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ABSTRACT 

Lossless image compression is the process of compressing and 

subsequently decompressing images without the loss of data.  

Historically, image compression was carried out by treating images as 

complex text [13].  Only in recent years have images been treated as 

data collections that could be processed for compression and 

decompression in a manner unique to images [1]. Even the best 

modern lossless image compression techniques, however, yield less 

than desirable results [5].  The biggest drawback for lossless image 

compression is that images can only be reduced to about one-third of 

their original image size.  Lossy image compression algorithms, i.e., 

those techniques for compressing image size where image information 

is lost upon decompression, are capable of reducing images to one-

tenth of their actual size with little or no humanly perceptual loss in 

image detail.   

Multi-stage pattern reduction is an emerging approach for encoding 

data that has recently demonstrated efficient processing in the field of 

natural-language processing.  It relies on the ability to discern small 

local patterns in a source, recreating a new source using these local 

patterns and then reapplying the technique over multiple stages.     

In this thesis, the value of using multi-stage pattern reduction to 

compress images will be explored.  The goal of this thesis is to create 
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a lossless image compression algorithm by employing the techniques 

of multi-stage pattern reduction and to determine if such an approach 

can provide better compression on average than the current major 

competing algorithms in the field.  

 

1.0 INTRODUCTION 

 

1.1 NEED FOR IMAGE COMPRESSION 

As computers become faster and technological influences increase, the 

demand for multimedia, and more specifically visual images, becomes 

greater. Concordantly, the availability and use of high quality images 

on the Internet is increasing at a rate far outpacing the ability for 

users to retrieve such images in a reasonable amount of time [3, 7].  

Therefore, the necessity for highly efficient image compression takes 

on greater importance in current technological use.  Image 

transmitting accounts for some of the highest demands on Internet 

resources.  It is noteworthy that one of the major shifts in Internet 

access is toward broadband use for many users accessing the Internet 

from their homes.  Any advances in increasing image compression 

efficiency would result in reducing load on Internet traffic and 

improving the user experience.     
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1.2 TWO TYPES OF IMAGE COMPRESSION ALGORITHMS - 
LOSSLESS VS. LOSSY 

Lossless compression can be defined as the ability to uniquely retrieve 

a series of bits from a source image from which one can exactly 

duplicate the pre-compressed source image.  Lossy compression can 

be defined as the ability to retrieve a series of bits from a compressed 

source that is close to, but not necessarily identical to, the pre-

compressed source.  If lossless compression can yield bit for bit 

equality then why is lossy compression even acceptable?  Lossy 

compression is almost always more efficient, that is to say 

computationally faster and resulting in smaller output file, i.e. more 

compressed, than lossless compression.  Often lossy image 

compression is visually indistinguishable from the original source.  

However, this is not always the case.  In fact, for some applications, 

even a small amount of degradation is absolutely intolerable, such as 

in medical imaging.  Additionally, some compression algorithms get 

progressively worse over many successive generations [2], where a 

generation is defined as one compression and decompression cycle of 

an image.  The focus of this paper is on lossless algorithms. 
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1.3 CURRENT LOSSLESS TECHNIQUES 

Currently there are 3 categories of lossless image compression 

techniques. They are:  

1. Entropy encoding. 

2. Frequency Domain encoding. 

3. Runtime length encoding (RLE) 

A brief overview of each technique and its main strengths and 

weaknesses is given below along with a prominent algorithm from 

each category. 

 

1.3.1 ENTROPY ENCODING 

Entropy encoding is the process of translating all current symbols in a 

given source into new symbols such that the combined effects of new 

symbols represent an overall length reduction for the entire source.  

Entropy encoding is very efficient at encoding sources that have 

distinct or well known frequencies, such as English language text, or 

show a notable frequency increase in a few symbols as compared to 

other symbols. Entropy encoding does not work in cases that have 

symbols that display very similar frequencies, such as white noise, or 

in cases that there are so many symbols that the translation 

mechanism, most likely a fully complete table, grows faster than the 

length reduction of valuable symbols decreases the source size. 
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There are two main entropy encoding algorithms: Huffman encoding 

and arithmetic encoding. Huffman encoding can be found in most entry 

level algorithm books and will be described below for completeness 

[6].  Arithmetic encoding, on the other hand, is patented by IBM and 

therefore it is left to the interested reader to delve if so desired [11]. 

 

1.3.2 HUFFMAN ENCODING 

The Huffman encoding algorithm is an O(NLogN+2L) algorithm where 

N is the symbol count and L is the file length.  Generally, this means 

that N is 2^8 or one byte.  However, the algorithm is valid on any 

number of symbols, but the translation table tends to grow faster than 

the algorithm reduces the source length.  

Huffman encoding first finds the frequency of all the symbols in the 

source. Next, the frequencies are sorted into a list in ascending order.  

Next, the first two entries are combined into a single node with left 

and right children, element one and element two respectively, whose 

new frequency is the combined frequency of the first two elements.  

The first two elements are then deleted and a new node is inserted 

into the still sorted list in its appropriate place determined by the sum 

of its left and right children’s frequencies.  This node is treated as any 

other element in the list.  This process of removing two elements and 

replacing them as one is continued until only one element is left.  The 
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resulting data structure is a tree.  Bit string values are assigned to the 

leaf nodes based on their left or right path from the root.  These leaf 

nodes are the literal symbols.  The result is a translation table.  A 

second pass is made through the file, replacing the actual byte read in 

from the source file with the bit string found on the translation table.  

Finally, the translation table is stored.  Decompression is as simple as 

retrieving and reversing the translation table, thus restoring the 

original source. 

 

1.3.3 FREQUENCY DOMAIN ENCODING  

Frequency Domain encoding uses a variety of mathematical techniques 

to reduce the source into its component form. These component pieces 

are generally easier to describe than the composite source and 

therefore take up less space, thus, achieving compression.  Frequency 

Domain encoding works best on sources that have an underlying 

frequency pattern. This is difficult, however, to discern from just a 

cursory examination of the source.  Frequency Domain encoding also 

has the extremely useful quality of multiple resolution.  This is to say 

that, if less than lossless quality is desired then the computation 

needed to derive the lossless data produces the lossy result along the 

way. This is outside the purview of this thesis, but is mentioned for 

completeness.  Frequency Domain encoding is not suited for 



 16

compression of a source that includes desirable high frequency data, 

such as in the case of steganography, where the noise of a image is 

the real desired information. 

There are three main frequency domain encoding techniques: Discreet 

Cosine Transformation (DCT), Fast Fourier Transformation (FFT), and 

wavelets.  In the case of real-valued sources, DCT and FFT are 

mathematically related [9].  Their use in many sciences is well 

documented and easily obtainable.  Wavelets are recent additions to 

frequency domain encoding and come in many forms.  One of these, 

the Haar Wavelet, will be described below.  It is the easiest to 

understand and allows for a better grasp of more advanced wavelet 

concepts.  The new JPEG-2000 compression uses these more advanced 

wavelets as part of its overall algorithm. 

 

1.3.4 HAAR WAVELET 

Wavelet compression, and in particular Haar wavelet as described 

below, is a group of recursive functions designed to break down a 

series of numerical values into multiple bands describing aggregate 

and detail information about the series. This allows for examination, or 

compression, based on overriding features of the series of local 

phenomena [12].   
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The Haar wavelet is an averaging wavelet at its base.  This is to say 

that when you have 2 values next to each other they are averaged 

then the remainder is determined, i.e. {6 12} -> (6+12)/2 = 9, 9-12 

= -3 -> {9,-3}. The Haar wavelet provides a perfectly reversible map 

from Integers to Reals.  Very few point this out in their documentation. 

The issue is that computers are geared to handle integers far better 

than Reals, so some of the power of the Haar wavelet is lost. A better 

example of what happens should be {5 12} -> floor((5+12)/2) = 8, 5-

12 = -7 -> {8,-7}. Using these and a small amount of simple logic we 

can convert from Integers to Integers.  Sadly, much of the converging 

properties of wavelets are lost.  Having discussed the problems, we 

can move on to the recursion aspect of wavelets. Knowing, as we do, 

how to manipulate the base wavelet we need to realize that recursion 

is intended to pull from the aggregate values only. This is done with 

simple reordering. If we have the original sequence {2 4 8 4 10 6 7 9} 

performing The Haar wavelet on each of the pairs yields {3 -1 6 2 8 2 

8 -1}, reordering to pull the aggregate data to the front of the list 

yields {3 6 8 8 -1 2 2 -1} the Haar wavelet can then be preformed on 

the sub list {3 6 8 8} and so on in recursive manner. Notice how I 

chose the more naive Haar approach and chose my data to be friendly. 

Specifically, note the choice of 8 elements over 7 or 9 elements. 
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1.3.5 RUNTIME LENGTH ENCODING 

Run length encoding is nearly ineffective on color images. Therefore it 

will not be discussed in this thesis in any detail and is mentioned only 

for completeness [10].  Run length encoding is used primarily as an 

observed optimization for the bitmap format and in fax machines. 

 

2.0 MULTI-STAGE PATTERN REDUCTION 

Current lossless image compression techniques tend to achieve, on 

average, on the order of 1.5 to 1 to 3.0 to 1 compression ratios [8], 

and are often quite complex, both to code and to understand.  The 

primary goal of this thesis is to create a compression scheme that will 

achieve greater compression ratios on average than the above 

techniques. 

Multi-stage pattern reduction has recently demonstrated efficient 

processing in natural-language processing by limiting all possible 

search spaces [4].  It relies on the ability to discern small local 

patterns in a source, recreating a new source using these local 

patterns and then reapplying the technique.  Since this is also a goal 

of image compression, the employment of this technique is a natural 

extension of this work.   The application of this technique to natural 

language processing is described in detail below.    
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Using multi-stage pattern reduction, there are two different parts to 

the processor. One is the knowledge base, which is made up of three 

tables, and the other is the actual algorithm used for navigating the 

knowledge base to reduce a user’s input down to a concept with 

parameters. Simply put, that is the goal of any natural language 

processor, reducing the user’s input down to a concept.  In the case of 

all the different ways that we suggested one could come up with to 

say, “Throw me the ball.”  In natural language processing, we are now 

working in the opposite direction where we are looking for a way to 

take all of the different ways on the list of expressing this concept 

(these are called surface structures) and reducing them down to a 

single concept, “throw”, with a directionality of “to me”, with the 

parameter of “ball” (this is called the deep structure). 

For the purpose of understanding the processor, let us take the 

example phrase: 

“I would like to get my 401k account balance” 

On the knowledge-base side of our process we have three tables.  The 

first table in the knowledge base contains the words and semantic 

symbols for those words.  For example, you will notice that the first 

three entries all share the same semantic symbol.  Likewise, “need” 

and “want” also share the same semantic symbol of 024.  This 
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relationship between these two columns allows the processor to 

perform the first step in semantic reduction.  The individual patterns, 

in the form of words, are identified and then reduced semantically.   

In our first step we take the words in the input and arrange them into 

a vector. 

I Would like to Get my 401k account Balance 

 

We then go to the first table and look up each word in the table.  

 

WORD SEMANTIC SYMBOL 

Can 009 

Could 009 

Would 009 

Will 010 

Shall 010 

Got 011 

Get 012 

Find 012 

Obtain 012 

Acquire 012 

Retrieve 012 

I 019 

We 019 

Need 024 

Want 024 

To 031 
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Do 034 

Like 143 

I’d 257 

I’ve 258 

My 038 

401k 803 

Account 695 

Balance 217 

TABLE 1. SAMPLE OF WORD TABLE FROM KNOWLEDGE BASE. 

 

From this table we retrieve the semantic symbol for each word yielding 

an array such as: 

I Would like to get my 401k account Balance 

019 009 143 031 012 038 803 695 217 

  

This could also be expressed as a new vector of: 019 009 143 031 012 

038 803 695 217.  This represents the semantic reduction over words, 

or the first pattern reduction step in our algorithm.  It is important to 

note that this single vector in some cases, where there are multiple 

words representing each semantic value, might represent twenty or 

more different ways to express this same deep structure.  In the next 

step we take our new vector and begin to search through the phrase 

knowledge-base table from left to right for the largest represented 

phrase on the table.   
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PHRASE SEMANTIC SYMBOL 

019 010 024 031 a002 

019 024 031 a002 

019 013 011 031  a002 

019 009 024 031 a002 

019 010 013 031 a002 

034 019 024 031 a002 

258 011 031  a002 

257 024 031 a002 

019 009 143 031 a002 

257 143 031 a002 

012 f110 

038 803 695 217  m117 

TABLE 2. SAMPLE OF PHRASE TABLE FROM KNOWLEDGE BASE 

 

For example in the first pass we search for a match for the whole 

vector, and finding no match we search for a match for the whole 

vector minus the last semantic representation: 019 009 143 031 012 

038, and finding no match we search for a match for the whole vector 

minus the last two semantic representations: 019 009 143 031 012, 

and we repeat this process until we finally a match for 019 009 143 

031 and we take the semantic symbol a002 and save it in our phrase 

vector.  In searching for the next largest chunk we find that 012 yields 

f110, and finally 038 803 695 217 yields m117, creating a new vector 

for us of a002 f110 m117.  The m117 phrase is a special type of 
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phrase in that it represents an object, i.e. “401 k account balance”  It 

is interesting to note that it is also representing several other ways of 

saying this such as “the 401k balance”, or “the balance in my 401k 

account”.   

From this table we retrieve the semantic symbol for each phrase 

yielding this array: 

I would like to get my 401k account Balance 

019 009 143 031 012 038 803 695 217 

A002 a002 a002 a002 f110 m117 m117 m117 m117 

  

On average, after having gone through two stages of reduction, most 

objects on the list such as m117 represent about six unique ways of 

referral.  The current demonstration application contains 46 such 

objects or 276 (46 x 6) different ways of saying objects referenced in 

the current application.  This will become an important point later on.  

So, we are now left with the phrase vector a002 f110 and the 

identified object m117.   

CONCEPT SEMANTIC SYMBOL  

A002 f110 m* AA 

A002 d004 f012 c001 AA 

A002 f010 b001 f130 AA 

TABLE 3. SAMPLE OF CONCEPT TABLE FROM KNOWLEDGE BASE      
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We go to our Concept knowledge base and find a matching value for it 

of AA.  AA represents the deep structure for retrieval.  We pass this 

instruction (AA) along with the parameter “m117” along to our 

application and it returns the balance in our 401k account.  All this 

might seem a bit mundane, until we look at the last step where we 

matched a002 f110 of the concept table work and backwards through 

our tables and discover that this one line represents over three 

hundred difference ways that a user might ask for his/her 401k 

account balance.  Multiply this by the six ways the “401k balance” is 

represented and we have accommodated 1800 different ways a user 

might ask for a specific piece of information with a single table entry 

and a complementary object.  Crossed with all object in the current 

demonstration application and we are looking at 82800 different ways 

of asking for 46 unique pieces of information from one table entry.    

From this table we retrieve the semantic symbol for each phrase 

yielding this array: 

I would like to get my 401k account Balance 

019 009 143 031 012 038 803 695 217 

A002 a002 a002 a002 f110 m117 m117 m117 m117 

AA AA AA AA AA AA AA AA AA 

  

There are in fact 43 different table entries in the concept 

knowledgebase for AA the retrieval operation.  If we assume that they 



 25

represent just as many surface phrases (and in fact some of them 

represent hundreds of thousands), then we can conservatively say that 

our language processor can understand 3,560,400 different ways to 

ask for 46 unique objects, all from a database with fewer than 1500 

table entries across words, phrases, and concepts.  Of course, there is 

more than one deep structure in the concept table.  There are in fact, 

thirty-one.  In total, 1500 table entries that represent over 100 million 

user inputs, in 1.2 megabytes of space. 

In the end, the algorithm as a whole may appear obvious or trivial.  

This, however, would be a mistaken conclusion.  While no grammatical 

rules are visible, and no commonly seen statistical tables are exposed, 

what our process has effectively done is map the pathways of 

legitimate grammar through all of the possible combinations of words 

used in a specific context.  The specific rules required to create the 

combinations of words in the form of phrases and combinations of 

phrases to form a concept are inherently present in the employment of 

the tables and are knowledge base.  That is to say, these tables are 

the end result of what one would find after employing the grammatical 

rules that might be used in a parsing system under a specific 

application context.  But the multistage pattern reduction process 

requires significantly less effort in all areas when compared to parsing. 
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The power of our algorithm is most obvious in the 300 recognized 

inputs yielded from a total of 31 word table entries in figure 4. Figure 

4 contains both five word and four word combinations.  There are 

211,376 possible combinations of five word and four word phrases 

when drawn from a table of 31 possible words.  Figure 4 represents 

the 300 legitimate combinations for a single table entry in the concept 

table.  In a sense, we have reduced the search space for all 

combinations of words down to the legitimate representation of a 

grammar.  In this manner, the multi-stage pattern reduction algorithm 

represents the best features of other approaches, i.e., parsing type 

natural language processors and keyword/key-phrase processors 

without the drawbacks.  The grammatical rules required for 

understanding in a parsing processor are inherently present, along 

with the power of recognition of variability of expression inherent in 

keyword/key-phrase processors. 

 

3.0 METHODS AND MATERIALS 

 

3.1 HARDWARE AND SOFTWARE 

The algorithms were implemented in C# .net version 1.1,  a software 

language developed by Microsoft.  The development environment is 

Microsoft’s Visual Studio .net 2003.  The development machine used 

was a Dell XPS laptop running Microsoft Windows XP sp2 
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3.2 IMAGES 

The algorithm was tested on a variety of pictures. Images were 

standard format of 8 bits per pixel.  All pictures appear in the appendix 

with individual citation captions. 

 

3.3 METHODOLOGY 

All images began as uncompressed 256 color bitmap files.  They are 

each then compressed into the JPG lossless compression format, 

Huffman compression format, and the particular pattern reduction 

format being tested and the compression ratios are noted.  Finally, 

each was uncompressed and checked against the original image to 

verify true lossless image compression. 

 

3.4 THE ALGORITHMS 

The heart of this research is fundamentally to test the value of a new 

image compression algorithm using recursive pattern reduction. 

However, like many image compression techniques and practical 

algorithms in general, there is a variety of machinery surrounding the 

base algorithm itself. To this end I have broken out the algorithms and 

their accompanying machinery into separate sections. Each section 

follows with an accompanying description explaining the general 
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philosophy behind the algorithm or machinery. Finally, pseudo code is 

presented as an example.  

 

3.4.1 SHARED DEFINITIONS 

Image: An image is a 2 dimensional n*m array consisting of color 

information.  Each element of the array represents a unique pixel 

whose value is the color at the given point. Image indexing is left to 

right, top to bottom starting at (1, 1). 

Stream: A stream is a list whose elements can range from zero and 

up.  Streams tend to have information deleted from them.  Indexing is 

from left to right, starting at 1. 

Table: A table is a list whose elements are ordered pairs.  Tables are 

generally searched and appended to.  Indexing is from left to right, 

starting at 1. 

 

3.4.2 ALGORITHM 1: PHILOSOPHY 

The fundamental idea in recursive pattern recognition is that given a 

series of symbols, the arrangements of those symbols is the actual 

important piece of information as opposed to the importance of the 

symbols themselves. The end results of the process yields a “bubbling 

up” of valuable information and a virtual elimination of patterns that 

never, or at the least extremely infrequently, occur. To this end, a 
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static method was developed to take in pairs of pixels and view them 

as a single unit instead of 2 distinct units. This was done in hopes that 

there would be fewer new pixel units that actually occurred than the 

strict combination of pixel pairs. Then these new pixel units could be 

reefed recursively through the same algorithm to produce new units of 

information.  

To do this we flatten the image to a single stream of data, selecting 

double pixel pairs. If we have seen the current pair we replace it with 

a new pair. If not we replace it with a new symbol and place the pair in 

a dictionary. We then apply this simple technique recursively on the 

new encoded stream. Clearly, when applied recursively, this could 

yield an end single, but this is just a minor annoyance, easily fixed 

with clever coding. The dictionary, which is clearly unique for each 

unique image, is then pre-pended to the front of the final recursively 

encoded stream.  Decoding the stream is simply a dictionary lookup 

applied several times. 

The real strength of this approach is that if a particular combination of 

pixels is never next to each other their combination will never appear 

and so need not be represented.  This allows all the valid combinations 

to be stored without storing any of the useless patterns. 
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3.4.3 ALGORITHM 1: PSEUDO CODE 

Please refer to the companion CD for the C# reference 

implementation.  

Step 1: Label the image stream0.  Select a number greater than one 

for the number of reduction steps labeled reduction1. 

Step 2: Flatten the two-dimensional image source into a stream of 

pixel information.  Create an empty stream labeled stream1.  Take the 

pixel information from stream0 left to right, top to bottom and append 

it to the back of stream1. 

Note: Because stream0 is a rectangular n*m matrix it muse have an 

even number of elements, therefore stream1 will have an even 

number of elements. 

Step 3: Create an empty table labeled table1. Create two empty 

streams labeled count1 and pattern1. 

Step 4: Look at the first pair of elements of stream1.  Create an 

ordered pair from those values labeled orderedpair1.  If they are in 

table1 then go to step 5. If not then append orderedpair1 to table1. 

Step 5: Count out of stream1 ordered pairs starting at the beginning 

of the stream, until an ordered pair doesn’t have the value as 

orderedpair1.  Delete those ordered pairs from stream1.  Append the 
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count to count1.  Append the index value of ordered pair1 to pattern1.  

If stream1 is empty, then go to step 6.  Otherwise, go to step 4.  

Note: Count1 and pattern0 have the same number of elements.  The 

maximum value of pattern1 is the size of table1.  The sum of the 

elements of count1 is equal to the size of stream0. 

Step6: Create an empty table labeled tableX where X is 1+ the current 

highest table number.  Create an empty stream labeled patternX. 

Step 7: Look at the first pair of elements in pattern(X-1).  Create an 

ordered pair labeled orderedpair1.  If orderedpair1 is in tableX, append 

its index value to patternX.  If orderedpair1 is not in tableX, then 

append it to tableX and append add its index value to patternX.  

Delete orderedpair1 from pattern(X-1). 

Step 8: If pattern(X-1) is empty, then go to step 9, otherwise, go to 

step 7. 

Step 9: If the X is equal to reduction1, then go to step 10.  Otherwise, 

goto step 6. 

Step 10: Create an empty table labeled counttableX where X is 1+ the 

current highest counttable number.  Create an empty stream labeled 

countX. 
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Note: CounttableX starts at X equals 1 on step 10 whereas tableX 

starts at X equals 2 on step 6 since table1 is used on step 1. 

Note: Steps 6 through 9 could be preformed in parallel to steps 10 

through 13. 

Step 11: Look at the first pair of elements in count(X-1).  Create an 

ordered pair labeled orderedpair1.  If orderedpair1 is in counttableX, 

append its index value to countX.  If orderedpair1 is not in 

counttableX, then append it to counttableX and append add its index 

value to countX.  Delete orderedpair1 from count(X-1). 

Step 12: If count(X-1) is empty, then go to step 12, otherwise, goto 

step 7. 

Step 13: If the X is equal to reduction1, then go to step 14.  

Otherwise, go to step 10. 

Step 14: Done. 

 

3.4.4 ALGORITHM 2: PHILOSOPHY 

This approach is very similar to algorithm 1 but takes features into 

consideration found in Huffman encoding as well. This approach differs 

from the first fundamentally in that it is a dynamic solution instead of 

a static one. This allows for a better gauge of what constitutes a 

worthwhile pattern.  This also lets us ignore the troublesome unit one 
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occurrence pattern that exists only once in a source image.  By its 

very nature, algorithm 1 must preserve these anomalies, where as 

algorithm 2 allows us to skip the anomaly and continue on to 

worthwhile patterns. 

To do this we flatten the image to a single stream of data.  We then 

run a frequency count on the all pairs.  There is a problem with pair 

overlap in frequency counts, but this is solved easily as long as you 

know to look for it. The highest frequency pattern of pixel pairs is 

viewed as the most worthwhile pattern and encoded to a new value, 

replacing all occurrences of that pair with the new value.  This process 

is then applied several times using the pixel values and encoded 

values as source.  The dictionary, which is clearly unique for each 

individual image, is then pre-pended to the front of the final 

recursively encoded stream.  Decoding the stream is simply a 

dictionary lookup applied in order several times. 

The strength of this algorithm, like algorithm 1, is that if a particular 

combination of pixels is never next to each other their combination will 

never appear and so need not be represented.  Unlike algorithm 1, 

however, you need not represent existing combinations that add little 

information.  You may instead leave them as individual pixels and not 

as encoded values. 



 34

 

3.4.5 ALGORITHM 2: PSEUDO CODE 

Please refer to the companion CD for the C# reference 

implementation.  

Step 1: Label the image stream0.  Find the maximum value of stream0 

and label it max1. 

Step2: Select a number that is a power of 2 –1 and is greater than 

max1 and label this number stop1.  

Step 3: Flatten the two-dimensional image source into a stream of 

pixel information.  Create an empty stream labeled stream1.  Take the 

pixel information from stream0 left to right, top to bottom and append 

it to the back of stream1. 

Step 4: Examine stream1 for the pair of pixels with the greatest 

frequency. Label this pair symbol1. 

Note: Pair overlap can occur and prevent an accurate count of 

frequencies. Example in the stream {1,1,1,2} the symbol {1,1} occurs 

two times, but could only be replaced once.  Therefore, it should only 

be counted once. 

Step 5: Search the stream for all occurrences of symbol1 and replace 

it with the value of max1 + n, where n is the number of times step 4 

has been completed. 
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Step 6: If the value of max1 + n is equal to stop1 then stop. 

Otherwise, go to step 4.  

Step 7: Done. 

 

3.5 ALGORITHM MACHINERY 

Below are the different 48 different approaches used in conjunction 

with the two algorithms to determine fitness.  As described above 

these are merely the surrounding equipment used to properly input, 

format, or manipulate in some way the codes going into the main 

algorithms.  As above, they will be provided with a philosophy section 

as well as a pseudo code section. However, unlike above they are 

partitioned into logical groupings each sharing a common theme.  This 

is done to reduce needless representation of identical thoughts, 

nothing more. 

 

3.5.1 APPROACH 1-6: PHILOSOPHY 

These approaches are the most basic and naive.  It attempts to 

directly convert the image into a pattern reduction step, possibly 

feeding the reduction step into a Huffman compressor.  Even though 

this process is horribly naïve it is an important step in the thesis 

research. It provides a baseline against which I can compare my 
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results and also provides a foundation on which I can expand on to 

come up with new surrounding processes. 

Approach 1 works as a strict base line. Get the picture information in 

as quickly as possible in the most undiluted form and start the 

algorithms.  Algorithm 2 expands this a little by Huffman encoding the 

resulting values. This is nothing special, but it is interesting in that 

Huffman is known to reduce the source toward its entropy, thus 

allowing us to see if we have in fact seen reduction. It is important to 

note that Huffman encoding can yield strange results when you include 

the dictionary as part of the size consideration.  We must do this, 

however, since we are dealing with unique sources.  Approach 3 

manipulates JPG compression into giving us just the difference 

between lossless and lossy compression to feed the algorithms. 

Approach 4, like approach 2, adds Huffman compression to the result 

of approach 3.  Approach 5 attempts to derive pictorially linked units 

(PLUs) from the source by claiming all values that are close should 

really be considered the same value, synonyms for pixels as it were, 

then reverts back to approach 1. Approach 6 follows the theory of 

approaches 2 and 4 by adding Huffman compression to approach 5.  
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3.5.2 APPROACH 1-6: PSEUDO CODE 

3.5.2.1 APPROACH 1 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: For each plane, encode the values using one of the algorithms. 

Step 4: Save the three compressed streams. 

 

3.5.2.2 APPROACH 2 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: For each plane, encode the values using one of the algorithms. 

Step 4: For each compressed stream, Huffman encode the values. 

Step 5: Save the three double compressed streams. 

 

3.5.2.3 APPROACH 3 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 
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Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

stream and the RGB stream. 

Step 6: For each difference plane, encode the values using one of the 

algorithms. 

Step 7: Save the compressed difference streams 

Step 8: Save the JPG image as raw JPG data. 

 

3.5.2.4 APPROACH 4 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 

Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

stream and the RGB stream. 

Step 6: For each difference plane, encode the values using one of the 

algorithms. 
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Step 7: For each compressed stream, Huffman encode the values. 

Step 8: Save the double compressed difference streams 

Step 9: Save the JPG image as raw JPG data. 

 

3.5.2.5 APPROACH 5 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane for the original 

image 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 4: For each of the planes encode the values using one of the 

algorithms. 

Step 5: Save the compressed streams. 

 

3.5.2.6 APPROACH 6 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane for the original 

image 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 
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Step 4: For each of the planes encode the values using one of the 

algorithms. 

Step 5: For each compressed stream, Huffman encode the values. 

Step 6: Save the double compressed streams 

 

3.5.3 APPROACH 7-12: PHILOSOPHY 

These approaches are a continuation of the naiveté above.  It attempts 

to directly convert the image into a pattern reduction step, possibly 

feeding the reduction step into a Huffman compressor.  These six 

processes differ from above in that they change the color space from 

RGB to YCrCb (color space used by televisions).  Even though this 

seems to be a trivial modification to the algorithms some research 

suggests that it improves compression [3, 10] by provably reducing 

the interdependence of the pixels. This can also be seen, pictorially, in 

the comparison between approaches 1-6 vs. 7-12, while not all 

achieve better compression, most do.  Like the above it too provides a 

baseline against which I can compare my results and also provides a 

foundation on which I can expand on to come up with new surrounding 

processes. 

Approach 7 deals with a strict base line. Get the picture information in 

as quickly as possible in the most undiluted form, then convert it to 

the new color space and start the algorithms.  Algorithm 8 expands 
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this a little by Huffman encoding the resulting values. This is nothing 

special, but it is interesting in that Huffman is known to reduce the 

source toward its entropy, thus allowing us to see if we have in fact 

seen reduction.  Although, Huffman encoding can yield strange results 

when you include the dictionary as part of the size consideration.  We 

must do this, however, since we are dealing with unique sources.  

Approach 9 manipulates JPG compression into giving us just the 

difference between lossless and lossy formats in the new color space.  

This is done by first calculating the lossy jpg then converting it to the 

new color space. Then the lossless original is converted to the new 

color space. Then the difference is taken.  This leaves us with a color 

space difference which can then be processed by the algorithms.  

Approach 10, like approach 8, adds Huffman compression to the result 

of approach 9.  Approach 11 attempts to derive pictorially linked units 

(PLUs) from the source by claming all values that are close should 

really be considered the same value, synonyms for pixels as it were, 

then reverts back to approach 7.  Approach 12 follows approaches 8 

and 10 in concept by adding Huffman compression to approach 11. 
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3.5.4 APPROACH 7-12: PSEUDO CODE 

 

3.5.4.1 APPROACH 7 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane. 

Step 3: For each plane, encode the values using one of the algorithms. 

Step 4: Save the three compressed streams. 

 

3.5.4.2 APPROACH 8 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane. 

Step 3: For each plane, encode the values using one of the algorithms. 

Step 4: For each compressed stream, Huffman encode the values. 

Step 5: Save the three double compressed streams. 

 

3.5.4.3 APPROACH 9 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the YCrCb color plane for the 

compressed JPG image. 
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Step 4: Partition the image into the YCrCb color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

stream and the YCrCb stream. 

Step 6: For each difference plane, encode the values using one of the 

algorithms. 

Step 7: Save the compressed difference streams 

Step 8: Save the JPG image as raw JPG data. 

 

3.5.4.4 APPROACH 10 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the YCrCb color plane for the 

compressed JPG image. 

Step 4: Partition the image into the YCrCb color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

stream and the YCrCb stream. 

Step 6: For each difference plane, encode the values using one of the 

algorithms. 
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Step 7: For each compressed stream, Huffman encode the values. 

Step 8: Save the double compressed difference streams 

Step 9: Save the JPG image as raw JPG data. 

 

3.5.4.5 APPROACH 11 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane for the original 

image 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 4: For each of the planes encode the values using one of the 

algorithms. 

Step 5: Save the compressed streams. 

 

3.5.4.6 APPROACH 12 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane for the original 

image 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 
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Step 4: For each of the planes encode the values using one of the 

algorithms. 

Step 5: For each compressed stream, Huffman encode the values. 

Step 6: Save the double compressed streams 

 

3.5.5 APPROACH 13-18: PHILOSOPHY 

These approaches are the beginning of the true research.   

The above were primarily baselines; these are intended to change the 

underlying data into a more compatible form to accommodate a 

potential  recursive step.  It occurred to me that the simplest way to 

accomplish this was to change the base of the underlying data.  To this 

end I converted the original base 256 values to base 2 values by 

simply converting the single byte (8bits) into eight one bit units.  I 

have tried other combinations but omitted them from the research 

since they also proved fruitless. 

Approach 13 deals with a strict base line.  Get the picture information 

in as quickly as possible in the most undiluted form, convert it to the 

base2 format, and start the algorithms.  Algorithm 14 expands this a 

little by Huffman encoding the resulting values. While this is not 

unique, it is interesting in that Huffman is known to reduce the source 

toward its entropy, thus allowing us to see if we have in fact seen 
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reduction.  Conversely, Huffman encoding can yield strange results 

when you include the dictionary as part of the size consideration.  We 

must do this, since we are dealing with unique sources.  Approach 15 

manipulates JPG compression into giving us just the difference 

between lossless and lossy formats. This result is then converted to 

the new base2 format, then processed by the algorithms.  Approach 

16, like approach 14, adds Huffman compression to the result of 

approach 15.  Approach 17 attempts to derive pictorial linked units 

(PLUs) from the source by claiming all values that are close should 

really be considered the same value, synonyms for pixels as it were, 

then reverts back to approach 13.  Approach 18 follows approaches 14 

and 16 in adding Huffman compression to approach 17. 

 

3.5.6 APPROACH 13-18: PSEUDO CODE 

 

3.5.6.1 APPROACH 13 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: Re-Code the color planes from base2^8 to base2^1. 

Step 4: For each plane, encode the values using one of the algorithms. 

Step 5: Save the three compressed streams. 
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3.5.6.2 APPROACH 14 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: Re-Code the color planes from base2^8 to base2^1. 

Step 4: For each plane, encode the values using one of the algorithms. 

Step 5: For each compressed stream, Huffman encode the values. 

Step 6: Save the three double compressed streams. 

 

3.5.6.3 APPROACH 15 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 

Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

stream and the RGB stream. 

Step 6: Re-Code the difference planes from base2^8 to base2^1. 



 48

Step 7: For each difference plane, encode the values using one of the 

algorithms. 

Step 8: Save the compressed difference streams 

Step 9: Save the JPG image as raw JPG data. 

 

3.5.6.4 APPROACH 16 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 

Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

stream and the RGB stream. 

Step 6: Re-Code the difference planes from base2^8 to base2^1. 

Step 7: For each difference plane, encode the values using one of the 

algorithms. 

Step 8: For each compressed stream, Huffman encode the values. 

Step 9: Save the double compressed difference streams 
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Step 10: Save the JPG image as raw JPG data. 

 

3.5.6.5 APPROACH 17 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane for the original 

image 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 4: Re-Code the color planes from base2^8 to base2^1. 

Step 5: For each of the planes encode the values using one of the 

algorithms. 

Step 6: Save the compressed streams. 

 

3.5.6.6 APPROACH 18 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane for the original 

image 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 4: Re-Code the color planes from base2^8 to base2^1. 
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Step 5: For each of the planes encode the values using one of the 

algorithms. 

Step 6: For each compressed stream, Huffman encode the values. 

Step 7: Save the double compressed streams. 

 

3.5.7 APPROACH 19-24: PHILOSOPHY 

These approaches are similar in scope and intent to approaches 7-12.  

They are intended to show the difference that color space makes to 

the algorithms.  This might seem redundant since we already 

established numbers for changing the base as well as changing the 

color space. While I admit this was done primarily for completeness, 

the results are significantly different between 1-6 and 7-12 vs. 13-18 

and 19-24. 

Approach 19 deals with a strict base line.  Get the picture information 

in as quickly as possible in the most undiluted form, convert it to the 

new color space, then convert it to the base2 format, and then start 

the algorithms after all the conversions are complete.  Algorithm 20 

expands this a little by Huffman encoding the resulting values. This is 

nothing special, but it is interesting in that Huffman is known to reduce 

the source toward its entropy, thus allowing us to see if we have in 

fact seen reduction.  Conversely, Huffman encoding can yield strange 

results when you include the dictionary as part of the size 
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consideration.  We must do this since we are dealing with unique 

sources.  Approach 21 manipulates JPG compression into giving us just 

the difference between lossless and lossy formats in the new color 

space.  This is done by first calculating the lossy jpg then converting it 

to the new color space. Then the lossless original is converted to the 

new color space. Then the difference is taken.  This leaves us with a 

color space difference which can then be converted to base2 format 

and finally processed by the algorithms.  Approach 22, like approach 

20, adds Huffman compression to the result of approach 21.  Approach 

23 attempts to derive PLUs from the source by claiming all values that 

are close should really be considered the same value, synonyms for 

pixels as it were, then reverts back to approach 19.  Approach 24 

follows approaches 20 and 22 in adding Huffman compression to 

approach 23. 

 

3.5.8 APPROACH 19-24: PSEUDO CODE 

 

3.5.8.1 APPROACH 19 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane. 

Step 3: Re-Code the color planes from base2^8 to base2^1. 

Step 4: For each plane, encode the values using one of the algorithms. 
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Step 5: Save the three compressed streams. 

 

3.5.8.2 APPROACH 20 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane. 

Step 3: Re-Code the color planes from base2^8 to base2^1. 

Step 4: For each plane, encode the values using one of the algorithms. 

Step 5: For each compressed stream, Huffman encode the values. 

Step 6: Save the three double compressed streams. 

 

 

3.5.8.3 APPROACH 21 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the YCrCb color plane for the 

compressed JPG image. 

Step 4: Partition the image into the YCrCb color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

YCrCb stream and the YCrCb stream. 
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Step 6: Re-Code the difference planes from base2^8 to base2^1. 

Step 7: For each difference plane, encode the values using one of the 

algorithms. 

Step 8: Save the compressed difference streams. 

Step 9: Save the JPG image as raw JPG data. 

 

3.5.8.4 APPROACH 22 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the YCrCb color plane for the 

compressed JPG image. 

Step 4: Partition the image into the YCrCb color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

YCrCb stream and the YCrCb stream. 

Step 6: Re-Code the difference planes from base2^8 to base2^1. 

Step 7: For each difference plane, encode the values using one of the 

algorithms. 

Step 8: For each compressed stream, Huffman encode the values. 
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Step 9: Save the double compressed difference streams. 

Step 10: Save the JPG image as raw JPG data. 

 

3.5.8.5 APPROACH 23 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane for the original 

image 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 4: Re-Code the color planes from base2^8 to base2^1. 

Step 5: For each of the planes encode the values using one of the 

algorithms. 

Step 6: Save the compressed streams. 

 

3.5.8.6 APPROACH 24 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane for the original 

image 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 
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Step 4: Re-Code the color planes from base2^8 to base2^1. 

Step 5: For each of the planes encode the values using one of the 

algorithms. 

Step 6: For each compressed stream, Huffman encode the values. 

Step 7: Save the double compressed streams 

 

3.5.9 APPROACH 25-30: PHILOSOPHY 

These approaches continue the true research.  As above, we have 

attempted to force the underlying information to reveal itself so that 

we might compress it.  These approaches continue on the assumption 

that a different underlying structure may provide a better 

representation. Where approach 13-18 and 19-24 use a simple 

modification to the underlying data, approach 25-30 moves to a very 

different structure in the form of Huffman compression.  While both 

converting a single byte to eight one bit values and Huffman 

compression yield bit streams, they are vastly different.   

Approach 25 deals with a strict base line. Get the picture information 

in as quickly as possible in the most undiluted form.  Immediately run 

the Huffman algorithm to produce a new sequence. Finally, run the 

encoding algorithms.  Algorithm 26 expands this a little by Huffman 

encoding the resulting values. This is nothing special, but it is 
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interesting in that Huffman is known to reduce the source toward its 

entropy, thus allowing us to see if we have in fact seen reduction. 

Conversely, it is important to note that Huffman encoding can yield 

strange results when you include the dictionary as part of the size 

consideration.  We must do this since we are dealing with unique 

sources.  I am aware that compressing a Huffman stream is 

considered pointless, but we have altered the intermediate values, so I 

believe you should run the experiment since it really costs nothing.  

Approach 27 manipulates JPG compression into giving us just the 

difference between lossless and lossy compression to fed the 

algorithms. Approach 28, like approach 26, adds Huffman compression 

to the result of approach 27. Approach 29 attempts to derive PLUs 

from the source then reverts back to approach 25. Approach 30 

follows approaches 26 and 28 in adding Huffman compression to 

approach 29.  

 

3.5.10 APPROACH 25-30: PSEUDO CODE 

 

3.5.10.1 APPROACH 25 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: For each plane, compress the values using Huffman. 
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Step 4: For each stream, encode the values using one of the 

algorithms. 

Step 5: Save the three double compressed streams. 

 

3.5.10.2 APPROACH 26 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: For each plane, compress the values using Huffman. 

Step 4: For each stream, encode the values using one of the 

algorithms. 

Step 5: For each double compressed stream, Huffman encode the 

values. 

Step 6: Save the three triple compressed streams. 

 

3.5.10.3 APPROACH 27 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 
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Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

stream and the RGB stream. 

Step 6: For each difference plane, compress the values using Huffman. 

Step 7: For each stream, encode the values using one of the 

algorithms. 

Step 8: Save the double compressed streams. 

Step 9: Save the JPG image as raw JPG data. 

 

3.5.10.4 APPROACH 28 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 

Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 5: For each plane, calculate the difference between the JPG 

stream and the RGB stream. 

Step 6: For each difference plane, compress the values using Huffman 
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Step 7: For each stream, encode the values using one of the 

algorithms. 

Step 8: For each double compressed stream, Huffman encode the 

values. 

Step 9: Save the triple compressed difference streams. 

Step 10: Save the JPG image as raw JPG data. 

 

3.5.10.5 APPROACH 29 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane for the original 

image. 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 4: For each plane, compress the values using Huffman. 

Step 5: For each of the streams, encode the values using one of the 

algorithms. 

Step 6: Save the double compressed streams. 
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3.5.10.6 APPROACH 30 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane for the original 

image. 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 4: For each plane, compress the values using Huffman. 

Step 4: For each of the streams, encode the values using one of the 

algorithms. 

Step 5: For each double compressed stream, Huffman encode the 

values. 

Step 6: Save the triple compressed streams 

 

3.5.11 APPROACH 31-36: PHILOSOPHY 

The remainder of the approaches starting with approaches 31-36 move 

into the realm of modern image compression.  By this I mean the use 

of wavelets, namely the Haar wavelet, to compress images.  It is 

important to note that when I refer to the Haar wavelet I do not mean 

the true Haar wavelet but a modified version.  While it is known that 

the Haar wavelet is uniquely reversible, a necessary quality in lossless 

compression, it converts four bytes (4*2^8) to a single byte (1*2^8) 
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and three floats (these can fit in 3*2^9).  This is, on its face, a bad 

idea when it comes to compression to first enlarge your space then try 

to reduce past it.  To this end I converted the Haar wavelet to one that 

functions similarly to the original but producing slightly different 

numeric results. 

Approach 31 deals with a strict base line. Get the picture information 

in as quickly as possible in the most undiluted form by converting it 

using the modified Haar wavelet, and then starting the algorithms.  

Algorithm 32 expands this a little by Huffman encoding the resulting 

values. This is nothing special, but it is interesting in that Huffman is 

known to reduce the source toward its entropy, thus allowing us to see 

if we have in fact seen reduction. Conversely, Huffman encoding can 

yield strange results when you include the dictionary as part of the 

size consideration.  We must do this since we are dealing with unique 

sources.  Approach 33 manipulates JPG compression into giving us just 

the difference between lossless and lossy compression.  This is then 

converted using the modified Haar wavelet then fed into algorithms.  

Approach 34, like approach 32, adds Huffman compression to the 

result of approach 33.  Approach 35 attempts to derive PLUs from the 

source then reverts back to approach 31.  Approach 36 follows 

approaches 32 and 34 in adding Huffman compression to approach 35.  
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3.5.12 APPROACH 31-36: PSEUDO CODE 

 

3.5.12.1 APPROACH 31 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: For each plane, convert to the frequency domain using Haar 

wavelets. 

Step 4: For each plane, remember and remove the first value, it is an 

artifact of the space domain. 

Step 4: For each plane, encode the values using one of the algorithms. 

Step 5: Save the three compressed streams. 

 

3.5.12.2 APPROACH 32 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: For each plane, convert to the frequency domain using Haar 

wavelets. 

Step 4: For each plane, remember and remove the first value, it is an 

artifact of the space domain. 

Step 5: For each plane, encode the values using one of the algorithms. 
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Step 6: For each compressed stream, Huffman encode the values. 

Step 7: Save the three double compressed streams. 

 

3.5.12.3 APPROACH 33 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 

Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 5: For each plane (both JPG and RGB), convert to the frequency 

domain using Haar wavelets. 

Step 6: For each plane (only RGB), remember and remove the first 

value, it is an artifact of the space domain. 

Step 7: For each plane, calculate the difference between the JPG 

stream and the RGB stream. 

Step 8: For each difference plane, encode the values using one of the 

algorithms. 

Step 9: Save the compressed difference streams 

Step 10: Save the JPG image as raw JPG data. 
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3.5.12.4 APPROACH 34 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 

Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 5: For each plane (both JPG and RGB), convert to the frequency 

domain using Haar wavelets. 

Step 6: For each plane (only RGB), remember and remove the first 

value, it is an artifact of the space domain. 

Step 7: For each plane, calculate the difference between the JPG 

stream and the RGB stream. 

Step 8: For each difference plane, encode the values using one of the 

algorithms. 

Step 9: For each compressed stream, Huffman encode the values. 

Step 10: Save the double compressed difference streams 

Step 11: Save the JPG image as raw JPG data. 
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3.5.12.5 APPROACH 35 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane for the original 

image. 

Step 3: For each plane, convert to the frequency domain using Haar 

wavelets. 

Step 4: For each plane, remember and remove the first value, it is an 

artifact of the space domain. 

Step 5: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 6: For each of the planes, encode the values using one of the 

algorithms. 

Step 7: Save the compressed streams. 

 

3.5.12.6 APPROACH 36 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane for the original 

image. 

Step 3: For each plane, convert to the frequency domain using Haar 

wavelets. 
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Step 4: For each plane, remember and remove the first value, it is an 

artifact of the space domain. 

Step 5: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 6: For each of the planes, encode the values using one of the 

algorithms. 

Step 7: For each compressed stream, Huffman encode the values. 

Step 8: Save the double compressed streams 

 

3.5.13 APPROACH 37-42: PHILOSOPHY 

These approaches are the Haar wavelet corollary to approaches 7-12 

and 19-24.  The literature review failed to turn up any direct reference 

to the combined effect of both. This set of approaches was devised to 

determine the impact of that combination. 

Approach 37 deals with a strict base line. Get the picture information 

in as quickly as possible in the most undiluted form. Convert that to 

new color space before passing the information off to the modified 

Haar wavelet.  Finally, allow the algorithms to run.  Algorithm 38 

expands this a little by Huffman encoding the resulting values. This is 

nothing special, but interesting in that Huffman is known to reduce the 

source toward its entropy, thus allowing us to see if we have in fact 
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seen reduction. Conversely, Huffman encoding can yield strange 

results when you include the dictionary as part of the size 

consideration.  We must do this since we are dealing with unique 

sources. Approach 39 manipulates JPG compression into giving us just 

the difference between lossless and lossy formats in the new color 

space.  This is done by first calculating the lossy jpg then converting it 

to the new color space. Then the lossless original is converted to the 

new color space. Finally the difference is calculated.  This leaves us 

with a color space difference which can then be converted using the 

modified Haar wavelet and then processed by the algorithms.  

Approach 40, like approach 38, adds Huffman compression to the 

result of approach 39.  Approach 41 attempts to derive PLUs from the 

source then reverts back to approach 37.  Approach 42 follows 

approaches 38 and 40 in adding Huffman compression to approach 41.  

 

3.5.14 APPROACH 37-42: PSEUDO CODE 

 

3.5.14.1 APPROACH 37 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane. 

Step 3: For each plane, convert to the frequency domain using Haar 

wavelets. 
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Step 4: For each plane, remember and remove the first value, it is an 

artifact of the space domain. 

Step 5: For each plane, encode the values using one of the algorithms. 

Step 6: Save the three compressed streams. 

 

3.5.14.2 APPROACH 38 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane. 

Step 3: For each plane, convert to the frequency domain using Haar 

wavelets. 

Step 4: For each plane, remember and remove the first value, it is an 

artifact of the space domain. 

Step 5: For each plane, encode the values using one of the algorithms. 

Step 6: For each compressed stream, Huffman encode the values. 

Step 7: Save the three double compressed streams. 

 

3.5.14.3 APPROACH 39 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 
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Step 3: Partition the image into the YCrCb color plane for the 

compressed JPG image. 

Step 4: Partition the image into the YCrCb color plane for the 

uncompressed RGB image. 

Step 5: For each plane (both JPG and YCrCb), convert to the frequency 

domain using Haar wavelets. 

Step 6: For each plane (only YCrCb), remember and remove the first 

value, it is an artifact of the space domain. 

Step 7: For each plane, calculate the difference between the JPG 

stream and the YCrCb stream. 

Step 8: For each difference plane, encode the values using one of the 

algorithms. 

Step 9: Save the compressed difference streams 

Step 10: Save the JPG image as raw JPG data. 

 

3.5.14.4 APPROACH 40 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the YCrCb color plane for the 

compressed JPG image. 
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Step 4: Partition the image into the YCrCb color plane for the 

uncompressed RGB image. 

Step 5: For each plane (both JPG and YCrCb), convert to the frequency 

domain using Haar wavelets. 

Step 6: For each plane (only YCrCb), remember and remove the first 

value, it is an artifact of the space domain. 

Step 7: For each plane, calculate the difference between the JPG 

stream and the YCrCb stream. 

Step 8: For each difference plane, encode the values using one of the 

algorithms. 

Step 9: For each compressed stream, Huffman encode the values. 

Step 10: Save the double compressed difference streams 

Step 11: Save the JPG image as raw JPG data. 

 

3.5.14.5 APPROACH 41 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane for the original 

image 

Step 3: For each plane, convert to the frequency domain using Haar 

wavelets. 
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Step 4: For each plane, remember and remove the first value, it is an 

artifact of the space domain. 

Step 5: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 6: For each of the planes, encode the values using one of the 

algorithms. 

Step 7: Save the compressed streams. 

 

3.5.14.6 APPROACH 42 

Step 1: Load the image into memory. 

Step 2: Partition the image into the YCrCb color plane for the original 

image 

Step 3: For each plane, convert to the frequency domain using Haar 

wavelets. 

Step 4: For each plane, remember and remove the first value, it is an 

artifact of the space domain. 

Step 5: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new plane. 

Step 6: For each of the planes, encode the values using one of the 

algorithms. 
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Step 7: For each compressed stream, Huffman encode the values. 

Step 8: Save the double compressed streams. 

 

3.5.15 APPROACH 43-48: PHILOSOPHY 

These final 6 approaches were inspired by the JPG format.  They look 

at only a small region of any picture at a given instance.  They then 

interpret large pictures as a mosaic of much smaller picture tiles laid 

side by side.  The underlying concept is that while images may change 

drastically, in a small region they probably change very little. 

Approach 43 deals with a strict base line. Get the picture information 

in as quickly as possible in the most undiluted form.  This information 

can then be tiled into 8x8 blocks.  For all of the tiles, convert them 

using the modified Haar wavelet then normalize all the tiles by 

averaging their values at each of the 8x8 positions.  After this start the 

algorithms.  Algorithm 44 expands this a little by Huffman encoding 

the resulting values.  While this is  nothing special, it is  interesting in 

that Huffman is known to reduce the source toward its entropy, thus 

allowing us to see if we have in fact seen reduction. Conversely, 

Huffman encoding can yield strange results when you include the 

dictionary as part of the size consideration.  We must do this since we 

are dealing with unique sources.  Approach 45 manipulates JPG 

compression into giving us just the difference between lossless and 
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lossy compression.  This is then converted using the modified Haar 

wavelet, normalized, and then fed into the algorithms.  Approach 46, 

like approach 44, adds Huffman compression to the result of approach 

45.  Approach 47 attempts to derive PLUs from the source then reverts 

back to approach 43.  Approach 48 follows approaches 44 and 46 in 

adding Huffman compression to approach 47.  

 

3.5.16 APPROACH 43-48: PSEUDO CODE 

 

3.5.16.1 APPROACH 43 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: For each plane, break up the plane into several 8 pixel by 8 

pixel units called tiles 

Step 3: For each tile, convert to the frequency domain using modified 

Haar wavelets. 

Step 4: For each tile, remember and remove the first value, as it is an 

artifact of the space domain. 

Step 5: For each plane, normalize the values of each tile across all 

tiles values. 

Step 6: For each plane, encode the values using one of the algorithms. 
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Step 7: Save the three compressed streams. 

 

3.5.16.2 APPROACH 44 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: For each plane, break up the plane into several 8 pixel by 8 

pixel units called tiles 

Step 3: For each tile, convert to the frequency domain using modified 

Haar wavelets. 

Step 4: For each tile, remember and remove the first value, it is an 

artifact of the space domain. 

Step 5: For each plane, normalize the values of each tile across all 

tiles values. 

Step 6: For each plane, encode the values using one of the algorithms. 

Step 7: For each compressed stream, Huffman encode the values. 

Step 8: Save the three double compressed streams. 

 

3.5.16.3 APPROACH 45 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 
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Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 

Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 4: For each plane (both JPG and RGB), break up the plane into 

several 8 pixel by 8 pixel units called tiles 

Step 5: For each tile, convert to the frequency domain using Haar 

wavelets. 

Step 6: For each tile, remember and remove the first value, it is an 

artifact of the space domain. 

Step 7: For each plane, normalize the values of each tile across all 

tiles values. 

Step 9: For each tile, calculate the difference between the JPG tile and 

the RGB tile. 

Step 10: Concatenate all tiles back into their appropriate planes. 

Step 11: For each difference plane, encode the values using one of the 

algorithms. 

Step 12: Save the compressed difference streams 

Step 13: Save the JPG image as raw JPG data. 
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3.5.16.4 APPROACH 46 

Step 1: Load the image into memory. 

Step 2: Calculate the JPG compressed image from the RGB image. 

Step 3: Partition the image into the RGB color plane for the 

compressed JPG image. 

Step 4: Partition the image into the RGB color plane for the 

uncompressed RGB image. 

Step 4: For each plane (both JPG and RGB), break up the plane into 

several 8 pixel by 8 pixel units called tiles 

Step 5: For each tile, convert to the frequency domain using modified 

Haar wavelets. 

Step 6: For each tile, remember and remove the first value, it is an 

artifact of the space domain. 

Step 7: For each plane, normalize the values of each tile across all 

tiles values. 

Step 9: For each tile, calculate the difference between the JPG tile and 

the RGB tile. 

Step 10: Concatenate all tiles back into their appropriate planes. 
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Step 11: For each difference plane, encode the values using one of the 

algorithms. 

Step 12: For each compressed stream, Huffman encode the values. 

Step 13: Save the double compressed difference streams 

Step 14: Save the JPG image as raw JPG data. 

 

3.5.16.5 APPROACH 47 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new stream. 

Step 4: For each plane, break up the plane into several 8 pixel by 8 

pixel units called tiles 

Step 5: For each tile, convert to the frequency domain using Haar 

wavelets. 

Step 6: For each tile, remember and remove the first value, it is an 

artifact of the space domain. 

Step 7: For each plane, normalize the values of each tile across all 

tiles values. 

Step 8: For each plane, encode the values using one of the algorithms. 
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Step 9: Save the three compressed streams. 

 

3.5.16.6 APPROACH 48 

Step 1: Load the image into memory. 

Step 2: Partition the image into the RGB color plane. 

Step 3: Reduce the number of colors in each plane by removing the 

least significant bit and store this bit as a new stream. 

Step 4: For each plane, break up the plane into several 8 pixel by 8 

pixel units called tiles 

Step 5: For each tile, convert to the frequency domain using modified 

Haar wavelets. 

Step 6: For each tile, remember and remove the first value, it is an 

artifact of the space domain. 

Step 7: For each plane, normalize the values of each tile across all 

tiles values. 

Step 8: For each plane, encode the values using one of the algorithms. 

Step 9: For each compressed stream, Huffman encode the values. 

Step 10: Save the three double compressed streams. 

 



 79

4.0 DATA SUMMARY 

 

4.1 COMPARATIVE PICTORIAL SUMMARY OF APPROACHES 

This section includes a comparative summary of all the results on a 

given approach. They are grouped into 6 unit blocks for easy reference 

to the approaches described in the previous section. This also allows 

for a quick glance in order to determine the value of the approach.  In 

addition there are 2 indicator lines corresponding to normalized file 

size and normalized average jpeg file size.  As can be seen, every even 

numbered approach has only 5 columns.  This is because every even 

numbered approach automatically included Huffman encoding as a 

final procedure, so it is entirely redundant to include this data.  The 

graphs were rendered in Matlab for ease of research.  A diligent reader 

will note that the windows may not be labeled in order. This is an 

artifact of the way Matlab titles modal windows, nothing more. The 

graph title, however, is in fact correct. 
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FIGURE 1: APPROACH 1-6 PICTORIAL RESULTS  
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FIGURE 2: APPROACH 7-12 PICTORIAL RESULTS 
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FIGURE 3: APPROACH 13-18 PICTORIAL RESULTS 
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FIGURE 4: APPROACH 19-24 PICTORIAL RESULTS 
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FIGURE 5: APPROACH 25-30 PICTORIAL RESULTS 
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FIGURE 6: APPROACH 31-36 PICTORIAL RESULTS 
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FIGURE 7: APPROACH 37-42 PICTORIAL RESULTS 
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FIGURE 8: APPROACH 43-48 PICTORIAL RESULTS 
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4.2 DATA BASED SUMMARY OF APPROACHES  

This section includes the numeric results of the compression as 

produced by my reference implementation.  Personally, I feel that it is 

better to display the data result as it is produced by the computer, 

literally, as opposed to a doctored or edited version.  However, there 

are about 20 pages of output for each run, and as there are 48 runs, I 

opted, for sake of compactness, to put a chart based version of the 

numeric results here.  They are just a replication of the graphical data, 

but some prefer to review hard numbers as opposed to the quick 

approximant information provided by a graph.  As with Appendix I the 

actual results appear on the companion CD.
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TABLE 4: APPROACH 1-6 DATA RESULTS 

Approach-Picture Algorithm 1 
1 round 

Algorithm 1 
2 rounds 

Algorithm 1 4 
rounds 

Algorithm 2 
512 symbols 

Algorithm 2 
1024 symbols 

Huffman 
reference 

1-Floressence 0.92416172 0.867289365 1.469315528 0.465866811 0.445334922 0.602149734 
1-Lenna 1.0120765 1.71653278 3.804966649 0.953543992 0.921594281 0.917582767 
1-Aruba1 0.98984593 1.556902071 3.33174689 0.938935468 0.930718705 0.959224167 
1-Aruba2 0.97224227 1.524087448 3.133189376 0.910513513 0.895581361 0.949667312 
2-Floressence 0.54216691 0.843851954 1.469318542 0.440370149 0.419398213 0 
2-Lenna 1.00269935 1.716544223 3.804978092 0.879916489 0.857452008 0 
2-Aruba1 0.8951614 1.556903633 3.331748452 0.873498929 0.841695929 0 
2-Aruba2 0.83649754 1.52408901 3.133190939 0.805067105 0.787927683 0 
3-Floressence 0.78257845 0.668812989 1.108663386 0.332994088 0.329684351 0.37111584 
3-Lenna 0.80365194 1.227642959 2.721763642 0.698432013 0.701943836 0.603964978 
3-Aruba1 0.75325717 0.674661904 1.475347627 0.518603471 0.516602101 0.504110205 
3-Aruba2 0.70634008 0.651158652 1.340082402 0.480967019 0.479273805 0.481195142 
4-Floressence 0.35731863 0.590472057 1.1086664 0.300584587 0.300278496 0 
4-Lenna 0.65061425 1.227654402 2.721775086 0.628873241 0.638378814 0 
4-Aruba1 0.48463018 0.64553492 1.475349189 0.471900437 0.468694043 0 
4-Aruba2 0.46016062 0.597744917 1.340083964 0.439909244 0.436330632 0 
5-Floressence 0.99730814 0.814080062 1.20472077 0.431592967 0.417014117 0.642760407 
5-Lenna 1.00261543 1.380240716 3.059052545 0.887060927 0.874330884 0.91602902 
5-Aruba1 1.03549741 1.262965764 2.744885204 0.900922977 0.878966412 0.9620698 
5-Aruba2 1.00917908 1.303185005 2.717963408 0.861344876 0.822826487 0.949582764 
6-Floressence 0.51942407 0.669668973 1.204726799 0.407931513 0.393706979 0 
6-Lenna 0.86984257 1.351005612 3.059075432 0.837550827 0.833260859 0 
6-Aruba1 0.83858311 1.232876115 2.744888329 0.831914423 0.807604755 0 
6-Aruba2 0.80479263 1.272303524 2.717966533 0.784281189 0.757285956 0 
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TABLE 5: APPROACH 7-12 DATA RESULTS 

Approach-Picture Algorithm 1 
1 round 

Algorithm 1 
2 rounds 

Algorithm 1 
4 rounds 

Algorithm 2 
512 symbols 

Algorithm 2 
1024 symbols 

Huffman 
reference 

7-Floressence 0.8896812 0.8413885 1.4278234 0.4444716 0.4226222 0.6236669 
7-Lenna 0.9333275 1.7048008 3.7332693 0.9212662 0.8732565 0.8650643 
7-Aruba1 0.9027539 1.1109148 2.3313801 0.747119 0.7051309 0.8291292 
7-Aruba2 0.8505425 1.027785 2.0637973 0.6522326 0.6311076 0.7860468 
8-Floressence 0.5303121 0.8413915 1.4278264 0.4191983 0.3987772 0 
8-Lenna 0.9305417 1.7048123 3.7332807 0.833875 0.814003 0 
8-Aruba1 0.7261255 1.1109163 2.3313816 0.6820288 0.6460759 0 
8-Aruba2 0.6638988 1.0277865 2.0637989 0.5906097 0.5708481 0 
9-Floressence 0.7829271 0.6679105 1.0946348 0.3322744 0.328814 0.3764507 
9-Lenna 0.8065128 1.2175296 2.7402001 0.7014632 0.7027271 0.6054386 
9-Aruba1 0.7748224 0.6834254 1.4142071 0.5082275 0.5052638 0.5121501 
9-Aruba2 0.7279341 0.6569135 1.2715186 0.4616212 0.4597466 0.4874529 
10-Floressence 0.3598732 0.5878381 1.0946378 0.3005481 0.2999024 0 
10-Lenna 0.6582749 1.2175411 2.7402115 0.6304562 0.6397266 0 
10-Aruba1 0.4875994 0.6434653 1.4142086 0.462395 0.4588375 0 
10-Aruba2 0.4601985 0.6107618 1.2715202 0.4223891 0.4190169 0 
11-Floressence 0.9708969 0.7983482 1.1800379 0.4173781 0.4030853 0.6643773 
11-Lenna 0.9699359 1.3001821 2.9024725 0.8519529 0.8407232 0.8635398 
11-Aruba1 0.9874798 0.9382817 1.8732514 0.6884152 0.6652495 0.8330436 
11-Aruba2 0.9215544 0.937983 1.7193613 0.6173965 0.5954689 0.7905459 
12-Floressence 0.521554 0.6709905 1.1800439 0.3946326 0.381761 0 
12-Lenna 0.8173674 1.2709648 2.9024954 0.7989297 0.7983066 0 
12-Aruba1 0.7077114 0.8834691 1.8732545 0.6384308 0.6150487 0 
12-Aruba2 0.663075 0.850562 1.7193644 0.5690983 0.5503698 0 
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TABLE 6: APPROACH 13-18 DATA RESULTS 

Approach-Picture Algorithm 1 
1 round 

Algorithm 1  
2 rounds 

Algorithm 1  
4 rounds 

Algorithm 2 
512 symbols 

Algorithm 2 
1024 symbols 

Huffman 
reference 

13-Floressence 1.499991 1.2500176 0.9269872 0.4877533 0.4739812 0.999999 

13-Lenna 1.4999657 1.2500668 1.0246718 0.9893285 0.9730752 0.9999962 

13-Aruba1 1.4999953 1.2500091 0.9912629 0.9821196 0.9696308 0.9999995 

13-Aruba2 1.4999953 1.2500091 0.9748308 0.9404356 0.9297715 0.9999995 

14-Floressence 0.8023511 0.6743189 0.5696622 0.4541218 0.4395895 0 

14-Lenna 1.0964251 0.9781916 1.0246832 0.9042717 0.8933102 0 

14-Aruba1 1.1050386 0.999555 0.9163945 0.887062 0.8684292 0 

14-Aruba2 1.1047806 0.9963613 0.8602645 0.8442923 0.8266266 0 

15-Floressence 1.3981369 1.1689955 0.8629013 0.371085 0.3659662 0.9398099 

15-Lenna 1.4230361 1.1939653 0.9400498 0.7479256 0.7470533 0.9647266 

15-Aruba1 1.2509016 1.0529981 0.7996951 0.5600451 0.5536085 0.8550713 

15-Aruba2 1.1838264 0.9963394 0.7398387 0.528831 0.519299 0.8088292 

16-Floressence 0.9488349 0.7491606 0.526206 0.3453539 0.3389816 0 

16-Lenna 1.020069 0.8825739 0.9112775 0.6907803 0.6883149 0 

16-Aruba1 0.8754414 0.7628323 0.6259447 0.519033 0.5087475 0 

16-Aruba2 0.8513162 0.7624152 0.6080754 0.4914619 0.4792196 0 

17-Floressence 1.5000013 1.2500501 1.0940454 0.4533753 0.441774 1.0000084 

17-Lenna 1.5000051 1.2501901 1.3666016 0.9259466 0.9210208 1.0000318 

17-Aruba1 1.5000007 1.250026 1.2090583 0.9333458 0.9194839 1.0000043 

17-Aruba2 1.5000007 1.250026 1.1887231 0.9138588 0.896359 1.0000043 

18-Floressence 0.8090885 0.687161 0.7744751 0.4219638 0.411901 0 

18-Lenna 1.1008689 1.0057458 1.3666245 0.8597648 0.8624451 0 

18-Aruba1 1.1055973 1.0077774 1.173256 0.8498219 0.8339646 0 

18-Aruba2 1.1114208 1.0100416 1.1304792 0.8326196 0.8149991 0 
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TABLE 7: APPROACH 19-24 DATA RESULTS 

Approach-Picture Algorithm 1 
1 round 

Algorithm 1  
2 rounds 

Algorithm 1  
4 rounds 

Algorithm 2 
512 symbols 

Algorithm 2 
1024 symbols 

Huffman 
reference 

19-Floressence 1.499993 1.2500186 0.8925335 0.476576 0.4602986 1 
19-Lenna 1.6249647 1.3542326 1.1873511 1.036232 1.0071508 1.0833302 
19-Aruba1 1.6249952 1.3541757 1.0463228 0.8113344 0.7820659 1.0833329 
19-Aruba2 1.4374969 1.1979268 0.8854448 0.6942539 0.6753074 0.9583337 
2-Floressence 0.9877389 0.7868523 0.5439881 0.445932 0.4289225 0 
20-Lenna 1.1870752 1.0615052 1.1873625 0.95923 0.9354114 0 
20-Aruba1 1.1857332 1.0432855 0.8915406 0.7570919 0.7220969 0 
20-Aruba2 1.049037 0.929831 0.7175395 0.6366826 0.6149003 0 
21-Floressence 1.3981369 1.1689955 0.8626578 0.3563361 0.3520414 0.9398099 
21-Lenna 1.4230349 1.1939653 0.8414746 0.7741676 0.7729966 0.9647266 
21-Aruba1 1.3134012 1.105081 0.8195684 0.5547504 0.5453728 0.8967376 
21-Aruba2 1.246326 1.0484223 0.7744346 0.5148011 0.5058145 0.8504955 
22-Floressence 1.012328 0.7757855 0.5282907 0.3303066 0.32489 0 
22-Lenna 0.9744013 0.8020651 0.7840941 0.719789 0.7157623 0 
22-Aruba1 0.9480968 0.8333502 0.6524592 0.5167783 0.503571 0 
22-Aruba2 0.8724377 0.7647503 0.6140857 0.4804733 0.4681305 0 
23-Floressence 1.5000044 1.2500521 1.072059 0.4338317 0.4228195 1.0000104 
23-Lenna 1.6250079 1.3543572 1.1776484 0.9393479 0.922717 1.083367 
23-Aruba1 1.6250011 1.3541927 1.0319889 0.7419007 0.7190771 1.0833379 
23-Aruba2 1.4375027 1.1979442 1.0208106 0.6787303 0.6608662 0.9583391 
24-Floressence 0.9959106 0.8626839 0.8053658 0.4048927 0.3950553 0 
24-Lenna 1.156828 1.0231307 1.1179131 0.8817767 0.8730314 0 
24-Aruba1 1.1560947 1.0185878 0.8395841 0.6889489 0.6631901 0 
24-Aruba2 1.0286732 0.9353454 0.8780473 0.6268427 0.6074502 0 
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TABLE 8: APPROACH 25-30 DATA RESULTS 

Approach-Picture Algorithm 1 
1 round 

Algorithm 1  
2 rounds 

Algorithm 1  
4 rounds 

Algorithm 2 
512 symbols 

Algorithm 2 
1024 symbols 

Huffman 
reference 

25-Floressence 0.7350834 1.0974452 2.3237373 0.5667798 0.5834226 0.6021487 
25-Lenna 1.5862457 2.5229845 5.2100559 1.0017241 1.0759874 0.9175828 
25-Aruba1 1.0924189 1.8299594 3.9250665 0.9999628 1.0688058 0.9592242 
25-Aruba2 1.0837732 1.7203948 3.6417001 0.9548872 1.0154071 0.9496673 
26-Floressence 0.7350864 1.0974482 2.3237404 0.5293503 0.5208597 0 
26-Lenna 1.5862571 2.522996 5.2100673 0.9203393 0.9280903 0 
26-Aruba1 1.0924205 1.829961 3.9250681 0.9202436 0.9128586 0 
26-Aruba2 1.0837747 1.7203964 3.6417016 0.8877215 0.8675926 0 
27-Floressence 0.5193303 0.7616976 1.5477506 0.3402954 0.3540307 0.3711158 
27-Lenna 1.2349946 1.938229 3.8256205 0.6635541 0.717372 0.603965 
27-Aruba1 0.6238843 1.0037319 2.0687747 0.5180278 0.5419473 0.5041102 
27-Aruba2 0.5972489 0.9181638 1.8856502 0.4822059 0.5055538 0.4811951 
28-Floressence 0.5193333 0.7617006 1.5477536 0.3151822 0.3152549 0 
28-Lenna 1.2350061 1.9382405 3.825632 0.6115506 0.6223874 0 
28-Aruba1 0.6238858 1.0037335 2.0687763 0.4811082 0.4795037 0 
28-Aruba2 0.5972505 0.9181654 1.8856518 0.4478503 0.4465614 0 
29-Floressence 0.786781 1.0816363 2.2236378 0.527636 0.5308576 0.5661147 
29-Lenna 1.5524714 2.5011977 5.1289279 0.9763836 1.0320336 0.9139718 
29-Aruba1 1.1954805 1.9317256 4.0933002 0.9715872 1.0273836 0.9544605 
29-Aruba2 1.1787077 1.8259773 3.7927464 0.9144657 0.9718879 0.937402 
30-Floressence 0.7720756 1.0816423 2.2236438 0.4973698 0.4863913 0 
30-Lenna 1.5524943 2.5012206 5.1289508 0.9141574 0.9265403 0 
30-Aruba1 1.1954836 1.9317288 4.0933033 0.9008469 0.8941222 0 
30-Aruba2 1.1787108 1.8259805 3.7927495 0.8492011 0.8389189 0 
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TABLE 9: APPROACH 31-36 DATA RESULTS 

Approach-Picture Algorithm 1 
1 round 

Algorithm 1  
2 rounds 

Algorithm 1 
4 rounds 

Algorithm 2 
512 symbols 

Algorithm 2 
1024 symbols 

Huffman 
reference 

31-Floressence 0.8933125 0.778832 1.3118072 0.6588891 0.357322 0.372724 
31-Lenna 0.9328265 1.4097098 3.1955699 0.7558342 0.7370176 0.6284702 
31-Aruba1 0.989107 1.4238599 3.0579061 0.8422529 0.7665402 0.6721529 
31-Aruba2 0.9027141 1.45171 2.9984828 0.794124 0.733227 0.6547661 
32-Floressence 0.4171263 0.7433271 1.3118102 0.338624 0.3077972 0 
32-Lenna 0.814696 1.4097212 3.1955814 0.6474445 0.6585432 0 
32-Aruba1 0.7532363 1.4238615 3.0579076 0.6558933 0.6571817 0 
32-Aruba2 0.6843653 1.4517116 2.9984844 0.6205685 0.6247434 0 
33-Floressence 0.8050246 0.6602431 1.0950119 0.328748 0.3257802 0.3371739 
33-Lenna 0.8296715 1.2481964 2.7640492 0.7070043 0.7054811 0.604157 
33-Aruba1 0.7531318 0.6623242 1.4470213 0.5032128 0.5031876 0.454243 
33-Aruba2 0.70611 0.6276561 1.3122023 0.4606363 0.462167 0.4308982 
34-Floressence 0.3382864 0.5641924 1.0950149 0.2919698 0.2933503 0 
34-Lenna 0.6648599 1.2482079 2.7640606 0.6294174 0.6399008 0 
34-Aruba1 0.448033 0.6203454 1.4470229 0.4509706 0.4510869 0 
34-Aruba2 0.4194002 0.5560175 1.3122038 0.4166265 0.4163602 0 
35-Floressence 0.9963835 0.796164 1.1249214 0.3643293 0.3548491 0.4170593 
35-Lenna 0.9999415 1.1299604 2.5596285 0.7315451 0.7370786 0.6277391 
35-Aruba1 1.0822194 1.1883366 2.5654384 0.7618323 0.7531759 0.6754565 
35-Aruba2 1.0096779 1.2229941 2.5438018 0.7278909 0.7169249 0.6656932 
36-Floressence 0.4070682 0.6063145 1.1249274 0.3199005 0.3211908 0 
36-Lenna 0.7182035 1.1007507 2.5596514 0.6594116 0.6788131 0 
36-Aruba1 0.7110074 1.1577371 2.5654416 0.6633045 0.6633672 0 
36-Aruba2 0.675652 1.1904527 2.543805 0.6354602 0.6352642 0 
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TABLE 10: APPROACH 37-42 DATA RESULTS 

Approach-
Picture 

Algorithm 1  
1 round 

Algorithm 1   
2 rounds 

Algorithm 1  
4 rounds 

Algorithm 2 
512 symbols 

Algorithm 2 
1024 symbols 

Huffman 
reference 

37-Floressence 0.8601987 0.7156962 1.1990149 0.420074 0.3266462 0.3461523 
37-Lenna 0.8789158 1.3391923 2.997335 0.7144298 0.7072459 0.6002739 
37-Aruba1 0.8556467 0.9467932 1.9623875 0.5794473 0.5484582 0.5026755 
37-Aruba2 0.8037874 0.9215613 1.8243365 0.517005 0.4962033 0.4687843 
38-Floressence 0.3679826 0.6688987 1.1990179 0.2961493 0.2881119 0 
38-Lenna 0.7240574 1.3392037 2.9973464 0.6230651 0.6339808 0 
38-Aruba1 0.5172474 0.9263601 1.9623891 0.4770136 0.4765586 0 
38-Aruba2 0.4648271 0.8740401 1.8243381 0.4314151 0.4323175 0 
39-Floressence 0.8053585 0.655503 1.0737027 0.3254858 0.3221908 0.3339783 
39-Lenna 0.8098034 1.2346183 2.7783368 0.7068085 0.7051302 0.603155 
39-Aruba1 0.7536075 0.6665073 1.3876837 0.4872855 0.4856317 0.4475705 
39-Aruba2 0.7065949 0.626716 1.2358073 0.43224 0.4327755 0.4175588 
40-Floressence 0.3343005 0.5514799 1.0737057 0.2889692 0.290278 0 
40-Lenna 0.669338 1.2346297 2.7783482 0.628432 0.6393019 0 
40-Aruba1 0.4365259 0.6163017 1.3876853 0.4360027 0.4359739 0 
40-Aruba2 0.4017544 0.5552323 1.2358089 0.391064 0.3908226 0 
41-Floressence 0.9692187 0.7515343 1.0110153 0.3335014 0.3306549 0.3953138 
41-Lenna 0.9208772 1.0070681 2.3951437 0.7017391 0.7095473 0.5999039 
41-Aruba1 0.9668149 0.8671887 1.6145514 0.5523235 0.5497488 0.5168729 
41-Aruba2 0.8999942 0.8541725 1.5074873 0.5011812 0.4993028 0.4934834 
42-Floressence 0.3684029 0.5272183 1.0110213 0.298596 0.3011248 0 
42-Lenna 0.6613125 0.9778623 2.3951666 0.6340138 0.6540701 0 
42-Aruba1 0.5161151 0.7294006 1.6145545 0.4876315 0.4877788 0 
42-Aruba2 0.477286 0.6885527 1.5074904 0.4443901 0.4449231 0 
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TABLE 11: APPROACH 43-48 DATA RESULTS 

Approach-
Picture 

Algorithm 1  
1 round 

Algorithm 1   
2 rounds 

Algorithm 1  
4 rounds 

Algorithm 2 
512 symbols 

Algorithm 2 
1024 symbols 

Huffman 
reference 

43-Floressence 0.8967381 0.8064435 1.3831053 0.6585619 0.3608795 0.3740518 
43-Lenna 0.9425432 1.441203 3.2535684 0.7608146 0.744588 0.6321231 
43-Aruba1 0.9950619 1.4428139 3.0879705 0.7945814 0.7578523 0.6714468 
43-Aruba2 0.9068726 1.4636472 3.0116405 0.7377851 0.7115275 0.6558449 
44-Floressence 0.4300722 0.7753411 1.3831113 0.3390807 0.310269 0 
44-Lenna 0.8226758 1.4412259 3.2535913 0.6529678 0.6677284 0 
44-Aruba1 0.7568884 1.442817 3.0879737 0.6541609 0.6575254 0 
44-Aruba2 0.6895623 1.4636503 3.0116436 0.6165569 0.6184838 0 
45-Floressence 0.7991295 0.6645498 1.1031742 0.3235907 0.3218137 0.3367141 
45-Lenna 0.8238786 1.2585539 2.7858042 0.7086293 0.7113744 0.6019141 
45-Aruba1 0.7489313 0.6625502 1.4462071 0.500305 0.500538 0.4534841 
45-Aruba2 0.702595 0.6277818 1.3109224 0.4530098 0.4534048 0.4302621 
46-Floressence 0.3397378 0.5832213 1.1031802 0.2875992 0.2900944 0 
46-Lenna 0.6648752 1.2585768 2.7858271 0.6314696 0.6455067 0 
46-Aruba1 0.4486776 0.6271361 1.4462102 0.4487927 0.4491925 0 
46-Aruba2 0.4204183 0.5659147 1.3109256 0.4095293 0.4080786 0 
47-Floressence 1.0599992 0.8712397 1.2458843 0.3848293 0.3781178 0.4446079 
47-Lenna 1.0440822 1.1906925 2.7070946 0.7781919 0.7904133 0.6765855 
47-Aruba1 1.1448828 1.2638562 2.6965582 0.7842029 0.7807246 0.7160648 
47-Aruba2 1.0720457 1.297376 2.6611598 0.7345343 0.732919 0.7023287 
48-Floressence 0.4284309 0.6458997 1.2457892 0.3376039 0.3416842 0 
48-Lenna 0.7521596 1.1369242 2.706881 0.7028644 0.7282838 0 
48-Aruba1 0.7302103 1.1998624 2.6959815 0.6906583 0.6910524 0 
48-Aruba2 0.6904982 1.2285506 2.661166 0.6533873 0.6526618 0 
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5.0 RESULTS AND DISCUSSION 

Unfortunately, none of the algorithms tested in this study yielded 

results that produced better compression than today’s leading 

compression schemes.  In this section, a discussion is offered as to 

why this may have occurred.  The discussion ends with suggestions for 

some additional approaches to the problem of lossless compression 

that may be worthy of further research. 

 

5.1 APPROACH 1-6. 

Pictures with highly similar colors end up producing very similar codes, 

thus enabling high compression rates.  The issue here is that quite 

often, except in contrived demos, images include a wide variety of 

colors and in many combinations.  Essentially, there were too few 

unique patterns to justify the cost of creating the pattern in the first 

place.  There does not seem to be any straight forward way to proceed 

except to remove the tables used to translate between a pattern and 

its original source string from the compressed file.  Even this seems a 

waste, since so many images have a different color makeup as to 

prevent any single color table from producing any real good.  

Furthermore, a combined approach using many tables seems equally 

unlikely to produce all but the most marginal improvements over a 

single table design. 
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5.2 APPROACH 7-12. 

As these approaches are direct extension of approaches 1-6 we expect 

to see a similar result for these, and indeed we do. In fact they 

produce nearly identical results. Any improvements we might make to 

approach 1-6 are likely to be applicable to 7-12 and vice versa. 

 

5.3 APPROACH 13-18. 

In hind sight this approach was doomed to fail. The reason is that 

when you convert to base2 from base8 the length of the sequence 

increases 8 fold, but the file size remains the same. The cost comes in 

the form of doubling the file size at the time the first pattern is added. 

Since the value of the symbol replacing the pattern must be unique 

from all other symbols in the file and since the next available pattern 

is 2, this forces all symbols into the next highest base.  Essentially, 

over 3 recursive steps bytes have been rebuilt with entirely new 

meaning, but with no compression worth noting.  The only way to 

remedy this is to find a way to represent all numbers in a series with 

the lowest base available to them. To my knowledge no standard 

algorithm does this.  However, it could be accomplished by pre-

pending a marker to each symbol indicating its base. 

5.4 APPROACH 19-24. 
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Given the extremely close nature of approaches 1-6 and 7-12,and also 

that  approaches 13-18 and 19-24 were designed to mirror these 

algorithms, it is startling to see a significant dissimilar in the results 

sets.  This begs the question as to what a re-representation of the 

data set looks like. Especially since the source data in the two groups 

are identical.  The only clue is that the YCrCb color space tends to 

reduce the correlation between the color plains. While this certainty 

bears further study it seams that the absolute gain in compression is 

less than is gained in other approaches. 

 

5.5 APPROACH 25-30. 

Like approaches 19-24 this set of approaches defies immediate 

explanation.  Not even bothering with the correlation, these 

approaches bear no resemblance what so ever to any approach 13-24. 

I am at an utter loss to explain why this is so radically different from 

the other 12 similar approaches. 

 

5.6 APPROACH 31-36. 

These approaches most likely failed due to how the modified Haar 

wavelets are handled, as discussed above.  Most of the narrowing 

information of similar wavelet pairs is lost due to the integer to integer 

constraint, and thus presumably, many patterns are also lost.  It bears 
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research on how to effectively use wavelets to create similar patterns.  

In addition, a pattern table, as described for use in approach 1-6, 

seems to bear significant research.  This is because, after completing 

the main body of research as presented here, most images have been 

observed to possess nearly identical Haar breakdowns for frequency.  

 

5.7 APPROACH 37-42. 

These approaches, like approaches 7-12, provide similar justification 

for failure as well as for prospective research. As it appears, the 

usefulness of moving to a different color space, considering the use of 

the Haar wavelet, does not seem to provide any real benefit. 

 

5.8 APPROACH 43-48. 

These approaches, again, seem to be of dubious benefit considering 

the results in approaches 31-36. However, they might benefit from a 

multi tabled design. Since, in these approaches only a small region is 

observed and compressed separately, we might be able to observe 

several distinct styles of patterns  allowing for a different type of 

pattern not just a bigger pattern or pattern of smaller patterns. 

 

5.9 GENERAL REMARKS FOR FUTURE RESEARCH. 

At the inception of this thesis I had only the vaguest notion of how 

pattern reduction worked.  Having implemented several natural 
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language processors using multistage pattern reduction I am better 

able to grasp new ways to find solutions to this problem.  

First, as briefly mentioned above, external tables are mandatory.  

Additionally, the table or set of tables must be universal, as in the 

known frequency distribution of letters in English text for use in 

Huffman compression. If they are not universal then they must be 

transmitted with each file. If that is so the “cost” of any approach 

similar to those presented in this thesis will not be worth the trouble.  

This is why I am thrilled with the observed results of the modified Haar 

wavelet.  It seems to have a universally describable distribution that 

can be externally coded. 

Second, and most importantly, this research brought to light the 

concept of generics. I was unfamiliar with this concept initially. That is 

to say a pattern that in whole or in part accepts data it can’t deal with 

itself, but remembers allowing for lossless reconstruction, yet a later 

stage of reduction might know about, if only the unknown data is 

masked.  The tremendous advantage of this is that a pattern with a 

generic can represent several similar patterns that would otherwise 

take up a lot of space.  In extension, a single pattern at a later stage 

or structure of patterns, can be built that recognizes all of those 

previous patterns plus, perhaps, even wholly unknown data. 
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6.0 CONCLUSION 

I have produced to my satisfaction a new and innovative compression 

scheme. It utilizes multiple passes to gather increasingly valuable 

patterns and encodes them into a new stream. Even though I failed to 

produce better compression than today’s leading compression 

schemes, the fact that this technique produced results at all is very 

promising.  Moreover, in science, a failed result may provide as much 

new information as a positive result. 

Since starting this thesis in the summer of 2003 I have used 

multistage pattern reduction successfully as an analysis technique.  It 

is an incredibly powerful way to get underlying information.  So the 

reason that I say that any compression, much less reasonable 

compression, is so important is that we can now begin to understand 

the fundamental structure of sight.  When we look at any image, there 

is a reason we can recognize what that image is, even if we have 

never seen it before.  This thesis allows a glimpse of insight into this 

ability and a promise of better understanding of vision. 
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APPENDIX 1: CODE 

I have, in this thesis, opted not to include the full source in this print 

document as it is a significant amount of text, 12202 lines of code 

across 11 files as counted by LineStats 1.0.  However, I am including 

the entire source as well as the Visual Studio build files on the 

companion CD.  This is, I believe, important because while the 

documentation describes the algorithms in a fashion I feel is sufficient 

to implement, a reference implementation assures cross compatibility 

with other venders implementations. I came to believe this during the 

thesis research itself.  It seems to me that a few of the authors in the 

references section, and many other authors in my initial literature 

review, believe that something can be done and the solution is well 

known.  However, they do not seem to care if a student or someone 

outside their realm of experience can understand how to make this 

well known fact actually work. 
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APPENDIX 2: IMAGES 

 

FIGURE 9: FLUORESCENCE 

 

This is florescence. It is reproduced by Special Permission of Digital 

Blasphemy. Copyright * by Digital blasphemy.  I chose this picture as 

a counter example for Dr. Ford.  I wished to point out that while there 

are distinct shapes and conceptually very few patterns (excellent for 

pattern reduction) there is something to be said when black isn’t really 

black.  As it turns out, however, this was the picture that was the most 

compressible. 
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FIGURE 10: LENNA 

 

This is Lenna.  It is reproduced by Special Permission of Playboy 

magazine. Copyright © 1972 by Playboy.  It is the sole standard 

image in the field of image compression.  Volumes have been written 

on why this is an appropriate image for the standard and I will not 

reproduce them for sake of brevity. It is included because all image 
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compression work has and should include it. Therefore, and there it no 

better way to put this, this is Lenna. 

 

FIGURE 11: ARUBA1 

 

This is aruba1.  It was taken by Dr. Ford on his 2004 trip to Aruba.  I 

selected this picture for its size and diversity of color. These are 

important variables to take into consideration when evaluating image 

compression techniques.  As we can see from the picture there are 

several pieces of nearly identical images. Under the assumption of 

pattern reduction, these should allow for space savings. 
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FIGURE 12: ARUBA2 

 

This is aruba2. It was taken by Dr. Ford on his 2004 trip to Aruba. I 

selected this picture due to its lack of a color differential and high 

conceptual pattern level.  As is obvious there are only 4 or 5 truly 

different things in this picture, but each of the individual pieces are 

themselves, highly differentiable.  This demonstrates that within each 

pattern there are additional, or nested, sub patterns.  
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APPENDIX 3: SCREEN SHOTS 

This Section is self explanatory.  It’s a listing of all the screens I used 

in my test environment.  I feel that this is a necessary inclusion to the 

thesis since the graphical user interface has become a ubiquitous part 

of computer programming even if it has just recently gained 

acceptance in main stream computer science research.  However, I am 

also of the opinion that since this is a research thesis on image 

compression and not on graphical layout the presentation of the layout 

in its spartan state is sufficient. 
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FIGURE 13: SCREEN SHOT 

 

This is a screen shot of the application. The interface is pretty cut and 

dry. There are no modal forms, other than the obligatory selecting files 

dialogs, so this is in fact the only screens the user sees.
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