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Abstract—Human activity recognition (AR) is an essential
element for user-centric and context-aware applications. While
previous studies showed promising results using various machine
learning algorithms, most of them can only recognize the activities
that were previously seen in the training data. We investigate
the challenges of improving the recognition of unseen daily
activities in smart home environment, by better exploiting the
hierarchical taxonomy of complex daily activities. We first (a)
design a hierarchical representation of complex activity taxonomy
in terms of human-readable semantic attributes, and (b) develop
a hierarchy of classifiers which incorporates a cluster tree built on
the domain knowledge from training samples. Though this model
is rich in recognizing complex activities that are previously seen
in training data, it is not well versed to recognize unseen complex
activities without new training samples. To tackle this chal-
lenge, we extend Hierarchical Active Transfer Learning (HATL)
approach that exploits semantic attribute cluster structure of
complex activities shared between seen (source) and unseen
(target) activity domains. Our approach employs transfer and
active learning to help label target domain unlabeled data by
spawning the most effective queries. We evaluated our approach
with two real-time smart home systems (IRB #HP-00064387)
which corroborates radical improvements in recognizing unseen
complex activities.

I. INTRODUCTION

AR techniques have improved over the past few years
significantly in terms of accuracy and reliability [1], [3], [5].
Now it is a prime time to develop AR for community or a pop-
ulation and therefore, its generalizability and scalability are of
utmost importance. Though, there has been extensive research
on complex AR using a multitude of sensors and various
machine learning algorithms [7], [8], [11], existing approaches
cannot recognize a previously unseen activity, if there were no
properly labeled training samples. Labeled examples are often
time consuming and expensive to obtain, as they require a
lot of efforts from test subjects and domain experts. However,
labeling previously unseen activities is more expensive than
the seen ones, because unlike the seen activities, labeling
unseen activities needs definition of activities and start/end
points on each attempt. For example, we experienced two
outcomes from a real experience of data collection performed
in our previous work [2]: (i) Data annotation is 4 times more
costly than the data collection for seen activities in terms of
duration; and (ii) Data annotation is 6 times more costly than
the data collection for unseen activities. A recent survey on
daily activity events showed that there are at least 462 different
activities that people do in their daily lives [4]. If we consider
the diversity of people and cultures that were not covered

by the survey, the actual number of daily activities is more
likely even larger which eventually transmutes the existing
classification as an unseen AR problem. These fundamental
problems signify the importance of extending existing AR
model to discover new activities (unseen) and generalize the
AR to achieve robustness and scalability.

Unseen AR has been explored recently for low-level daily
activities (micro activities such as ‘walking’, ‘sitting’, ‘stand-
ing’ etc.) using active learning [13], Multi-class Positive-
Unlabeled Learning [14], hierarchical classifier [12] and trans-
fer learning [27]. Though all of these proposed methods
promoted significant performances in unseen AR in terms of
labeling cost and recognition accuracy, the problem becomes
more complex and error prone in the case of complex daily
activities (macro activities that consist of sequence of low-
level activities such as ‘cooking’, ‘watching tv’ etc.) where
these are subject to proper representation of low-level activity
components [13]. This fundamental problem of generalization
necessitates a structured representation of complex activities to
aid the application of machine learning methods that aim to
reduce labeling costs (active learning and transfer learning)
and classify unseen AR problem. A significant number of
researchers showed that hierarchical representation can pro-
vide a more robust solution for complex AR where complex
activities were considered be related to lower level activities in
a hierarchical tree structure [9], [12], [13]. However, extending
the framework to recognize hundreds of different human
activity classes (either seen or unseen) using the available
labeled datasets needs more rigorous modeling addressing the
underpinning scalability challenges to reach maturity.

In light of existing problems, there are two major research
questions we aimed to answer:

• Can we represent any complex activity in a hierarchical
tree structure? If so, how can we take advantages of
available well-labeled activity datasets to learn hierarchi-
cal tree structure of complex activities and transfer that
knowledge to label unseen new activities?

• If opportunities are available to probe users for labeling
task, how to reinforce the query with maximal informa-
tiveness and minimal intervention using active learning
in conjunction with transfer learning by percolating the
hierarchical activity knowledge source?

AR models need to generalize over variations in environ-
mental and resident characteristics. However, robust machine



learning approaches need a significant amount of labeled
training dataset. In this paper, we hypothesize that clustering
activities into a hierarchical activity taxonomy can facilitate
analysis of activity patterns from multiple similar data sources
and such a taxonomy can also be used to scale AR. In this
regard, we design a hierarchy of classifiers, each of which
helps distinguish between child nodes at a particular location
in the hierarchy. The activity taxonomy generated by our
approach is employed in the context of transfer learning across
generalized settings to tackle the challenges of learning an
activity model in a new setting. To do this, we first determine
the specific positions of the activity labels in the hierarchy
using few labeled samples, which are then combined with
labeled samples of similar activities to initiate the taxonomy of
learning for the new activity model. To scale the hierarchical
transfer learning [28] based human AR model towards unseen
AR, we combine hierarchical sampling for active learning
(HSAL) [35]. More specifically, we make the following key
contributions:
• We first design and represent human activities using

semantic attributes. We then postulate a data-driven ap-
proach that calculates the similarity of predefined and
unseen activities and helps generate complex activity
taxonomy by creating a hierarchical cluster of activity
labels generated from available datasets.

• We employ this postulated hierarchical complex activity
taxonomy, build a hierarchical classification tree and
propose an uncertainty metric (contextual informative-
ness) to distinguish unseen activities from previously
seen ones. Employing the uncertainty metric, we augment
transfer learning and active learning to minimize the user
intervention and maximize the AR performance gain.

• We evaluate the scalability, generalizability, adaptability,
and statistical significance of our proposed taxonomy
and uncertainty metric assisted hierarchical active transfer
learning approach in two real-time AR datasets with
diverse settings and populations.

II. RELATED WORKS

This paper builds on previous works on complex daily AR
using machine learning, such as active and transfer learning
approaches. Here we compare and contrast our contributions
with the most relevant existing literature.

A. Complex Activity Recognition

A significant amount of research has been performed on
recognizing complex human activities in a smart home setting
equipped with distinct types of sensors such as cameras [16],
RFID tags [18], passive infrared sensors [11] or combina-
tion of multiple sensors [1]). In terms of theories, most of
the researches focused on solving complex graphical models
to address specific AR problem domains [11]. In past, we
used coupled hidden markov model [7] and later proposed
coupled hierarchical dynamic bayesian network to improve
complex AR performance in presence of multiple occupants
[1]. We also proposed Beacon radio signal based light-weight

ensemble learning techniques to recognize complex activities
[1] in past. Imitation learning has been used to reduce the
activity learning framework into simple regression learning
model to predict complex activities [15]. In this paper, we
propose a hierarchical clustering based AR approach that
aggregates the available labeled data sources to generate a hi-
erarchical taxonomy of complex activity patterns. Researchers
have also proposed a hierarchical taxonomy based complex
AR before [12]. These includes hierarchical activity pattern
clustering based single classifier (temporal artificial neural
network framework [19]) or multiple hierarchical classifiers
[12]. Our framework generates multiple hierarchical clustered
classifiers that facilitate robust complex AR irrespective of
hierarchical activity tree structure or sub-tree position.

B. Active Transfer Learning in AR

Active learning has been used in activity prediction domain
by many researchers before. [20] proposed a novel active
learning technique that exploits the informativeness of the
individual activity instances but also utilizes their contextual
information during the query selection process in a continous
video stream. [13] proposed a new semantic attribute represen-
tation of complex daily activities and developed a two layer
zero-shot learning algorithm for wearable sensor based AR.
A linear k-means clustering based active learning technique
to recognize passive infrared sensors assisted smart home
activities in presence of single occupant has been proposed
in [21]. A bayesian active learning has been explored to
recognize complex smart home activity patterns in [25]. It
is well known that the hierarchical Bayesian framework can
be adapted to sequential decision problems and it has been
shown more recently that it provides a natural formalization
of transfer (reinforcement) learning [26]. Transfer learning
has also been investigated in complex AR domains in past.
[23] proposed a heterogeneous transfer learning for AR using
heuristic search techniques. Recently researchers have shown
that active learning combined with transfer learning can im-
prove the performance significantly and investigated active
transfer learning for a cross-system recommendation, since
a newly launched system has a cold-start problem, where
existing rating information is available [28].

C. Unseen Activity Recognition

There have been very few researches focused on unseen AR
problem before. NuActiv proposed an outlier-aware hierarchi-
cal probabilistic framework using active learning techniques
to solve the problem of unseen low-level AR problem [13].
mPUL proposed a Multi-class Positive and Unlabeled Learn-
ing approach that significantly reduces the false positives of
simple smoking activities and unseen gesture recognition [14].
Active learning has been used to reduce the required number of
user annotations by asking users to label only “informative”
instances of unlabeled low-level activity datasets [29], [30].
FE-AT (Feature-based and Attribute-based learning) approach
leveraged the relationship between existing and new activities
to compensate for the shortage of the labeled data and applied



collaborative probabilistic method to solve seen-unseen AR
problem [32]. Although above works proposed different meth-
ods to solve unseen low-level AR problem, unseen complex
AR has never been investigated. We focus on building hierar-
chical taxonomy of data from binary sensor assisted available
smart home activity data sources. Additionally we build a
semantic attribute representation based hierarchical cluster tree
pattern of complex activities and incorporated hierarchical
sampling for active learning combining with transfer learning.
While this model is rich in terms of previously seen AR, our
unseen activity pattern discovery method improves the unseen
AR technique significantly.

III. SYSTEM OVERVIEW

We extend our previously proposed frameworks [1], [21] in
several distinct ways.

A. Problem Scenarios

Towards the generalizability of supervised AR framework,
we approach two different types of activities: seen and unseen.
Seen activities are those that are available densely in the well
labeled training samples. On the other hand, unseen activities
are those that are available with sparsely in the training
samples. The number of required amount of well-labeled train-
ing samples is called budget of that particular activity class.
We build an uncertainty heuristic (contextual informativeness)
using the estimated budget (b) such a way that active learning
followed by transfer learning will be chosen if and only if
unseen activities have been discovered in the test data points.
Finally, we design and extended a hierarchical active transfer
learning framework that can identify an unseen activity from
the unlabeled or poorly (zero or wrongly) labeled dataset and
take advantages of existing dataset knowledge to label unseen
human activities with the minimum labeling requirement.
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Fig. 1. Hierarchical tree structure of livingroom activities in a home scenario
generated from our previous works (left one from [2] and right one from [1])

B. Design Considerations

Complex daily activities can be represented as hierarchical
tree structure which can be learned using hierarchical clus-
tering of smart home sensor events and low-level activity
attributes [12], [13]. For example, Fig. 1 shows two partially
represented hierarchical living room activity trees generated
from activity dataset collected in our previous works ( [1],
[2]). Here, ‘prepare sandwich’ and ‘prepare food’ complex
activities are most likely the same activity according to the

tree structure. We see a tiny difference between these two
hierarchical tree structures: one extra layer has been found
(dining table activities and rest of the room activities). If the
first one has been trained in the source dataset and the other
one is found in the target dataset, it will be considered as
unseen AR problem. If we can map these similarity measures
into a middle-ware model (transfer learner), we can use
existing well-labeled dataset to strengthen the poorly labeled
data points. However, the tree structures not necessarily be
always similar i.e., location may not always be the children
of root as we are creating the tree from randomly sampled
dataset.

In this paper, we consider of having small amount of labeled
activity instances and a huge number of unlabeled activity
instances as source and target dataset respectively. We then
represent source dataset into hierarchical cluster tree (similar
to Fig. 1) and train a hierarchical transfer learning classifier
mapping with target hierarchical cluster tree generated from
target dataset. We then design Contextual Informativeness (CI)
that decides how to choose transfer and active learner based
on the labeling nature (poorly or strongly labeled).

C. System Architectural Overview

Fig 2 explains the basic steps in our overall unseen AR
pipeline: (1) ‘Pre-processing’ gathers and extract multi-modal
sensor data features from the object, wearable, and ambient
motion sensors associated with our smart home; (2) ‘Hierar-
chical activity classifier creation’ performs semantic attribute
detection [13], knowledge-based hierarchical clustering, hier-
archical cluster tree generation and hierarchical classification
model creation; (3) ‘Inference engine’ estimates the hierarchi-
cal classifier’s performance uncertainty and based on that it
either infers complex activity (for seen activities) or activates
hierarchical active transfer learning (for unseen activities).

IV. SYSTEM DESIGN AND ALGORITHMS

In this section, we describe the design of semantic attribute
detection based hierarchical clustering, hierarchical transfer
learning and active learning for hierarchical sampling.

A. Semantic Attribute Classification

Researchers showed that though ambient sensor readings
and postural activities are good enough to recognize complex
activities, the addition of hand gesture improves complex
AR performance significantly [1], [10]. Inspired by this, we
follow three layered architecture to detect semantic attribute:
(a) Hand gesture recognition [33]; (b) Postural AR [36], and
(c) Semantic attribute detection [13].

Hand Gestural and Postural AR: For hand gesture
recognition, we define 18 standard hand gestures and build
hand gesture dictionary [33]. First, we apply segmentation (2
seconds window with 50% overlap) and filtering (low band-
pass filter with 0.02Hz cut-off) on wrist-worn accelerometer
(ACC) to eliminate postural activity effects. Then we extract
57 statistical features from ACC sensor axises (x, y, z), apply
correlation feature selection technique to select top 12 features,
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Fig. 2. An Overview of our proposed Unseen Activity Recognition Framework Comprising of 3 core modules with several sub-modules.

train a Support Vector Machine based SMO algorithm [22]
(optimal one) and validate model performance with a 10-
fold cross-validation [33]. Similarly, for postural AR, we first
define 5 postural activities (sitting, standing, walking, lying,
cycling and running), apply segmentation (4 seconds window
with 50% overlap) and filtering (high band-pass filter with
0.02Hz cut-off) to eliminate hand gestural activity effects.
Then, similar to gestural case, we extract 12 features, train
a Random-Forest ensemble learning classification algorithm
(optimal one) and validate with 10-fold cross-validation [36].

Semantic Attribute Detection: Semantic attributes are
microscopic components of complex daily activities. For ex-
ample, ‘sweeping room’ complex activity consists of three
semantic attributes: user retrieves broom from supply closet,
sweeps the floor and returns broom to supply closet. At first
we define M gestural, N postural and O semantic attributes
for our entire dataset that create an M × N × O attribute-
activity matrix where each element aijk represents the tran-
sition line from i gesture to k attribute via j posture. We
define each element as binary value indicating whether such
association exists or not. We define the attribute-activity matrix
manually. We feed the training samples into Support Vector
Machine (SVM) classifier comprises with ambient sensor
features which can help detect instant semantic attributes on
the test dataset. The idea is, first transform low-level features
x into a vector of semantic attributes a in the attribute space
A. Each attribute corresponds to a complex activity which
are obtained from attribute-activity matrix. We map every
complex activity Y in the attribute space A called transition
line and train SVM model with the extracted mapped features
for semantic attribute detection in training phase.

B. Designing Hierarchical Classification Tree Model

It has been proven that insights about complex activities
can be exploited and models can be learned effectively by
organizing complex activities in a cluster hierarchy [12]. In
the hierarchy, each leaf node represents a unit of complex
activity, and internal nodes represent unions of the activities
that reside in the sub-tree rooted at the node. Each leaf-level
complex activity composes of semantic-attributes and ambient
sensors (object and motion sensors) features as feature set.

1) Training: The basic strategy is to divide the data into
two subsets at every hierarchical level. We use a bottom-up or
agglomerative method for creating hierarchical clusters [37]
where we merged every two lower nodes into one upper node
cluster using the following distance function:

dave =
1

|V1||V2|
∑

v1∈V1

∑
v2∈V2

d(v1, v2) (1)

Here v1 and v2 are the two lower level activity nodes and
d(v1, v2) represents the Euclidean distance. After several it-
erations, we finally generate hierarchical cluster tree for both
source dataset. We aim to train a binary classifier at every
internal node of the cluster tree to differentiate between the
node’s children towards creating a hierarchical classifier. In
the classifier, the data points for a parent node are obtained by
combining the instances of its children. We employ an under-
sampling method in our hierarchical classifiers to avoid class
imbalance situation [41] where we selectively sample instances
from the children instead of combining all instances from child
nodes into the parent node. To explain that, let consider an
internal node V with two children, v1 and v2, with n1 and n2
numbers of data points, respectively. Our hierarchical classifier
selects max(n1, n2) data points to assign to parent node V
and the remaining half are those which are closest to this
decision boundary. Samples that are farthest from the decision
boundary represent the unique characteristics of the individual
children. In contrast, points that are closest to the decision
boundary represent the characteristics of the combined dataset
[42]. Selecting the data points for the parent in this manner
helps the algorithm to partially preserve the data distribution of
its children. We use support vector machine (SVM) as our base
classifier that generates a complete multi-class Hierarchical
Support Vector Machine (HSVM) model [6].

2) Testing: At the beginning, all of the classes are consid-
ered to be true class. At every node, we apply decision function
to test the input and eliminate the nominees that do not exist
in the region (positive or negative). Following the branches
that indicate the same labels as the result of the decisions, we
end up with the predicted class.



C. Designing Extended Hierarchical Active Transfer Learning

We incorporate semantic attributes into the classification
tree and imposed a new heuristic method (i.e., contextual in-
formativeness) to excel the existing HATL method in selecting
active and transfer learning.

Problem Formulation: We first consider X as data points
from D distribution which consists of properly labeled and
poorly labeled data points. Now, let f be a labeling function
thus the label of a point x is f(x). We will view learning
as searching for a hypothesis h ∈ H . T denotes the binary
tree representing a hierarchical clustering of the data points
in X . For any node (or cluster) v ∈ T , Tv denotes the
hierarchy of nodes (or subtree) rooted at v (T = Troot).
By descending down Tv , we finally reach a leaf node x that
represents semantic attribute. We consider the set of points
X(v) is associated with arbitrary node v. For each node v,
X(v) = X(u1)∪X(u2) where u1 and u2 are two child nodes
of v. Trivially, X(x) = x for leaf nodes. P is a pruning of the
complete tree T . Now, let consider pruning Pv is a subset of
non-overlapping nodes of Tv that contains all points associated
with v : X(v) =

⋃
u∈Pv

X(u). A labeling function L(v) is a
mapping of a node v to a label (e.g., L(v) : v 7→ +−1).

Contextual Informativeness (CI): Contextual Informative-
ness is the measure of the overall confidence of the HSVM
classification tree. This measure has been calculated by assign-
ing a confidence score (probability) to each path at each node
in the hierarchy, all nodes, and all paths are searched, and the
test input is assigned to the class with the highest probability
at the bottom node. We pre-determined two threshold values
(τt, τa) using trial-and-error method on target dataset to choose
transfer learner and active learner respectively in the heuristic.
CI works in three steps:

• Seen activity detection: After the HSVM classification,
CI has been used to decide whether the amounts of
training samples are sufficient for the particular class
label prediction i.e., to detect whether the class label is
previously seen or not. It first calculates CI for the class
label prediction. If CI > τt, then target data point does
not go for transfer learner to label class and finalize yT
as target data point (Line 4 at Algorithm 1).

• Transfer Learner Selection: If CI < τt, then our frame-
work estimates the target data point as unseen or poorly
labeled and selects hierarchical transfer learning to update
node statistics. The UpdateNodeStatistics provide a
newly updated label yT that has been used to estimate CI
again and repeat whether to choose transfer learner again
based on CI < τt for N iteration. Now if CI > τt, we
choose transfer learner predicted yT as target data point
label (Line 4 at Algorithm 1).

• Active Learner Selection: After N iteration, if transfer
learner fails to satisfy CI > τt condition, we decide that
the input instant is completely new activity that needs to
be labeled by the experts. Now, for HSAL, if CI < τa
or the target label budget B > 0, we select active learner
to label target data point which selectively asks experts

to label data point (Line 13 at Algorithm 1).

Hierarchical Active Transfer Learning: We extend HATL
incorporating CI uncertainty measures [28] (as shown in
Algorithm 1). It takes a cluster tree as an input built on source
and target data and uses cluster structure and label information
from both domains to impute labels on the full data set (source
and target). At the beginning, it relies heavily on source dataset
but gradually incorporates feedback from target label inquiries
based on CI measure to refine both its clustering and label
imputation. This accelerates the learning process and mitigates
the cold start problem.

At first, we have semantic attribute labeled data XS from the
source domain, in addition to unlabeled target data XT . Our
proposed extended HATL framework can leverage XS and a
limited number of queried target labels to help impute labels
for the full XT , which we can then use to train an accurate
classifier for the target domain. We begin with cluster tree T
over XS ∪XT , a label budget B, and batch size b, and target
label oracle. On line 2, we initialize P to the root of T and
L to be an arbitrary label (positive class). Then, in lines 6-8,
we update the label proportion estimates for all nodes, based
on labeled source points. The UpdateNodeStatistics(x, y, v)
subroutine performs this update for all nodes along the path
from x to v in Tv . On line 9, we update P and L using the
GetPruningAndLabeling(Tv) subroutine, which recursively
splits nodes in Tv that have high label disagreement. If the
budget B > 0 or R < CI , we run HSAL on the mixture of
source and target data but using the updated P and L (lines
16-18). Finally, we impute labels for all source and target
points in lines 19-21 and output the fully labeled data sets.
The UpdateNodeStatistics and GetPruningAndLabeling
subroutines are implemented as in HSAL.

Hierarchical Sampling For Active Learning: We use
HSAL for sampling in our active learner [35]. HSAL begins
with a cluster tree T over N points in X and a label query
budget of B. At all times, it maintains a current P and L for
T , with initial values of P = root and L(root) = +1. Each
iteration of HSAL consists of four main steps: (i) It queries
labels for a batch of b unlabeled points, (ii) It estimates the
label proportions in each v ∈ P , (iii) it updates P by replacing
any node v with its children if it has a high label disagreement
and finally (iv) It updates L by letting L(v) equal the estimated
majority label for each v. Label queries are made by choosing
first a cluster v from P and then an unlabeled point x from
X(v).

Upon termination, HSAL produces a fully labeled data
set Y = (x, ŷ(x)) : ∀x ∈ X by assigning ŷ(x) = L(v) to
each x ∈ X(v). Y can be used to train HSVM. This label
imputation step helps avoid sample selection bias suffered by
other active learning algorithms [35]. Here we have to estimate
P and L by minimizing the following error function:

ε(P,L) = (1/N)
∑
v∈P

∑
x∈X(v)

(L(v) 6= f(x)) (2)



Algorithm 1 Extended Hierarchical Active Transfer Learning
1: procedure HATL(T,XT , XS , B, b, O) .
XT = Unlabeled target data points, T = Hierarchical
cluster tree of XT , XS = Labeled source data, B = Target
label budget, b = Batch size, O = Target label oracle, τt,τa

2: P ← {root}, L(root)← +1
3: (CI, yT )← HSVM(P,L,XS , XT ) . HSVM

classification with contextual informativeness CI
4: while CI < τt do and n = 1 : N . Selection of

Transfer Learner
5: T ← Init(CI, yT , P, L) . Initialize Transfer

Learner
6: for all (x, y) where x ∈ XS&y = fs(x) do
7: UpdateNodeStatistics(x, y, root) . counts,

estimates and bounds, admissibility, score for transfer
classifier

8: end for
9: (P,L)← GetPruningAndLabeling(Tv)

10: (CI, yT )← HSVM(P,L,XS , XT ) .
Recalculate Contextual Informativeness

11: end while
12:
13: if B > 0 || CI < τa then . Select Active Learner
14: (P,L)← HSAL(T, {XT , XS}, P, L,B, oracle)
15: end if
16: for all v ∈ P do
17: ŷ ← L(v) for each x ∈ X(v)
18: end for
19: yS = {(x, ŷ(x)) : ∀x ∈ XS}
20: yT = {(x, ŷ(x)) : ∀x ∈ XT }
21: end procedure

Where ε(P,L) is the minimum possible label imputation
error with maximum label queries B. Algorithm 2 shows the
basic steps of HSAL.

V. EXPERIMENTAL RESULTS

We present experimental results and detail comparison anal-
ysis using two real-time activity data traces.

A. Retirement Community Center (RCC) Dataset

The first dataset we have used is collected in a retirement
community center (IRB #HP-00064387).

1) Smart Home Setup: We used our previously developed
real testbed smart home system, PogoPlug [1], [2], where
we customized Cloud Engine PogoPlug Mobile [34] base
station firmware to integrate with WiFi (connect ambient
sensors) and Bluetooth (connect wrist-band) protocol. The
smart home components are as follows (as shown Fig. 3):
PogoPlug base server with a continuous power supply, 3 binary
PIR sensors in three different rooms (kitchen, livingroom and
bedroom), 7 binary object sensors attached with closet door,
entry door, telephone, broom, laundry basket, trash can and
trash box, three IP cameras in the appropriate positions to
collect the ground truth data and an Empatica E4 [17] wrist

Algorithm 2 Hierarchical Sampling Active Learning
1: procedure HSAL(T,X, P, L,B, b,O) .
T = Hierarchical cluster tree, X = Data points, P = Initial
pruning, L = Initial labeling, B = Active learning budget,
b = Batch size, O = Oracle

2: q ← 0 . current number of queries
3: while q ≤ B do
4: Q← {} . list of queried nodes
5: for i = 1 to b do
6: (v, x)← ChooseNextQuery(P )
7: y ← O(x), Q← Q ∪ {v}
8: for all x ∈ X(u) where u ∈ T do
9: UpdateNodeStatistics(u, y, u) . counts,

estimates and bounds, admissibility, score
10: end for
11: end for
12: for all v ∈ Q do
13: (Pv, Lv)← GetPruningAndLabeling(Tv)
14: P ← (P \ {v}) ∪ Pv . replace v with v ∈ Pv

15: L(u)← Lv(u) for each u ∈ Pv

16: end for
17: end while
18: for all v ∈ P do
19: ŷ(x)← L(v) for each x ∈ X(v)
20: end for
21: end procedure

band (integrated with a triaxial accelerometer at 32Hz) on the
participant’s dominating hand.

1

2 3

4

5

Fig. 3. Pogoplug [1], [2] smart home system devices: (1) Empatica E4
Wristband, (2) Wireless Sensor Tag Passive Infrared Sensors, (3) Wireless
Sensor Tag Object Sensors, (4) Ethernet Tag Manager, (5) Cloud Engine
Pogoplug Mobile

2) Data Collection: We recruited 22 participants for this
study (19 females and 3 males) with age range from 77-
93 (mean 85.5, std 3.92) from a continuing care retirement
community with the appropriate institutional IRB approval
and signed consent. The gender diversity in the recruited
participants reflects the gender distribution (85% female and
15% male) in the retirement community facility. We performed
a site survey in the retirement community center where we
investigated the nature of the apartments occupied by the
participants to generalize our setup and asked them about their
daily performed activities. Then we listed all activities and
narrowed down to 13 common activities. On the data collection
day, participants are given a wrist band to wear on their
dominant hand, and concurrently another trained IT graduate
student have the PogoPlug smart home setup in participants’



TABLE I
SCRIPTED AND UNSCRIPTED ACTIVITIES

Scripted activities
(1) wearing shoes, (2) wearing jacket, (3) combing hair, (4) wash hands,
(5) tooth brushing, (6) receive phone call, (7) making phone call, (8)
answer door, (9) sweeping, (10) taking out trash, (11) pay bills, (12)
fold laundry and (13) prepare sandwich.

Unscripted activities
(1) sleeping, (2) watching TV, (3) reading books, (4) eating, (5)
watering plants and (6) playing with pets.

own living environment (smart home setup time 15-30 minutes
with mean 20.5 minutes). The participants are instructed to
perform pre-defined 13 scripted ADLs with the presence of
only the evaluator. Then, the evaluator also leaves the apart-
ment with video recording turn on for a couple of more hours
for collecting participants’ natural unscripted activities (as
shown in Table. I). Two trained and IRB recruitment approved
graduate students are engaged to annotate activities (postural,
gestural and scripted ADLs) on scripted and unscripted activity
sessions. Two more graduate students are engaged to validate
the annotations on the videos. In overall, we are able to
annotate 13 scripted activities (291 samples) labeling for each
participant; 18 hand gestures (43561 samples) and 4 postural
activities (43561 samples) labeling on scripted and unscripted
datasets; and 6 unseen complex ADLs (689 samples) from
unscripted dataset. We previously named unseen activities
as ‘Random’ type [1]–[3]. We named our dataset as RCC
Dataset (Retirement Community Center). We have designed
87 semantic attributes for RCC Dataset, labeled them well
(13590 samples) and generate the Activity-Attribute Matrix*.
.

B. TU Darmstadt Dataset

In our second case, we used publicly available real-time
activity dataset, TU Darmstadt dataset [24] which includes 34
daily life activity classes collected from one subject for seven
days. The sensor data were collected using a wearable sensor
platform with a three-axis accelerometer (ADXL330) worn
on the wrist and the hip of the subject with a sampling rate
of 100Hz. We defined 17 semantic attributes and generated
Activity-Attribute Matrix**. .

C. Evaluation Methodologies

For overall performance across all classes, the accuracy
is computed as the number of correctly recognized samples
divided by the number of all samples in the test set. We use 10-
fold cross-validation method to detect semantic attributes and
supervised AR i.e., we randomly partition the entire dataset
into 10-equal sized subsamples. Of the 10 samples, a single
sub-sample is retained as the validation data for testing the
model, and the remaining 9 sub-samples are used as training

* see a full list of the activity-attribute matrix for RCC Dataset http://
userpages.umbc.edu/∼alam4/icdcs/rcc matrix.pdf

** see a full list of the activity-attribute matrix for TU Darmstadt Dataset
http://userpages.umbc.edu/∼alam4/icdcs/tu matrix.pdf

data. The cross-validation process is then repeated 10 times
(the folds), with each of the 10 sub-samples used exactly
once as the validation data. We consider following baseline
frameworks in evaluating the performance of our framework
in similar scenarios:
• L-Active: Linear K-means clustering based active learn-

ing with Query [21].
• HBATL: Hierarchical Bayesian Active Transfer Learning

[25].
• HSAL: Hierarchical Sampling for Active Learning [35].
• JOTAL: Joint transfer and batch-mode active learning

[40].
• Our approach: Our Approach with semantic attribute

detector and contextual informativeness.
We implement our proposed method and all baseline meth-

ods in MATLAB (Package and dataset will be publicly re-
leased).

D. Case Study I: RCC Dataset

In the case of RCC Dataset, we extract wrist-worn ACC
sensor signal to detect hand gesture and postural activities,
extract features of the object and ambient sensor signals and
impute them into our framework.

1) Supervised Classification Performance: For hand ges-
ture, postural activity and semantic attribute recognition frame-
works evaluations, we use 10-fold cross-validation as stated
before to test performances. We achieve 91.8% (FP rate 6.8%),
75.9% (FP rate 12.9%) and 87.3% (FP rate 8.5%) accuracies
for hand gesture, postural activity and semantic attribute
recognition model, respectively. For supervised complex AR,
we consider supervised parts of each baseline framework, i.e.,
L-Active (linear K-Means clustering), HBATL (Hierarchical
Bayesian Network), JOTAL (joint probability of classification
decisions) and our approach (hierarchical SVM classifica-
tion). Fig 4 shows that supervised complex AR accuracy for
the supervised version of our baseline activities. We notice
that our HSVM classification accuracy outperforms (≈ 6%
more accuracy than a nearby framework) other frameworks
achieving 91% accuracy (FP rate 2.5%) for all activities (both
scripted and unscripted). We also notice that scripted activity
classification performances are higher (95% for our method)
than unscripted activities (86%).

2) Unseen Activity Classification Experiments: To evaluate
unseen AR performance on our entire dataset, we combine
scripted and unscripted activity sessions into one dataset and
follow leave-two-class cross-validation method to evaluate
overall unseen activity performance which is mostly used for
unseen class classification domain [38], [39]. The validation
scheme is used for recognizing unseen classes that do not have
any sample in the training set. The traditional 10-fold cross-
validation is not applicable to unseen class recognition because
it does not leave out all samples of certain unseen classes in
the training step so that every class will have some samples
in the training set. Fig 6 illustrates the accuracy measure for
all baseline frameworks accuracy in terms of leave-two-out
cross-validation on our entire dataset which clearly depicts that

http://userpages.umbc.edu/~alam4/icdcs/rcc_matrix.pdf
http://userpages.umbc.edu/~alam4/icdcs/rcc_matrix.pdf
http://userpages.umbc.edu/~alam4/icdcs/tu_matrix.pdf
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comparisons with baseline through 600 queries

our framework outperforms all other frameworks in significant
magnitude (9% more accurate that nearby baseline frame-
works) achieving an overall accuracy of 81%. It should be
noted that we did not train our model until the label confidence
reaches 85% in the above evaluation (the standard used in
[13]).

Fig 5 and Fig 7 illustrate the accuracy measures and label
imputation error respectively for baseline frameworks in terms
of increasing number of label queries which clearly depict
that our framework outperforms all baseline frameworks in
both measures. Fig 11 shows that AR accuracy gradually
degrades as the number of unseen classes in the testing data
increases (i.e. the number of seen classes in the training data
decreases). This is in accordance with the expectation, because
it gradually becomes difficult for the system to generalize to
a large number of unseen activity classes based on only a
few seen classes. However, our framework also outperforms
other baseline frameworks in this case as well. We can see that
all of the complex activities which are integrated with object
sensors provide impressive recognition performance even with
the baseline methods for both in supervised (Fig. 4) and unseen
(Fig. 6) AR. For instance, ‘making phone calls’ (telephone
sensor) ‘answer the door’ (door sensor), ‘sweeping’ (sensor
attached to broom), ‘fold laundry’ (sensor attached to laundry
basket) etc.

E. Case Study II: TU Darmstadt

In case of TU Darmstadt, we extract wrist-worn ACC sensor
signal and hip-worn ACC sensor signal generating a feature
set of 24 features (12-ACC sensor features from each node)
to detect our defined semantic attributes.

1) Supervised Classification Performance: Similar to RCC
dataset, we use 10-fold cross-validation method to detect
semantic attributes and supervised AR. We achieve 83.4%
(FP rate 10.8%) accuracy for our 17-classes semantic attribute
recognition model and achieve and 80% (FP rate 6.2%)
accuracy for 34-classes daily AR. For supervised complex AR,
we consider supervised parts of each baseline frameworks.

2) Unseen Activity Classification Experiments: To evaluate
unseen AR performance on TU Darmstadt dataset, we follow
leave-two-class cross-validation method to evaluate overall
unseen activity performance. Fig 8 illustrates the accuracy
measure for all baseline frameworks in terms of leave-two-
out cross-validation on TU Darmstadt dataset which clearly
depicts that our framework outperforms all other frameworks
in significant magnitude achieving an overall accuracy of 79%.
We did not train our model until the label confidence reaches
85% in the above evaluation.

Fig 9 illustrates the accuracy measures for baseline frame-
works which clearly depicts that our framework outperforms
all baseline frameworks in terms of number of label queries.
Fig 10 shows the accuracy graphs of baseline frameworks in



55

65

75

85

95

ri
di

ng
 b

ik
e

dr
iv

in
g 

ca
r

br
us

hi
ng

 te
et

h

pe
rs

on
al

 h
yg

ie
ne

kn
ee

lin
g

ru
nn

in
g

si
tti

ng
 h

av
in

g 
a…

ha
vi

ng
 b

re
ak

fa
st

ha
vi

ng
 d

in
ne

r

ha
vi

ng
 lu

nc
h

si
tti

ng
 ta

lk
in

g 
on

…

us
in

g 
th

e 
to

ile
t

si
tti

ng
 d

es
k…

st
an

di
ng

 ta
lk

in
g

st
an

di
ng

 h
av

in
g…

qu
eu

in
g 

in
 li

ne

st
an

di
ng

 ta
lk

in
g…

st
an

di
ng

 u
si

ng
…

w
al

ki
ng

 w
hi

le
…

w
al

ki
ng

 f
re

el
y

w
as

hi
ng

 d
is

he
s

pi
ck

in
g 

up
…

ly
in

g…

w
ip

in
g 

th
e…

di
sc

us
si

ng
 a

t…

kn
ee

lin
g 

m
ak

in
g…

fa
nn

in
g 

ba
rb

ec
ue

w
as

hi
ng

 h
an

ds

se
tti

ng
 th

e 
ta

bl
e

w
at

ch
in

g 
m

ov
ie

m
ak

in
g 

co
ff

ee

at
te

nd
in

g 
a…

O
ve

ra
ll

A
cc

ur
ac

y 
(%

)

L-Active
HBATL
HSAL
JOTAL
Our Method

Unseen

TU Dermstadt Unseen

Fig. 8. TU Darmstadt Dataset: Unseen Activity Classification Accuracy with leave-two-out cross-validation method and comparison with baseline methods.

terms of the number of seen classes in the training data which
also depicts that our framework outperforms other baseline
frameworks in this case as well.
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F. Importance of Hierarchical Clustering

Hierarchical clustering and efficient pruning are two im-
portant steps in our framework. We experiment on how this
hierarchical clustering helps improve our AR performance
using RCC Dataset. To measure our clustering performance,
we apply cluster purity evaluation metric. To compute purity,
each cluster is assigned to the class which is most frequent
in the cluster, and then the accuracy of this assignment is
measured by counting the number of correctly assigned classes
and dividing by N . Formally,

purity(Ω, C) =
1

N

∑
k

max
j
|ωk ∩ cj | (3)

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and
C = {c1, c2, . . . , cJ} is the set of classes. Bad clusterings
have purity values close to 0 while a perfect clustering has
a purity of 1. Fig 12 shows our hierarchical clustering purity
outperforms other clustering methods used in the baseline
frameworks.

G. Importance of Semantic Attribute Detector

Semantic attribute based hierarchical clustering has been
proven as an optimal way to get higher accuracy in the active
learning based AR domain [13]. In this paper, we use semantic

attribute detection method in our extended HATL framework.
Fig 13 shows that inclusion of the semantic attribute detector
increases the overall unseen AR accuracy (6% improvement)
over the number of label queries requested by the system.

H. Importance of Contextual Informativeness

We introduce a contextual informativeness (CI) based seen-
unseen AR technique to select active learner and transfer
learner. CI checks for sufficient confidence measure of activity
classification based on currently labeled data points (i) before
transfer learning; (ii) after transfer learning, and (iii) finally
after active learning which continues in a loop until desired
confidence has been achieved. This life cycle of CI confirms
that our framework provides maximum fine-grained granular-
ity of activity labeling with minimum possible computational
time (instance selection time). Fig 13 shows inclusion of
CI improves the accuracy significantly (4% improvement).
On the other hand, Fig 15 shows significant reduction of
instance selection time which can be achieved if CI has been
included in our framework. CI also solves the problem of
similar activities but in different location problem (‘sweeping’
in living room or bedroom) in the transfer learning phase too.

I. Importance of Semantic Attribute Learning

Semantic attribute based hierarchical active transfer learning
enables a new way of representing the data points that is un-
derstandable by experts even without watching the video. For
example, consider a new activity data point ‘cooking’ (‘cook-
ing’ is not part of our entire dataset) has been found in the test
dataset which is neither seen nor poorly labeled in the source
or target dataset. Fig 14 shows ‘cooking’ complex activity rep-
resentation in terms of only low-level (〈postural, location〉)
and semantic attribute context format. It can be depicted
that semantic attribute representation of complex activities
can visualize complex activities more clearly than low-level
activity context representation. However, defining and training
samples with semantic attribute is an extra burden on the data
labeling which is a costly task too. Our efficient extended
hierarchical active transfer learning proves that the cost can
be minimized significantly for both seen and unseen activities.
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As our semantic attribute detection performance is not that
satisfactory, new algorithms can be explored to improve the
performance.

J. Importance of Hierarchical Cluster Classification

Our hierarchical cluster based HSVM classification algo-
rithm applies a pruning technique to reduce the number of
samples required to be labeled in the HSAL algorithm (Algo-
rithm 2 Line 13). The pruning costs incur extra computation
complexity to our overall framework. However, as shown
in Fig 16, this pruning can reduce the number of clusters
significantly while running the core active transfer learning
query label request.

walk

kitchen

stand

kitchen

walk

living

stand

living

walk

kitchen

stand

kitchen

stand

kitchen

Washing dishes Retrieve utensils chopping Blending spices

stand

kitchen

Posture

Location

Semantic

Attribute

Fig. 14. Representation of complex activity ‘cooking’ as
< postural, location > and < semanticattribute > hierarchicaltuples

150

200

250

300

350

400

450

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

T
im

e
 (

M
il

li
se

c
o

n
d

s)

Number of label queries

HATL Without CI

HATL With CI (Our Approach)

Fig. 15. RCC Dataset: Importance of
Contextual Informativeness Testing in
terms of instance time selection. Sig-
nificant reduction of instance selection
time achieved

50

150

250

350

450

550

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

5
5

0

6
0

0

N
u

m
b

er
 o

f 
cl

u
st

er
s 

af
te

r 
p

ru
n

in
g

Number of label queries

Baseline

Pruned

Fig. 16. RCC Dataset: Importance
of cluster pruning testing. Significant
reduction of number of clusters while
label query requested by the system

VI. DISCUSSION

In our framework, we start with some labeled dataset and
gradually update both source and target dataset. If the number
of unseen activities in the target dataset is much less than
the total number of dissimilar activities between source and
target dataset (source dataset has more unknown activities

than target dataset), then there is a possibility of negative
transfer learning which can not be solved in next stage of
active learning. This scenario can be visible in case of large
scale dataset. For example, in Fig. 10 shows accuracy drops
drastically (below 50%) when unseen activities are more than
half of total classes. This framework is also limited to a similar
setup of the smart home. The semantic attribute detection
is one of the most important parts in our system which
did not provide satisfactory recognition accuracy. We also
did not compare unsupervised method performances with our
proposed framework in the current version.

VII. CONCLUSION

We have presented the design, implementation, and evalu-
ation of a new AR system that helps reinforce the scalability,
generalizability, adaptability, and the statistical importance of
the unseen AR process exploiting its underlying taxonomical
structure. While prior unseen AR techniques rely on accu-
racy costing computational complexity and label imputation
errors, our hierarchical activity taxonomy learning guided
active transfer learning framework judiciously mitigates the
costing metrics with significant performance improvement.
In addition, our efficient active learning assisted contextual
informativeness aware learner selection method helps achieve
the optimal performance gain with minimum costs on activity
datasets comprising both seen and unseen activities. Moreover,
we are the first of the kind extensively explored different
active transfer learning methods in unseen activity recogni-
tion domain. Our proposed semantic attribute based generic
representation of complex activities also opens up a research
avenue bridging crowdsourcing with active transfer learning
application domain.
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