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Abstract

Many physical phenomena can be described by partial differential equations which
can be discretized to form systems of linear equations. We apply the finite difference
method to the Poisson equation with homogeneous Dirichlet boundary conditions, which
yields a system of linear equations with a large sparse system matrix. We implement
pMatlab code which utilizes the conjugate gradient method to solve this system. We do
not recommend the use of pMatlab at this time as we find that it is very limited, its
implementation is highly complex and the results are inconsistent.

Key words. Parallel Computing, pMatlab, Finite Difference Method, Conjugate Gradi-
ent Method, Poisson Equation.

AMS Subject Classifications (2010). 65Y05, 65Y04, 65F05, 65M06, 35J05.

1 Introduction

As mathematical models become increasingly realistic, they also become increasingly com-
plex and their simulations begin to take longer. Parallel computing allows one to divide the
computations of such simulations among various processes so that each process can work on
its piece of the problem simultaneously. As a result, parallel computing allows increasingly
complex problems to be solved in reasonable amounts of time [8].

The Message Passing Interface (MPI) commands provide a library of routines which can
be used for communication between processes. Typically, programmers must understand how
their data is distributed among the processes as well as how to utilize MPI commands to
communicate the necessary data between processes. This is usually done by writing paral-
lel code in C which uses MPI commands for communication. However, many scientists and
engineers utilize the high-level software, Matlab, due to its ease of use. They do not have
the computer science background to be able to convert their complex Matlab code into par-
allel C code. But with more complex code, runtimes begin to require an excessive amount
of time, and an alternative is needed. As a result of this conundrum, MIT Lincoln Labo-
ratory created two libraries, pMatlab and MatlabMPI, which help users take advantage of
parallel programming without leaving Matlab. They first developed MatlabMPI, which is a
version of MPI commands in Matlab which use Matlab’s input and output commands for
communication. They then expanded upon this development creating pMatlab, which uses
arrays which are distributed among the processes. When downloaded, pMatlab comes with
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documentation which includes an introductory to parallel programming and the use of the
software [7]. There is also a detailed book available that explains in detail the examples in-
cluded in the download [6]. pMatlab does not require the user to understand the technicalities
of MPI communication. “Just as message passing libraries like MPI allow programmers to
focus on writing parallel code rather than networking code, global array libraries like pMatlab
allow programmers to focus on writing scientific and engineering code rather than parallel
code” [7, page 11]. Once the user declares a distributed memory array, they can work with
the whole array rather than only working with the local pieces of each array. pMatlab checks
whether communication is needed and if so, it determines how to communicate and executes
the communication, all without commands from the user. pMatlab allows “any Matlab user
to parallelize their existing program by simply changing and adding a few lines, rather than
rewriting their program” [7, page 11]. Therefore, pMatlab allows users to reap the benefits of
parallel programming with very little parallel programming experience.

We apply the finite difference method to the Poisson equation to produce a system of linear
equations. We will then utilize the conjugate gradient method (without preconditioning for
simplicity) to solve this system since this method was found to be the most efficient linear
solver of methods tested in [10] for large mesh sizes. We note that the conjugate gradient
method was implemented in serial in [10] (Matlab) and [9] (C) and both found that the
method converges for our test problem. We will implement the method in pMatlab to see how
the code and performance compares. We anticipate that the transition from serial Matlab
to pMatlab code will be simple, and that we will be able to experience speedup when using
pMatlab.

2 The Poisson Problem

In this report, we consider the classical test problem of the Poisson equation with homogeneous
Dirichlet boundary conditions given by

−4 u = f in Ω, (2.1)

u = 0 on ∂Ω, (2.2)

with right-hand side function

f(x, y) = −2π2 cos(2πx) sin2(πy)− 2π sin2(πx) cos(2πy),

on the two-dimensional unit square domain Ω = (0, 1) × (0, 1) ⊂ R2. Here, the Laplace
operator is defined by 4u = ∂2u

∂x2 + ∂2u
∂y2

and ∂Ω in (1.2) represents the boundary of the domain
Ω. This problem has a closed-form true solution of

u(x, y) = sin2(πx) sin2(πy). (2.3)

Due in part to the known true solution, this problem is frequently used as a test problem in
many textbooks [3–5,11].

To apply the finite difference method, we first define a grid of mesh points with uniform
mesh spacing h = 1

N+1
. Thus, our grid can be represented by Ωh = {(xi, yi) = (ih, jh), i, j =

2



0, . . . , N + 1}. We apply the second-order finite difference approximation (given as (8.1.3)
on page 546 of [11]) to the x- and y-derivatives at all interior points of Ωh. This results in
equations that approximate the x- and y-derivatives of u at a given (xi, yj) which are explicitly
stated as (3) and (4) in Section 3 of [2]. Substituting these results in (2.1) produces a system
of equations for the approximation of the unknowns ui,j ≈ u(xi, yj). We see that

− ui−1,j − ui,j−1 + 4ui,j − ui+1,j − ui,j+1 = h2fi,j i, j = 1, . . . , N, (2.4)

where fi,j = f(xi, yj) and note that the boundary conditions give u0,j = ui,0 = uN+1,j =
ui,N+1 = 0. From (2.4), we see that the N2 equations produced will be linear in ui,j. Therefore
this problem can be organized into Au = b, with dimension N2 where A ∈ RN2×N2

and
u,b ∈ RN2

. Since the boundary values are provided, there will be exactly N2 unknowns. For
this system, we see that

A =


S −I
−I S −I

. . . . . . . . .

−I S −I
−I S

 ∈ RN2×N2

, where S =


4 −1
−1 4 −1

. . . . . . . . .

−1 4 −1
−1 4

 ∈ RN×N ,

I is the N ×N identity matrix, and bm = h2fi,j where m = i + (j − 1)N . We note that the
system matrix A is symmetric and positive definite as discussed in [10].

3 The Computing Environment

3.1 Hardware

The UMBC High Performance Computing Facility (HPCF) is the community-based, interdis-
ciplinary core facility for scientific computing and research on parallel algorithms at UMBC.
The current machine in HPCF is the 240-node distributed-memory cluster maya. The newest
components of the cluster are the 72 nodes with two eight-core 2.6 GHz Intel E5-2650v2
Ivy Bridge CPUs and 64 GB memory that include 19 hybrid nodes with two state-of-the-art
NVIDIA K20 GPUs (graphics processing units) designed for scientific computing and 19 hy-
brid nodes with two cutting-edge 60-core Intel Phi 5110P accelerators. These new nodes are
connected by a high-speed quad-data rate (QDR) InfiniBand network for research on parallel
algorithms. All nodes are connected via InfiniBand to a central storage of more than 750 TB.

The calculations in this report were performed on the newest (2013) nodes with two eight-
core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB memory. All calculations in this
report were run on one node in the develop partition.

3.2 Matlab

“Matlab is a high-level language and interactive environment for numerical computation,
visualization, and programming,” as stated on its webpage www.mathworks.com. The software
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was created by Cleve Moler, a numerical analyst at the University of New Mexico’s Computer
Science Department, and when the potential of this new software was recognized, Mathworks
was established in 1983 [2]. The key features include its high-level language, interactive
environment, mathematical functions, and built-in graphics. All calculations using serial
Matlab in this report use Matlab Version R2014a (8.3.0.532) 64-bit (glnxa64).

3.3 pMatlab

pMatlab and MatlabMPI are libraries developed by MIT Lincoln Laboratory to enable parallel
programming with Matlab [6, 7]. pMatlab uses global array semantics, so “the programmer
views an array as a single global array rather than multiple, independent arrays located on
different processors” [7]. The program calls functions from the global array library which
determine if and how data should be redistributed and perform the communication. pMatlab
uses a new datatype, the distributed matrix or dmat, which can be created in 2, 3 or 4
dimensions. All dmat objects must be constructed by a constructor function which takes one
new argument, a map, which tells pMatlab how and where the dmat should be distributed.

We downloaded the pMatlab version 2.0.15 zip file to a local computer from the webpage
http://www.ll.mit.edu/mission/cybersec/softwaretools/pmatlab/pmatlab.html. We
then copied this file onto maya and unzipped the file. The file contained a startup.m file to
add the proper paths when starting Matlab. We edited the paths so that they were correct
for the location at which we stored the files, and then copied the contents of this file into the
current startup.m file in our home directory. As a result, Matlab will be able to find the files
necessary for pMatlab no matter where we store other files. We then ran all of the examples
provided with the download by running the run.m script in the TestAll directory under the
Examples directory. We ran these using PARALLEL=0 which runs serial Matlab code with no
overhead and PARALLEL=1 which sets up the distributed memory arrays. For the parallel
case, we ran using both 1 and 2 processes per node. The examples all worked as expected.
We then typed help pMatlab, which provided a list of commands that were supported by
pMatlab. We found that the list of functions supported by pMatlab is very small, and even
simple operations such as addition and the transpose operator are only supported for “special
cases” which we determined to be when no overlap was used in the mapping. We noted that
the examples provided with the code were specifically chosen because the necessary functions,
such as fft for Fast Fourier transform, were supported by pMatlab. This led to the realization
that the scope of pMatlab’s capabilities was not nearly as broad as anticipated.

4 pMatlab Implementation

When the conjugate gradient method is implemented carefully, it requires only two inner
products, three vector updates, and one matrix-vector product at each iteration [1]. Matlab
code for this efficient implementation is provided with [2]. We began our attempt to implement
the conjugate gradient method in pMatlab by attempting to adapt this Matlab code for use
with pMatlab. We knew that Matlab’s conjugate gradient function pcg was not supported by
pMatlab. However, we realized that once the preconditioning and error checking are removed
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from this function, all that is left are basic arithmetic operations. We intended to make an
edited version of pcg and transform this into pMatlab. However, we soon discovered that only
a small number of Matlab functions are supported by pMatlab. Functions used in the code
provided with [2] like ndgrid, reshape, max and the numerous functions these functions call
are not supported by pMatlab. The number of functions that needed to be transformed into
pMatlab compatible functions kept growing as we investigated the code.

After some thought, we determined that rather than using the Matlab code as our guide,
we should use the parallel C code we wrote for [9] as our guide. The first step we needed
to take was to convert the main.c file described in [9] to the pMatlab file driver_cg.m. To
do this, we first had to create a flag PARALLEL which is set to 1 when performing parallel
computations and 0 when the parallelization of pMatlab is not used. For our purposes, we
set PARALLEL=1 for all runs. We then added some test output that displayed a greeting from
all processes to ensure that our processes were allocated as expected. We then created our
map object, required by pMatlab to distribute our vectors. We created a serial version of our
map, Cmap=1 so that in case PARALLEL=0, the code will still function. We then set up our
column vector map, Cmap = map([Np 1], {}, 0:Np-1). The first part of this map, the grid,
says that the first dimension of our vectors will be divided into Np blocks and the second
dimension (which is one since we are only dealing with vectors) will be divided into one block.
The second part of the map, the distribution, which we set to {} says that we wish our
dimension to be distributed in a block fashion. This means that each process will be working
with one contiguous block of data. The third part of the map, the processor list, which we set
to 0:Np-1 tells pMatlab that we wish the ranks of the processes to be 0 through Np-1. We
leave out the optional fourth argument for maps, the overlap, since many of the functions that
are supported by pMatlab do not support the use of overlap. We note, however, that if overlap
were supported, it would hide the communication during the processes when computing the
matrix-vector product in the conjugate gradient method.

We compute the step size h, n = N2 and the size of the local blocks lN and ln as scalars. In
order to create a dmat object, one must allocate it using one of the few supported functions.
For our code, we choose to allocate our vectors using zeros. We allocate u, r,p and q using
zeros with our map Cmap. Therefore, these arrays are distributed across the processes. We
then define the entries of x and y, although we do not send our map since we do not want
these to be distributed arrays. Next, we define the vector r to be the right-hand side b initially
using a for loop. We note that even though r is a dmat object, we do not need to work with
its local part due to the fact that pMatlab hides this process and takes care of the arithmetic
we supply. Since we will need communication for the matrix-vector product, we set the values
idleft and idright based on the current process. To prevent an issue when we are the
first or last process, we use the modulus function. As a result, idleft for process 0 becomes
process Np-1 and idright for process Np-1 becomes process 0. We then use tic and toc to
time a call to the conjugate gradient method function cg.m. The function driver_cg.m ends
with a display of relevant information including the timing results and an iteration count that
we can use to check for accuracy.

We begin the cg.m function by computing the norm of the residual vector r. Since the norm
function is not supported by pMatlab, we accomplish this by setting n2bd to be the square root
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Listing 1: Code for converting a 1× 1 dmat to a double available on all processes.

% I n i t i a l i z e f o r communication
global pMATLAB;
tag = 1 ;
pMATLAB.comm = MatMPI Save messages (pMATLAB.comm, 1 ) ;

% Compute the norm of b , conver t from a dmat to a doub le and then
% d i s t r i b u t e to a l l p r o c e s s e s
n2bd = sqrt ( r ’∗ r ) ;
n2b = l o c a l ( n2bd ) ;
i f Pid == 0

for dest = 1 :Np−1
SendMsg ( dest , tag , n2b ) ;

end
end
i f Pid ˜= 0

n2b = RecvMsg (0 , tag ) ;
end

of the transpose of r times r. However, we realize that in pMatlab, since r is a dmat object,
the result in n2bd is a 1× 1 dmat object stored on process 0. Due to this, we cannot use this
value as a scalar, which is needed. To overcome this, we must utilize communication to send
this value to all other processes. This requires setting up a communicator, accessing the local
part on process 0, and using the pMatlab commands SendMsg and RecvMsg which use Matlab
MPI communication. The implementation for this is shown in Listing 1. We note that the
software is intended to replace the need for communication and the documentation cautions
against using these functions [6], but we see no other way to get around the problem that a
1×1 dmat is not available on all processes. We can then use the resulting n2b available on all
processes to check whether the right-hand side vector is all zeros, and if so, set the solution
to zero and exit the method. If the right-hand side vector is not all zeros, we compute the
relative tolerance. We then use our Ax function to compute the matrix-vector product q = Au
without ever storing the matrix A. Since r and q are dmat objects with the same map, we
can subtract them as r = r − q. We then calculate rhod to be the inner product of r with
itself. Since this results in another 1 × 1 dmat object, we must implement communication
similar to the above to convert this to the scalar rho available on all processes. We can then
compute the square root of rho, which gives the norm of r. We check whether the initial guess
is good enough, and exit the function if this is true.

We now enter the main while loop of the cg function. At each iteration, we update the
iteration count, update p, and compute q = Ap. We then compute the inner product of p
and q and again use the communication method to convert this to a scalar available on all
processes. We update r and recompute rho by using an inner product and communication to
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Listing 2: Code for obtaining the vectors gl and gr.

% Communication
global pMATLAB;
taga = 2 ;
tagb = 3 ;
pMATLAB.comm = MatMPI Save messages (pMATLAB.comm, 1 ) ;
l u = l o c a l (u ) ;
i f (Np > 1)

SendMsg ( i d r i gh t , taga , l u (N∗( l N−1)+1:N∗( l N−1)+N) ) ;
SendMsg ( i d l e f t , tagb , l u ( 1 :N) ) ;
g l = RecvMsg( i d l e f t , taga ) ;
gr = RecvMsg( i d r i g h t , tagb ) ;

end

% Set g l and gr to zero in case o f no next proces s
% (MPI PROC NULL in C)
i f ( Pid == 0)

g l = zeros (N, 1 ) ;
e l s e i f ( Pid == Np−1)

gr = zeros (N, 1 ) ;
end

% Take care o f case when Np=1 ( Ensure g l=gr=z e r o s )
i f (Np == 1)

gr = zeros (N, 1 ) ;
end

convert this to a scalar available on all processes. Finally, we update the solution vector u.
After the iterations of the loop are complete, we set the flag and relative residual and end the
function.

We now write the matrix-free implementation of the matrix-vector product q = Ap in the
function Ax.m. Since the matrix-vector product requires the vectors gl and gr, we begin by
communicating these vectors. If we have no next process, we set the entries of these vectors
to zero so no changes occur when using them. The code is shown in Listing 2. We then realize
that to update the vector q, we cannot use q directly for several reasons. First, the vectors
gl,gr and q have different lengths, and thus we cannot add/subtract their elements due to
the limitations of pMatlab. Second, using for loops to control the indices of the entries of the
vector q is not possible. Therefore, we obtain the local part of q by setting l_q = local(q)

and then we operate on lq as before. When we are finished operating on lq, we put the entries
back into the dmat object q by put_local(q, l_q).

Finally, we create the file run_cg.m, which is a one line Matlab script to call the function
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driver_cg. We do this since the pMatlab run.m script we will write cannot handle a call
to a function that requires input parameters. We then write the pMatlab run script run.m

in which we set the number of processes Ncpus, the name of the script file we want to run
run_cg and the machine we want to run on cpus. We set cpus to {} to indicate that we want
to run on the local machine. This file concludes with the line that actually runs the code,
eval(pRUN(mFile, Ncpus, cpus)). To run the code, we use the salloc command to gain
access to a compute node, use the ssh command to access that node, and open Matlab and
run our code.

As you can see from our implementation, the fact that many functions are not supported
by pMatlab leads to many extra for loops to control entries of vectors. The fact that an
inner product results in a 1 × 1 dmat object that must be sent to the other processes using
a SendMsg and RecvMsg also adds less efficient communication at each iteration, as the more
efficient Broadcast operation was used in the C code. According to the documentation, a
Broadcast is available in pMatlab, but our attempts to implement this were not successful.
The advantages of using Matlab (e.g., vectorization) are outweighed by the costs of this extra
communication and for loops. This makes the pMatlab code inefficient.

5 Results

For all runs of our code in this report, we supply a tolerance of 10−6, a maximum number of
iterations of 99,999, and the zero vector for the initial guess of the solution. The results of
running the serial Matlab code, with no pMatlab overhead are shown in Table 5.1 (a). From
the results of Table 5.1 (a), we see that for such small N values, the runtimes are fractions of
a second. The results of running the pMatlab code are shown in Table 5.1 (b). We note that
for many values of N , the results of all runs when p > 1 were unpredictable. Frequently, the
code would stall during the communication and the run would not complete. Other times,
the run would finish, producing the results seen above. We note that no changes were made
to the code between these runs, therefore the different outcomes are disturbing. The fact that
there is no timing result for N = 16 with p = 2 is a result of the fact that this run stalled
every time it was run. We also tried to run N = 8 with p = 4, but this run also stalled every
time it was run. The level of unreliability of the performance of this code makes its use very

N Time (sec.)
4 0.005
8 0.004
16 0.008

N p = 1 p = 2
4 0.07 2.63
8 0.19 3.26
16 0.45 N/A

(a) Serial Matlab (b) pMatlab

Table 5.1: Observed wall clock time (in seconds), (a) for serial Matlab and (b) for pMatlab
for various values of N using both one and two processes per node. The case of N = 16 and
p = 2 stalled during communication during all runs.
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unsettling. As a result of this, we are using very small N values as we anticipate problems
when N is increased.

We see from Table 5.1 that the results with pMatlab take longer than the results with
serial Matlab code. We suspect that the timing differences between the serial Matlab code
and the pMatlab code run on one process stem from the overhead the pMatlab code performs
when the option is set as PARALLEL=1. However, the drastic increase in runtime from 1 to 2
processes is very unexpected. For such small N values, this likely stems from the fact that
we require communication that takes more time. However, even if we increase N sufficiently,
we suspect that this code would still perform very poorly compared to the optimized serial
Matlab code. We also note that all runs produced correct results, as the iteration counts were
checked to validate our results.

6 Conclusions

The documentation provided with pMatlab makes the claim that the library is easy to use and
allows users unfamiliar with parallel programming to experience its benefits without significant
work. However, from the discussion in Section 4, we see that transforming optimized Matlab
code into pMatlab code is very challenging. This is a result of the fact that many important
Matlab functions are not compatible with pMatlab, and the pMatlab dmat constructs are
difficult to control. When we have to convert parallel C code into pMatlab code, we lose the
ability to take advantage of vectorization in Matlab. This also requires knowledge of parallel
algorithms, and pMatlab was created to avoid this requirement. From the results in Section 5,
we see that the performance of the pMatlab code is poor compared to the serial Matlab code
due to the extra measures required to ensure it would work.

We suspect that the transformation from parallel C code to MatlabMPI code may be more
straightforward. However, using MatlabMPI defeats the purpose of pMatlab, as a background
in parallel programming is required to use MatlabMPI. Also, this defeats the purpose of
using Matlab since its vectorization capabilities are not used in this implementation. The few
working examples of pMatlab code provided with the software are all designed to use the small
number of functions that are supported by pMatlab, and thus represent a limited domain with
which one can use pMatlab. Further, since no active development has been seen since 2013, it
does not appear that additional functions are being converted to be compatible with pMatlab
and it is likely that this software will be quickly out of date as Matlab undergoes upgrades.
Therefore, we do not recommend the use of pMatlab to Matlab programmers at this time.
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