
Salisbury
Honors College

Honors Thesis

An Honors Thesis Titled

f,\.t surviv~l OV\ us~ 1>ritJt.
Submitted in partial fulfillment of the requirements for the Honors Designation to the

Honors College

of

Salisbury University

in the Major Department of

by

Date and Place of Oral Presentation: Af <'i\ '21'1 "2011: SWfl.C

Signatures of Honors Thesis Committee

Mentor A-vp
Reader!: ~

Reader,~:--~~=~~~~=-~ -
-=.........._

Director: --,

Signature

DC 1,mo-W\y s.-toc\C.

Print

1

Abstract

Flash (or USB) drives are small, inexpensive, portable, store an immense amount

of data and can connect to multiple types of devices, including computers, digital

cameras, printers, scanners, and external hard drives. In addition, these devices are one of

the most used forms of personal data transfer and storage. Smaller versions of the same

technology are used in nearly all mobile devices, such as cell phones, digital cameras,

and tablet computers. If a flash drive is lost or stolen, and not encrypted, any information

on the drive is open to the public, including confidential information. Many people are

not aware that when you delete a file from a flash drive, or any conventional computer

hard drive, it is not permanently gone. In fact, the file is not removed at all, the device

simply allows another device to write over the deleted file if a new file is being written to

the device. In our study, we explored how long a deleted file from a flash drive will

remain readable or partially readable, as we added and removed other files from the

device. Using freeware tools, such as Forensic Toolkit (FTK) and Autospy, we can view

all the contents of a flash device, including deleted and partially overwritten media.

Using a target test file, we wrote the file to the flash device, deleted it, then randomly

wrote and deleted files of various sizes to the drive to test how long the target file will

remain unaltered or partially readable. We will discuss the results of this study and we

hope to raise awareness of possible data recovery on flash devices and that the misuse of

such devices can cause a personal security issue.

Introduction

How can one little bug have control over an entire system without an

administrator knowing? Today, cyber security is one of the most important topics to be

2

discussed. It is an increasing problem because the public is unaware of the hackers

continuously trying to steal people’s personal and non-personal information. Although

there are numerous types of cybercrimes, the most common occurrences within

cyberspace are information warfare and digital crimes. Technology has enhanced and

expanded over time to the point where anything is possible. There have been many real-

world issues pertaining to hackers obtaining confidential information. One example, is

the infamous Stuxnet Worm that emerged in 2010.

The Stuxnet Worm “was designed and released by a government (there have been

rumors that it was the U.S. and Israel, however neither have confessed) to attack the

Bushehr nuclear power plant in Iran” (“The Story Behind the Stuxnet Virus”). It was a

“computer worm that targets industrial control systems that are used to monitor and

control large scale industrial facilities like power plants, dams, waste processing systems,

and similar operations” (“The Stuxnet Worm”). The spread of this virus was through a

USB (Universal Serial Bus) drive. This was the first ever attack that allowed hackers to

be able to exploit real-world equipment. This kind of attack demonstrates the importance

of USB drives and how the public may not comprehend that a great deal can happen

within a USB drive. It is critical to note that a USB drive should not be underestimated

and that a flash drive can be a huge threat. Therefore, it is necessary for the general

public to understand what a USB drive is and how it functions.

A USB (or flash, or thumb) drive is a small piece of equipment used to store and

transfer data. It is used every day by people, companies, et cetera to perform many

different tasks. Data is always being stored, transferred, or deleted. The specific file’s

location can be difficult to find because the file can be separated into several pieces, each

3

having their specified location. It can be to the point where users have completely lost

track of the data. The rise of flash drives came in 2007 “or even much earlier, some of the

USB memory sticks offered by retailers could store 2000 times the capacity of floppy

disks” (Amankwah-Amoah 127). Floppy disks were the main storage devices that were

first used to store and transfer data. They were “one of the most widely used storage

devices in the last quarter of the twentieth century” (Amankwah-Amoah 121). However,

as the size of files became increasingly larger, some of the floppy disks became useless.

People needed a storage device that can hold a large amount of data. Therefore, the rise

of USB drives caused the use of floppy disks to decline. USB drives “played a pivotal

role in the reliance on the floppy as a key mechanism for data transfer” (Amankwah-

Amoah 127). It is a device that people depend on and use it on a day-to-day basis.

USB drives are solid-state drives and are nonvolatile devices because they can

preserve data even when there is no power connected. The data is “stored directly in

silicon NAND flash memory devices” (Siewart and Dane 30). Solid State Drives (SSD)

do not have moving parts such as “the rotating media and servo-actuated read/write

heads” (Siewart and Dane 30) that are used to access data from Hard Disk Drives (HDD).

The advantage of the moving parts “improves the durability in resisting physical shock or

mechanical failure and increases performance density” (Siewart and Dane 30). SSDs are

able to perform at a much faster rate than HDDs. The data stored in SSDs are in a “virtual

memory map on the NAND flash” (Siewart and Dane 30) and obtaining the data is not

difficult. All that needs to be done is to change the address of the file to execute the next

read/write whereas HDDs require multiple steps before one can access the data. SSDs

also use flash memory, meaning they can retain data when there is no power. Thus, it can

4

be safely assumed that USB flash drives are the new and improved floppy disks.

Although flash drives have become popular and seem to be the most effective way of

storing and transferring data, they can lose data just as easy.

The expression “expect the unexpected” perfectly characterizes a flash drive. One

wrong click and everything could be gone. Flash drives are extremely convenient but can

also be a disappointment when it comes to file storage. It can be frustrating when files are

accidentally deleted since most people assume that the data will not be recoverable. There

are many ways to recover deleted files by using forensic tools, like Forensic Toolkit

(FTK) and Autopsy. Some of the tools are free or open source, while others must be paid

for before they can be used. These tools can easily create a clone of the flash drive (FTK)

and then use a separate tool to secure all information that exists on the flash drive.

Autopsy allows us to view a list of all the deleted files and extract any that we want. It is

not guaranteed that all files will still be intact and open fine. Depending on the file that

we want to extract and view will depend on whether it has been previously deleted; if so,

the number of files that has been added and deleted since the file has been deleted will

affect its lifespan.

Files are stored differently depending on the type of system. Before any file can

be saved on a system or media, the media first must be partitioned and formatted. The

format of the volume is determined by the specific file system and the operating system

(Linux, Windows, Mac OS X). A file system “defines the way the files are named, stored,

organized, and accessed on volumes” (Kent, et al 10). Two common file systems are the

File Allocation Table (FAT) and New Technology File System (NTFS). FAT uses tables

to organize the files and folders. For each folder, the “starting cluster and date-time

5

stamps associated with each file” can be seen (Casey 514). Each entry in the table

designates what each specific cluster is being used for. If the cluster contains a zero, this

means that the cluster is free and available to use. The FAT “file systems do not record

the last accessed time, but only the last accessed date” (Casey 515). NTFS is different

from FAT because it stores “file system information in several system files including a

Master File Table, supporting larger disks more efficiently (resulting in less wasted

space), and providing file and folder level security using Access Control Lists, and more”

(Casey 519). The NTFS stores the minimal amount of information; this means when the

master file table is created only the essential elements are in the table. The table gradually

grows as more files are added. NTFS is “designed with disaster recovery in mind, storing

a copy of the $BOOT system file at both the beginning and end of the volume” (Casey

519). A major difference between FAT and NTFS is that NTFS is an ownership file

system which means that not all details of the file system are regularly available. Files are

stored this way so they can be quickly accessed if needed. Learning about how files are

stored on a flash drive is important, but understanding the safety and lifespan of a file is

just as significant.

Files stored on flash drives can be overwritten easily. An important aspect of data

recovery is file carving. If data on a flash drive has been “deleted some time in the past

and the files are partially overwritten, they will only exist in the area of the drive that is

unallocated” (Daniel 201). The purpose of file carving is “to find the pieces of the deleted

files in unallocated space and electronically tape them back together” (Daniel 201). This

is like taping pieces of a paper back together that has been shredded. There is a

possibility that not one hundred percent of the specific file will be recoverable from file

6

carving. This is because the operating system “will eventually use the space on the hard

drive for new files and overwrite all or part of any file that was previously deleted”

(Daniel 203). Any type of file can be recovered from unallocated space.

A question that may be asked about data recovery is how much information can

be retrieved from a specific file on a USB drive? Exactly what percentage of said file can

be recovered? Although using freeware tools such as Autopsy and Forensic Toolkit

(FTK) will help recover deleted files from the flash drive, this does not mean that all the

information from all files on the drive will still be there. Over time, the space on the flash

drive will be overwritten with new files added and slowly remove bits of the deleted files.

USB drives are extremely important and popular to carry around. Flash storage

devices are used as external storage if a system runs out of disk space and can no longer

be usable if the drive was corrupted or stolen. The results of this study will hopefully

raise awareness of possible data recovery on flash devices and that the misuse of such

devices can cause a personal security issue.

Materials

• Computer (DELL Laptop)

• Flash Drives (x4)

o PNY USB Drives 16 GB

• Forensic Tools

o Sleuthkit Autopsy

o Forensic Toolkit (FTK)

• Vbindiff (Command Prompt)

• Specialized Codes (Both written in C and are cross platform)

7

o Write & Delete Files

o Corruption Percentages

Obtaining & Processing the Data

For each of the trials, I used Forensic Toolkit (FTK) and Autopsy to perform my

data collection. I examined target files of different file size and file type every trial. I used

a specialized code that Dr. Spickler and I wrote to add/delete random files onto the USB

drive. The code allowed me to decide the lower and upper bound for the new added files.

I chose how many files I wanted to add onto and delete from the USB drive. Once I

completed with the addition & deletion of files, I used Forensic Toolkit to create a

duplicate copy of the USB drive that would then let me import the data into Autopsy.

Autopsy displays all the contents on the flash drive (including the deleted ones) and

organizes the files based on the file type. Below is a detailed explanation of what was

completed for me to acquire my results.

Procedure/Methodology

First, I used a code that randomly added and deleted files from a USB drive. I did this

several times before creating an image of the USB using Forensic Toolkit (FTK). After I

created the image, I imported said image into Autopsy, allowing me to view all contents

on the flash drive. Below are the steps I took to create an image and how to import the

image to view the contents of the flash drive.

A. Forensic ToolKit (FTK)

1. Plug in the USB Drive

2. Click on “AccessData FTK Imager”

3. Click on file à Create Disk Image à Click Next à Select the correct USB

8

4. Click add à click next

5. Fill in the correction information for “Evidence Item Information”

6. Click next

7. Under “Image Destination Folder” à Look for a folder named “Images” à

Double click on the folder then look for the correct folder with the

corresponding number (“USB##”)

a. Choose the folder to place the image of the USB in

8. Give the image an “Image filename (excluding extension) à click finish

B. Autopsy

1. Click on “Create New Case”

2. Enter in the required information under “Enter New Case Information”

a. Case Name: (ex: TestUSB1)

b. Base Directory: (ex: C:\Users\Jessie\Desktop\USB\Cases)

3. Click Next

4. Enter in the case number (ex: TestUSB1)

5. Click Finish

6. A window will pop up requiring you to complete a few more steps before one

is able to view the contents on the flash drive

a. Enter Data Source Information

i. Select source type to add: Image File

ii. Browse for an image file:

Ø Click Browse à (USB à Image à USB##)

iii. Click Next

9

b. Configure Ingest Modules

i. Click Next

c. Add Data Source

i. Click Finish

After I collected my data, I analyzed the target file to see if it was corrupted, partially

corrupted, or not corrupted. The tool, Vbindiff, will tell me where the target file differs

from its original file. Autopsy helped me determine the lifespan of the target file.

C. Vbindiff (Command Line Tool)

a. Open a command prompt

b. Go to where the vbindiff folder is located

c. Then type “vbindiff file1.ext file2.ext” and hit Enter

i. file1 and file2 are the same file – one is the original and the other

is the one that was on the flash drive

d. A split screen window will appear showing the two different files that are

being compared

e. The red portion represents the differences between the two files

 Once I am finished with a specific run, I reformat the flash drive so that I can start the

process all over again (erases information from the file allocation table). To do this, I

right click on the USB drive and click format. A pop up window appears that says

“WARNING: Formatting will erase ALL data on this disk. To format the disk, we click

OK. To quit, click CANCEL.” I then hit OK and then it will reformat the USB drive.

10

Data Collection

I used an Excel spreadsheet and Microsoft OneNote to record all my information. This

helped me determine the best way to represent my data in a way that would make it easy

for those unfamiliar of the topic to make sense of it. Below are screenshots from both

Excel and Microsoft OneNote.

Excel:

PNYDriv
e1 RED -
Window
s

Prompt that
appears on
the screen Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

Number of
files on drive
before
add/delete 0 1

3 (with
added target

file) 4 5 6

A

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000 1000 1000 1000

Upper bound
on file size: 1000000 1000000 1000000 1000000 1000000

10000
00

Number of
files to write: 1 2 3 4 5 6

Number of
files to delete: 0 1 2 3 4 5

Total number
of files after
each trial 1

3 (1 + 2) -
1 = 2

6 (3+3) - 2 =
4

8 (4+4) - 3 =
5

10 (5+5)-4 =
6

12
(6+6)-
5 = 7

B

Number of
files on drive
before
add/delete 0 5

10 (with
added target

file)

12 (deleted
the target

file)

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000 1000

Upper bound
on file size: 1000000 1000000 1000000 1000000

Number of
files to write: 5 5 5 3

Number of
files to delete: 0 1 2 3

11

Total number
of files after
each trial 5

10 (5+5)-1
= 9

15(10+5)-2 =
13

15(12+3)-3 =
12

C

Number of
files on drive
before
add/delete 0

4 (with
added
target)

2 (deleted
the target

file)

Drive Path
<include final
path
separator>: e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000

Upper bound
on file size: 1000000 1000000 1000000

Number of
files to write: 5 0 1

Number of
files to delete: 2 1 0

Total number
of files after
each trial 3 4 - 1 = 3 3 (2+1)-0 = 3

D

Number of
files on drive
before
add/delete 1 (target file)

Drive Path
<include final
path
separator>: e:\

Lower bound
on file size: 1000

Upper bound
on file size: 1000000

Number of
files to write: 4

Number of
files to delete: 1

Total number
of files after
each trial 5-1 = 4

E

Number of
files on drive
before
add/delete 1 (target file) 5

Drive Path
<include final
path
separator>: e:\ e:\

12

Lower bound
on file size: 1000 1000

Upper bound
on file size: 1000000 1000000

Number of
files to write: 4 0

Number of
files to delete: 0 3

Total number
of files after
each trial 5 5-3 = 2

F

Number of
files on drive
before
add/delete 1 (target file) 5

5 (target file
got deleted

at trial 2)

Drive Path
<include final
path
separator>: e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000

Upper bound
on file size: 1000000 1000000 1000000

Number of
files to write: 4 1 1

Number of
files to delete: 0 1 2

Total number
of files after
each trial 5

6(5+1) -1
= 5 6(5+1)-2 = 4

G

Number of
files on drive
before
add/delete 1

2
(manually

add in
target
file)

Drive Path
<include final
path
separator>: e:\ e:\

Lower bound
on file size: 1000 1000

Upper bound
on file size: 1000000 1000000

Number of
files to write: 1 0

Number of
files to delete: 0 2

Total number
of files after
each trial 1 0

13

H

Number of
files on drive
before
add/delete 0

5 (target
file

added)

4 (deleted
target file

before trial
3)

Drive Path
<include final
path
separator>: e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000

Upper bound
on file size: 1000000 1000000 1000000

Number of
files to write: 4 1 0

Number of
files to delete: 0 1 2

Total number
of files after
each trial 4

6(5+1) - 1
= 5 2

I

Number of
files on drive
before
add/delete 0

5
(manually
add target
file) 7

7 (target file
got deleted
after trial 3)

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000 1000

Upper bound
on file size: 1000000 1000000 1000000 1000000

Number of
files to write: 4 4 4 1

Number of
files to delete: 0 2 4 1

Total number
of files after
each trial 4

9(5+4)-2 =
7

11(7+4)- 4 =
7

8(7+1) - 1 =
7

J

Number of
files on drive
before
add/delete 0 4

7 (manually
add target

file) 7

6 (manually
delete
target file) 9

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000 1000 1000 1000

Upper bound
on file size: 1000000 1000000 1000000 1000000 1000000

10000
00

Number of
files to write: 4 4 4 1 3 0

14

Number of
files to delete: 0 2 4 1 0 2

Total number
of files after
each trial 4

8(4+4)-2 =
6

11(7+4)-4 =
7

8(7+1) - 1 =
7 9(6+3)-0 = 9

9-2 =
7

K

Number of
files on drive
before
add/delete 1 (target file) 5

3 (manually
delete target

file)

Drive Path
<include final
path
separator>: e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000

Upper bound
on file size: 1000000 1000000 2000000

Number of
files to write: 4 2 1

Number of
files to delete: 0 3 0

Total number
of files after
each trial 5

7(5+2)-3 =
4 4(3+1) - 0 = 4

L

Number of
files on drive
before
add/delete 1 (target file) 3

Drive Path
<include final
path
separator>: e:\ e:\

Lower bound
on file size: 1000 1000

Upper bound
on file size: 4000000 3000000

Number of
files to write: 2 2

Number of
files to delete: 0 1

Total number
of files after
each trial

(with the
target file at

the
beginning) 3

5 (3+2) - 1
= 4

M

Number of
files on drive
before
add/delete 1 (target file)

6
(manually

delete
target
file)

15

Drive Path
<include final
path
separator>: e:\ e:\

Lower bound
on file size: 1000000 1000

Upper bound
on file size: 4000000 2000000

Number of
files to write: 6 2

Number of
files to delete: 0 1

Total number
of files after
each trial 7

8(6+2) - 1
= 7

N

Number of
files on drive
before
add/delete 0

7
(manually
add target

file)

8 (target file
got deleted
by system) 8 10

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000 1000 1000

Upper bound
on file size: 1000000 1000000 1000000 1000000 1000000

Number of
files to write: 6 3 1 2 0

Number of
files to delete: 0 2 1 0 3

Total number
of files after
each trial 6

10(7+3) -
2 = 8 9(8+1) - 1 = 8

10 (8+2) - 0
= 10 7 (10-3) = 7

O

Number of
files on drive
before
add/delete

1 (manually
add target

file) 5

6 (manually
delete target

file)

Drive Path
<include final
path
separator>: e:\ e:\ e:\

Lower bound
on file size: 1000 1000 100

Upper bound
on file size: 2000000 1000000 1000

Number of
files to write: 4 4 1

Number of
files to delete: 0 2 1

16

Total number
of files after
each trial 5

9 (5+4) - 2
= 7

7 (6+1) - 1 =
6

P

Number of
files on drive
before
add/delete

1 (manually
add target

file)

4
(manually

delete
target
file)

Drive Path
<include final
path
separator>: e:\ e:\

Lower bound
on file size: 1000 100

Upper bound
on file size: 1000000 1000

Number of
files to write: 4 2

Number of
files to delete: 0 1

Total number
of files after
each trial 5

6 (4+2) - 1
= 5

Q

Number of
files on drive
before
add/delete 0

11
(manually
add target

file)

10 (manually
delete target

file)

Drive Path
<include final
path
separator>: e:\ e:\ e:\

Lower bound
on file size: 100 100 100

Upper bound
on file size: 1000000 1000 1000

Number of
files to write: 10 1 1

Number of
files to delete: 0 1 1

Total number
of files after
each trial 10

12 (11+1)
- 1 = 11

11(10+1)- 1
= 10

R

Number of
files on drive
before
add/delete 0

11
(manually
add target

file)

10 (manually
delete target

file) 10 12

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\

17

Lower bound
on file size: 100 100 100 1000 1000

Upper bound
on file size: 1000000 1000 1000 1000000 1000000

Number of
files to write: 10 1 1 2 0

Number of
files to delete: 0 1 1 0 2

Total number
of files after
each trial 10

12(11+1) -
1 = 11

11(10+1)- 1
= 10

12 (10+2) - 0
= 12 12 - 2 = 10

S

Number of
files on drive
before
add/delete 0

11
(manually
add target

file)

10 (manually
delete target

file) 10

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\

Lower bound
on file size: 100 100 100 1000

Upper bound
on file size: 1000000 1000 1000 1000000

Number of
files to write: 10 1 1 2

Number of
files to delete: 0 1 1 0

Total number
of files after
each trial 10

12(11+1) -
1 = 11

11(10+1)- 1
= 10

12 (10+2) - 0
= 12

T

Number of
files on drive
before
add/delete 0

11
(manually
add target

file)

10 (manually
delete target

file) 10

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\

Lower bound
on file size: 100 100 100 1000

Upper bound
on file size: 1000000 1000 1000 1000000

Number of
files to write: 10 1 1 1

Number of
files to delete: 0 1 1 0

Total number
of files after
each trial 10

12(11+1) -
1 = 11

11(10+1)- 1
= 10

11 (10+1) - 0
= 11

18

U

Number of
files on drive
before
add/delete 0

11
(manually
add target

file)

11 (manually
delete target

file) 12

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\

Lower bound
on file size: 100 100 100 1000

Upper bound
on file size: 1000000 1000 1000 1000000

Number of
files to write: 10 2 2 1

Number of
files to delete: 0 1 1 0

Total number
of files after
each trial 10

13(11+2) -
1 = 12

13(11+2)- 1
= 12

13 (12+1) - 0
= 13

V

Number of
files on drive
before
add/delete 0

7
(manually
add target

file)

7(manually
delete target

file) 7 9

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\

Lower bound
on file size: 1000 1000 1000 1000 1000

Upper bound
on file size: 1000000 1000000 1000000 1000000 1000000

Number of
files to write: 6 3 1 2 0

Number of
files to delete: 0 2 1 0 3

Total number
of files after
each trial 6

10(7+3) -
2 = 8 8(7+1) - 1 = 7

9 (7+2) - 0 =
9 9(9-3) = 6

W

Number of
files on drive
before
add/delete 0 6

10 (manually
add target

file) 8

8 (manually
deleted
target file)

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\

Lower bound
on file size: 1000 100 100 1000 2000

Upper bound
on file size: 1000000 1000 1000 1000000 5000000

Number of
files to write: 6 5 0 1 1

19

Number of
files to delete: 0 2 2 0 2

Total number
of files after
each trial 6

11(6+5) -
2 = 9 10+0 - 2 = 8 8 + 1 - 0 = 9

9(8+1) - 2 =
7

X

Number of
files on drive
before
add/delete 0

8
(manually
add target

file) 9

5 (manually
delete target

file)

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\

Lower bound
on file size: 4000000 4000000 4000000 4000000

Upper bound
on file size: 12000000 12000000 12000000 12000000

Number of
files to write: 7 4 0 2

Number of
files to delete: 0 3 3 0

Total number
of files after
each trial 7

12(8+4) -
3 = 9 9-3 = 6 5 + 2 = 7

Y

Number of
files on drive
before
add/delete 0 10

26 (manually
add target

file) 26

29 (manually
delete

target file) 31

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\ e:\

Lower bound
on file size: 4000000 4000000 4000000 4000000 4000000

40000
00

Upper bound
on file size: 12000000 12000000 12000000 12000000 12000000

12000
000

Number of
files to write: 10 20 5 12 4 10

Number of
files to delete: 0 5 5 8 2 5

Total number
of files after
each trial 10

30
(10+20) -

5 = 25
31 (26+5) - 5

= 26
38 (26+12) -

8 = 30
33 (29+4) - 2

= 31

41
(31+1
0) - 5
= 36

Z

Number of
files on drive
before
add/delete 1 (target file) 10

12 (target
file got

deleted by
system) 18

Drive Path
<include final e:\ e:\ e:\ e:\

20

path
separator>:

Lower bound
on file size: 4000000 4000000 4000000 4000000

Upper bound
on file size: 12000000 12000000 12000000 12000000

Number of
files to write: 9 6 8 2

Number of
files to delete: 0 4 2 3

Total number
of files after
each trial 10

16 (10+6)
- 4 = 12

20 (12+8) - 2
= 18

20 (18+2) - 3
= 17

PNYDriv
e2 RED -
Window

s

AA

Number of
files on drive
before
add/delete 1 (target file) 11 13

14 (target
got deleted

by the
system)

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\

Lower bound
on file size: 4000000 1000 2000 4000000

Upper bound
on file size: 12000000 1000000 4000000 12000000

Number of
files to write: 10 5 6 2

Number of
files to delete: 0 3 5 0

Total number
of files after
each trial 10

16 (11+5)
- 3 = 13

19 (13+6) - 5
= 14

16 (14 + 2) -
0 = 16

BB

Number of
files on drive
before
add/delete 1 (target file) 11

18 (target
file got

deleted by
system)

Drive Path
<include final
path
separator>: e:\ e:\ e:\

Lower bound
on file size: 1000000 20000000 1000

Upper bound
on file size: 4000000 35000000 1000000

Number of
files to write: 10 10 1

Number of
files to delete: 0 3 0

21

Total number
of files after
each trial 11

21(11+10)
- 3 = 18

19 (18+1) - 0
= 19

CC

Number of
files on drive
before
add/delete 1 (target file) 9

17 (target
file got

deleted by
sytstem) 19

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\

Lower bound
on file size: 20000000 20000000 25000000 25000000

Upper bound
on file size: 35000000 35000000 35000000 35000000

Number of
files to write: 8 10 4 1

Number of
files to delete: 0 2 2 0

Total number
of files after
each trial 9

19 (9+10)
- 2 = 17

21 (17 + 4) -
2 = 19

20 (19+1) - 0
= 20

DD

Number of
files on drive
before
add/delete 0 5

7 (manually
add target

file)

21 (manually
delete target

file) 23

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\

Lower bound
on file size: 20000000 20000000 20000000 20000000 20000000

Upper bound
on file size: 35000000 35000000 35000000 35000000 35000000

Number of
files to write: 5 1 20 10 1

Number of
files to delete: 0 0 5 8 5

Total number
of files after
each trial 5

6 (5+1) - 0
= 6

27 (7 + 20) -
5 = 22

31 (21 + 10)
- 8 = 23

24 (23+1) - 5
= 19

EE

Number of
files on drive
before
add/delete 0 10

12 (manually
add target

file) 13

15 (target
file got
deleted by
system)

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\

22

Lower bound
on file size: 20000000 40000000 40000000 20000000 40000000

Upper bound
on file size: 35000000

10000000
0 100000000 35000000 100000000

Number of
files to write: 10 2 4 6 3

Number of
files to delete: 0 1 3 4 2

Total number
of files after
each trial 10

12 (10+2)
- 1 = 11

16 (12 + 4) -
3 = 13

19 (13 + 6) -
4 = 15

18 (15+3) - 2
= 16

FF

Number of
files on drive
before
add/delete 0

5
(manually

delete
file) 9

17 (target
file got

deleted by
system) 23

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\ e:\

Lower bound
on file size: 40000000 20000000 40000000 40000000 40000000

Upper bound
on file size: 80000000 35000000 80000000 80000000 80000000

Number of
files to write: 4 6 10 8 10

Number of
files to delete: 0 2 2 2 2

Total number
of files after
each trial 4

11(5+6) -
2 = 9

19 (9+10) - 2
=17

25 (17+8) - 2
= 23

33 (23+10) -
2 = 31

GG

Number of
files on drive
before
add/delete 1 (target file) 10

15 (target
file deleted
by system) 18

Drive Path
<include final
path
separator>: e:\ e:\ e:\ e:\

Lower bound
on file size: 40000000 40000000 40000000 40000000

Upper bound
on file size: 80000000 80000000 80000000 80000000

Number of
files to write: 10 8 5 10

Number of
files to delete: 1 3 2 5

Total number
of files after
each trial 10

18 (10+8)
- 3 = 15

20 (15+5) - 2
= 18

28 (18+10) -
5 =23

23

Microsoft OneNote:

• I used Microsoft OneNote to record the lower and upper bound of each trial, FTK

Elapsed Time, the result obtained through Autopsy, and other notes

PNYRedDrive1 - WINDOWS
• Capacity of USB: 14.5 GB
• File System: FAT 32 (Default)
• Allocation Unit Size: 8192 bytes
• The size of the first target file is 891 bytes (.txt files)

o Salisbury University Core Statement w/edits ("I love dogs" at the end)
• In this set of data collection the range for the lower bound is less than 1KB and the upper

bound is equal to 1 MB

A Lower bound:
1 KB
Upper bound:
1 MB

FTK elapsed time: 0:10:29
Autopsy: the target file was
completely corrupted after six
trials, with adding and deleting
with the same range for the
lower and upper bound

• Used the same lower bound and
upper bound for all six trials

• At trial 4, the target file got
automatically deleted (done by
the system)

• Total number of deleted files on
USB = 15

B Lower bound:
1 KB
Upper bound:
1 MB

FTK elapsed time: 0:10:28
Autopsy: target file is
completely corrupted

• Used the same lower bound and
upper bound for all five trials

• Manually deleted the target file
before trial 4

• Total number of deleted files on
USB = 7

C Lower bound:
1 KB
Upper bound:
1 MB

FTK elapsed time: 0:10:24
Autopsy: target file is
completely corrupted

• Used the same lower bound and
upper bound for all three trials

• Manually added target file at
trial 2

• Manually deleted target file
before trial 3

• Total number of deleted files on
USB = 4

D Lower bound:
1 KB
Upper bound:
1 MB

FTK elapsed time: 0:10:30
Autopsy: the content of the
target file is the same as the
original file - none of the file got
corrupted (checked with
vbindiff)

• Used the same lower bound and
upper bound for one trial

• Manually add the target file
(placed it in my USB before
adding/deleting files)

E Lower bound:
1 KB

FTK elapsed time: 0:10:30
Autopsy: the content of the
target file is the same as the

• Used the same lower bound and
upper bound for two trials

24

Upper bound:
1MB

original file - none of the file got
corrupted (checked with
vbindiff)

• Began with the target file on the
USB

• Total number of deleted files on
USB = 3

F Lower bound:
1 KB
Upper bound:
1 MB

FTK elapsed time: 0:10:29
Autopsy: target file is
completely corrupted - there
were random letters that
matched the original file
(checked with vbindiff)

• Used the same lower bound and
upper bound for three trials

• Target file got deleted at trial 2
• Total number of deleted files on

USB = 3

G Lower bound:
1 KB
Upper bound:
1 MB

FTK elapsed time: 0:10:30
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Used the same lower bound and
upper bound for two trials

• Manually add the target file at
the beginning of trial 2

• Total number of deleted files on
USB = 2

H Lower bound:
1 KB
Upper bound:
1 MB

FTK elapsed time: 0:10:30
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Used the same lower bound and
upper bound for all three trials

• Manually add the target file at
the beginning of trial 2

• Manually deleted the target file
at the beginning of trial 3

• Total number of deleted files on
USB = 4

PNYRedDrive1 - WINDOWS
• The size of the target file is 103KB (.docx file)

o Study Abroad Application
• In this set of data collection the range for the lower bound is less than 1KB and the upper

bound is equal to 1 MB

I Lower bound:
1KB
Upper
bound: 1MB

FTK elapsed time: 0:10:30
Autopsy: the content of the target
file is the same as the original - no
corruption to it; when I used vbindiff
to compare the two files the words
for both (original & target file) were
in different characters

• Used the same lower bound
and upper bound for all four
trials

• Manually add the target file
at the beginning of trial 2

• Target file got deleted after
trial 3

• Total number of deleted files
on USB = 7 (8-carved files)

J Lower bound:
1KB
Upper
bound: 1MB

FTK elapsed time: 0:10:27
Autopsy: target file is completely
corrupted; some random letters
match up in both files

• Used the same lower bound
and upper bound for all six
trials

• Manually added target file at
the beginning of trial 3

25

• Manually deleted target file
at the beginning of trial 5

• Total number of deleted files
on USB = 10

K First two
trials:
Lower bound:
1 KB
Upper
bound: 1 MB
Third Trial:
Lower bound:
1 KB
Upper
bound: 2MB

FTK elapsed time: 0:10:30
Autopsy: target file is completely
corrupted; some random letters
match up in both files

• Target file was already on
the USB drive (to begin with)

• Manually deleted the target
file at the beginning of trial 3

• Total number of deleted files
on USB = 4

L Trial 1
Lower bound:
1 KB
Upper
bound: 4 MB
Trial 2
Lower bound:
1 KB
Upper
bound: 3 MB

FTK elapsed time: 0:10:26
Autopsy: the content of the target
file is the same as the original - no
corruption to it

• Target file was already on
the USB drive (to begin with)

• At trial 2 the target file got
deleted by the system

• Total number of deleted files
on USB = 1

M Trial 1
Lower bound:
1MB
Upper
bound: 4MB
Trial 2
Lower bound:
1KB
Upper
bound: 2MB

FTK elapsed time: 0:10:31
Autopsy: target file is completely
corrupted; some random letters
match up in both files
• "The file StudyAbroad.docx

cannot be opened because
there are problems with the
contents."

• Target file was already on
the USB drive (to begin with)

• Manually delete target file at
Trial 2

• Total number of deleted files
on USB = 2

PNYRedDrive - WINDOWS
• The size of the target file is 4.87 MB (.jpg)

o House picture taken from archive.org (public domain images)
• The lower bound and upper bound is different for each run

N Lower bound:
1KB
Upper bound:
1MB

FTK elapsed time: 0:10:27
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture

• Manually added target file
(before trial 2)

• Target file was deleted by the
system after trial 2 and before
trial 3

26

because the file appears to
be damaged, corrupted, or
is too large"

• Total number of deleted files
on USB = 6

O Trial 1
Lower bound:
1KB
Upper bound:
2MB
Trial 2
Lower bound:
1KB
Upper bound:
1MB
Trial 3
Lower bound:
100 bytes
Upper bound:
1KB

FTK elapsed time: 0:10:30
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to
be damaged, corrupted, or
is too large"

• Manually added target file
(before trial 2)

• Manually deleted target file
before trial 3

• Total number of deleted files
on USB = 4

P Trial 1
Lower bound: 1
KB
Upper bound: 1
MB
Trial 2
Lower bound:
100 bytes
Upper bound: 1
KB

FTK elapsed time: 0:10:28
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to
be damaged, corrupted, or
is too large"

• Manually added target file (to
begin with)

• Manually deleted target file
before trial 2

• Total number of deleted files
on USB = 2

Q Trial 1
Lower bound:
100 bytes
Upper bound:
1MB
Trial 2
Lower bound:
100 bytes
Upper bound:
1KB
Trial 3
Lower bound:
100 bytes
Upper bound:
1KB

FTK elapsed time: 0:10:29
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Manually added target file
(before trial 2 began)

• Manually deleted target file
(before trial 3 began)

• Total number of deleted files
on USB = 3

27

R Trial 1
Lower bound:
100 bytes
Upper bound: 1
MB
Trial 2
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 3
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 4
Lower bound: 1
KB
Upper bound: 1
MB
Trial 5
Lower bound: 1
KB
Upper bound: 1
MB

FTK elapsed time: 0:10:29
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to
be damaged, corrupted, or
is too large"

• Manually added target file
(before trial 2 began)

• Manually deleted target file
(before trial 3 began)

• Total number of deleted files
on USB = 5

S Trial 1
Lower bound:
100 bytes
Upper bound: 1
MB
Trial 2
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 3
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 4
Lower bound: 1
KB
Upper bound: 1
MB

FTK elapsed time: 0:10:22
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to
be damaged, corrupted, or
is too large"

• Manually added target file
(before trial 2)

• Manually deleted target file
(before trial 3 began)

• Total number of deleted files
on USB = 3

• When I add two random files
with the random file size
between 1KB and 1 MB the
file is corrupted

28

T Trial 1
Lower bound:
100 bytes
Upper bound: 1
MB
Trial 2
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 3
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 4
Lower bound: 1
KB
Upper bound: 1
MB

FTK elapsed time: 0:10:30
Autopsy: the content of the target
file is the same as the original - no
corruption to it

• Manually added target file
(before trial 2)

• Manually deleted target file
(before trial 3)

• Total number of deleted files
on USB = 3

• Performed the same number
of trials like in Trial S except I
am only adding in 1 file in trial
3

U Trial 1
Lower bound:
100 bytes
Upper bound: 1
MB
Trial 2
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 3
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 4
Lower bound: 1
KB
Upper bound: 1
MB

FTK elapsed time: 0:10:29
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to
be damaged, corrupted, or
is too large"

• Manually added target file
(before beginning trial 2)

• Manually deleted target file
(before beginning trial 3)

• In both trial 2 and 3 instead of
adding 1 random file with a
size between 100 bytes to 1KB
- I added two files with the
same range for the lower and
upper bound

PNYRedDrive1 - WINDOWS
• The size of the target file is 5.65 MB (.jpg)

o Beach picture taken from creativecommons.org (public domain images)
• The lower bound and upper bound is different for each run

V Lower bound: 1
KB

FTK elapsed time: 0:10:30 • Manually added the target file
(before beginning trial 2)

29

Upper bound: 1
MB

Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to
be damaged, corrupted, or
is too large"

• Manually deleted the target
file (before the beginning trial
3)

• Used the same upper and
lower bound for all 5 trials

W Trial 1
Lower bound: 1
KB
Upper bound: 1
MB
Trial 2
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 3
Lower bound:
100 bytes
Upper bound: 1
KB
Trial 4
Lower bound: 1
KB
Upper bound: 1
MB
Trial 5
Lower bound: 2
MB
Upper bound: 5
MB

FTK elapsed time: 0:10:30
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to
be damaged, corrupted, or
is too large"

• Manually add target file
(before beginning trial 3)

• Manually delete target file
(before beginning trial 5)

• Upper and lower bounds
varied for each trial

X Lower bound: 4
MB
Upper bound:
12 MB

FTK elapsed time: 0:10:30
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Manually add target file
(before beginning trial 2)

• Manually deleted target file
(after trial 3)

• Upper and lower bound is the
same for all four files

Y Lower bound: 4
MB
Upper bound:
12 MB

FTK elapsed time: 0:10:30
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to

• Manually add target file
(before beginning trial 3)

• Manually delete target file
(before beginning trial 5)

• Upper and lower bound is the
same for all files

30

be damaged, corrupted, or
is too large"

Z Lower bound: 4
MB
Upper bound:
12 MB

FTK elapsed time: 0:10:25
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to
be damaged, corrupted, or
is too large"

• Manually add the target file
(placed it in my USB before
adding/deleting files)

• Target file got deleted by
system after trial 2

• Upper and lower bound is the
same for all four files

AA Trial 1
Lower bound: 4
MB
Upper bound:
12 MB
Trial 2
Lower bound: 1
KB
Upper bound: 1
MB
Trial 3
Lower bound: 2
KB
Upper bound: 4
MB
Trial 4
Lower bound: 4
MB
Upper bound:
12 MB

FTK elapsed time: 0:10:31
Autopsy: target file is completely
corrupted
• "Windows Photo Viewer

can't open this picture
because the file appears to
be damaged, corrupted, or
is too large"

• Manually added target file
(placed it in my USB before
adding/deleting files)

• Target file got deleted after
trial 3

PNYRedDrive2 - WINDOWS
• The size of the target file is 265 MB (.mov)

o Video from vimeo (taken from creativecommons.org)
• Lower and upper bound is different for each trial

BB Trial 1
Lower bound:
1 MB
Upper bound:
4 MB
Trial 2
Lower bound:
20 MB
Upper bound:
35 MB
Trial 3

FTK elapsed time: 0:10:31
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Manually added target file
(placed it in my USB before
adding/deleting files)

• Target file got deleted by
system after trial 3

31

Lower bound:
1 KB
Upper bound:
1 MB

CC Lower bound:
20 MB
Upper bound:
35 MB

FTK elapsed time: 0:10:30
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Manually added target file
(placed it in my USB before
adding/deleting files)

• Target file got deleted by
system before trial 3

DD Lower bound:
20 MB
Upper bound:
35 MB

FTK elapsed time: 0:10:30
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Manually added target file
(before trial 3)

• Manually deleted target file
(after target 3)

• Used the same lower and
upper bound

DD2 Lower bound:
20 MB
Upper bound:
35 MB

FTK elapsed time: 0:10:29
Autopsy: I was able to retrieve
the potus_target.mov file and a
screenshot of the beginning of
the video. I was not able to
retrieve any of the random
added/deleted files that had also
been on the flash drive

• This trial was used to see if I
could see any data on the flash
drive (files from DD) even
though I used "Quick Format"

EE Trial 1 & 4
Lower bound:
20 MB
Upper bound:
35 MB
Trial 2, 3, 5
Lower bound:
40MB
Upper bound:
100 MB

FTK elapsed time: 0:10:29
Autopsy: target file is completely
corrupted
• "Windows Media Player

cannot play the file. The
Player might not support
the file type or might not
support the codec that was
used to compress the file"

• When I tried to use 50 MB - 1
GB the code freaked out and
crashed

PNYRedDrive2 - WINDOWS
• The size of the target file is 26.9 MB (.mp4)

o Video from vimeo (taken from creativecommons.org)
• Lower and upper bound is different for each trial

FF Trial 1, 3, 4, 5
Lower bound:
40 MB
Upper bound:
80 MB
Trial 2

FTK elapsed time: 0:10:30
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Manually added target file after
trial 1 and before beginning trial
2

• Target file got deleted by system
after trial 3 and before trial 4

32

Lower bound:
20 MB
Upper bond: 35
MB

GG Lower bound:
40 MB
Upper bound:
80 MB

FTK elapsed time: 0:10:33
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Manually added target file
(placed it in my USB before
adding/deleting files)

• Target file got deleted by the
system

• Lower bund and upper bound
are the same for all 4trials

HH Trial 2, 3, 5
Lower bound:
40 MB
Upper bound:
80 MB
Trial 1 & 4
Lower bound:
20 MB
Upper bound:
35 MB

FTK elapsed time: 0:10:31
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Manually add target file (before
trial 3 & after trial 2)

• Manually delete target file
(before trial 4 began)

II Lower bound:
40 MB
Upper bound:
100 MB

FTK elapsed time: 0:10:33
Autopsy: the content of the
target file is the same as the
original - no corruption to it

• Manually added target file
(placed it in my USB before
adding/deleting files)

• Target file got deleted by the
system (before trial 3 and after
trial 2)

Results & Analysis

I created pie charts to represent my data and each pie chart corresponds to a specific file.

The chart shows the percentage of the specific file being destroyed and the percentage of

the file intact. Each of the target files were taken from personal documents and non-profit

websites.

• The number of files randomly added/deleted and the range for the randomly

added file size will affect whether the target file is corrupted or not

33

Intact
50%

Corrupted
50%

TEXT FILE 891 BYTES

Intact
25%

Corrupted
75%

IMAGE 4.87 MEGABYTES

34

This table displays the type and size of the target file I used as well with my conclusion

of what happened to each.

Target File Size Results

Text File 891 Bytes • The same range for the randomly added file

size was the same for all eight trials

• Half of the time the file was corrupted and

the other half the file was still intact

Word Document 103 Kilobytes • The range for the randomly added files was

between 1KB and 1 MB

Image 4.87 Megabytes • More than half of the time the file is

corrupted

Intact
100%

Corrupted
0%

VIDEO 26.9 MEGABYTES

35

• If the range for the randomly added file is

between 100 bytes and 1 MB then the file

will be intact

• As the size of the range for the random files

increase, there is a greater chance that the

file will be corrupted

Image 5.65 Megabytes • The range for the randomly added file

(depending on the trial) was between 1 MB

and 35 MB

Video 265 Megabytes • The range for the randomly added file

(depending on the trial) was between 100

bytes and 12 MB

• Using the same lower and upper bound

range, adding and deleting files between 1-

10 did not cause any damage to the file

• However, adding over 10 files causes the

file to be completely corrupted

• In the last trial, when I tried to use 50 MB-

1 GB as the range for the randomly added

files – the code crashed

Video 26.9 Megabytes • The range for the randomly added files was

between 40 MB and 100 MB

36

• Throughout all four trials the content of the

videos were unharmed

Conclusion

The lifespan of files on a USB drive depends on the operating system the drive is

connected to. From the data I have collected, I learned that the lifespan of files on USB

drives on a Windows system is very slim. It does not take much for a target file to be

completely corrupted once you delete it and add/delete more files to the flash drive. A

factor to consider about file survival is how the file is saved on the system. Files can be

saved in many ways on different operating systems. A point to note is the file systems

that are on each of the operating system. Each of the file systems have unique features

that distinguish themselves from one another. Because of this, the file’s chance of

surviving may be different depending on the operating system and file system.

Throughout this entire process, I have had a series of obstacles to overcome. The

data collection process takes roughly ten minutes per trial so I was constantly running

Autopsy and FTK. During my data collection, I noticed that there was a trend of being

able to either retrieve all the information on a flash drive or no information. Since there

was no possibility of recovering just part of a file, there was no need to use the corruption

percentage code that Dr. Spickler and I created.

 I learned an immense amount about USB drives and their importance. I also

learned that the public is not well-informed about importance of USB drives and how you

should be careful with the kind of information is being stored on there. From personal

observations, when I explain how files are recoverable on USB drives it shocks people.

37

Future Directions

I would like to further my research by looking at different operating systems such

as MAC, Linux (ext2, ext3, ext4). The difference in methodology of how files are saved

in Linux might affect the lifespan of file survival.

Appendix

I. Forensic Toolkit (FTK)

a. Creates a duplicate copy (image) of the USB drive

i. This window will appear when you first open FTK

II. Sleuthkit Autopsy

a. Allows one to view all the contents on a flash drive (including the deleted

ones)

38

III. Vbindiff

a. A command prompt tool that compares two files byte by byte and

highlights the difference between the files in red

IV. Specialized Codes written by Dr. Spickler & I

a. Write and Delete Files

• Allows a user to add and delete as many files as they want

• The files that are deleted are done randomly by the system

• Users can decide on the size of files to be added to the USB drive

//This program adds/deletes random files to a USB drive
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <dirent.h> //format of directory entries
#include <string>
#include <ctime> // contains definitions of functions to get and

manipulate date & time information

using namespace std;

int NumFiles(string drive) //drive = path of specific file
{

This compares two files byte by byte and indicating
any differences between the two files. One is the
original file and the other has some changes in it

39

 int filecount = 0; //counter used to keep track of the number of
files

 DIR *dir; //DIR = a type representing a directory stream
 struct dirent *ent; //struct & pointer
 if ((dir = opendir (drive.c_str())) != NULL) //opendir: likes

character string
//.c_str() converts a string into a character string

 {
 while ((ent = readdir(dir)) != NULL) //readdir: reads a

//directory and returns
//a pointer

 filecount++;
 closedir (dir);
 }
 else
 {
 return -1;
 }

 return filecount;
}
//As long as you can open the entry -> then you can read the
//directory and send all the information into the struct directory
//entry

//Read current directory -> all of the files currently on the flash
drive

//Prints out all the files in list form
//a. Set up directory
//b. Open directory
//c. Read directory -> sends information into struct ent
//d. Read in the file -> extract the file's name
void PrintDirList(string drive)
{
 DIR *dir;
 struct dirent *ent;
 if ((dir = opendir(drive.c_str())) != NULL)
 {
 while ((ent = readdir(dir)) != NULL)
 cout << ent->d_name << endl;

 closedir (dir);
 }
}

//*&dirlist = array of strings; pointer that it is an array
void GetDirList(string drive, string *&dirlist, int& filecount)
{
 filecount = NumFiles(drive); //gives you the number of files on

//USB so you can create an array
//that holds all files currently on
//flash drive

 dirlist = new string[filecount];

 DIR *dir;

40

 struct dirent *ent;
 if ((dir = opendir(drive.c_str())) != NULL)//opens the directory
 {
 //read in each entry in USB and put entry's name into

//directory list which is a string array
 for (int i = 0; i < filecount; i++)
 {
 ent = readdir(dir);
 dirlist[i] = ent->d_name;
 }
 closedir (dir);
 }
}

//Don't need this function
string RandomOneKBString()
{
 string retstr = "";

 for (long i = 0; i < 1024; i++)
 {
 char c = (char)(rand() % 256);
 retstr += c;
 }

 return retstr;
}

//File contents get written to the file
string RandomLengthString(long lower, long upper)
{
 string retstr = "";

 cout << "Creating String \r";
//overwrites the previous value -> writes on top of it; doesn't go
//to a new line

 float r = (float)rand()/RAND_MAX;
 long chars = lower + (long)(r*(upper - lower)); //creates a

string between lower &
upper in in it at
random; I decide what
the lower value and
upper value is

 for (long i = 0; i < chars; i++)
 {

//brings the value to ASCII region (rand() % 25))
//char: random value; size of file; take enormous string
//write to file
//rand(): creates a random float

 char c = (char)(rand() % 256);
 retstr += c;
 }

 return retstr;
}

41

//Creates the random files
void WriteRandomFiles(string drive, int numfiles)
//parameters: bring in the path where you want to write files and
//how many you want to create (this is determined in the main
//function
{
 cout << endl;

 for (int i = 0; i < numfiles; i++)
 {
 //allocates space for the newly created file
 char filename[100];

 //sprintf: formats the string
 sprintf(filename, "%sTestFile_%d%d%d.txt", drive.c_str(),
rand(), rand(), rand());

 //writing a string that is between 1000-10000 characters
 string writestr = RandomLengthString(1000, 10000);

 //what will be output to the screen
 cout << "Writing File: " << (i+1) << " of " << numfiles << "
\r";

 ofstream outfile(filename);
 outfile << writestr << std::endl;
 outfile.close();
 }
}

//*Cannot remove a directory*
void RemoveRandomFiles(string drive, long numfiles)
{
 string* dirlist = NULL;
 int filecount = 0;
 GetDirList(drive, dirlist, filecount);
 //drive: path; dirlist: pointer to string; filecount: # of files

 if (numfiles >= filecount)

 //if numfiles is greater than file count -> delete everything
 {
 for (int i = 0; i < filecount; i++)
 {

//outputs to the screen the specific number of files being
removed from the flash drive

 cout << "Removing File: " << (i+1) << " of " <<
filecount << " \r";
 char filename[1000];
 sprintf(filename, "%s%s", drive.c_str(),
dirlist[i].c_str());
 remove(filename);
 }
 }
 else
 {

42

//counter that keeps track of the number of files that have
been //selected to be removed

 long filesselected = 0;
 int *check = new int[filecount];
 int jump = rand() % filecount;
 long pos = jump; //pos: position at which you will delete

//the file from; jump: first index we will
//delete

 for (int i = 0; i < numfiles; i++)
 check[i] = 0;

 while (filesselected < numfiles)
 {

//if position equals 0 -> haven't selected the file yet;
change value to 1 & updated file selected

 //if the index has not yet been marked at random to be
deleted

 //decides at random which file we are going to delete at
what index

 if (check[pos] == 0)
 {
 check[pos] = 1; //indicates we will delete file in

specific position
 filesselected++;
 }
 pos += rand(); //pick a random position -> delete

specific file
 pos = pos % filecount; //if the position is greater than

the number of files in the array
then we need to do this so we can
get a position in the array

 }

 long fileremovecount = 1;
 for (int i = 0; i < filecount; i++)
 if (check[i] == 1)
 {
 cout << "Removing File: " << fileremovecount << " of
" << numfiles << " \r";
 fileremovecount++;
 char filename[1000];
 sprintf(filename, "%s%s", drive.c_str(),
dirlist[i].c_str());
 remove(filename);
 }
 }
}

int main()
{

//srand: seeds the random number generator used by the function
//rand: initializes random number generator

 srand(time(NULL));

 //the name of the USB (ex: "f:\")
 string drive;

43

 cout << "Drive Path (include final path separator): ";
 cin >> drive;

//determine the number of files that are currently on the USB
//drive

 int filecount = NumFiles(drive);

 cout << "\nNumber of Files: " << filecount << endl << endl;

 //prints out all of the files
 cout << "\nFile List: " << endl << endl;
 PrintDirList(drive);

 string* dirlist = NULL;
 filecount = 0;
 GetDirList(drive, dirlist, filecount);

 //prints out all of the files on the USB drive

 cout << "\nNumber of Files: " << filecount << endl << endl;

 for (int i = 0; i < filecount; i++)
 cout << dirlist[i] << endl;

 //accumlator of total number of bytes written
 WriteRandomFiles(drive, 100);

 //new number of files on USB drive
 filecount = NumFiles(drive);
 cout << "\nNumber of Files: " << filecount << endl << endl;

 RemoveRandomFiles(drive, 1); //deleting one file from USB drive

 //prints out the number of files on the drive after files have

//been deleted
 filecount = NumFiles(drive);
 cout << "\nNumber of Files: " << filecount << endl << endl;

//outputs all of the files (updated list without the deleted
//files)

 PrintDirList(drive);

 return 0;
}

b. Corruption Percentages

• If the size of the original file is longer than the altered (target file) then the lost

bytes would be considered as the differences and is added to the difference

count

• The difference count is divided by the length of the original file

44

• If the size of the altered file is longer than the original file à considered the

extra bytes as trash

• Take the difference count and divide it by the size of the original file

#include <fstream>
#include <iostream>

using namespace std;

std::ifstream::pos_type filesize(const char* filename)
{
 std::ifstream in(filename, ios::binary | ios::ate);
 return in.tellg();
}

int main()
{

string file1; //creating a string named file1
string file2; //creating a string named file2

 cout << "Filename #1 (Original): "; //Original file’s name
 cin >> file1; //User input with the name of the original file
 cout << "Filename #2 (Test): "; //Target file’s name (edits made on

//original
 cin >> file2; //User input with the name of the target file

 ifstream inFile; //ifstream: File stream class used for file

//handling
 size_t size1 = 0; //size_t: Represent the size of any object in

//bytes
 size_t size2 = 0;

 //Opens the first file (original)
 inFile.open(file1.c_str(), ios::in|ios::binary);
 char* File1Data = 0;
 size1 = filesize(file1.c_str());
 File1Data = new char[size1+1];
 inFile.read(File1Data, size1);
 File1Data[size1] = '\0' ;
 inFile.close();

//User input with the name of the original file (targey
 inFile.open(file2.c_str(), ios::in|ios::binary);
 char* File2Data = 0;
 size2 = filesize(file2.c_str());
 File2Data = new char[size2+1];
 inFile.read(File2Data, size2);
 File2Data[size2] = '\0' ;
 inFile.close();

 long minsize = size1;
 if (minsize > size2)
 minsize = size2;

45

 long diffCount = 0; //Used to keep track of the difference between
//two files

 for (long i = 0; i < minsize; i++)
 {
 //ch1: looking at file character by character (original file)
 //ch2: looking at file character by character (target file)
 char ch1 = File1Data[i];
 char ch2 = File2Data[i];

//If the character in file1 is not equal to the character in
file2 à add to the diffCount variable

 if (ch1 != ch2)
 diffCount++;
 }

 string ReportString = "";
 char numstr[1000];

 ReportString.append("File 1 (Original): " + file1 + "\n");

 sprintf(numstr, "%d", size1);
 ReportString.append("Size: ");
 ReportString.append(numstr);
 ReportString.append("\n");

 ReportString.append("\n");

 ReportString.append("File 2 (Test): " + file2 + "\n");

 sprintf(numstr, "%d", size2);
 ReportString.append("Size: ");
 ReportString.append(numstr);
 ReportString.append("\n");

 ReportString.append("\n");

 //Displays the differences between the original and target file
 ReportString.append("Number of Bytes Difference: ");
 sprintf(numstr, "%d", diffCount);
 ReportString.append(numstr);
 ReportString.append("\n");

 //Displays how much of the original file is corrupted
 ReportString.append("Percentage of Original Corrupted: ");

 double percor = 0;
 if (size1 > size2)
 percor = ((size1-size2) + (float)diffCount)/size1;
 else
 percor = (float)diffCount/size1;

 sprintf(numstr, "%f", percor * 100);
 ReportString.append(numstr);
 ReportString.append(" % \n");

 cout << ReportString << endl;

46

 //Saves the difference in a text file named “DifferenceReport”
 ofstream outfile("DifferenceReport.txt");
 outfile << ReportString << std::endl;
 outfile.close();

 cout << endl << "Press ENTER to continue...";
 cin.get();
 cin.get();

 return 0;
}

47

Works Cited

Amankwah-Amoah, Joseph. "Competing Technologies, Competing Forces: The Rise and

Fall of the Floppy Disk,1971-2010." Technological Forecasting & Social Change

(n.d.): 121-29. Print.

Casey, Eoghan. Digital Evidence and Computer Crime: Forensic Science, Computers

and the Internet. London: Academic, 2004. Print.

Güllüce, Yusuf Ziya, and Recep Benzer. "Hard Disk Failure and Data Recovery Methods

in Computer ForensicAdli Bilişimde Hard Disk Arızaları Ve Arızalı Disklerden

Veri Kurtarma Yöntemleri." International Journal of Human Sciences 12.1

(2015): 206-25. Web.

Hiatt, Charlotte J. A Primer For Disaster Recovery Planning In An IT Environment.

Hershey, Pa: IGI Global, 2000. eBook Collection (EBSCOhost). Web. 31 Oct.

2016.

Kent, Karen, Suzanne Chevalier, Tim Grance, and Hung Dang. "Guide to Integrating

Forensic Techniques into Incident Response." N.p.: n.p., 2006. N. pag. Web.

Lee, Byunghee, Kyungho Son, Dongho Won, and Seungjoo Kim. "Secure Data Deletion

for USB Flash Memory." Journal of Information Science and Engineering (2011):

933-52. Web.

Messier, Ric. Operating System Forensics. Waltham, MA: Syngress Is an Imprint of

Elsevier, 2016. Print.

Moshenska, Gabriel. "The Archaeology of (flash) Memory." Post-Medieval Archaeology

48.1 (2014): 255-59. Academic Search Complete. Web. 29 Oct. 2016.

48

Pihlajamaa, Joonas. "Simple FAT and SD Tutorial Part 1." Code and Life. N.p., n.d.

Web. 11 Dec. 2016.

Schneier, Bruce. "The Story Behind The Stuxnet Virus." Forbes. Forbes Magazine, 07

Oct. 2010. Web. 04 Apr. 2017. <https://www.forbes.com/2010/10/06/iran-

nuclear-computer-technology-security-stuxnet-worm.html>.

Siewart, Sam, and Dane Nelson. "Solid State Drive Applications in Storage and

Embedded." Intel Technology Journal 13.1 (n.d.): 29-53. Web.

Sommer, Peter. "Emerging Problems in Digital Evidence." Criminal Justice Matters 58.1

(2004): 24-25. Web.

"The Story Behind The Stuxnet Virus." Forbes. Forbes Magazine, 07 Oct. 2010. Web. 4

Apr. 2017. <https://www.forbes.com/2010/10/06/iran-nuclear-computer-

technology-security-stuxnet-worm.html>.

"The Stuxnet Worm." Norton by Symantec. N.p., n.d. Web. 04 Apr. 2017.

<https://us.norton.com/stuxnet>.

	Truong_CoverPage
	JessicaTruong_Spring2017

