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We demonstrate that extended dissipative struc-
tures in Kerr-nonlinear whispering-gallery mode
resonators undergo a spatiotemporal instability as
the pumping parameters are varied. The dynam-
ics of the patterns beyond this bifurcation yield
specific Kerr comb and sub-comb spectra that can
be subjected to phase of frequency-locking when
optimal conditions are met. We also report for
the first time the existence of fourth-order combs,
which can be excited instead of the conventional
secondary combs when roll patterns loose their
stability. © 2019 Optical Society of America un-
der the terms of the OSA Open Access Publishing
Agreement

OCIS codes: To be updated later.

http://dx.doi.org/10.1364/optica.XX.XXXXXX

Spatiotemporal instabilities arise when a stationary solution
looses stability via a traveling wave. Although well-known in
the context of the mathematical analysis of nonlinear partial dif-
ferential equations, unambiguous examples of such instabilities
are not very common in nonlinear optics. Noteworthy excep-
tions include ref. [1], where the authors analyzed spatiotemporal
instability of a constant field (flat state) in a nonlinear medium
with both dispersion and diffraction. More recently, Anderson et
al. reported in ref. [2] investigated theoretically and experi-
mentally the spatiotemporal instability from a temporal cavity
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Fig. 1. Illustration of a spatiotemporal bifurcation for the rolls
in the LLE. A stable set of Turing rolls could in principle un-
dergo several types of bifurcations: a spatial bifurcation will
lead to a spatially modulated pattern, while a temporal bifur-
cation will produce oscillations along the time coordinate. In
contrast, a spatiotemporal bifurcation leads to patterns that
oscillate both in time and space.

soliton in a fiber ring resonator.

In this letter, we show that the Turing rolls in Kerr-nonlinear
whispering-gallery mode (WGM) resonators loose their stabil-
ity via such spatiotemporal instabilities. This bifurcation also
provides an explanation related to some of the unexplained
phase-locking phenomena that have been reported in recent
experimental works.

The system under investigation is an ultra-high Q WGM
resonator pumped by a resonant continuous-wave laser. The
dynamics of the normalized intracavity field ψ(θ, τ) obeys the

https://doi.org/10.1364/OA_License_v1
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Fig. 2. Experimental transition to secondary combs and chaos obtained with a MgF2 resonator by detuning the laser further into
resonance (α = −1.8, −1.35, −1 and 0.3) with constant pump power F2 = 12. The FSR of the resonator is ∼ 5.9 GHz, its intrinsic
and coupling quality factors are ∼ 109 at 1550 nm, corresponding to a photon lifetime τph = 0.8 µs. Corresponding simulations
spectra and time-domain evolution are shown in the second and third column. The last column displays the eigenvalues in the
complex plane: the spatiotemporal bifurcation occurs when the real part of one of them becomes positive, close to the detuning
α = −1.35.

following Lugiato-Lefever Equation (LLE) [3–5]

∂ψ

∂τ
= −(1 + iα)ψ + i|ψ|2ψ− i

β

2
∂2ψ

∂θ2 + F , (1)

where the normalized parameters are the laser-cavity detuning
α, the second-order dispersion β, and the pump field F, while the
variables are the dimensionless time τ and the azimuthal angle
θ ∈ [π, π]. This equation does not account for the other third-
order nonlinearities of the bulk resonator, that could trigger
instabilities of their own [6, 7].

The most prevalent extended dissipative structures in the cav-
ity are the so-called Turing roll patterns. These patterns emerge
from a flat state via a Turing instability, and are constituted
by an integer number of rolls along the azimuthal direction of
the resonator. Previous theoretical analysis have shown that at
threshold, this number is the closest integer approximation of
Lth = [2(α− 2)/β]

1
2 . The Kerr comb spectra corresponding to

this roll patterns are sometimes referred to as primary combs,
and they feature multiple-FSR spacing, with a multiplicity ex-
actly equal to Lth [8–10]. An open point is to understand how
these rolls loose their stability, as the pump parameters (power
and frequency) are varied. Figure 1 proposes a schematic il-
lustration of the possible destabilization mechanisms for a roll
pattern, that include temporal spatial, and spatiotemporal bi-
furcations. Our main objective in this letter is to show that it is
the latter that rules the destabilization of azimuthal roll patterns
in WGM resonators. The stationary solutions of the LLE satisfy
Eq. (1) with ∂τψ ≡ 0. Once a steady- state solution ψst has been
found, its stability may be determined by linearizing the LLE
about the stationary solution and finding all the eigenvalues of

the linearized equation ∂τδψ = Lδψ where δψ = (δψr, δψi) is
the perturbation with real and imaginary parts δψr,i, and

L =

 −1− 2ψst,rψst,i α− ψ2
st,r − 3ψ2

st,i +
β
2 ∂2

θ

−α + 3ψ2
st,r + ψ2

st,i −
β
2 ∂2

θ −1 + 2ψst,rψst,i

 .

(2)
The eigenvalue equation Lδψ = λδψ is then used to investigate
the stability of the roll patterns. In our computational proce-
dure, we discretize the system by only keeping an even number
N of modes in the spectral domain, that can be spanned as
Ψl =

1
2π

∫ π
−π ψ(θ) e−ilθdθ with l = −N/2, . . . , N/2− 1. For the

results reported here, we use N = 512 or N = 1024. We consis-
tently evaluate the second derivative of θ in the wavenumber
domain and the nonlinear terms in the θ-domain. Given a good
initial guess for a stationary solution, we use the Levenberg-
Marquardt algorithm to find the stationary solution. When find-
ing the eigenvalues, the vector δψ of the eigenvalue equation
becomes a column vector of length 2N after modal expansion.
We use a spectral decomposition of the operator ∂2

θ , which pro-
duces dense sub-blocks in the matrix representation of L [11, 12].
We then use the QR algorithm to find all the eigenvalues. We
have found that the spectral method adds negligibly to the com-
puter time that we need for our implementations while reducing
the angular resolution needed and enabling a direct compari-
son to our evolutionary studies, based on the split-step Fourier
method. We use the boundary-tracking algorithm, described
by Wang et al. [12], to find the stable operating region for the
primary combs. We separately find the stable region for each
primary comb of order L, whose comb spacing equals L× FSR,
with L being a positive integer. We fix β = −2.2× 10−3 through-
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Fig. 3. (a) and (b) Combs and radio-frequency beatnotes ob-
tained in a MgF2 polished resonator in the vicinity of the spa-
tiotemporal instability. (c) and (d) Comb and RF spectra from
the numerical simulation of the LLE with F2 = 12 and α = −1,
providing a good agreement with the experimental results.

out the letter, which corresponds to our experiments, and find
the stable regimes in the two-dimensional α–F2 parameter space.
To find a stable region for a given value of L, we first find a
solution in a highly stable region of the parameter space. We
can then determine the stationary solution and its stability as
the parameters vary. At some point, the stable solution becomes
unstable or ceases to exist. We then move along or track the
boundary, as described in ref. [12]. We note that different bi-
furcations occur at different points along the boundary, which
is why it is important to determine all the eigenvalues. As a
consequence, we observe cusps in the boundary of the stable
region. In the laser frequency-power (or α–F2) parameter space,
Turing rolls with given multiplicity L have defined basins of
attraction that can be thereby determined numerically.

The spatiotemporal perturbation has a specific signature
in both the optical and radiofrequency domains. Indeed, in
the optical domain, the stationary L-th order roll pattern can
be expanded as ψst(θ) = ∑k ΨkL eikLθ , with all the ΨkL be-
ing evidently constant. When a spatiotemporal bifurcation
occurs, the amplitude of this pattern is perturbed following
ψmod(θ, τ) = [1 + a(θ, τ)]ψst(θ), with the traveling-wave per-
turbation a(θ, τ) = a0 ei(Laθ−Ωaτ). In the particular case when
La = L/2, we have obtain the so-called secondary combs and
the resulting pattern can be expanded as

ψmod(θ, τ) = ∑
k

ΨkL eikLθ + a0 e−iΩaτ ∑
k

ΨkL eiL(k+ 1
2 )θ , (3)

where the first term in the right-hand side stands for the un-
perturbed pattern ψst, while the second term stands for the
time-dependent, frequency-shifted comb lines created by the
spatiotemporal perturbation. Note that the new spectral compo-
nents of the secondary comb are located in-between those of the
initial primary comb.

Figure 2 presents a detailed analysis of the spatiotempo-
ral bifurcation as the laser detuning is varied. The leftmost
column shows how, from an initial primary comb with mul-
tiplicity L = 64, the secondary comb first emerges and then
gradually grows towards a fully chaotic comb. The second col-
umn displays numerical simulations that are in excellent agree-
ment with the experimental spectra. It is interesting to note
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Fig. 4. Experimental results showing secondary and fourth-
order combs in a MgF2 WGM resonator. The combs are on the
left column, and their corresponding photodetected beatnotes
(around the fundamental frequency FSR = 5.9 GHz) are on
right column. The arrows in the combs indicate the lines of the
primary comb, before the spatiotemporal bifurcations.

here the LLE is capable to match the experimental data over a
very large dynamical range (80 dB) and for a high-dimensional
system (there are ∼ 400 oscillating modes in these spectra).
The numerical simulations presented in the third column un-
veil the dynamics of the rolls as they undergo the spatiotem-
poral bifurcation. Initially, the roll pattern is stationary, but
after the bifurcation, it starts to oscillate both in space and
time. This specific dynamics actually corresponds to the mod-
ulation of the intensity pattern by a traveling wave following
|ψmod(θ, τ)|2 ' [1 + 2|a0| cos(Laθ −Ωaτ)]|ψst(θ)|2 for |a0| � 1.
Since La ≡ L/2, the effect of the instability-induced traveling
wave δa is to trigger antiphase oscillations for adjacent rolls.
As the system is driven further from the bifurcation, the pat-
tern enters a regime of spatiotemporal chaos where the rolls
are destroyed. The fourth and last column of Fig. 2 displays
the eigenvalue distribution for the cavity modes. It can be seen
that the bifurcation occurs when two of these eigenvalues cross
the imaginary axis. The crossing of additional pairs of eigen-
value drives the intracavity field into a regime of spatiotemporal
optical turbulence.

The spectral signature of the spatial bifurcation can be moni-
tored in the optical spectrum, but the time-averaging of Fourier
spectra does not allow the direct detection of the temporal dy-
namics for these modes. Instead, the temporal bifurcation can
be analyzed via the emergence of modulation side peaks in
the photodetected RF spectra of the combs. The comparison
between theoretical and experimental results is performed via
the output optical signal ψout = −F + 2ρ ψ where ρ is the ratio
between out-coupling and total losses. After photodetection,
a radio-frequency signal proportional to the incoming optical
power |ψout|2 is generated, and features a multi-harmonic signal,
and would feature spectral components of frequency n×ΩFSR ,
with n = 0, 1, 2, . . . . The photodetected optical power can be
Fourier-expanded as

|ψout|2 =
1
2
M0 +

+∞

∑
n=1

[
1
2
Mn exp(inΩFSR t) + c.c.

]
, (4)

whereMn = 2 ∑l Ψout,l+n Ψ∗out,l is the slowly-varying envelope
of the microwave spectral component of frequency n×ΩFSR,
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and c.c. stands for the complex conjugate of the preceding terms.
We therefore expect the temporal bifurcation to induce modu-
lation sidepeaks aroundMn, with a spectral spread that is of
the order of WGM resonance linewidths (few MHz). This be-
havior is experimentally observed in Fig. 3, in agreement with
our numerical simulations. It is important to note that these
modulation side peaks are interaction with the main modes via
four-wave mixing, thereby creating sub-combs that play a ma-
jor role in phase-locking phenomena across the comb [13–15].
Indeed, as the system evolves further from the spatiotemporal
bifurcation, the secondary combs in Fig. 2 feature several lines
that are created around the initial bifurcation-induced modes.
These parasitic lines, spaced by one FSR, are strengthened and
amplified by four-wave mixing. They are useful experimentally
because without them, we would not be able to photodetect a
beatnotes around the FSR [since the “fundamental” tone would
be (L/2)× FSR ∼ 150 GHz away, that is, way above the band-
width of the photodetector].

Interestingly, the spatiotemporal bifurcation can lead to
higher-order bifurcation patterns, as displayed in Fig. 4. Ef-
fectively, we observe experimentally that the roll patterns can
loose their stability to a secondary patterns, but can as well
bifurcate towards a fourth-order pattern where La ' L/4: in
that case, there are three (groups of) instability-induced lines in
between the primary comb teeth, instead of just one as generally
observed in secondary comb. The beatnote spectrum features
a series of sharp modulation peaks that indicate that this new
spatiotemporal pattern oscillates following a well-defined set of
modulation frequencies.

In conclusion, we have shown that rolls can loose their stabil-
ity via a spatiotemporal bifurcation that leads to simultaneous
oscillations in space and time, via a traveling-wave amplitude
modulation. The resulting pattern can lead to the well-known
secondary combs, but we have also provided evidence, for the
first time, of the existence of fourth-order combs. We expect these
results to allow for a deeper understanding of the dynamics of
many other dissipative structures in WGM resonators [16, 17],
and permit as well to optimize the stability of these patterns for
the many targeted applications [18–22].
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