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Abstract. The Semantic Web was designed to unambiguously define
and use ontologies to encode data and knowledge on the Web. Many
people find it difficult, however, to write complex RDF statements and
queries because doing so requires familiarity with the appropriate ontolo-
gies and the terms they define. We describe a system that automatically
maps a set of ordinary English words to a set of appropriate ontology
terms on the Semantic Web. We use the Swoogle Semantic Web search
engine to provide ontology terms and ontology correlation statistics, the
WordNet lexical database to resolve synonyms, and a practical three step
approach to find the most suitable ontology context as well as appropri-
ate ontology terms.

Key words: Ontology Searching, Data interoperability

1 Introduction

The Semantic Web is realized as a huge graph of data and knowledge. The
graph’s building blocks consist of literal values, individuals and ontology terms
representing classes and properties. Syntactically, an ontology term has two
parts: a namespace identifying the ontology defining the term and a local name
selecting a term in the ontology. Namespaces resolve ambiguity allowing two
terms in different ontologies to share a local name. For example, the class ’Party’
can be defined in politics ontology and in a recreational activities ontology. Au-
thoring or querying knowledge on the Semantic Web is difficult because it re-
quires people to select ontologies manually for the concepts they want to use. The
term ’Party’ is defined in over 400 Semantic Web ontologies known to Swoogle.
Moreover, other ontologies define possibly related concepts, with local names
like Celebration and Organization. It would be convenient if a user could use
natural language words as her vocabulary and a knowledgeable system would
suggest appropriate Semantic Web ontology terms.

Given a single English word or short phrase, how do we know which Seman-
tic Web ontology term it should be mapped to? A simple solution is to ask a
Semantic Web search engine, like Swoogle [1] or Sindice [2] to return the most
highly ranked terms with a corresponding local name. However, people have to
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Fig. 1. The semantic graph of a simple sentence “One inch long beetle ate my plant
growing in my garden.” Beetle, P lant, and Garden are used as classes while ate,
growing in are used as object properties and length are used as data property

manually disambiguate the terms and possibly need expand the query with syn-
onyms. Moreover, common use scenarios typically use a set of words rather than
a single one. Mapping a word at a time from a set of words while maintain-
ing the consistency of the terms is laborious. One straightforward way to tackle
this problem is to find a single Semantic Web ontology such that the whole set
of words can all be matched by the terms it defines, where a matching term
has a local name which is either the same as the matched word or a synonym
of it. The reason it could work is that Semantic Web ontologies are typically
small and context-specific. Most define a set of terms for a few or a very limited
number of highly related concepts, such as foaf for person profile, geo for geo-
graphical position, and cc for license. If a set of words can all be matched by the
terms of a context-specific ontology, it is high likely that they have close contexts
and consequently the terms should be a good map of the words. For example,
consider the short sentence “One inch long beetle ate my plant growing in my
garden.”, which is represented as a graph in Figure 1. The six words Beetle,
Plant, Garden, ate, growing and length, put together, can indicate a specific
context. Within this context, the words can be disambiguated. So, if we could
find a context-specific Semantic Web ontology that defines the six terms with
the corresponding local names, the class ’Beetle’ should more likely mean the
insect beetle rather than the car beetle and the class ’Plant’ should more likely
be the organism plant rather than the factory plant.

However, an inherent problem with the previous approach is that the terms
may come from multiple ontologies. Instead of a single “Things in Garden” on-
tology, they may come from three ontologies – ’Beetle’, ’Plant’ and ’Garden’.
Current practice is that people often use terms in different ontologies in au-
thoring an RDF document. Interestingly, this practice bestows upon Semantic
Web ontologies a very useful feature – ontologies can be connected by their co-
occurrences in existing RDF documents. In this way we can form the ontology
co-occurrence network with weighted edges indicating how strongly ontologies
are connected to each other. We reduce the weight of very large ontologies such
as CYC, WordNet and DBPedia since they define too many concepts. In this
network, every ontology has a context which no longer confined to the terms
it defines but also include the terms defined in its neighboring ontologies. We
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Fig. 2. Student Ontology Context: Ovals represent ontologies. The gray area denotes
the ontology context of the student ontology. Some connections in the gray area have
been omitted for simplicity. The Person ontology has a conditional probability of 0.8
accompanying the Student ontology while the other way only has a conditional prob-
ability of 0.01.

call it ontology context. According to how strongly a neighboring ontology is
connected to the central ontology in the perspective of the central ontology,
the terms defined in the neighboring ontology are assigned the corresponding
weight in the context of the central ontology. The terms in the central ontology
have weights of one. There are other ways to assign weights to the terms in an
ontology context, but this is simple and, as we will show, effective.

Figure 2 gives an illustration of ontology context. Although shown as undi-
rected, each edge actually consists of two directed edges with different weights.
The weight of the directed edge from ontology A to ontology B is the conditional
probability of A accompanying B in an RDF document. Even two connected on-
tologies can have very different ontology contexts. For example, the Student
and the Person are connected ontologies. The most weighted terms in the ontol-
ogy context of Student may come from the Student, Person, Course and other
strongly connected ontologies. But all these terms, except for the terms in the
Person ontology, should not be the most weighted terms in the ontology context
of Person, considering the number of different ontologies that could be connected
with the Person ontology.

Finding the most consistent terms for a given set of words is actually the
same question as finding the most related ontology context for the words. This
can be achieved by finding the ontology context that returns the highest weight
sum of its terms that match the input words. For example, suppose we have six
words: ’name’, ’birthday’, ’sex’, ’major’, ’GPA’ and ’take course’ where ’name’,
’birthday’ and ’sex’ are defined as terms in the Person ontology and ’major’,
’GPA’ and ’take course’ are defined in the Student ontology. The Student on-
tology is more related with the six words than the Person ontology because it
returns a higher weight sum of the matching terms. The most related ontol-
ogy context tends to center on the ontology defining the most specific concept
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conveyed in the input words. This greatly reduces the ambiguity its words can
have.

In finding the most related ontology context, we also need measure how well
the terms match the words. Matching a word or short phrase to the local name of
an onotlogy term is not trivial. We have to deal with synonyms and morpholog-
ical variants of English words. Another major issue in realizing this approach is
the computation time. For each word in the input set we can generate a term list
containing all the semantically related ontology terms. However, the number of
all possible term sets composed by picking one term from each different term list
could be huge. On the other hand, the number of all possible ontology contexts
is equal to the number of ontologies (approximately 25 thousand) discovered by
Swoogle. Evaluating each possible term set for each possible ontology context is
impractical.

Besides relatedness, popularity is also an important concern in selecting an
ontology context. Since anyone can make their own ontology on the Semantic
Web, many ontologies overlap in the concepts they define. Choosing the most
popular ontology is beneficial because it helps to ensure that the same concept is
encoded with the same terms, and also because popularity is the de facto main
indicator for measuring trust on the Web.

In this paper, we present a practical approach and a system to find the most
suitable ontology context and appropriate ontology terms in the Semantic Web
for a set of English words or short phrases.

The remainder of the paper proceeds as follows. Section 2 further introduces
our problem by describing the input and output of our system. Section 3 mo-
tivates the reader by providing sample use cases for our approach. Section 4
describes relevant related work. Section 5 gives a detailed description of the
technical approach, which is followed by the evaluation in Section 6. Finally
we conclude the paper with some brief remarks and identify issues for future
research.

2 The Input and Output of the system

The motivation of our system is to allow users to use ordinary English words
(short phrases) in authoring an RDF graph involving several related concepts.
Accordingly, the input is the set of English words in the graph plus specify-
ing each English word is used whether as a class or as a property. Take the
graph in Figure 1 as an instance. The input set consists of “Beetle”, “Plant”,
“Garden” as classes and “ate”, “growing in”, “length” as propertes. The input
doesn’t include the property values, such as “one inch” because class names and
property names are identifers for concepts but property values are mostly used
to identify instances. Even an instance can be identified we often don’t know
which type it plays in the target context since an instance can have many types.
By specifying whether an English word works as a class or a property, part of
structure information in the graph is included in the input. However, currently
we don’t include the structure information about which property word is applied
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on which class word. Exploiting this information requires ground knowledge of
which property can be applied on which class on the Semantic Web. Having this
ground knowledge need a much deeper approach that may require collecting and
learning the domain of Semantic Web properties, building global class taxonomy
and even ontology mapping whereas our current approach is mainly based on
analyzing the co-occurrences of ontologies (concepts) and the terms (cluster of
identifiers) defined for each ontology.

Our output is a number (currently twenty) of ranked term sets, where each
term set is a possible mapping for the input words. They are ranked by the score
given by a goodness function, which considers both consistency and popularity
of the results. Within each term set, an input word (short phrase) is matched
to a small number (currently three) of candidate Semantic Web ontology terms.
They are also ranked, with the leftmost one being the default and have the
highest rank score. The reason we supply a few options is that word ambiguity
can happen even within a certain ontology context. The ambiguity is caused by
the semantic subtlety which is hard to distinguish by only looking at the lexical
name of a term. Consequently, we allow people to manually choose an alternative
to the default if it is not what they intended and provide term metadata (labels,
comments, domain, range, etc) to give more information.

3 Use Case

Our approach can be applied to encode structured and semi-structured data
where the input graph with word labels associated with the data is available or
can be parsed out. It could support metadata systems like RDFa [3] or Flickr’s
machine tags [4], which require qualified namespaces whose selection is hard for
users who know nothing or little about ontologies.

Here we would like to point out a special usage – translating table data into
RDF, which is also our ongoing work. We developed a tool RDF123 [5] which
provides users with a graphical interface to create a mapping that captures the
entities and relations in a table. This enables easy translation into RDF. With
the help of our current system, the labels for entities and relations in the map
can be specified in plain english. We can partially automate the process by
exploring the table title, the column headings and their associated values in the
table. Every column of a table represents a property, whether data property or
object property, of a concept in the table. The column headings are accordingly
the property names. Although our system doesn’t require, as input, the names
of involved classes but having them will greatly improve the search accuracy.
Class names can be revealed in the table title and the column headings or they
can also be infered from values in columns. For example, we may deduce the
concept “Capital City” from the column values ’London’, ’Beijing’, ’Tokyo’, and
’Washington D.C.’ since “Capital City” is the most specific common type of all
these values. Systems like Wikitology [6] and DBpedia [7] can be used to find
types for a given individual.
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4 Related Work

Our work is related to the problem of word sense disambiguation in computa-
tional linguistics [8]. However, we are not working from a single universe of senses
derived from a source like WordNet or Roget’s Thesaurus, but from a distributed
and evolving collection of published ontologies, where many duplicated concepts
exist. Moreover, NLP systems mainly focus on word sense disambiguation itself
in text while our objective is to encode and retrieve structured data in a way that
facilitates data sharing and integration without limiting the expressive power of
users.

In Semantic Web area there are two recent works [9, 10] related with trans-
lating keyword query to RDF graph query, in which they all face the problem of
mapping keywords to semantic entities in their knowledge bases. However, they
take two simple ways to deal with the ambiguities. In the SemSearch approach
presented by Lei et al. [9], they just find out all the semantic entities match-
ing the keywords. In the work presented by Tran et al. [10], they only consider
the first matching semantic entity. Their semantic entities, besides classes and
properties, also include individuals and property values. Finding the relations
between the matched entities is the highlight of their works. The SemSearch
takes a template approach while Tran et al. achieve it by analyzing the sub-
graphes that cover all the entities in their knowledge base. In this regard our
approach is also different from theirs in that the semantic relations in our case
are typically given as input by users.

5 Technical Approach

As previously discussed, a brute-force way to find the most suitable ontology
context and the terms for a given set of input words is computationally expensive.
In this section, we present a practical three-step approach which gives high
quality results. According to our definition, any ontology context has a central
ontology. Therefore, our first step is to find appropriate central ontologies to use
as starting points. Then in the ontology context of each starting point we find
the set of most appropriate terms matching the input words. Finally, we rank
the term sets acquired from all the starting points using a goodness function
considering both consistence and popularity. The top 20 term sets are then
presented as output. We start by describing the data structures used and then
go through each step in detail.

5.1 Data Structures

Two main data structures in our system are constructed using the December 2008
snapshot of Swoogle’s data which has three million RDF documents, about 25K
of which are ontologies that define terms. The ontology co-occurrence network is
constructed using namespace correlations in all the RDF documents and stored
in memory. The other important data structure is the term index, which contains



Finding Appropriate Semantic Web Ontology Terms from Words 7

all valid terms discovered by Swoogle. A term is valid if and only if it is defined
in the ontology identified by the term’s namespace. We assume a term to be valid
if its namespace is not an accessible URI or there does not exist an ontology at
the namespace URI. The total number of terms in the term index is about four
million. The index is implemented using Lucene 4. We do a tokenized index on
the local name of a term to enable search terms using keywords appearing in the
local name. We develop our customized tokenizer that handles the conventions
people use to create local names. For an instance, ’PhDStudent’ is tokenized as
’Ph D Student’. We also index the type field of a term so that we can retrieve
terms according to the given type – class or property. Moreover, we store some
selected properties of a term with the index, such as the namespace of the term,
the total number of terms being defined in the namespace ontology, the global
term rank and several others.

5.2 Step One – Finding Starting Points

Finding ontologies passing the cover rate threshold. A prerequisite of
becoming a starting point is that the target ontology must have a cover rate
of the input words above a designated threshold. On one hand we hope a good
term set could be found in the ontology context of every starting point, which
can save the computation time on searching irrelevant ontology contexts. On the
other hand we hope the centrals of most suitable ontology contexts should be
covered by the starting points. The tradeoff between precision and completeness
can be adjusted by the cover rate threshold, which is currently set to 1/5. Before
explaining what the cover rate is, we give a few definitions about what is a cover.

Definition 1. The local name of a term is called semantically-related with an
English word as long as one of the word’s synonyms, in any inflexed form, exists
in the local name.

Definition 2. The local name of a term is called semantically-related with a
short phrase as long as all the words in the short phrase exist as keywords in the
local name without considering their order. In the meantime, we neglect STOP
WORDS in short phrase, such as ’a’, ’an’, ’is’, ’be’ and etc.

Definition 3. An English word (or short phrase) is said to be covered by an
ontology if the ontology defines a term whose local name is semantically-related
with the English word and whose type (whether class or property) is the same as
the given input type of the English word.

Precisely determining whether two words (short phrases) can have same mean-
ing is very hard primarily due to so many different ways that people can use to
express the same meaning [11]. For example, ’take course’, ’enrolled in’, ’regis-
ter course’, ’has course’, and even ’course’ can all mean the same thing. So, we
coin the semantically-related relationship to indicate that the local name of the

4 http://lucene.apache.org/
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term has a potential to share the same meaning with the word (short phrase).
The semantically-related relationship is different from semantic association. The
two words ’horse’ and ’rider’ may have a significant association but they are
not semantically-related. The more semantically-related relationships are found
between a set of input words and a context-specific ontology, the more probable
these two have close or much related contexts. The cover rate is defined intu-
itively as the number of covered words divided by the total number of input
words. The reason we make the threshold as 1/5 is based on the observation
that the number of ontologies used in an RDF document is typically no more
than five and among them one or two ontologies are core ontologies whose terms
are more heavily used than others. Accordingly, making the threshold as 1/5
guarantees that at least the core ontologies used in authoring an RDF document
or RDF fragment can pass the threshold.

We collect all the ontologies that pass the cover rate threshold in the following
way. First, a semantically-related term list is generated for each input word or
short phrase. Then a hash set is used to contain all the different namespaces
appearing in the terms in each semantically-related term list respectively. Finally
we count the number of the occurrences of a namespace in different hash sets as
the number of input words being covered by the namespace ontology.

We use the term index to find the semantically-related term list for any given
English word or short phrase. First of all we use WordNet [12] to find all the
synonyms of a word or short phrase. We define the synonyms of a word as all
the words in the synsets of the first two senses of the target word, which are
also used as their 1st or 2nd sense. We don’t include the words in the synsets of
not frequently used senses because they add much more unnecessary ambiguity.
Next, for each synonym that is a word we get the stem of it by applying porter
stemmer. Then we append wildcard character * to the stem and compose a
Lucene query searching on the local names of terms. The query can return us a
list of terms which conform to the wildcard pattern. We filter out those terms in
the list which don’t share the same stem as the synonym has. If the synonym is a
short phase, we directly use Lucene AND operator without doing the stemming
on each word in the short phrase. Finally we combine all the terms in all the lists
populated for each synonym and form the semantically-related term list for the
input word (short phrase). A term’s metadata such as its namespace, its global
rank and etc are also read out of the term index and stored with the term in
memory. As you can see, the definition of the semantically-related relationship
is affected by the way that we can efficiently search terms from a word or short
phrase.

Ranking ontologies and picking the top 300. We don’t use all the ontolo-
gies that pass the cover rate threshold as starting points. One reason is that the
number of them could be so many that searching on all of them could signifi-
cantly increase system response time. The other reason is that we try to avoid
using big and broad ontolgies (e.g. CYC) as our starting points if sufficiently
many other context-specific ontologies qualify. So we rank them and pick the
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top 300, which gives real time response in our test computer, as our starting
points. The ranking formula is given by:

score =
cover rate · popularity

size
. (1)

where cover rate denotes what percent of the input English words (short phrases)
is covered by the ontology, popularity is the popularity of the ontology (how
many times it is used in the existing RDF documents), and size is the size of
the ontology (the number of terms defined in the ontology). In order to give low
priority to broad big ontologies (e.g. CYC) or maliciously made big ontologies,
the size is set to be inversely proportional to the score.

The starting points, although getting different ranks in this step, will be
treated equally in the following steps since we will find appropriate terms in the
ontology context of a starting point, no longer limited to the starting point itself.

5.3 Step Two – Finding Appropriate Terms

Finding terms for each input word. we narrow our search to the terms
within the ontology context of a starting point. In the previous section we have
generated a global semantically-related term list for each input word. Here, for
each of them we form a local semantically-related term list by scanning the global
semantically-related term list and pick up the terms whose namespaces are of
either the starting point ontology or its neighboring ontologies.

Next, what should we require of a term to be an appropriate match of an input
word? Above all, the term’s local name should be able to share the same meaning
with the word. When multiple such terms exist, how strongly the term’s ontology
is connected with the starting point is one important factor in determining the
selection. The other important factor on hand is the global popularity of the
term. The global popularity of a term, although not equal to the local popularity,
can promote the chance of the term to be selected. More popular terms often
means they are more widely accepted. Using popular terms to encode data helps
data more visible to others.

However, due to the difficulty of automatically knowing whether the local
name of a term can share the same meaning with the input word (short phrase),
we have no way to pick up only those terms whose local names are synonyms
of the input word (short phrase) from the local semantically-related term list
and then compare on those terms’ other properties to find the most appropriate
term. To work around this problem, we develop a similarity measurement for
measuring how closely a term’s local name is semantically related with the input
word (short phrase). Then we use a single formula that combines all the three
factors to rank the local semantically-related term list. The ranking should be
able to put the most appropriate terms to the top places although we cannot
guarantee the top ones are definitely correct matches because a correct match
might not even exist in the ontology context. The ranking formula is given by:

match score = eα·sim+β
· corr · term rank · g(corr,

1

pop
) . (2)
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where sim is a measurement showing the extend to which the term’s local name
is semantically related with the input word or short phrase, which is mainly
based on the lexical similarity calculation, corr is the conditional probability
that we can see the term’s ontology if the starting point ontology is already
presented in an RDF document, term rank is the global popularity of the term
[13] represented as a float number varying in the range

(

0, 107
)

with a larger
number indicating a higher rank, pop is the popularity of the starting point
ontology, and g is the correlation effect magnification function (explained soon).
sim is exponential to reflect the dominate role it plays in determining the match
score. α and β are just two weights.

There are several techniques to measure word similarity, such as Google sim-
ilarity distance [14]. But they are either based on semantic association or not
fast enough to meet our requirement. So we develop a naive method to calculate
our own similarity , which is a positive value no larger than two to indicate the
chance that the local name of the term would share the same meaning with the
input word. The method is mainly based on lexical similarity. If the comparison
is performed between two words, the similarity score is a baseline score plus the
match ratio – the length of the matched text divided by the length of the longer
word. The baseline score is for synonym’s sake because a synonym may share no
lexical similarity with the input word. If the comparison is performed between
two phrases, the similarity score is based on the number of matched keywords
divided by the total number of keywords in the local name of the term. However,
the similarity score between two phrases is properly adjusted so that it falls in
the same data range as the similarity score between two words does.

When facing with the terms with the same or close sim, only relying on
corr · term rank to further rank the terms is not enough. A term even with very
high rank should be degraded or discarded if its ontology has a trivial correlation
with the starting point. It can be a noisy term caused by a misconnected ontology.
On the other hand a term even with very low rank can also be desired if its
ontology has a very high correlation with the starting point. In other words, the
effect of correlation should be magnified when correlation is around 0 or 1. This
is done by multipling corr · term rank with g(corr, 1

pop
), which is a piecewise

function to simulate the curve in Figure 3. The degree of the magnification, i.e.
the slopes of the curve around the two ends, is set to be inversely proportional to
the popularity of the starting point. This is because the terms defined in a less
popular starting point tends to have lower ranks and therefore need more boost to
be able to compete with other terms. On the other hand, up-limiting the degree
of the magnification helps the terms with very high popularity and considerable
correlation have the chance to rank first, such as rdf:type, dc:title, dc:date, geo:lat
and cc:License. Sometimes it is hard to make the best choice between a local term
with high correlation and a general term with high popularity and considerable
correlation but at least we should be able to put all of them to the top places.

The terms with the highest match scores are the most appropriate terms that
can be matched with the input word (short phrase) within the ontology context
of the starting point. We keep a small number (three currently) of the top terms
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Fig. 3. A curve used to magnify the effect of correlation around 0 and 1

for each input word and put them to a candidate term list respectively. The
leftmost one in a candidate term list is default and has the highest rank.

Reducing the number of different namespaces. Can we use the default
term in each candidate term list to form the most appropriate term set matching
the input words? The answer is not yet. The candidate term list is generated
based on the local information of each individual term. However, there is still a
constraint that require considering the relationship between terms in the term
set. The constraint is that we would like to reduce the number of namespaces
used by the terms in the term set. There are two reasons. First, people tend to
use vocabulary from as few as possible namespaces to author an RDF document.
Secondly, it is beneficial that the most popular terms in different semantics can
finally converge on several ontologies but not distributed on many ones in an
ontology context. To reduce the total number of namespaces involved, we can
try to use the other options in the candidate term list to compose the term set.
However, there are more complexities. A term could have too much better a
match score to be replaced by the other options even it is the only term from its
namespace in the term set and its competitor has already many brothers. Thus,
the trading of match score for the namespace converge must be under a certain
condition. We devise a measurement, called converge score, for measuring the
converge degree of the namespaces used in a term set, which is given by:

converge score =
n

∑

i=1

a2
i (

n
∑

i=1

ai = size) . (3)

where n is the total number of different namespaces in the term set, ai is the
number of terms using the namespace i in the term set, and size is the number
of terms in the term set.

The number of all possible term sets composed by picking one term from
each different candidate term list is size3 . Therefore finding the optimal term
set by evaluating each possible term set is computational expensive. To work
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around this problem, we adopt a greedy algorithm – hill climbing. We begin
with the set of all default terms, which has the highest match score sum, and
make the best move every time (a move means a swap of a default term with
one of the other two options) until no positive move can be obtained. In order
to find the best move, we need evaluate 2 · size possible moves every time. The
move score(i,0)−(i,j) of swapping the term 0 (default term) and term j in the
candidate term list i is given by the following formula:

∆converge score − w · tan(
π

2
·

−∆match score

max(match score(i,0), match score(i,j))
) . (4)

where 0 ≤ i < size, 1 ≤ j < 3 and w is the weight. The principle of move is that
the loss of match score can be compensated by the gain of converge score only
if the ratio of match score(i,j) to match score(i,0) is significant. We use tangent
function tan(π

2 x) in the formula because it grows almost linearly when x is under
0.5, grows faster thereafter, and grows abruptly only when x is approaching one.
This characteristic can be utilized in constructing the move function that fit
with our principle of move.

After the hill climbing procedure terminates, we use the default terms from
each candidate term list to construct the default term set which contains the most
appropriate terms, within this ontology context, matching the input words.

5.4 Step Three – Ranking the Term Sets

Each starting point can return us a default term set that would be the best
mapping in the context of the starting point. In order to find out which term set
among them is the most appropriate in the Semantic Web scale for the input
set of words, we rank all the default term sets obtained from different contexts
according to a goodness function considering both consistence and popularity,
which is given by:

popw1 · tan(cr · (π
2 − w2)) · spcrw3 · (

∑n

i=1 simi · corri)
w4

spsizew5

. (5)

where simi is the measurement showing the extend to which termi’s local name
is semantically related with the matched input word or short phrase, corri is the
conditional probability that we can see the termi’s ontology if we already see
the starting point ontology in an RDF document, pop is the popularity of the
starting point ontology, cr is the percent of the input words that have matching
terms in the ontology context, spcr is the percent of the input words that have
matching terms belonging to the starting point ontology, spsize is the number
of terms in the starting point ontology, and wi are the weights used to adjust
the contribution of each factor to the whole formula.

∑n

i=1 simi ·corri is the accumulated term weights in the context of the start-
ing point, which also considers how well the term are matched. (

∑n

i=1 simi ·

corri)
w4/spsizew5 alone is a good indicator for measuring the normalized con-

sistency of the target term set. When it is combined with popularity by multi-
plication, besides using the weights w1 and w4 to reach a balance between them
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we further introduce tan(cr · (π
2 −w2)) to promote the term sets that have high

cr over those having ordinary cr and introduce spcrw3 to respect the term sets
that are more related with their starting points. The big ontologies, although
enjoying a high cr and spcr, are still inferior to good competitors from small
ontologies because of the effect of spsize.

Finally we present the top 20 term sets, ordered by their goodness score
descendingly, as output to users.

6 Evaluation

Our problem is like an information retrieval task because both aspects find linked
data items (schemas or documents) from query words. However, our problem is
significantly different from what an IR system does. Ontologies are schemas,
while documents are data files encoded in a schema (natural language).

Evaluating Information retrieval systems typically requires ground truth query
relevance judgments assessed by humans on document query pairs. Considering
the wide variety of queries, this kind of evaluation is very expensive. Instead of
using human judgments we use the existing RDF documents known by Swoogle
to evaluate our system. We test the system by extracting all the terms (classes
and properties) used in an RDF document and use their local names and types
as the input words to our system. The original terms in the RDF document
compose the target term set. We would like to see how well the top term sets in
our suggestions list match the target term set.

We compare our results against a baseline consisting of the globally most
popular terms, according to Swoogle’s term rank, whose local names and types
exactly match the input words. Since the baseline does not need to cope with
synonyms, the word ambiguities encountered by the baseline are therefore less
than what our system are dealing with. Both our system and the baseline work
on the same term index mentioned in Section 5.1.

What we measure is not the correct rate but rather the match rate to the
target term set. These two are different because not all RDF documents on the
Semantic Web are problem free; terms may be misused, abused, or inferior to
other choices. To make the match rate closer to the correct rate, we selected doc-
uments that were (1) syntactically well-formed RDF documents, (2) not HTML
with embedded RDF, (3) without the string ’test’ in their URI, and (4) with
local name lengths ranging between zero and 80 characters exclusively. Finally,
to prevent test RDF documents from having too many concepts we also required
them (5) using no more than 50 different ontology terms.

As of December 2008, Swoogle had more than three million RDF documents.
Of these, our selection criteria reduced our test set pool to about 1.4 million
entries. We randomly sampled a tenth from this set to use as our final test pool.
Since the majority of the dataset documents were foaf and and rss files, the
match rates were less convincing since just doing a good job on foaf and rss
would yield high accuracy. Consequently, we tested our approach both with and
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without the foaf and rss documents to better test the value of our approach.
After removing foaf and rss files about 50K entries remained.

Table. 1 shows how well we do against our baseline. We define best@top(n)
as the the term set among the top n which has the highest match rate against
the target term set. The match rate is simply defined as the number of matching
terms divided by the total number of terms in the target term set. There are two
ways to decide if a target term is matched: check (i) if the default choice matches
and (ii) if any of the three options matches. Consequently, best@top(n) can have
two different types. With foaf profiles and rss files, the baseline does a very good
job (0.884) because our distribution mirrors actual (popular) usage, which is
highly skewed to foaf profiles and rss files. Without foaf and rss, the baseline
goes down by 0.084 and the best@top(1) for the default choice also goes down
by 0.047. However, a reduction in the match rate does not necessarily mean a
reduction of the correct rate. It may reflect an expectation that there are fewer
errors or misused terms in foaf and rss documents since they are well-known
ontologies and the vast majority of the documents are generated automatically.
Figure 4 shows the histograms of the match rate of best@top(1) for the default
choice and the baseline to reveal the match rate distributions for the test with
foaf profiles and rss documents. Figure 5 shows the same thing but for the test
without foaf profiles and rss documents. By comparing the two figures, we can
find that best@top(1) has a basically same distribution but the baseline has a
much scattered distribution in Figure 5.

Table 1. Average match rate with and without FOAF Profiles and RSS Documents

With FOAF and RSS Without FOAF and RSS

Baseline 0.884 0.800

best@top(n) default choice three options default choice three options

1 0.949 0.965 0.902 0.936

2 0.961 0.973 0.929 0.954

3 0.963 0.975 0.935 0.958

4 0.965 0.975 0.938 0.960

5 0.965 0.976 0.939 0.961

6 0.965 0.976 0.940 0.962

7 Conclusion and Future Work

Tens of thousands of Semantic Web ontologies currently exist on the Web and
the collection of them determines the vocabulary (terms) that machines can
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Fig. 4. With foaf and rss: best@top(1) on the left and the baseline on the right

Fig. 5. Without foaf and rss: best@top(1) on the left and the baseline on the right

understand. However, it is very hard or even impossible to let people get familiar
with these machine terms. People have their own vocabulary – the words in
human languages. Our work is intended to build a bridge between the words
and the terms so that people can annotate and query their data in a natural
way to them and the corresponding data are stored in RDF data model using
the terms. By using the words, people are are provided greater freedom in the
variety of data they can annotate. Moreover, through the mapping enabled by
the system people can also know what terms are already there and what terms
need to be created. This can benefit the development of Semantic Web ontologies
and avoid duplicated works. Furthermore, the matching mechanism used in our
system determines that the ontologies whose terms are lexicalized in the most
common way that people would express English counterpart are more likely to be
selected. This can drive ontology development toward meeting people’s common
conceptualization of the world. One important goal of the Semantic Web is
to achieve data integration. We have to first reach consensus at schema level
before we can finally integrate instance data. By linking and reusing ontologies,
hopefully, there could emerge one or a few dominating ontologies for each unique
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concept in the Semantic Web. These dominating ontologies are interlinked with
each other to form the standard machine conceptualization of the world. Which
ontology will succeed is not determined by any organization but by people and by
usage. In future work we plan to apply NLP techniques to better determine if two
words (short phrases) can have the same meaning and use ontology information
for terms to better understand the semantics of terms.
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