet compression to

digitized radiographs. 1995.

111

9. Marshall, D., Relationship between DCT and FFT. Available online at

http://www.cs.cf.ac.uk/Dave/Multimedia/node230.html. 2001.

10. Miano, J., Compressed image file formats: JPEG, PNG, GIF, XBM,

BMP. 1999, Reading, MA, USA: ACM Press.

11. Slattery, M.J. and J.L. Mitchell, The Qx-coder. 1998, IBM.

12. Wayner, P., Compression Algorithms for Real Programmers. 2000,

San Diego, CA, USA: Academic Press. 240.

13. Wu, X., An algorithmic study on lossless image compression, in

Computer Science. 1996, University of Western Ontario: London,

Ontario, Canada.

http://www.cs.cf.ac.uk/Dave/Multimedia/node230.html

Yahoo! My Yahoo! Mail
 Search

Welcome, diputs_mai
[Sign Out, My Account] Mail Home - Mail Tutorials - Help

 Best MasterCard
 for bad credit

[Add - Edit]

Inbox (1)
Draft

Sent

[Empty] Bulk

[Empty] Trash

[Hide]

MyBulk

TAS

adnd
cmsc

digital

encode

friende
links

money

netscape

ntbugtrack
online orders

password

school

security

What's your Credit
Score? See it FREE!

Get unlimited calls to
U.S./Canada

Printable View - Brie

This message is not flagged. [Flag Message - Mark as Unread]

Previous | Next | Back to Messages

From tena chapman Tue Feb 15 16:43:40 2005

X-Apparently-To:
diputs_mai@yahoo.com via 66.218.93.119; Tue, 15 Feb 20
16:43:39 -0800

Authentication-Results:
mta106.mail.re2.yahoo.com from=digitalblasphemy.com;
domainkeys=neutral (no sig)

X-Originating-IP: [207.97.221.96]

Return-Path: <tena@digitalblasphemy.com>

Received:
from 207.97.221.96 (EHLO server2.digitalblasphemy.com)
(207.97.221.96) by mta106.mail.re2.yahoo.com with SMTP
15 Feb 2005 16:43:39 -0800

Received:

from [10.0.1.2] (evrtwa1-ar9-4-65-252-129.evrtwa1.dsl-
verizon.net [4.65.252.129]) (authenticated bits=0) by
server2.digitalblasphemy.com (8.12.11/8.12.11) with ESMT
j1G0hbit011096 for <diputs_mai@yahoo.com>; Tue, 15 Fe
19:43:38 -0500

Mime-Version: 1.0 (Apple Message framework v619.2)

In-Reply-To: <200502152308.j1FN8qaT007735@server2.digitalblasphem

References: <200502152308.j1FN8qaT007735@server2.digitalblasphem

Content-Type: text/plain; charset=US-ASCII; delsp=yes; format=flowed

Message-Id: <e61f551c39805b4689577ce262176661@digitalblasphemy

Content-Transfer-Encoding: 7bit

From:
"tena chapman" <tena@digitalblasphemy.com> Add to

Address Book

Subject: Re: Copyright or Image Use Inquiry

Date: Tue, 15 Feb 2005 18:43:40 -0600

To: "mark newman" <diputs_mai@yahoo.com>

X-Mailer: Apple Mail (2.619.2)

Content-Length: 971

Mail Addresses Calendar Notepad Mail Upgrades - Mail Options

Check Mail Compose Search Mail Search the Web

Folders

My Folders

Delete Reply Forward Spam Move...

Page 1 of 2Yahoo! Mail - diputs_mai@yahoo.com

2/16/2005http://us.f417.mail.yahoo.com/ym/ShowLetter?MsgId=8886_230271_159_1528_971_0_3...

Copyright © 1994-2005 Yahoo! Inc. All rights reserved. Terms of Service - Copyright Policy - Guidelines - Ad Feedback
NOTICE: We collect personal information on this site.

To learn more about how we use your information, see our Privacy Policy

Skip 6 mortgage
Payments. How?

Hi Mark,

Yes, you may use Fluorescence as you described for
your thesis.

Best wishes,
Tena Chapman
vp licensing & marketing
digital blasphemy

On Feb 15, 2005, at 5:08 PM, mark newman wrote:

> Below is the result of your feedback form. It was
submitted by
> mark newman (diputs_mai@yahoo.com) on Tuesday,
February 15, 2005 at
> 18:08:52
>

> ----
>
> email: diputs_mai@yahoo.com
>
> COMMENTS: i would like to use one of ur images as a
bentchmark for my
> ms thesis on image compression. specifacly florence.
may i include it
> as a picture in my appendex? and on my thesis
defence ppt?
>
> ORIGIN: md
>
> SPEED: NOOPINION
>
> Submit: SEND IT!
>
> pleasereply: yes
>
>

> ----
>
> HTTP_USER_AGENT: Mozilla/4.0 (compatible; MSIE 6.0;
Windows NT 5.1;
> SV1; SALT 1.0.4223.1 0111 Developer; .NET CLR
1.1.4322)
>

Save MessaPrevious | Next | Back to Messages

Delete Reply Forward Spam Move...

Check Mail Compose Search Mail Search the Web

Page 2 of 2Yahoo! Mail - diputs_mai@yahoo.com

2/16/2005http://us.f417.mail.yahoo.com/ym/ShowLetter?MsgId=8886_230271_159_1528_971_0_3...

March 24, 2005

Mr. Mark Newman
Sonum Technologies, Inc.
6700 Alexander Bell Drive, Suite 180
Columbia, Maryland 21046

Dear Mr. Newman:

We are pleased to grant you one-time nonexclusive rights to include the head and shoulders "Lenna"
image, which originally appeared in the November 1972 issue of Playboy magazine, in your thesis,
Multi-Stage Pattern Reduction in lossless image compression.

This permission is contingent upon there being no derogatory references to Playboy, nor the subject
matter of the photograph and neither will be depicted in an unfavorable light. The following
copyrightlcredit notice must appear directly beneath the reprinted photograph OR on the credit page of
your thesis:

Reproduced by Special Permission of Playboy magazine.
Copyright O 1972 by Playboy.

Please note that permission is granted for one-time use only and that any other use or contemplated
reuse will require, prior to use, further written permission from Playboy. Each reuse must be dealt with
separately.

Thank you for your interest in Playboy.

Sincerely, a&
Diane Griffin
Media Rights and Permissions Manager

PLAYBOY MAGAZINE1680 NORTH LAKE SHORE DRIVEICHICAGO, ILLINOIS 6061 11312 751-8000

	Thesis.pdf
	Title.pdf
	Thesis 2.8.doc
	
	
	

	flurescence.pdf

	end.pdf

