
APPROVAL SHEET

Title of Thesis: Quality ”uided Variable ‘it Rate Texture ’ompression

Name of Candidate: Wesley ”riin
Doctor of Philosophy,
2016

Thesis and Abstract Approved:
Dr. Marc Olano
Associate Professor
Department of ’omputer Science and
Electrical Engineering

Date Approved:

A‘STRA’T

Title of Thesis: Quality ”uided Variable ‘it Rate Texture ’ompression

Wesley ”riin, Doctor of Philosophy, 2016

Thesis directed by: Dr. Marc Olano, Associate Professor

Department of ’omputer Science and

Electrical Engineering

The primary goal of computer graphics is to create images by rendering a scene under

two constraints: quality, producing the image with as few artifacts as possible, and time,

producing the image as fast as possible. Technology advances have both helped to satisfy

these constraints, with ”raphics Processing Unit (”PU) advances reducing image rendering

times, and to exacerbate these constraints, with newHD and virtual reality displays increasing

rendering resolutions. To meet both constraints, rendering uses texture mapping which maps

2D textures onto scene objects. Over time, the count and resolution of textures has increased,

resulting in dramatic growth of data storage requirements. ’ompression can help to reduce

these storage requirements.

I present a rigorous texture compression evaluation methodology using inal rendered

images. My method can account for masking efects introduced by the texture mapping

process while leveraging the perceptual-rigor of current Image Quality Assessment met-

rics. ‘uilding on this evaluation methodology, I present a demonstration of guided texture

compression optimization that minimizes the bitrate of compressed textures while maxi-

mizing the quality of inal rendered images. ”uided texture compression will help with the

scalability problem for optimizing texture compression in real-world scenarios.

Quality Guided Variable Bit Rate Texture Compression

Wesley ”riin

Dissertation submitted to the “aculty of the ”raduate School of the
University of Maryland, ‘altimore ’ounty in partial fulillment

of the requirements for the degree of
Doctor of Philosophy

2016

© ’opyright Wesley ”riin 2016.

DEDI’ATION

“or ’onnor.

Anything is possible with dedication.

ii

A’KNOWLED”EMENTS

I would irst like to thank my amazing wife Kim for her constant support and understanding

for the last eight years. I could not have completed this without her. I also want to thank my

family for their support and encouragement.

My advisor, Dr. Marc Olano, provided the initial idea, on-going direction, and support.

Thank you for helping me to see this work completed.

I would also like to thank my dissertation committee for their time spent reading my

proposal and dissertation and answering my questions.

There have been many anonymous paper reviewers that took the time to read and

provide feedback on the published portions of my dissertation.

Thanks also to my NIST colleagues who also reviewed paper drafts and answered

questions and my VAN”O”H lab mates.

iii

TA‘LE O“ ’ONTENTS

Table of Contents . iv

List of Tables . vi

List of Figures . vii

List of Acronyms . xii

Chapter 1 Introduction . 1

1.1 ’ontributions . 4

1.2 Signiicance . 7

Chapter 2 Background . 8

2.1 Image ’ompression . 8

2.2 Image Quality Assessment . 13

2.3 Optimization and Searching . 21

2.4 Rendering Optimization . 22

Chapter 3 Chrominance Distortion Database 23

3.1 Evaluation . 27

3.2 Analysis . 30

iv

v

Chapter 4 Texture Compression Evaluation 33

4.1 Approach . 34

4.2 Results . 37

Chapter 5 Texture Compression Optimization 52

5.1 Approach . 53

5.2 Results . 55

Chapter 6 Conclusion . 64

6.1 “uture Work . 66

6.2 Model ’redits . 66

References . 67

LIST O“ TA‘LES

4.1 Mean color (Δ�∗94) and structure (SSIM) error for normal compressed textures

and the mean RMS Angular Error (RMSa) over all of the MIP levels of the

largest sized texture set for the Urban ”uy model. 43

5.1 Adaptive Scalable Texture ’ompression (AST’) ’ompression Settings. The †
for Step indicates a continuous value variable. 53

5.2 The components and energy at iterations 12 and 19 for the “ire Hydrant model

with 12,288 viewpoint samples. Even though the bitrate has been cut in half

between iterations 12 and 19, the 1-SSIM and ’IE ∗ ∗ ∗ color space (’IELA‘)

Δ�∗94 values are very similar. 59

5.3 System conigurations. †The ’ores are listed as physical / hyperthreaded, where

the total number of available cores is the H column. 61

5.4 Mean walltimes for the diferent stages of the optimization algorithm for the “ire

Hydrant and Urban ”uy models with 12,288 viewpoints. 62

vi

LIST O“ “I”URES

1.1 “inal rendered image and the textures used for rendering. 2

2.1 The variable bit rate compression and decompression pipeline. 10

2.2 The creation and hierarchical representation of mip-mapped textures. 11

2.3 The ∗ ∗ ∗ and ∗�∗ ℎ ’IELA‘ coordinate systems. 18

2.4 The Δ�∗94 color diference map between two images. 19

3.1 The QAB chrominance distortion uses quantization to down-sample the chroma

components. The distortion results in blocks of a single chroma value replacing

smoothly varying areas of color. 24

3.2 The CD chrominance distortion simulating chromatic aberration. The distortion

results in general blurring of edges and green and magenta fringing along edges. 25

3.3 The DSAB chrominance distortion modeling chroma component down-sampling.

The distortion results in blocks of chroma based on the down-sampled block size. 26

3.4 The GBAB chrominance distortion roughly approximating chroma component

down-sampling. The distortion results in smooth color bleeding across edges. 26

3.5 The HR chrominance distortion simulating random color noise. The distortion

results in large blocks of color and color speckles. 27

3.6 Sample HIT for evaluation on Mechanical Turk. 28

3.7 Mean DMOS by Distortion Parameter. See Section 3.2 for detailed discussion. 31

4.1 The models used for evaluation. 37

4.2 ’overage range of sampled viewpoints. 38

vii

viii

4.3 “ire Hydrant Wrapped Texture Set metric histograms. Values to the right are

better. The variance by viewpoint implies geometric and texture set masking

occurs. 40

4.4 Urban ”uy Wrapped Texture Set metric histograms. Values to the right are

better. The variance by viewpoint implies geometric and texture set masking

occurs. 41

4.5 Japanese ’astle Wrapped Texture Set metric histograms. Values to the right

are better. The variance by viewpoint implies geometric and texture set masking

occurs. 41

4.6 Visual example of color banding artifacts being masked by a high frequency

bump map on the Urban ”uy model. The compressed texture (a) shows color

banding compared to uncompressed (b). When rendering with the compressed

texture (c), the color banding artifacts are masked compared to rendering with

the uncompressed texture (d). 42

4.7 Visual example of compression block artifacts being masked by a high frequency

bump map on the “ire Hydrant model. The compressed texture (a) shows severe

block artifacts compared to uncompressed (b). When rendering with the com-

pressed texture (c), the block artifacts are masked as compared to rendering with

the uncompressed texture (d). 43

4.8 AST’ 12×12 metric histograms and statistics for Difuse only compression on

the “ire Hydrant model. W. is Wrapped and U. is Unwrapped. Values to the

right are better. 44

4.9 AST’ 12×12 metric histograms and statistics for ”loss only compression on the

“ire Hydrant model. W. is Wrapped and U. is Unwrapped. Values to the right

are better. 44

ix

4.10 AST’ 12×12 metric histograms and statistics for Normal only compression on

the “ire Hydrant model. This histogram is clipped on the left. W. is Wrapped

and U. is Unwrapped. Values to the right are better. 45

4.11 Viewpoints for the “ire Hydrant model colored by RMS Angular Error with only

normal textures compressed using AST’ 12×12. 46

4.12 Viewpoints for the Taurus model colored by RMS Angular Error with only

normal textures compressed using AST’ 12×12. 46

4.13 Wrapped Texture Set mean error for the “ire Hydrant model. The left two plots

are color error against compression rate and the right plot is SSIM. “or RMS

’olor Error and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or SSIM,

higher is better and 1.0 is perfect. The vertical error scales are diferent across
all plots. 47

4.14 Wrapped Texture Set mean error for the “ire Hydrant model. The left two plots

are color error against compression rate and the right plot is SSIM. “or RMS

’olor Error and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or SSIM,

higher is better and 1.0 is perfect. The vertical error scales are diferent across
all plots. 47

4.15 Wrapped Texture Set mean error for the Taurus model. The left two plots are

color error against compression rate and the right plot is SSIM. “or RMS ’olor

Error and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or SSIM, higher is

better and 1.0 is perfect. The vertical error scales are diferent across all plots. 48

4.16 Wrapped Texture Set mean error for the Urban ”uy model. The left two plots

are color error against compression rate and the right plot is SSIM. “or RMS

’olor Error and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or SSIM,

higher is better and 1.0 is perfect. The vertical error scales are diferent across
all plots. 48

x

4.17 Wrapped Texture Set mean error for the Japanese ’astle model. The left two

plots are color error against compression rate and the right plot is SSIM. “or

RMS ’olor Error and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or

SSIM, higher is better and 1.0 is perfect. The vertical error scales are diferent
across all plots. 49

4.18 Visual comparison of a single viewpoint of the Urban ”uy model with each

AST’ variant. “igures (d) (f) are the SSIM maps. 50

4.19 Visual comparison of a single viewpoint of the “ire Hydrant model and the

AST’ 12×12 compression algorithm. “igures (c) (f) are SSIM maps. 51

4.20 Visual comparison of dropping from 1 to 7 bits on all textures. The bottom row

is the corresponding SSIM maps with the mean SSIM from this viewpoint. . . 51

5.1 Energy by iteration for the “ire Hydrant and Urban ”uy models with 12,288

viewpoint samples. “or both models, energy is minimized over time. 56

5.2 Steps by iteration for the “ire Hydrant and Urban ”uy models with 12,288

viewpoint samples. “or both models, the number of steps taken at each iteration

increases. This shows the algorithm is spending more time looking a better

neighbor state. 56

5.3 Energy components by iteration for the “ire Hydrant model with various view-

point samples. ‘itrate is being over-optimized at the expense of rendered image

quality. 57

5.4 Iteration 12 of the “ire Hydrant model with 12,288 viewpoint samples. There

is some visual diference between the Uncompressed (a) and ’ompressed (b)

images and this is relected in the 1 - ’IELA‘ Δ�∗94 (c) and SSIM (d) maps. “or

both (c) and (d), darker pixels indicate worse quality. This is opposite to how the

image quality metrics are used in the energy function. 58

xi

5.5 Iteration 19 of the “ire Hydrant model with 12,288 viewpoint samples. There

is some visual diference between the Uncompressed (a) and ’ompressed (b)

images and this is relected in the 1 - ’IELA‘ Δ�∗94 (c) and SSIM (d) maps. “or

both (c) and (d), darker pixels indicate worse quality. This is opposite to how the

image quality metrics are used in the energy function. 58

5.6 Energy components by iteration for the Urban ”uy model with various viewpoint

samples. ‘itrate is being over-optimized at the expense of rendered image quality. 59

5.7 Variance analysis for the 1-SSIM component. The variance is signiicantly

smaller than the 1-SSIM delta in “igures 5.3 and 5.6, which is on the order of 0.1,

implying that even 2,048 viewpoint samples is suicient. Section 5.2.2 describes

how the variance was calculated. 60

5.8 Variance analysis for the ’IELA‘ Δ�∗94 component. The variance is signif-

icantly smaller than the Δ�∗94 delta in “igures 5.3 and 5.6, which is on the order

of 0.3 0.4, implying that even 2,048 viewpoint samples is suicient. Section 5.2.2

describes how the variance was calculated. 60

5.9 Variance analysis for energy. The variance is signiicantly smaller than the

energy delta in “igures 5.3 and 5.6 implying that even 2,048 viewpoint samples

is suicient. Section 5.2.2 describes how the variance was calculated. 61

5.10 Mean walltimes for the diferent stages of the optimization algorithm for the

“ire Hydrant model with various viewpoint samples. As expected, the overall

runtime of the algorithm increases proportionally with the number of viewpoint

samples. 62

LIST O“ A’RONYMS

ASTC Adaptive Scalable Texture ’ompression. vi, 3, 6, 12, 21, 39, 42, 43, 52, 53

CIELAB ’IE ∗ ∗ ∗ color space. vi, 14, 17 19, 36, 40, 41, 55, 57, 59

DMOS Diference Mean Opinion Score. 5, 23, 29 32

FBR “ixed ‘it Rate. 2, 8, 9, 64

GPU ”raphics Processing Unit. 1 3, 5, 13, 34, 62, 64

IQA Image Quality Assessment. 3, 4, 8, 13, 14, 23, 64, 65

IW-SSIM Information ’ontent Weighted Structural Similarity Index Metric. 17

MS-SSIM Multiscale Structural Similarity Index Metric. 15, 17

MSE Mean Square Error. 5, 33, 65

PSNR Peak Signal-to-Noise Ratio. 3, 5, 33, 65

RMS Root Mean Square. 36, 40, 42, 43, 45

SHAME Spatial Hue Angle Metric. 20

SSIM Structural Similarity Index Metric. 15 17, 36, 40 42, 49, 50, 55, 57

VBR Variable ‘it Rate. 2, 8, 9, 13, 64

VIF Visual Information “idelity. 17

VSNR Visual Signal-to-Noise Ratio. 14

xii

’hapter 1

INTRODU’TION

The primary goal of computer graphics is to create realistic images, or frames, from a

description of a scene, a process called rendering. In all rendering a key constraint is the

quality of the rendered frame. In real-time rendering, primarily used in video games, there is

an additional constraint: time. Real-time systems must render successive frames fast enough

to provide the illusion of motion and to maintain interactivity. In most cases, a real-time

rendering system has only 16 or 11 milliseconds to render a single frame.

Despite this time constraint, real-time rendering cannot sacriice quality. Video game

consumers expect new games to provide increased graphics realism. These expectations

have largely driven the growth in ”raphics Processing Unit (”PU) performance over the

past decade. Additionally, the growth of high deintion displays in the last few years further

increases the quality expectations. Players expect video games to provide interactive and

luid motion at 1920×1080 and higher pixel resolution.

To meet both time and quality constraints real-time rendering uses texture mapping

which maps 2D textures onto objects in the scene. Textures store artist-created data that the

rendering algorithm uses to render a frame. This data is often color and normal basis vectors

for points onmodels. “igure 1.1 is an example of a headmodel and the corresponding textures

used to render the head. “igure 1.1(b) is the difuse color texture that provides the base color

of the model. “igure 1.1(c) is the displacement texture that adds local geometrical detail by

displacing the surface in the normal direction by the displacement amount. “igure 1.1(d) is

the world-space normal vector texture that indicates the normal direction at each point on

the surface. “igure 1.1(e) is the tangent-space normal vector texture that encodes the normal

vector into a basis that is tangent to the surface.

1

2

(a) “inal Rendered Image

(b) Difuse ’olor (c) Displacement

(d) World Space (e) Tangent Space

“igure 1.1: “inal rendered image and the textures used for rendering.

As ”PU performance has increased, rendering algorithm complexity has increased to

improve graphics realism. While early rendering algorithms stored only object colors in

textures, current rendering systems store many diferent types of data thereby increasing

the number of textures required to render one object. “urthermore, increasing pixel resolu-

tions from high deinition displays have pushed texture resolutions from 256×256 pixels

to 2048×2048 pixels, an increase of 64 times. This increase in both numbers and sizes of

textures has resulted in dramatic growth of texture data storage requirements.

To reduce texture mapping memory requirements, ”PUs provide “ixed ‘it Rate (“‘R)

compression formats that are eiciently decompressed in hardware. The most common

formats have compression ratios of 6:1 or 4:1. However, these formats overcompress

some blocks, increasing compression artifacts, and undercompress other blocks, increasing

compressed size. We show (Olano et al. 2011) that these “‘R formats can no longer meet

the storage and quality requirements of current video games, and introduce a Variable ‘it

Rate (V‘R) compression format that achieves a reduction in compressed size of roughly

3

one-third.

Real-time rendering makes extensive use of texture compression for reducing storage

size on the ”PU, bus bandwidth for uploading textures, and memory bandwidth for rendering.

’urrent ”PU compression algorithms use ixed bit-rates (Iorcha, Nayak, and Hong 1999;

Open”L AR‘ 2009) and recent research has explored reducing the bit rate (Ström and

Pettersson 2007; Khronos ”roup 2013) as well as using variable bit-rate algorithms (Inada

and Mc’ool 2006; Olano et al. 2011).

Recently, Khronos ”roup (2013) introduced AST’, which is modeled after the existing

block compression algorithms but supports varying the number of texels per block or block

footprint in a texture to enable granular changes to the bit rate. This varying block footprint

feature presents an interesting optimization use-case.

“or situations that only use an extremely small number of textures, manually tuning the

AST’ block footprint on each texture to maximize compression rate while visually ensuring

compressed texture quality might be possible. Modern video games, however, have roughly

5000 textures and neither manual tuning nor visual evaluation will scale. One solution to this

problem is to automate the tuning and inspection. The accepted method for this automation

is to objectively compare the compressed image to the uncompressed image.

The universal technique for objective image comparison is to compute the Peak Signal-

to-Noise Ratio (PSNR) between the uncompressed and compressed images. However,

research has led to the realization that PSNR does not correlate with how humans evaluate

images (Wang and ‘ovik 2006). Objective Image Quality Assessment (IQA) research has

since thus focused on metrics with strong correlation to human perception. I hypothesize

that an objective IQA metric can be used to automatically guide texture compression.

’urrent top-performing IQA metrics are formulated for luminance (gray-scale) natural

images such as real-world photographs or realistically rendered images. Textures, on the

other hand, store many types of data, including color, as in “igure 1.1(b) and 3D vectors, as

in “igures 1.1(d) and 1.1(e). Thus, it would be a mistake to directly evaluate compressed

4

texture quality using existing IQA metrics.

The textures, however, are used to render a inal realistic (natural) color image. This

image could be compared with an undistorted image using an objective IQAmetric. ‘y using

compressed and uncompressed textures to render the respective images, indirect evaluation of

texture compression quality is possible by comparing the inal rendered images. Evaluating

the inal rendered image would solve the problem of textures not being natural images and

enable guided texture compression. However, one inal problem remains: the inal rendered

images are color, but the objective IQA metrics have been formulated for luminance images.

“or image evaluation, ignoring chrominance distortions is acceptable and the lumi-

nance metrics perform very well. “or guided texture compression, however, chrominance

distortions cannot be ignored. The compression algorithm will recognize that changes in

chrominance do noelwood.nist.gov/t afect the quality evaluation, and will increase the

compression ratio by eliminating or grossly distorting the color. “urthermore, existing color

objective IQAmetrics do not performwell comparedwith the luminancemetrics (Ajagamelle,

Pedersen, and Simone 2010; Čadı́k et al. 2012).

1.1 Contributions

I make three speciic contributions in this work: 1) a chrominance distortion image database,

2) a rigorous texture compression evaluation methodology, and 3) a demonstration of guided

texture compression optimization.

1.1.1 Chrominance Distoration Image Database

To aid research and evaluation of color IQA metrics, I have developed a chrominance

distortion image database. This database consists of 24 reference images and 500 distorted

images spread across ive diferent chromatic distortions. The chromatic distortions were

chosen to model common techniques in image compression as well as other chromatic efects,

such as chromatic aberration and chromatic noise. I performed a user study to generate

5

subjective evaluations of each distorted image as an average Diference Mean Opinion Score

(DMOS) value. This database and the user study are discussed further in ’hapter 3.

1.1.2 Texture Compression Evaluation

In evaluating texture compression, the most common approach is to use some combination of

the Mean Square Error (MSE), PSNR, or visual image inspection on the individual textures.

While comparing or inspecting individual textures is straightforward to implement, this

method does not properly account for the two ways in which textures are used.

Textures are not single images but instead are 1) mapped onto geometric objects which

are rendered from a viewpoint (texture mapping) and 2) combined into texture sets, such as

a difuse and bump map, which are used to evaluate the rendering equation. In both cases,

textures are used to render a inal image from a speciic viewpoint. In a rendered image,

there are likely masking efects from geometric distortion or overlapping textures that afect

that quality of the image (“erwerda et al. 1997).

To account for these masking efects, I introduce a texture compression evaluation

methodology using inal rendered images. Thismethodology is discussed further in ’hapter 4.

My results show:

• ”eometric and texture set masking occurs and cannot be detected by evaluating

individual textures.

• The relative contribution between geometric and texture set masking varies by type of

texture.

• Perceptual sensitivity to masking varies with the type of texture, such as difuse, gloss

or bump maps.

• ’urrent ”PU compression algorithms are too conservative and bit rates can be reduced

while maintaining inal rendered image quality.

6

1.1.3 Texture Compression Optimization

Modern texture compression algorithms (Khronos ”roup 2013; Skodras, ’hristopoulos,

and Ebrahimi 2001) have many knobs for ine-tuning the compression. “or example,

the AST’ algorithm (Khronos ”roup 2013) has seven setting variables, ive of which are

discrete, while the other two are continuous, and all of them having a ixed range. These

knobs are used to ine-tune the compression algorithm by trading speed for bitrate. Instead

of having end-users pick values for each of these knobs, setting presets are created that set

speciic values for each variable.

Even with presets, the efect of the variables on bitrate and quality can be non-obvious

to non-experts. “urthermore, even for experts, manually tuning each variable is a time-

consuming process with usually very little payof and enumerating all possible states of the

variables is infeasible since there are more than 1012 possible states. “inally, modern video

games uses thousands of textures, further compounding the problem.

The large state space created by combining the knobs, however, suggests using a search

algorithm for guided optimization. Leveraging my compression evaluation methodology,

I introduce a procedure that can optimize an energy function incorporating bitrate and

objective image quality. This procedure is described in ’hapter 5.

My results present:

• An energy function evaluated by applying perceptually rigorous objective image

quality assessment metrics to compare compressed textures to uncompressed textures

over a Monte-’arlo sampling of viewpoints.

• A measure to determine if the Monte-’arlo estimate is accurate enough.

• A variance analysis in the Monte-’arlo estimate showing that 2,048 viewpoint samples

provides a suiciently accurate estimate of compress texture quality with a sizable

margin of error.

7

1.2 Signiicance

”uided texture compression will help with the scalability problem for optimizing texture

compression in video games. An automatic approach should maximize both compression

ratio and inal rendered image quality more quickly and more objectively than a human. ‘y

reducing the time to optimize compression, artists can use larger textures and programmers

can use more textures to further increase rendering quality. ”iven these expected results,

guided compression could see wide application across the video game industry.

“urthermore, very little research exists on automatic rendering optimization. The

closest example is the work done in automatic shader simpliication (Section 2.4). It is

probable that other parts of the rendering pipeline, beyond texture compression, could be

optimized by evaluating the quality of inal rendered images. Possible examples include

texture iltering to reduce texture sample aliasing, texture encoding of 3D vectors and other

loating point data, and diferent algorithms for modeling light transport. ”uided texture

compression is a irst step that would validate the larger technique of automatic rendering

optimization.

“inally, and perhaps most importantly, the ield of computer graphics in general has

relied on manual visual evaluation of rendering algorithms. Typical research papers present

images of diferent algorithms side-by-side and either highlight the presence of visual dif-

ferences or note the absence of visual diferences. This evaluation is highly subjective based

on the person evaluating the images. When objective evaluation does occur, the luminance

metrics are very often misused by averaging a per-color-channel quality value. Appropriately

applying objective IQA metrics provides more rigorous evaluation technique.

’hapter 2

‘A’K”ROUND

This dissertation explores two areas of existing research, texture compression and image

quality assessment, in the context of an optimization framework. Section 2.1 reviews image

compression and surveys current research in both “‘R and V‘R texture compression.

Next, Section 2.2 reviews image quality assessment and surveys current top-performing

luminance and color objective IQA metrics. “inally, Section 2.4 discusses automatic shader

simpliication.

2.1 Image Compression

’ompression exploits the existence of redundant information in data to reduce the number of

bits needed to represent the data. ’ompression algorithms can be lossless or lossy. Lossless

algorithms reconstruct a decompressed ile that exactly matches the original uncompressed

ile while lossy algorithms reconstruct a ile that does not exactly match the original ile. The

human visual system is not sensitive to several image characteristics, including luminance

distortions, chrominance distortions, and high frequency details, so lossy compression is

well suited for image compression. The human visual system will perceive a reconstructed

image from lossy compression as close, if not identical, to the uncompressed image if the

distortions are small.

Vector quantization is a common technique for lossy image compression. A 2D uncom-

pressed image is divided into blocks of pixels and the colors at each pixel are quantized to a

set of per-block representative colors, or codebook. Vector quantization is inherently “‘R

as each block of pixels is encoded using the same number of bits. Since the blocks are the

same size, block locations in the compressed ile are computed with a simple ofset. “urther-

8

9

more, compressed blocks can be decompressed independently since the blocks do not have

any dependencies and can be randomly accessed. These two qualities, known compressed

block locations and independent decompression through random access, enables hardware

implementation of eicient vector quantization decompression. The drawback, however, is

that the ixed block size will cause overcompression in some blocks and undercompression

in other blocks. Section 2.1.2 covers relevant “‘R algorithms.

A diferent approach to compression is to model the information entropy in the uncom-

pressed data using a statistical model. The probability model is used to determine how to

encode bit patterns: frequently occurring bit patterns are encoded in few bits, while infrequent

patterns are encoded in more bits. ‘y transforming the data to increase entropy, encoding

eiciency is improved and compression is achieved. These approaches are inherently V‘R

since blocks are encoded with diferent numbers of bits.

“igure 2.1 shows howV‘R algorithms are a pipeline composed of three steps: transform,

quantize, and encode. The transform step improves the probability characteristics of the data

and is usually includes a color space transform. Improving the probability characteristics,

often in the form of a diference from a prediction, enables more eicient encoding. The

two most common transformations are the discrete cosine transform and discrete wavelet

transform. The quantize step is non-reversible and only happens for lossy compression. The

encode step then encodes the quantized values to create the compressed image. Encoding is

performed using a lossless entropy encoding algorithm such as Hufman coding (Hufman

1952), arithmetic coding (Witten, Neal, and ’leary 1987; Howard and Vitter 1994), range

coding (Martin 1979), or asymmetric numeral system coding (Duda 2014).

JPE” (Wallace 1991) uses the discrete cosine transform where the low frequency

coeicients of the transform contain most of the image detail while the high frequency coef-

icients should be zero or close to zero. Embedded Zerotree Wavelets (Shapiro 1993) and

JPE”-2000 (Skodras, ’hristopoulos, and Ebrahimi 2001) use the discrete wavelet transform

where the highest level of the transform contains most of the image detail while the lower

10

Original
Image

Transform Quantize Encode

’ompressed
Image

DecodeInverse
Quantize

Inverse
Transform

Decompressed
Image

“igure 2.1: The variable bit rate compression and decompression pipeline.

level detail coeicients should be zero or close to zero. In both cases, the probability dif-

ferential greatly increases encoding eiciency, as values at or near zero are encoded in very

few bits. “or encoding, JPE” uses Hufman coding while JPE”-2000 uses range coding.

Embedded Zerotree Wavelets and JPE”-2000, however, are unsuited to hardware

decompression for several reasons. “irst, since the length of each compressed block varies,

the decompression algorithm cannot easily compute the locations of compressed blocks.

More importantly, the algorithms order the blocks in the compressed iles in such a way to

create many global dependencies between the blocks which hinders parallel decompression.

Section 2.1.3 discusses the existing research in hardware-based V‘R compression.

2.1.1 Texture Compression

While texture compression is simply image compression applied to textures, there is a

unique requirement imposed on decompression. To improve sampling quality, textures

are pre-iltered into a multiscale pyramid representation called mip-maps (Williams 1983).

“igure 2.2(a) shows how this pre-iltering occurs and “igure 2.2(b) shows the pyramid

representation. ‘y pre-iltering textures, rendering algorithms avoid expensive iltering at

runtime. This eiciency beneit, however, depends on the algorithms being able to use the

11

Top Level Level 1 ‘ase
(a) Mip-map ’reation

Top Level

Level 1
‘ase
(b) Mip-map Pyramid

“igure 2.2: The creation and hierarchical representation of mip-mapped textures.

correct scale, or mip-level, of the multiscale representation. Texture compression, therefore,

should enable direct access to the diferent mip-levels.

2.1.2 Fixed Bit Rate Hardware Formats

‘eers, Agrawala, and ’haddha (1996) introduce an early texture compression format using

vector quantization that explicitly supports mip-mapped textures. “or non-mip-mapped

textures, they create a codebook for the texture using 2×2 blocks of pixels. Each compressed

block then stores the index of the codeword in an index map. “or mip-mapped textures,

they exploit the fact that each mip-level is a iltered version of the level above it and encode

three levels together with a single codebook and index map. “or each group of levels, three

codebooks are created, the irst from the largest resolution level using 4×4 blocks, the second

and third by averaging the prior level codebook. The codewords are concatenated to form a

single codebook and all three levels then use one index map.

Iorcha, Nayak, and Hong (1999) extend the ‘lock Truncation ’oding technique (Delp

and Mitchell 1979) with several formats that have become the de facto standard in ”PU

texture compression known as S3 Texture ’ompression. These formats were included in the

DirectX and Open”L rendering APIs and are now called DXT or ‘’. The currently used

variants include ‘’1 (DXT1), ‘’3 (DXT5) and ‘’7 (Open”L AR‘ 2009). Van Waveren

and ’astaño (2007) improve the quality of ‘’3 compression while maintaining the same

compression ratio by using the Y′’o�g color space instead of R”‘.

12

All of the ‘’/DXT formats compress 4×4 blocks of pixels by quantizing the color at

each pixel to a set of per-block representative colors. ‘’1 can encode fully opaque or fully

transparent pixels while ‘’3 can encode a transparency gradient. “or a 24-bit-per-pixel

image, ‘’1 compresses a 384-bit block of pixels to 64 bits for a compression ratio of 6:1.

“or a 32-bit-per-pixel image, ‘’3 compresses a 512-bit block of pixels to 128 bits for a

compression ratio of 4:1. When the colors in a block are smoothly varying, the ‘’1 and ‘’3

single color gradient is adequate, but when a block contains multiple sharp transitions of

colors, compressed quality sufers. ‘’7 can encode multiple color gradients by subdividing

the blocks. ‘’7 still encodes a block in 128 bits for a compression ratio of 4:1.

“enney (2003) introduces a compression algorithm, PVR, with improved power ef-

iciency for low-power hardware. PVR uses two low-resolution source images combined

with a full-resolution modulation image and supports two compression ratios: 8:1 and 16:1.

Ström and Akenine-Möller (2004) introduce the PA’KMAN algorithm, also designed for

low-power hardware. PA’KMAN encodes a single chrominance value and a luminance

modulation table to store a 2×4 block in 32 bits for a compression ratio of 8:1. Ström and

Akenine-Möller (2005) extend PA’KMAN with ET’ by encoding two 2×4 blocks together.

‘y encoding two blocks in 64 bits, the compression ratio remains 8:1 but the quality is

improved. Ström and Pettersson (2007) then use invalid bit combinations in ET’2 for further

modes that increase quality within the 8:1 compression ratio.

Recently, Khronos ”roup (2013) introduced AST’, which is modeled after the existing

block compression algorithms but supports varying the number of texels per block or block

footprint in a texture to enable granular changes to the bit rate. The compressed block size

remains ixed to still allow direct access. AST’ also supports varying the endpoint encoding

method per block as well as partitioning the block into multiple endpoints.

13

2.1.3 Variable Bit Rate Hardware Formats

Inada and Mc’ool (2006) present a V‘R lossless format which uses an indexing scheme

combined with a ‘-tree index for random-access and eicient memory usage. They also

include a caching architecture for eicient hardware implementation. While the results are

good for lossless compression of textures, no hardware has implemented this technique.

We introduce (Olano et al. 2011) a V‘R format that is implemented as a ”PU program

and therefore does not require explicit hardware support. After a color space transform, the

compression algorithm performs a mip-diferencing transform, where adjacent mip levels

are subtracted to form a set of mip-level diferences. In most cases, these mip diferences

are very small or close to zero and are eiciently encoded. A beneit of this transform is that

artists can tweak individual mip levels but good probability characteristics are maintained.

After transforming, quantization is performed by dropping bits or entire mip levels. The

quantized values are then encoded with a range coder. To enable parallel decompression

on the ”PU, an index map is encoded where each block of the map stores the compressed

block location. On decompression, blocks use the index map to determine where to start

decoding the compressed stream. We also introduce a fast ”PU range decoder.

2.2 Image Quality Assessment

IQA metrics can be classiied in two ways: by the type of input or type of model. The

input is either luminance or color while the model is either bottom-up or top-down. Input

classiication is distinct, that is, metrics work on either luminance or color. Model classiica-

tion, however, is more of a convenience and most IQA metrics are a mix of both models.

‘ottom-up metrics attempt to accurately model the human visual system while top-down

metrics attempt to model the human visual system input-output characteristics. The human

visual system is a complex system and only partially understood so bottom-up models must

make simplifying assumptions to create a computationally feasible model. Top-downmodels,

however, treat the human visual system as a black box and try to learn a mapping from input

14

image to output assessment (Wang and ‘ovik 2006).

Section 2.2.1 discusses current top-performing luminance metrics. The metrics have

been extensively evaluated using several evaluation databases (Le ’allet and Autrusseau

2005; Sheikh, Sabir, and ‘ovik 2006; ’handler and Jemami 2007; Ponomarenko et al. 2009;

Larson and ’handler 2010; Horita, Shibata, and Kawayoke 2011). The databases contain

color and luminance images evaluated by humans in controlled studies. Metrics are appraised

based on how closely they match the human evaluation on the same pairs of images. On

the color images, the metrics perform very well, reinforcing the fact that humans are very

perceptive to luminance changes and not as perceptive to chrominance changes (“airchild

2005).

Section 2.2.2 describes the current research in objective color IQA metrics. The color

metrics all make use of the ’IELA‘ color space and rigorous perceptual-based color dif-

ferencing. The existing color metrics attempt to combine ’IELA‘ color diferencing with

bottom-up models of the human visual system. The results, however, do not correlate well

with the evaluation databases (Ajagamelle, Pedersen, and Simone 2010; Čadı́k et al. 2012)

and color image quality assessment remains a diicult problem to solve.

In the following discussion, I use standard image processing practices and notation and

treat two-dimensional images as one-dimensional signals denoted by x and y.

2.2.1 Luminance Metrics

’handler and Jemami (2007) introduce the Visual Signal-to-Noise Ratio (VSNR) a bottom-

up algorithm in two stages. The irst stage determines if the distorted image has visible

distortions using visual contrast sensitivity. If the distortions are below a detectable threshold,

the images are equivalent and the algorithm terminates. If the distortions are visible, the

second stage computes the VSNR based on how the contrast distortions disrupt the image.

Wang et al. (2004) hypothesize that local luminance and local contrast changes do not

strongly afect perceived image quality and thus deine structure as the absence of luminance

15

and contrast in an image. The Structural Similarity Index Metric (SSIM) is a top-down

metric that evaluates the diferences in structure between a reference and distorted image.

Their results show that structure is an excellent way to determine image quality for luminance

natural images. They also introduce a multiscale variant, Multiscale Structural Similarity

Index Metric (MS-SSIM), with improved performance over SSIM by evaluating structure

diferences at many scales (Wang, Simoncelli, and ‘ovik 2003).

Structural Similarity Index Metric (SSIM)

SSIM (Wang et al. 2004) is a top-down approach to image quality based on structure. ‘y

estimating luminance and contrast in a single image and then removing both, structure is

then the information left in the image.

“or a single image, luminance is estimated as mean intensity,

� = 1 ∑=1
, (2.1)

contrast is estimated as the standard deviation,

� = √√√
√

1− 1 ∑=1
(− �)2, (2.2)

and structure is then the normalized image signal given by

� = x − �� . (2.3)

“or two images, x and y, SSIM is a weighted product of three comparison functions

over local image patches given by

SSIM(x, y) = [�(x, y)] ⋅ [(x, y)] ⋅ [(x, y)] , (2.4)

where , , and are the weights for the comparison functions.

Luminance comparison (�(x, y)) is the product of the mean intensities of each image,

�(x, y) = 2� � + �1�2 + �2 + �1 , (2.5)

16

contrast comparison ((x, y)) is the variance of the images,

(x, y) = 2� � + �2�2 + �2 + �2 , (2.6)

and structure comparison (x, y) is the normalized cross-correlation (Rouse and Hemami

2008) of the images,

(x, y) = � + �3� � + �3 , (2.7)

where � is the cross-correlation of x and y given by

� = 1− 1 ∑=1
(− �)(− �). (2.8)

In these equations, �1, �2, and �3 are constants used for numerical stability.

Inserting the full comparison functions into Equation 2.4 gives the general SSIM

equation between two images:

SSIM(x, y) = (2� � + �1�2 + �2 + �1) ⋅ (2� � + �2�2 + �2 + �2) ⋅ (� + �3� � + �3) . (2.9)

Wang et al. (2004) set the comparison function weights = = = 1 and �3 = �2/2
to create the speciic SSIM formula:

SSIM(x, y) = (2� � + �1)(2� + �2)(�2 + �2 + �1)(�2 + �2 + �2) . (2.10)

This equation satisies three conditions:

1. symmetry: �(x, y) = �(y, x),
2. boundedness: �(x, y) 1, and
3. unique maximum: �(x, y) = 1 if and only if x = y.

To remove any large-scale luminance and contrast changes, the SSIM index is computed

over small image patches with the result being an SSIM map of the structural diferences

between the two images. These diferences are pooled across image patches usingMinkowski

pooling (Wang and Shang 2006) to produce a single value, MSSIM:

MSSIM(X, Y) = 1 ∑=1
SSIM(x , y), (2.11)

17

where X and Y are the images, is the number of image patches, and x and y are each

image patch.

As Wang et al. (2004) demonstrate, this very simple formulation works extremely well

in predicting image quality with one drawback: geometric transformations. SSIM does not

handle rotation or translation distortions very well.

SSIM and MS-SSIM operate in two stages by irst generating a map of local distortion

values and then pooling those values into a single distortion value using Minkowski pooling.

Wang and Li (2011) introduce a more rigorous pooling method for Information ’ontent

Weighted Structural Similarity Index Metric (IW-SSIM) that models local information

content using ”aussian Scale Mixture models and then weights the pooling by the amount

of information content.

Sheikh and ‘ovik (2006) introduce the Visual Information “idelity (VI“) metric. Using

natural image statistical modeling (Simoncelli 2005), they hypothesize that human visual

processing and image distortion are communication channels and model information content

for a local distortion map. ‘y accurately modeling the image source, the image distortion,

and human visual processing, mutual information between the reference and distorted images

after human visual processing can indicate perceived quality.

2.2.2 Color Metrics

’olorimetry is the science concerned with assigning objective numbers to colors. A color

space deines a coordinate space on which colors are described by the coordinates. One

such color space is ’IELA‘.

Color Diferencing

’IELA‘ is designed to be a perceptually uniform color space. This means that the Euclidean

distance between two colors in the ’IELA‘ coordinate space corresponds to the human

perceived diference between those colors. ’IELA‘ uses three components to describe

18

∗

∗

∗

�∗

ℎ

“igure 2.3: The ∗ ∗ ∗ and ∗�∗ ℎ ’IELA‘ coordinate systems.

a color: luminance, red-green chrominance, and yellow-blue chrominance. A color is

then deined as a weighted combination of these components. “igure 2.3 shows how the

components can be arranged in a ’artesian coordinate system (∗ ∗ ∗) and or a cylindrical

coordinate system (∗�∗ ℎ), where ∗ is luminance, or perceived lightness, ∗ is red-green

chrominance, ∗ is blue-yellow chrominance, �∗ is a linear combination of ∗ and ∗, and
ℎ is hue angle. Luminance has the range [0, 100], while both chrominance values, and

hence �∗ , are unbounded. Hue angle is in degrees and has the range [0, 360].
As ’IELA‘ is perceptually uniform, Euclidean distances can be used for color dif-

ference comparison. The International ’ommission on Illumination has deined Δ�∗94
to compute color diferences that reasonably match human perceived diferences. More

recent, but more complex, formulations exist but Δ�∗94 is acceptable for just color dif-

ferences (“airchild 2005). Δ�∗94 is deined at a single pixel and used to compute a color

diference map at every pixel between two images.

“igure 2.4 shows an original and distorted image along with the computed (with values

scaled for visualization) Δ�∗94 color diference map between the two images. Dark areas

indicate little color diference (black pixels are exact color match) and increasing brightness

indicates increasing color distance. A lowpass ilter smooths an image obscuring the high-

frequency detail. Thus, the color diference map has very bright areas corresponding to the

19

(a) Original (b) Distorted (c) Δ�∗94 Map

“igure 2.4: Original image, distorted image (32×32 ”aussian lowpass � = 10.0), and
computed (with values scaled for visualization) Δ�∗94 color diference map.

high frequency details (edges) of the reference image.

“or two images, x and y, Δ�∗94 is given by

Δ�∗94 = √(Δ ∗)2 + (Δ�∗
1 + 0.045 ⋅ �∗ (x))

2 + (Δ�∗
1 + 0.015 ⋅ �∗ (x))

2, (2.12)

where

Δ ∗ = ∗(x) − ∗(y), (2.13)

Δ�∗ = �∗ (x) − �∗ (y), (2.14)

Δ�∗ = √Δ ∗2 + Δ ∗2 − Δ�∗ 2, (2.15)

Δ ∗ = ∗(x) − ∗(y), and (2.16)

Δ ∗ = ∗(x) − ∗(y). (2.17)

With this formula a distance of zero indicates two perceptually-identical colors and

increasing distances indicate increasing perceptual diference.

Zhang and Wandell (1998) modify the ’IELA‘ color diferencing formula to include

a simple spatial contrast sensitivity function for the S-’IELA‘ color metric. Johnson and

“airchild (2001) then modify S-’IELA‘ with more accurate contrast sensitivity functions.

The hue angle algorithm (Hong and Luo 2002) extends ’IELA‘ by varying the weighting

20

for each pixel based on the hue angle of the color. Recently, Pedersen and Hardeberg (2009)

add spatial iltering to the hue angle algorithm (Spatial Hue Angle Metric (SHAME) and

SHAME-II). As Ajagamelle, Pedersen, and Simone (2010) show, these metrics do not have

strong correlation to the human studies.

2.2.3 Metric Evaluation

Image quality assessment measures are used to evaluate the quality of compressed or ren-

dered images, guide procedural shader simpliication or texture compression, and in many

applications in computer vision. An assessment algorithm can be used on any image, but

the quality of the assessment algorithm is determined by comparing its results to databases

of distorted images that have been evaluated by people. There are several existing image

distortion databases (Horita, Shibata, and Kawayoke 2011; Larson and ’handler 2010; Le

’allet and Autrusseau 2005; Ponomarenko et al. 2009; Sheikh et al. 2010) which are used

in the signal processing literature to evaluate image processing algorithms. The databases

consist of a set of reference images, a set of distorted images, and a set of human subjective

evaluations. The distorted images are generated by applying an image distortion to each

reference image. Each database has several diferent types of distortions, some of which

overlap between databases. The subjective evaluations are a score given to each distorted

image that indicates how it compares to the associated reference image. The scores are

generated by asking humans to evaluate each reference and distorted image pair.

The existing databases contain either luminance-only distortions or chrominance distor-

tions that are also coupled to luminance. This is problematic in cases where the databases are

used to evaluate or possibly train image comparison algorithms. Those algorithms will not

account for chromatic image distortions that are standalone or uncoupled from luminance

distortions. This will be particularly problematic if those image comparison algorithms are

used for image compression optimization since those metrics will be blind to chromatic

distortions. Realizing this problem, Ponomarenko et al. (2015) present an expanded database

21

that includes several new types of distortions, speciically related to color, including color

quantization and chromatic aberration.

2.3 Optimization and Searching

There is signiicant work on energy minimization and searching algorithms in the artiicial

intelligence and machine learning ields. I briely summarize a speciic type of search

algorithm below and refer the reader to Russell and Norvig (2003) for further details.

Modern texture compression algorithms have several parameters that are used to ine-

tune the algorithm. These parameters are a mix of discrete and continuous variables and are

almost always inite. The set of possible values for each parameter form a multi-dimensional

state space, where each state is a speciic set of values, one for each parameter.

“ollowing Russell and Norvig (2003), I deine a problem where the initial state is

a randomly chosen set of values, one for each parameter, the only possible action is to

compress the textures with the given set of values, the path cost is a function of bitrate and

image quality, and the goal test is a state with minimal bitrate and maximal quality. ”iven

this problem description, there are many possible ways to solve it.

The largest factor in choosing a method to solve the problem is the size of the state space.

The AST’ algorithm (Khronos ”roup 2013) has seven parameters, ive being discrete, two

being continuous, and all of ixed range. They combine to form a space of more than 1012
possible states. “ully enumerating this state space is impractical and so we must turn to

local search algorithms. ”radient descent optimization is also problematic, since it would

be diicult to describe the compressor using a diferential equation.

Hill-climbing algorithms are a class of local search algorithms that are greedy in that

they only look at immediate neighbors and pick the neighbor with the best improvement.

Stochastic hill-climbing randomly picks from the better neighbors while irst-choice hill-

climbing randomly generates neighbors to evaluate until a better neighbor is found.

22

2.4 Rendering Optimization

There has been little research in optimizing parts of the rendering process. The most directly

relevant work is the research in automatic shader simpliication. In their seminal work,

Olano, Kuehne, and Simmons (2003) automatically create multiple shader levels of detail by

reducing the number of texture accesses in shader programs. Pellacini (2005) uses a set of

simpliication rules on abstract syntax trees generated from shaders. The search for a more

simple syntax tree was guided by the L2 distance between the original shader and simpliied

shader. Sitthi-Amorn et al. (2011) employ genetic programming to more thoroughly search

the state space of simpliied shaders and also use L2 distance for evaluation. More recent

work by He et al. (2015) attempts to simplify across shader stages and not just within a single

shader. Additionally, there has been some work in automating texture compression in the

asset build pipeline. Mitchell (2006, 2015) allowed producers to force textures to a speciic

size for inal game builds based on observed usage.

’hapter 3

’HROMINAN’E DISTORTION DATA‘ASE

To aid research and evaluation of color IQA metrics, I have developed a chrominance

distortion image database. This database consists of 24 reference images and 500 distorted

images spread across ive diferent chromatic distortions. The chromatic distortions were

chosen to model common techniques in image compression as well as other chromatic efects,

such as chromatic aberration and chromatic noise. I performed a user study to generate

subjective evaluations of each distorted image as an average DMOS (see Section 3.1).

The database is available at http://bitbucket.org/wgriffin/cdid. I provide the

reference images, distorted images, mean DMOS scores and the source code used to create

the distorted images.

A set of 24 reference images were taken from the Kodak Lossless True ’olor Image

Suite (“ranzen 2010) and then cropped to 512x512. The images are all color R”‘ images.

“ive diferent types of chrominance-only distortions were applied to the set of reference

images. The distortions were chosen to model common techniques in image compression as

well as other chromatic efects, such as chromatic aberration and chromatic noise. The types

are listed below and are referred to by the acronyms in the rest of the document.

• QAB: Quantizing the A and ‘ channels of the ’IELA‘ image.

• CD: ”eometric rescaling the ” and ‘ channels of the R”‘ image.

• DSAB: Down-sampling of the A and ‘ channels of the ’IELA‘ image.

• HR: Random rotation of the H channel of the HSV image.

• GBAB: ”aussian blurring of the A and ‘ channels of the ’IELA‘ image.

23

http://bitbucket.org/wgriffin/cdid

24

(a) Reference (b) Distorted

“igure 3.1: The QAB chrominance distortion uses quantization to down-sample the chroma
components. The distortion results in blocks of a single chroma value replacing smoothly
varying areas of color.

“or each type of distortion, a parameter was varied to create multiple distorted images.

Additionally, that parameter was ixed for 10% of the distorted images for each distortion

type such that the distorted image is just the reference image, i.e., with no distortion

applied, and I call those check images. I have a total of 500 images across the ive distortion

types.

The QAB distortion models the down-sampling technique of DSAB but using quanti-

zation instead of down-sampling blocks. In “igure 3.1, the quantization is seen as blocks of

a single chroma value replacing smoothly varying areas of color. I generated 100 distorted

images by quantizing the A and ‘ channels of the ’IELA‘ image. A nbins value is selected

from the set [4, 6, 8, 10]. The quantization uses a number of bins equal to the nbins value.

There are ten check images.

The CD distortion simulates chromatic aberration which is a distortion efect introduced

by optical lenses. In “igure 3.2, the chromatic aberration is seen as a general blurring of

edges along with green and magenta fringing along edges. I generated 50 distorted images

25

(a) Reference (b) Distorted

“igure 3.2: The CD chrominance distortion simulating chromatic aberration. The distortion
results in general blurring of edges and green and magenta fringing along edges.

by geometrically scaling and resampling the pixel positions of the ” and ‘ channels of the

R”‘ image. “or each distorted image, a scale factor was randomly selected from the set

[2, 3, 4]. The ” channel was shifted by the scale factor from the image center, and the ‘

channel was shifted by twice the scale factor. There are ive check images.

The DSAB distortion models the common approach in image compression of down-

sampling the chroma components before compressing, which exploits the fact that the human

visual system is more perceptive to errors in luminance than errors in chrominance (Hao and

Shi 2000). In “igure 3.3, the down-sampling is seen as blocks of chroma. I generated 100

distorted images by down-sampling the A and ‘ channels of the ’IELA‘ image. “or each

distorted image, a blocksize was randomly selected from the set [2, 4, 8, 16] and corresponds

to the size in pixels of each block. The A and ‘ channels were both down-sampled by the

blocksize. There are ten check images.

The GBAB distortion roughly approximates down-sampling of the chroma channels

modeled by DSAB by using a ”aussian blur instead of down-sampling blocks. In “igure 3.4,

the blurring is seen as smooth color bleeding across edges. I generated 125 distorted images

26

(a) Reference (b) Distorted

“igure 3.3: The DSAB chrominance distortion modeling chroma component down-sampling.
The distortion results in blocks of chroma based on the down-sampled block size.

(a) Reference (b) Distorted

“igure 3.4: The GBAB chrominance distortion roughly approximating chroma component
down-sampling. The distortion results in smooth color bleeding across edges.

27

(a) Reference (b) Distorted

“igure 3.5: The HR chrominance distortion simulating random color noise. The distortion
results in large blocks of color and color speckles.

by applying a ”aussian blur to the A and ‘ channels of the ’IELA‘ image. A sigma value

is selected from a normal distribution (� = 7.5, � = 2.5). The ”aussian blur kernel has

� = 0 and � = sigma. There are 13 check images.

The HR distortion simulates random color noise. In “igure 3.5, the noise can be seen as

both large blocks of color and color speckles. I generated 125 distorted images by randomly

rotating the angle of the H channel of the HSV image. A kappa value is selected from a

normal distribution (� = 100, � = 64). The amount of angular rotation applied is selected

from the von Mises distribution with the given kappa. There are 13 check images.

3.1 Evaluation

To generate the subjective evaluations, I used Amazon Mechanical Turk (AMT). AMT is a

large-scale crowd-sourced task completion system. Requesters create Human Intelligence

Tasks (HITs) which are small tasks that typically cannot be automated. Users, also called

Turkers , complete tasks for micro-payments. Amazon manages the infrastructure for

28

“igure 3.6: Sample HIT for evaluation on Mechanical Turk.

Requesters to submit HITs and Turkers to complete HITs and receive payment. Two key

reasons AMT is useful for conducting research studies are 1) the large number of Turkers

available and 2) AMT maintains anonymity of the Turkers to the Requesters. The user study

was conducted under UM‘’ IR‘ Protocol Y13MO37200.

That Turkers remain anonymous, however, is also a drawback. As Kittur, ’hi, and Suh

(2008) and Downs et al. (2010) point out, there is an incentive to maximize proit while

minimizing efort. This incentive manifests as Turkers who attempt to complete HITs as

quickly as possible without regard for correctness of the work. These Turkers attempting to

game the system show up as noise and outliers in the results of research studies and reduce

the usefulness of AMT.

I evaluated the distorted images using the Double-Stimulus ’ontinuous Quality Scale

(DS’QS) (ITU-R 2012; Video Quality Experts ”roup 2003) method on AMT. The DS’QS

29

method presents the distorted image and reference image side-by-side and asks the participant

to evaluate both images independently using a sliding scale from 0 100 with ive equally

spaced labels: ‘ad, Poor, “air, ”ood, and Excellent. “igure 3.6 shows a sample HIT. The

slider is continuous and the labels are only for reference. The participant is not told which

image is the reference image and the order of the images is randomized within a single test,

i.e. the reference image is randomly chosen to be either on the left or right. The slider control

was initialized to a value of -1, which is impossible to select on the slider and used to verify

responses.

To remain within acceptable time limits, the 500 images were randomly divided into

batches of 50 images, consisting of ten images from each distortion type. Each DS’QS

image evaluation task was a single HIT and thus each batch had 50 HITs (1 HIT per image in

each batch). ‘oth HR and GBAB have 125 distorted images. A total of 13 batches (where

each batch has 50 images) were necessary to ensure all 125 images were evaluated. With 13

batches, there was some overlap in the set of images within a batch. I used this overlap to

verify responses.

I used three methods for verifying responses: 1) any response where one rated image

had a value of -1 was excluded, 2) any participants with more than 6% of their responses

having a value of -1 was excluded, and 3) any participant who rated the reference image of

repeated image pairs within a batch diferently by more than 20%. “or the irst measure, 16

individual responses were excluded where the either rated image had a score of -1. “or the

second measure, one participant was excluded where that participant had rated more than

three images with a score of -1. “or the inal measure, six participants were excluded. In

all, I had a total of 50 participants generate 10,484 subjective evaluations across the 500

distorted images.

The DS’QS method provides a DMOS for each participant on each HIT by subtracting

the distorted image rating from the reference image rating. The Video Quality Experts

”roup (VQE”) recommends normalizing the DMOS values per subject to reduce variability

30

within a single set of ratings by a subject. “ollowing this procedure, a normalized DMOS

value of zero indicates the subject rated the reference and distorted images identical, while

increasingly positive DMOS values indicate the subject rated the reference image higher in

quality than the distorted image and increasingly negative DMOS values indicate the subject

rated the distorted image higher in quality than the reference image.

3.2 Analysis

As mentioned, lower DMOS scores indicate the subjects rated the reference image with

better quality. As such, when the expected distorted image quality is lower (i.e. the distortion

is more apparent and degrading) I expect the DMOS scores to also decrease, showing that

the subjects ind the reference images have better quality. “igure 3.7 plots the mean DMOS

scores broken out by each distortion type. These plots clearly show the trend that as the

expected distorted image quality decreased, the mean DMOS score also decreased.

“or the QAB distortion, “igure 3.7(a) plots the mean DMOS for each distorted image

with the y axis being the number of bins used for quantization. A lower number of bins

should result in worse image quality while a higher number of bins should results in better

quality. The zero value indicates no distortion was applied (the distorted and reference

images were identical). As expected, when no quantization is performed, the mean DMOS

is close to zero with little variance. This shows that the subjects rated the distorted and

reference images close to equal in quality. Next, starting with four quantization bins (which

I expect to have the worst quality) and increasing the sixteen bins (which I expect to have the

best quality), the mean DMOS scores start high and decrease towards zero. This conirms

my expectations that the subjects found using few quantization bins produced images with

bad quality while increasing the number of bins progressively improved the distorted image

quality.

“or the rest of the cases, CD, DSAB, GBAB, and HR, the y-axis is reversed: decreasing

distortion parameters should results in worse image quality. The zero value still has the same

31

(a) QAB (b) CD (c) DSAB

(d) GBAB (e) HR

“igure 3.7: Mean DMOS by Distortion Parameter. See Section 3.2 for detailed discussion.

meaning no distortion was applied.

“or the CD distortion, “igure 3.7(b) plots the mean DMOS for each distorted image

with the y axis being the amount of shift applied to each image. As mentioned, a lower

shift value should result in better image quality while a higher shift value should results in

worse quality. Again, the zero value indicates identical reference and distorted images. As

expected, when the shift value is zero, the mean DMOS is close to zero and the variance is

small showing the subjects rated the reference and distorted images close to equal in quality.

As the shift values increase, which should result in worse distorted image quality, the mean

DMOS increases indicating the subjects did indeed rate the distorted image with worse

quality.

32

“or the DSAB distortion, “igure 3.7(c) plots the mean DMOS with the y axis being the

down-sampling block size. A lower blocksize results in smaller sized blocks (i.e. there are

fewer pixels per block and hence more total blocks in the distorted image) and should result

in better image quality. “or this case as well, when the blocksize is zero the mean DMOS is

again close to zero, and as the blocksize increases the mean DMOS increases, showing the

subjects consider the higher blocksizes to have worse image quality.

“or the GBAB distortion, “igure 3.7(d) plots the mean DMOS with the y axis being the

sigma parameter of the ”aussian kernel (with � = 0). As before, a lower sigma should result

in better image quality with increasing sigma values worsening the image quality. While

these results aren t as clear in this case, there is still a general trend of higher distortion

having higher DMOS scores which corresponds with my expectations that the subjects ind

increasing blurriness reduces the quality of the distorted image.

“or the HR distortion, “igure 3.7(e) plots the mean DMOS against the kappa parameter.

A lower kappa value results in less angular rotation in the hue angle and thus better image

quality. “or these results, however, there is no clear trend in the mean DMOS scores. A

likely explanation is that the human visual system perceives similar distortion amounts at

diferent hues diferently. Another possible explanation is that the speckles (“igure 3.5) do

not introduce enough perceptual distortion to afect any one image.

’hapter 4

TEXTURE ’OMPRESSION EVALUATION

In evaluating texture compression, the most common approach is to use some combination of

the MSE, PSNR, or visual image inspection on the individual textures. While comparing or

inspecting individual textures is straightforward to implement, this method does not properly

account for the two ways in which textures are used.

Textures are not single images but are instead used in two speciic ways. “irst, they are

mapped onto geometric objects and then those texture-mapped objects are rendered from

some viewpoint. Second, multiple textures are frequently used together, such as a difuse

and bump map, or a difuse, gloss, and bump map and these sets of textures are used to

evaluate the rendering equation.

In both cases, textures are used to render a inal image from a speciic viewpoint. In a

rendered image, there are likely masking efects from geometric distortion or overlapping

textures that afect that quality of the image (“erwerda et al. 1997). I deine geometric

masking to be the efects from texture mapping, that is wrapping a texture onto a model.

”eometric masking efects include parts of a texture not visible from a viewpoint (e.g. back

of a model) or undersampling the texture due to model pose (e.g. stretching or creases). I

deine texture set masking to be the efects from multiple textures. Texture set masking

efects include difuse texture artifacts masked by high frequency bump maps. ‘oth of these

types of masking efects cannot be accounted for when evaluating individual textures, they

only appear when rendering a inal image from a viewpoint.

To account for these masking efects, I introduce a texture compression evaluation

methodology using inal rendered images. However, rendering a scene from a single view-

point is efectively the same as evaluating individual textures, since the masking efects

33

34

will vary between viewpoints. Since the set of possible viewpoints in a scene is ininite but

discrete, my method samples this viewpoint space and evaluates the inal rendered images at

each sampled viewpoint.

“or every sampled viewpoint, I render the scene using variations of compressed textures

along with a ground truth image using uncompressed textures. Each compressed variation

is compared to the uncompressed ground truth by computing two perceptually rigorous

objective image quality assessment metrics at each viewpoint.

The following results show:

• ”eometric and texture set masking occurs and cannot be detected by evaluating

individual textures.

• The relative contribution between geometric and texture set masking varies by type of

texture.

• Perceptual sensitivity to masking varies with the type of texture, such as difuse, gloss

or bump maps.

• ’urrent ”PU compression algorithms are too conservative and bit rates can be reduced

while maintaining inal rendered image quality.

4.1 Approach

In order to perform the evaluations, I need to render the scene from a set of viewpoints. I

choose to sample the ininite, but discrete, space of viewpoints and then render a inal image

at each viewpoint using variations of compressed textures. After rendering, I then compare

each inal rendered image to a render at the same viewpoint with uncompressed textures.

4.1.1 Viewpoint Sampling

My evaluation method cannot use just a single viewpoint, as that would not account for

the possible diferences in masking efects across viewpoints. Since the viewpoint space

35

is ininite, I must sample it to make my approach computationally tractable. I sample the

viewpoint space uniformly. Sampling techniques such as importance sampling based on

expected viewer locations could improve the evaluation, but I leave these for future work.

Viewpoint sampling has been used in other areas of computer graphics, such as image-based

mesh simpliication (Lindstrom and Turk 2000), but not, to my knowledge, for texture

compression.

“or the single-object models, “ire Hydrant, Taurus, and Urban ”uy, I restrict the set

of viewpoints to a bounding sphere. I use the quasi-random Sobol sequence generator (Joe

and Kuo 2003) to sample this sphere of viewpoints. To ensure quality viewpoint samples, I

constrain the sphere to a multiple of the object s bounding sphere. I also reject any viewpoint

samples closer than a multiple of the bounding sphere radius, to prevent the viewpoint

samples from being inside the model. The multipliers were chosen such that for each model,

the inal rendered images ranged from having 0.8 % to 91 % pixels illed. “igure 4.2 shows

the closest, median, and furthest viewpoint.

The set of possible viewpoints is frequently restricted to some subset of space in the

scene. “or example, in many games, the viewpoints are restricted to a character s point

of view or to a path of camera movements that follow a character. With an instrumented

rendering engine, a trace of viewpoints could be captured during development and testing of

a game. These traces would become the space of viewpoints to sample. To demonstrate this,

a set of key viewpoints for the Japanese ’astle model were captured while navigating around

the model. The key viewpoints were interpolated to form a set of evaluation viewpoints.

4.1.2 Rendered Image Comparisons

At each viewpoint, I render a ground truth image using uncompressed textures. I then

render the same viewpoint using variations of compressed textures. After all the images are

rendered at a viewpoint, I compare each compressed variation inal rendered image to the

uncompressed ground truth image. I extend the method introduced by ‘eers, Agrawala, and

36

’haddha (1996) with perceptually rigorous objective image quality assessment metrics.

I evaluate three metrics: the Root Mean Square (RMS) ’olor Error as a baseline

reference, the ’IELA‘ Δ�∗94 color diferencing metric to evaluate chroma error, and the

Structural Similarity Index Metric (SSIM) to evaluate structural error. Since SSIM captures

error in the structure of an image, it is well suited to capturing compression artifacts in the

bump and gloss maps.

RMS ’olor Error (Equation 4.1) has no perceptual foundation, but is widely used and

I include it for reference. Note that we are still measuring the inluence of geometric and

texture set masking on inal rendered image quality and not individual texture error.

RMS’olor = √√√
√

1 ∑1
(Δ 2 + Δ�2 + Δ 2) (4.1)

Each metric is averaged across the set of viewpoints to compute a mean metric score

for each compression algorithm. To further isolate just the compression artifacts, I modiied

each metric to compute the error over just the pixels that were rendered. This was done by

using an R”‘A framebufer for the rendering, and then weighting the metric at each pixel

by the alpha value.

SSIM is formulated for luminance-only natural images. While some have applied SSIM

to the color channels of an R”‘ image, SSIM is only a valid perceptual metric when applied

to luminance. “or my evaluation, I transform the R”‘ images into the ’IELA‘ color space

and compute SSIM on the L∗ component. I also compute the ’IELA‘ Δ�∗94 color diference

metric on the entire ’IELA‘ image as my full-color perceptual metric.

“inally, for some results, I report the RMS Angular Error (Equation 4.2) computed on

individual bump textures. This metric is used to evaluate the individual bump textures to

compare against our evaluation method.

RMSAngular = √√√
√

1 ∑1
(0 ⋅ 1)2 (4.2)

where 0 and 1 are the reconstructed unit normals.

37

(a) “ire Hydrant (b) Taurus (c) Urban ”uy

(d) Japanese ’astle

“igure 4.1: The models used for evaluation.

4.2 Results

The following results are from applying my evaluation methodology to a set of models and

compression algorithms. The results show evidence of geometric and texture set masking.

These masking efects cannot be accounted for when evaluating individual textures and are

only present when rendering from a viewpoint. Additionally, the masking efects vary based

on the viewpoint and so evaluating a single viewpoint is not suicient. My approach of

sampling the viewpoint space and comparing inal rendered images accounts for both the

masking efects and the viewpoint variation. ‘y using inal rendered images, the evaluation

can use perceptually rigorous objective image quality assessment metrics which match how

38

(a) ’losest (b) Median (c) “urthest

“igure 4.2: ’overage range of sampled viewpoints.

humans perceive image distortions. “or space, I only present a small set of the data here.

Plots and tables of all of the data are provided in ”riin and Olano (2014 and 2015).

4.2.1 Models

I use four models shown in “igure 4.1: “ire Hydrant, Taurus, Urban ”uy, and Japanese ’astle.

Each model has at least one texture atlas set which consists of a bump map, gloss map, and

difuse map, all using a single parameterization. The “ire Hydrant model (“igure 4.1(a)) uses

one texture atlas set at a resolution of 2048 × 2048. The Taurus model (“igure 4.1(b)) uses

one texture atlas set at a resolution of 4096 × 4096. The Urban ”uy model (“igure 4.1(c))

uses four texture atlas sets, one for the skin and clothes at 2048 × 2048, one for the jacket at

1024 × 1024, and two for the accessories (sunglasses and watch) at 512 × 512. The Japanese

’astle model (“igure 4.1(d)) has 21 texture atlas sets for the various buildings and props, one

set at 2048 × 2048, four at 1024 × 1024 and the rest at lower resolutions (mostly 512 × 512).
I use the ’ook-Torrance shading model with true “resnel assuming unpolarized light.

The mipmaps for each texture were generated with a Kaiser ilter. The bump and gloss maps

were transformed into the second moments of variance for proper linear iltering (Olano and

‘aker 2010), then converted back into gloss for texture storage. The bump maps are stored

in the dual-paraboloid encoding (Heidrich and Seidel 1998) and the gloss maps encode the

39

’ook-Torrance variance, which is reconstructed in the pixel shader using: �2 = 2/(210 +1 +2),
where is the gloss value.

4.2.2 Compression Algorithms

I use three formats for Direct3D ‘lock ’ompression: ‘’5 (8 bits/pixel compression rate) for

the bump maps, ‘’4 (4 bits/pixel compression rate) for the gloss maps and ‘’3 (8 bits/pixel

compression rate) for the difuse maps. The NVIDIA Texture Tools Library (NVIDIA 2013)

was used for compression, with the quality set to normal .

I use three diferent block sizes for Adaptive Scalable Texture ’ompression: 4×4 (8

bits/pixel compression rate), 8×8 (4 bits/pixel compression rate), and 12×12 (0.89 bits/pixel

compression rate) with R”‘A textures for all three maps. The bump maps are compressed

in the R” channels, while the gloss maps remain R”‘A. The ARM Mali AST’ Evaluation

’odec (ARM 2013) was used for compression, with the quality set to thorough .

To explore extreme compression rates, I compressed the textures by dropping from

one to seven bits from each color plane. In addition to compressing all of the textures, I also

chose to compress just a single class of texture, such as difuse or gloss textures, leaving the

other textures uncompressed to determine which class had the most efect on the inal image

quality.

4.2.3 Discussion

I irst explain my notation and then discuss my results and make several conclusions. In

the plots and tables, All refers to compressing all of the textures, while Difuse, Gloss,

and Bump refer to compressing just that respective texture. NVTT/BC refers to Direct3D

‘lock ’ompression using the NVIDIA Texture Tools Library and ASTC refers to Adaptive

Scalable Texture ’ompression using the ARM Mali AST’ Evaluation ’odec. Each ASTC

label includes the block size. “inally, Bits Dropped refers to the textures with 1 7 bits

dropped from each color plane.

40

“or the RMS ’olor Error, ’IELA‘ Δ�∗94 Diference, and RMS Angular Error metrics,

lower is better and 0.0 is a perfect match. “or the SSIM metric, higher is better and 1.0 is a

perfect match. All of the mean results are over the entire set of 2500 sampled viewpoints. In

all histogram plots, the y axis in each plot is the number of viewpoints with a speciic metric

score and the x axis is the metric score, with values to the right indicating better quality.

In the following sections I present three test cases:

1. Wrapped Texture Set: is the full set of textures for each model wrapped onto the

model and rendered with lighting. This is the standard texture mapping use case.

2. Wrapped Single Texture: is just a single texture class (difuse, gloss, or normal)

wrapped onto the model and rendered without lighting. This case attempts to measure

the contribution of texture set masking.

3. Unwrapped Texture Set: is the full set of textures for each model rendered with light-

ing, but unwrapped in texture space. This case attempts to measure the contribution

of geometric masking.

“igure 4.3: “ire Hydrant Wrapped Texture Set metric histograms. Values to the right are
better. The variance by viewpoint implies geometric and texture set masking occurs.

41

“igure 4.4: Urban ”uy Wrapped Texture Set metric histograms. Values to the right are
better. The variance by viewpoint implies geometric and texture set masking occurs.

“igure 4.5: Japanese ’astle Wrapped Texture Set metric histograms. Values to the right
are better. The variance by viewpoint implies geometric and texture set masking occurs.

Comparing inal rendered images is appropriate.

“igures 4.3, 4.4, and 4.5 shows the histograms of the Wrapped Texture Set test case for

the ’IELA‘ Δ�∗94 and SSIM metrics for each model. As the histograms illustrate, the error

metrics do vary with the viewpoint. I can conclude that these diferences are due to geometric

and texture set masking and can only be accounted for by evaluating inal rendered images.

The variation also indicates that a single viewpoint cannot be used for the evaluation and

that the viewpoint space must be sampled. However, the relatively small variance indicated

in the histograms implies that a summary statistic can be used to represent the error metric.

42

(a) (b) (c) (d)

“igure 4.6: Visual example of color banding artifacts being masked by a high frequency
bump map on the Urban ”uy model. The compressed texture (a) shows color banding
compared to uncompressed (b). When rendering with the compressed texture (c), the color
banding artifacts are masked compared to rendering with the uncompressed texture (d).

I choose to use the mean error value over all of the viewpoints. Other possibilities include

some percentile of the distribution, for example, the median.

Geometric and texture set masking efects exist.

“igures 4.6 and 4.7 are visual examples of masking in the difuse texture for the Urban ”uy

model and “ire Hydrant model respectively. In “igure 4.6, notice the color banding caused

by dropping four bits in “igure 4.6(a) is masked in “igure 4.6(c) by the high frequency bump

map. In “igure 4.7, notice the severe block artifacts caused by compression in “igure 4.7(a)

are masked in “igure 4.7(c) by the high frequency bump map.

Table 4.1 lists mean color (Δ�∗94) and structure (SSIM) error for normal only com-

pression next to mean RMS Angular Error (RMSa) over the MIP levels of the largest sized

texture set for the Urban ”uy model. ‘y evaluating just the individual texture RMS Angular

error, Table 4.1 indicates that AST’ 12×12 at 2 bits/pixel has better quality than NVTT/‘’

at 8 bits/pixel. This result is clearly non-intuitive since it does not take into account masking

efects. ‘y evaluating error over the sampled viewpoints, the Δ�∗94 and SSIM metrics

indicate that NVTT/‘’ results in higher rendered image quality than AST’ 12×12.

43

(a) (b) (c) (d)

“igure 4.7: Visual example of compression block artifacts being masked by a high frequency
bump map on the “ire Hydrant model. The compressed texture (a) shows severe block
artifacts compared to uncompressed (b). When rendering with the compressed texture (c),
the block artifacts are masked as compared to rendering with the uncompressed texture (d).

Algorithm Δ�∗94 SSIM RMSa
NVTT/‘’ 0.0093 0.9990 1.7788
AST’ 12×12 0.0305 0.9830 1.2883

Table 4.1: Mean color (Δ�∗94) and structure (SSIM) error for normal compressed textures
and the mean RMS Angular Error (RMSa) over all of the MIP levels of the largest sized
texture set for the Urban ”uy model.

These results clearly indicate masking is occurring. However, since I render inal

images using difuse, gloss, and bump maps, it is unclear whether this masking is caused by

geometric masking or texture set masking.

Relative masking efects vary by texture class.

“igures 4.8, 4.9, and 4.10 plot the AST’ 12×12 metric histograms and statistics for Difuse,

”loss, and Normal only compression for the “ire Hydrant and Taurus models respectively.

Normal RMSAngular histograms are clipped at x=0.05. W. isWrapped and U. is Unwrapped.

These plots attempt to classify the relative contributions between geometric masking and

texture set masking.

Looking at the Difuse Only plots for both models, the W. Single Texture plots show

44

Test Min Max Mean Variance
W. Texture Set 0.0125 0.9991 0.0608 0.00555998
W. Single Texture 0.0210 1.2717 0.0836 0.00952325
U. Texture Set 0.2039 0.3694 0.3164 0.00087361

“igure 4.8: AST’ 12×12 metric histograms and statistics for Difuse only compression on
the “ire Hydrant model. W. is Wrapped and U. is Unwrapped. Values to the right are better.

Test Min Max Mean Variance
W. Texture Set 0.0003 0.0075 0.0013 0.00000059
W. Single Texture 0.0043 0.0218 0.0080 0.00000785
U. Texture Set 0.0011 0.0083 0.0030 0.00000095

“igure 4.9: AST’ 12×12 metric histograms and statistics for ”loss only compression on
the “ire Hydrant model. W. is Wrapped and U. is Unwrapped. Values to the right are better.

45

Test Min Max Mean Variance
W. Texture Set 0.0002 0.0155 0.0007 0.00000071
W. Single Texture 0.0112 0.9360 0.0565 0.00593989
U. Texture Set 0.0031 0.0052 0.0038 0.00000011

“igure 4.10: AST’ 12×12 metric histograms and statistics for Normal only compression
on the “ire Hydrant model. This histogram is clipped on the left. W. is Wrapped and U. is
Unwrapped. Values to the right are better.

similar Δ�∗94 color quality to W. Texture Set, while the U. Texture Set plots show worse

quality. Since quality gets worse when the texture set is unwrapped, geometric masking has

a greater afect on difuse texture compression artifacts.

Looking at the”loss Only plots for bothmodels, the relativemasking efects are reversed.

The W. Single Texture plots show worse RMS ’olor quality, while the U. Texture Set
plots show similar quality to W. Texture Set. Since quality gets worse when a single texture

is used, texture set masking has a greater afect on gloss texture compression artifacts.

“inally, for the Normal Only plots, the results are similar to the ”loss Only plots. The

main diference is that masking efects from normal map compression are signiicantly

less dependent on the viewpoint. This wide variance in the texture set masking efects

is illustrated in “igures 4.11 and 4.12 which plot the sampled viewpoints coloring each

viewpoint by its RMS Angular Error metric score.

46

“igure 4.11: Viewpoints for the “ire Hydrant model colored by RMS Angular Error with
only normal textures compressed using AST’ 12×12.

“igure 4.12: Viewpoints for the Taurus model colored by RMS Angular Error with only
normal textures compressed using AST’ 12×12.

47

“igure 4.13: Wrapped Texture Set mean error for the “ire Hydrant model. The left two
plots are color error against compression rate and the right plot is SSIM. “or RMS ’olor
Error and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or SSIM, higher is better and
1.0 is perfect. The vertical error scales are diferent across all plots.

“igure 4.14: Wrapped Texture Set mean error for the “ire Hydrant model. The left two
plots are color error against compression rate and the right plot is SSIM. “or RMS ’olor
Error and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or SSIM, higher is better and
1.0 is perfect. The vertical error scales are diferent across all plots.

48

“igure 4.15: Wrapped Texture Set mean error for the Taurus model. The left two plots
are color error against compression rate and the right plot is SSIM. “or RMS ’olor Error
and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or SSIM, higher is better and 1.0 is
perfect. The vertical error scales are diferent across all plots.

“igure 4.16: Wrapped Texture Set mean error for the Urban ”uy model. The left two plots
are color error against compression rate and the right plot is SSIM. “or RMS ’olor Error
and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or SSIM, higher is better and 1.0 is
perfect. The vertical error scales are diferent across all plots.

49

“igure 4.17: Wrapped Texture Set mean error for the Japanese ’astle model. The left two
plots are color error against compression rate and the right plot is SSIM. “or RMS ’olor
Error and ’IELA‘ Δ�∗94, lower is better and 0.0 is perfect. “or SSIM, higher is better and
1.0 is perfect. The vertical error scales are diferent across all plots.

Perceptual sensitivity varies by texture class.

“igures 4.13, 4.14, 4.15, 4.16, and 4.17 plot the mean of the error metrics for the Wrapped
Texture Set test case for each model. The shape of the points corresponds to compression

algorithm and the color to variations in compressed textures. “or NVTT/‘’ compression,

the All points are average bit rate at each pixel. The right plots are SSIM and color error

against dropping bits from each color plane and the color corresponds to the variations in

compressed textures. The vertical error scales are diferent across all plots. These igures

reveal that perceptual sensitivity to compression artifacts and masking efects varies based

on the class of texture. The ”loss results show very little reduction in quality as both the

compression rate in bits/pixel is reduced and increasing numbers of bits are dropped. This

implies that texture classes can be compressed diferently based on perceptual sensitivity.

GPU compression is too conservative.

“igures 4.13, 4.14, 4.15, 4.16, and 4.17 plot the mean of the error metrics for the Wrapped
Texture Set test case for each model. “igures 4.18 and 4.19 show several individual

50

(a) AST’ 4×4 (b) AST’ 8×8 (c) AST’ 12×12

(d) SSIM: 0.9958 (e) SSIM: 0.9241 (f) SSIM: 0.8210

“igure 4.18: Visual comparison of a single viewpoint of the Urban ”uy model with each
AST’ variant. “igures (d) (f) are the SSIM maps.

viewpoints of the Urban ”uy and “ire Hydrant models respectively with various compression

algorithms and corresponding SSIM maps. As these plots and igures illustrate, geometric

and texture set masking efects can be leveraged to reduce the bit rate of compressed textures

while still maintaining good inal rendered image quality. In particular, “igure 4.19 implies

SSIM values as low as 0.9 still result in good inal rendered image quality.

To explore how far compression can be pushed, “igure 4.20 visually shows the efects

of dropping from 1 to 7 bits from each color plane for all textures at a single viewpoint and

the SSIM map and mean value. Interestingly, dropping three bits of color from each plane

still results in an SSIM mean value higher than 0.9 indicating good rendered image quality.

51

(a) Uncompressed (b) All ’ompressed (c) All (SSIM: 0.8920)

(d) Difuse (SSIM: 0.9511) (e) ”loss (SSIM: 0.9999) (f) ‘ump (SSIM: 0.9427)

“igure 4.19: Visual comparison of a single viewpoint of the “ire Hydrant model and the
AST’ 12×12 compression algorithm. “igures (c) (f) are SSIM maps.

Drop 1 bit Drop 2 bits Drop 3 bits Drop 4 bits Drop 5 bits Drop 6 bits Drop 7 bits
SSIM 0.9942 SSIM 0.9772 SSIM 0.9171 SSIM 0.7764 SSIM 0.5359 SSIM 0.3207 SSIM 0.2450
“igure 4.20: Visual comparison of dropping from 1 to 7 bits on all textures. The bottom row
is the corresponding SSIM maps with the mean SSIM from this viewpoint.

’hapter 5

TEXTURE ’OMPRESSION OPTIMIZATION

Modern texture compression algorithms (Khronos ”roup 2013; Skodras, ’hristopoulos,

and Ebrahimi 2001) have many knobs for ine-tuning the compression. “or example,

the AST’ algorithm (Khronos ”roup 2013) has seven setting variables, ive of which are

discrete, while the other two are continuous, and all of them having a ixed range. These

knobs are used to ine-tune the compression algorithm by trading speed for bitrate.

Even with just seven parameters, the compression algorithms provide setting presets

that set speciic values for each variable. These presets provide end-users with a way to

quickly choose a desired trade-of between speed and bitrate without having to understand

the various knobs. “or AST’, the presets are named veryfast, fast, medium, thorough, and

exhaustive. As expected, the veryfast preset will compress sacriice bitrate to decrease the

compression time, while exhaustive will sacriice compression time to decrease the bitrate.

Even with presets, the efect of the variables on bitrate and quality can be non-obvious

to non-experts. “urthermore, even for experts, manually tuning each variable is a time-

consuming process with usually very little payof. “or AST’, the seven setting variables are

listed in Table 5.1. Assuming 1000 discrete steps for Optimization Limit and 100 discrete

steps for Correlation Cutof, those knobs combine to form a search space of 62 ⋅ 1020 ⋅ 1000 ⋅
1002 ⋅ 4 1012 possible states. Enumerating that many states is clearly infeasible for just a

single image and modern video games uses thousands of textures, further compounding the

problem.

The large state space created by combining the knobs, however, suggests using a search

algorithm for guided optimization. Leveraging my compression evaluation methodology,

I introduce a procedure that can optimize an energy function incorporating bitrate and

52

53

Name Min Max Step
X ‘locksize 1 6 1
Y ‘locksize 1 6 1
Partitions Limit 2 1024 1
Optimization Limit 1.0 1000.0 1†
’orrelation ’utof 0.5 0.99 0.0049†
‘lock Modes ’utof 0 100 1
Max Iterations 1 4 1

Table 5.1: AST’ ’ompression Settings. The † for Step indicates a continuous value variable.

objective image quality.

The following results present:

• An energy function evaluated by applying perceptually rigorous objective image

quality assessment metrics to compare compressed textures to uncompressed textures

over a Monte-’arlo sampling of viewpoints.

• A measure to determine if the Monte-’arlo estimate is accurate enough.

• A variance analysis in the Monte-’arlo estimate showing that 2,048 viewpoint samples

provides a suiciently accurate estimate of compress texture quality with a sizable

margin of error.

5.1 Approach

My optimization algorithm consists of three stages: 1) compress, 2) render, and 3) compare.

Each stage is performed once for each iteration of the algorithm. After the compare stage,

an energy function is evaluated and with the goal of minimizing the energy. I discuss each

stage in detail below.

To reduce the complexity of the search space, I chose to restrict the search space to

just the X Blocksize and Y Blocksize variables. Even after ignoring the other variables, that

still leaves twelve possible states for each texture. With three textures per texture atlas set

(Section 4.2.1), there are (186) = 18,564 possible states for the “ire Hydrant Model. The

54

Urban ”uy model is more representative of real-world texture usage and has 12 total textures

for (726) = 156,238,908 possible states. So even after reducing the complexity, exhaustive

enumeration of the state space is infeasible.

As described in Section 2.3, I deine a problem where the initial state is a randomly

chosen set of values, one for each parameter, the only possible action is to compress the

textures with the given set of values, the path cost is a function of bitrate and image quality,

and the goal test is a state with minimal bitrate and maximal quality.

As discussed, the AST’ algorithm parameters combine to form a state space with more

than 1012 possible states. “ully enumerating this state space is impractical and constructing

a diferential equation for gradient descent is also problematic. As such I have chosen to use

hill-climbing to locally search the state space.

Hill-climbing algorithms are a class of local search algorithms that are greedy in that

they only look at immediate neighbors and pick the neighbor with the best improvement.

Stochastic hill-climbing randomly picks from the better neighbors while irst-choice hill-

climbing randomly generates neighbors to evaluate until a better neighbor is found.

Even after reducing the number of variables to just the X and Y blocksizes, I have

to track the compressor state for each texture on a model. ”iven the large dimensions of

the search space, I use irst-choice hill-climbing, where, from the current state, a neighbor

state is randomly chosen and evaluated. If that new state is better, the algorithm accepts it,

otherwise the algorithm evaluates a diferent random neighbor state.

Compress Each texture on the model has a unique compression state. “or each texture,

a random neighbor in the state space for that texture is chosen and then each texture is

compressed with that candidate state.

Render After compressing, the model is rendered using a set of sampled viewpoints. The

viewpoint sampling process is described in detail in Section 4.1.1.

55

Compare After rendering, the rendered images with compressed textures are compared

with rendered ground-truth images using uncompressed textures. This comparison is fully

discussed in Section 4.1.2. “or guided optimization, I only evaluate the ’IELA‘ ΔE94 and

SSIM metrics.

Energy Computation The result from the compress stage is an overall bitrate and the

result from the compare stage is a mean Δ�∗94 and SSIM value. To combine these into an

energy function for minimization, I use a simple average:

(1 − SSIM) + Δ�∗94 + ‘itrate3 (5.1)

where SSIM has a range of 0.0 to 1.0 and 1.0 is a perfect match, lower Δ�∗94 values are better

and 0.0 is a perfect match and lower bitrate values are better. Since I am minimizing energy,

reversing SSIM (1 − SSIM) aligns it with Δ�∗94 and ‘itrate.

Once the energy is computed, the compressor is updated with the computed energy. At

this point, if the energy is lower than the current best energy, the state is accepted as the

new best state and a new iteration is started. If the computed energy is not lower than the

current best energy, then a new neighbor state is randomly chosen.

5.2 Results

I present results from the “ire Hydrant (“igure 4.1(a) and Urban ”uy (“igure 4.1(c)) models.

These models are described more fully in Section 4.2.1. I irst discuss the convergence of

the optimization framework, followed by an analysis of the variance in the components of

the energy function, and inally present some performance data.

“or both models, I am able to sample 12,288 maximum viewpoints. With 1000 × 1000
pixel rendered images, this is the most viewpoints that would it within 128 ”b of RAM.

As such, I treat 12,288 viewpoints as a ground truth data set. In the following results, an

iteration refers to when the optimization algorithm accepts a new state with lowest energy.

The number of neighbor states that are evaluated each iteration are referred to as steps.

56

“igure 5.1: Energy by iteration for the “ire Hydrant and Urban ”uy models with 12,288
viewpoint samples. “or both models, energy is minimized over time.

“igure 5.2: Steps by iteration for the “ire Hydrant and Urban ”uy models with 12,288
viewpoint samples. “or both models, the number of steps taken at each iteration increases.
This shows the algorithm is spending more time looking a better neighbor state.

5.2.1 Convergence

“igure 5.1 plots the energy function per iteration for the “ire Hydrant and Urban ”uy models

with 12,288 viewpoint samples. “or both models, energy is minimized over time as expected.

The diferent starting energies are due to the random selection of initial state. “igure 5.2

plots the steps taken at each iteration for the “ire Hydrant and Urban ”uy models with

12,288 viewpoint samples. ”iven decreasing energy over time, this shows that the algorithm

is spending more time looking for a better neighbor state.

“igures 5.1 and 5.2 initially show that guided optimization is working. However, when

57

“igure 5.3: Energy components by iteration for the “ire Hydrant model with various view-
point samples. ‘itrate is being over-optimized at the expense of rendered image quality.

the components of the energy function are plotted, as in “igure 5.3, we see that the algorithm

is over-optimizing bitrate at the expense of rendered image quality. In “igure 5.3, we would

expect to see the components converge, with energy remaining in between the bitrate and

image quality components. However, the algorithm is over-optimizing as the bitrate is

pushed well below the error metrics. ’ertainly for 12,288 viewpoint samples, we can see the

image quality metrics getting worse as the bitrate is pushed lower. This is counter-intuitive,

as the algorithm should be minimizing all functions and implies that the image quality

metrics should be weighted somehow in the energy function.

Looking at iteration 12, “igure 5.4 shows the uncompressed (“igure 5.4(a)), compressed

(“igure 5.4(b)), 1 - ’IELA‘ Δ�∗94 error (“igure 5.4(c)), and SSIM error (“igure 5.4(d)).

“igure 5.5 shows the corresponding images for iteration 19. “or easier comprehension, the

error metrics are shown such that darker pixels indicate worse quality and lighter pixels

indicate better quality. This is opposite to how the metrics are used in the energy function,

where a lower metric value is desired as it relects better quality.

“igures 5.4 and 5.5 show that the image quality is not very diferent between iteration

12 and 19 for this speciic viewpoint. Table 5.2 also shows that the overall 1-SSIM and

Δ�∗94 values are similar, while the bitrate has been cut in half. These results imply that the

error metrics should likely be weighted in the energy function, which I leave for future work.

58

(a) Uncompressed (b) ’ompressed (c) 1 - Δ�∗94 (0.94629) (d) SSIM (0.81699)

“igure 5.4: Iteration 12 of the “ire Hydrant model with 12,288 viewpoint samples. There is
some visual diference between the Uncompressed (a) and ’ompressed (b) images and this
is relected in the 1 - ’IELA‘ Δ�∗94 (c) and SSIM (d) maps. “or both (c) and (d), darker
pixels indicate worse quality. This is opposite to how the image quality metrics are used in
the energy function.

(a) Uncompressed (b) ’ompressed (c) 1 - Δ�∗94 (0.94402) (d) SSIM (0.79813)

“igure 5.5: Iteration 19 of the “ire Hydrant model with 12,288 viewpoint samples. There is
some visual diference between the Uncompressed (a) and ’ompressed (b) images and this
is relected in the 1 - ’IELA‘ Δ�∗94 (c) and SSIM (d) maps. “or both (c) and (d), darker
pixels indicate worse quality. This is opposite to how the image quality metrics are used in
the energy function.

Looking at the energy components in “igures 5.3 and 5.6, we see that changes in bitrate are

very large compared to changes in Δ�∗94 or 1-SSIM.

“igure 5.6 plots the energy components for the Urban ”uy model. These results also

show the over-optimization of bitrate at the expense of rendered image quality. In future

work I will be performing a systematic exploration of weighting terms for the energy function

components to develop an energy function that does not over-optimize.

59

Iteration Bitrate 1-SSIM Δ�∗94 Energy
12 0.14286 0.87073 0.11996 0.13069
19 0.07540 0.86236 0.12298 0.11201

Table 5.2: The components and energy at iterations 12 and 19 for the “ire Hydrant model with
12,288 viewpoint samples. Even though the bitrate has been cut in half between iterations
12 and 19, the 1-SSIM and ’IELA‘ Δ�∗94 values are very similar.

“igure 5.6: Energy components by iteration for the Urban ”uy model with various viewpoint
samples. ‘itrate is being over-optimized at the expense of rendered image quality.

5.2.2 Variance Analysis

It is possible that 12,288 viewpoint samples are not enough to fully capture the errors

introduced by the compression. That is, if the error in estimating the energy function is

higher than the changes in the actual energy function from step to step, then the optimization

algorithm will accept objectively bad states due solely to the error in the estimated energy.

Since the viewpoint samples are quasi-randomly generated in a sphere surrounding the

model, the image comparison metrics computed at each viewpoint might not be seeing

important compression artifacts. To explore this situation, I analyze the variance of the

energy components for both models.

Using all 12,288 viewpoint samples, I calculate the variance of a subsampled estimate.

That is, for the set of viewpoint samples � = (16, 32, 48, … , 6128, 6144), I divide the

12,288 viewpoint samples into an estimate: � = (1,), where ∈ �, and an actual:

60

“igure 5.7: Variance analysis for the 1-SSIM component. The variance is signiicantly
smaller than the 1-SSIM delta in “igures 5.3 and 5.6, which is on the order of 0.1, implying
that even 2,048 viewpoint samples is suicient. Section 5.2.2 describes how the variance
was calculated.

“igure 5.8: Variance analysis for the ’IELA‘ Δ�∗94 component. The variance is signiicantly
smaller than the Δ�∗94 delta in “igures 5.3 and 5.6, which is on the order of 0.3 0.4, implying
that even 2,048 viewpoint samples is suicient. Section 5.2.2 describes how the variance
was calculated.

� = (+ 1, 12288). I then compute the variance between the estimate and the actual:

(� − �)2. “igures 5.7, 5.8, and 5.9 plot these variances for the two image quality metrics

and energy.

’omparing the variance plots to the 12,288 viewpoint sample cases in “igures 5.3

and 5.6, we can see that the variance is signiicantly smaller than the change in each com-

ponent, even with as few as 2,048 viewpoint samples. “irst, this indicates that the over-

61

“igure 5.9: Variance analysis for energy. The variance is signiicantly smaller than the
energy delta in “igures 5.3 and 5.6 implying that even 2,048 viewpoint samples is suicient.
Section 5.2.2 describes how the variance was calculated.

CPU Chipset Cores† Clock RAM
P/H (Ghz) (Gb)

Dual Xeon E5-2687W v2 Sandy ‘ridge 16/32 3.4 128
Xeon E5-2687W Sandy ‘ridge 8/16 3.1 32
’ore i7-5960X Haswell 8/16 3.0 128
Xeon W5590 Nehalem 4/4 3.3 12

Table 5.3: System conigurations. †The ’ores are listed as physical / hyperthreaded, where
the total number of available cores is the H column.

optimization is not due to insuicient viewpoint samples. Second, these results also show

that 2,048 viewpoint samples may be suicient for optimizing these two models resulting in

a signiicantly faster optimization process as I explain in the following section.

5.2.3 Runtime Performance

To understand the runtime performance of the optimization algorithm, I ran several diferent

viewpoint sample cases for the “ire Hydrant model on identical hardware. I also ran the

12,288 viewpoint sample case for the Urban ”uy on the same hardware. Overall I used

four diferent hardware conigurations which are outlined in Table 5.3 to generate all of the

results presented here.

“igure 5.10 plots the mean walltimes for each stage of the optimization algorithm for

62

Time (s)
Model Compare Render Compress Total
“ire Hydrant 759.8 49.7 155.4 964.9
Urban ”uy 761.2 283.2 188.6 1233.0

Table 5.4: Mean walltimes for the diferent stages of the optimization algorithm for the “ire
Hydrant and Urban ”uy models with 12,288 viewpoints.

“igure 5.10: Mean walltimes for the diferent stages of the optimization algorithm for the
“ire Hydrant model with various viewpoint samples. As expected, the overall runtime of
the algorithm increases proportionally with the number of viewpoint samples.

several diferent viewpoint sample cases. These times are all from the Dual Xeon E5-2687W

v2 system with 128 ”b of RAM. As expected, as the number of viewpoint samples increases,

the total running time of the algorithm increases as well. “urthermore, the Compare stage

of the algorithm clearly dominates the running time. Since I am computing two image

comparison metrics for each viewpoint sample, this makes sense. My implementation

currently runs only on the ’PU, and while the Compare stage does utilize all available ’PU

cores, the image comparison metrics would run much faster with a ”PU implementation.

The “ire Hydrant model is relatively simple compared to the Urban ”uy model (one

texture atlas set compared to four texture atlas sets as described in Section 4.2.1.) Table 5.4

presents the mean walltimes for each stage of the algorithm for both models with 12,288

viewpoint samples. As expected, the Compare stage takes the same amount of time for both

models. Surprisingly, the Compress times are relatively close given that the optimization

63

algorithm is only compressing three textures for the “ire Hydrant model but twelve textures

for the Urban ”uy model.

’hapter 6

’ON’LUSION

Real-time rendering systems have two competing constraints: rendered frame time and

rendered frame quality. To ensure interactivity and provide the illusion of luid motion,

real-time rendering must render frames in 33 milliseconds or less. “urthermore, consumers

demand increasingly realistic graphics and video games cannot sacriice quality while

meeting the time constraint. These two constraints have largely driven the performance

gains in ”PUs, which has, in turn driven the push for improved graphics realism.

Real-time rendering uses texture mapping to meet both time and quality constraints.

’urrent rendering algorithms make use of several diferent textures per object, each storing

artist-created data, including color and 3D vectors. Additionally, high deinition displays are

driving texture pixel resolutions higher, causing an increase of 64 times in the texture sizes.

The increase in texture count combined with the increase in texture resolution has caused

dramatic growth in texture storage data requirements.

”PUs ofer a texture compression format with eicient hardware decompression but

the quality of this “‘R format no longer meets the storage and quality requirements of video

games. The “‘R algorithms have been extended to try and address this problem (Khronos

”roup 2013) and recent texture compression research has focused on V‘R algorithms

(Olano et al. 2011). These newer algorithms have many diferent knobs for adjusting the

compression algorithm and manually adjusting the parameters for textures is not feasible for

real-world scenarios.

Research has shown that the peak signal-to-noise ratio is not a useful metric for opti-

mizing image processing tasks. The ield of objective IQA has since explored metrics for

comparing images that correlate with human perception. This research has mostly focused

64

65

on natural luminance images. Unfortunately, textures are neither natural nor luminance. The

textures are used, however, to render a inal frame which is a color natural image.

The existing color IQA metrics are not competitive with the current luminance metrics

and developing a competitive color IQA metric remains an open question. One issue with

the current evaluation methods for IQA metrics is that most of the databases do not contain

chrominance distortions. In ’hapter 3, I presented a new chrominance distortion database

with human subjective evaluations of the distorted images.

In evaluating texture compression, the most common approach is to use some com-

bination of the MSE, PSNR, or visual image inspection on the individual textures. While

comparing or inspecting individual textures is straightforward to implement, this method

does not properly account for the masking efects introduced by the texture mapping process.

In ’hapter 4, I introduced a texture compression evaluation methodology that accounts for

these masking efects.

The number of tuning parameters of modern texture compression algorithms combined

with the number of textures used in real-time rendering poses a serious scalability solution to

optimizing texture compression. These parameters, however, do create a multi-dimensional

space that is a good match for guided optimization. In ’hapter 5, I showed a demonstration

of guided texture compression optimization building on my evaluation methodology.

Little research exists on automatic rendering optimization. Texture compression is one

part of the entire rendering pipeline. It is probable that other parts of the pipeline could be

optimized by evaluating the quality of inal rendered images. ”uided texture compression is

a irst step that would validate the larger technique of automatic rendering optimization.

Most importantly, the ield of computer graphics has traditionally relied on manual

visual evaluation of rendering algorithms. This evaluation is highly subjective and when

objective evaluation does occur, the luminance metrics are very often misused by averaging

a per-color-channel quality value. Appropriately applying objective IQA metrics provides

more rigorous evaluation technique.

66

6.1 Future Work

There are three main areas for future work: 1) sampling and estimation, 2) energy function

and searching, and 3) additional types of masking efects.

“or both evaluation and optimization, I sample the viewpoint space uniformly. Sampling

techniques such as importance sampling based on expected viewer locations could improve

the evaluation and this is likely a fruitful area of research. Another possibility for future

work is further analysis in the Monte-’arlo estimate that would enable a reinement schedule

to vary the number of viewpoint samples over time as the energy function converges.

A systematic exploration of weighting terms for the energy function components would

ensure a good energy function for optimization. Even with a weighted energy function, it

is likely there are many local minima in the search space and hill climbing methods are

well known to have problems with local minima. As ‘urke and Kendall (2014) discuss,

there are several diferent diversiication techniques that can be employed to help search

algorithms explore large regions of the state space. Even with diversiication, incorporating

metaheuristic techniques, such as tabu search (”lover 1989, 1990), will likely improve the

optimization framework.

All of my results are with a single model at a small range of visible scales. Real-world

use cases are going to have multiple models arranged in a scene. Just having multiple models

likely introduces occlusion masking where one object is obscured by another. Also, with

multiple objects, there will probably be large scale diferences between the objects which

will also have an efect on inal rendered image quality.

6.2 Model Credits

The Taurus Model is by Thinking On Pause and the Urban ”uy model is by Inventerion

Productions, both from Turbo Squid. The “ire Hydrant model is by Trap Door and the

Japanese ’astle scene is by JD ’reative Machine, both from the Unity Store.

RE“EREN’ES

Ajagamelle, Sebastien Akli, Marius Pedersen, and ”abriele Simone. 2010. Analysis of the

Diference of ”aussians Model in Image Diference Metrics. In Proc. 5th European

Conf. Colour in Graphics, Imaging, and Vision (CGIV), 489 496. Society for Imaging

Science / Technology.

ARM. 2013. Encoder and Decoder Tool for Evaluation of ARM Adaptive Scalable Texture

Compression (ASTC). http://malideveloper.arm.com/develop-for-

mali/tools/astc-evaluation-codec/. Accessed Aug. 2013.

‘eers, Andrew ’., Maneesh Agrawala, and Navin ’haddha. 1996. Rendering from com-

pressed textures. In Proc. SIGGRAPH 1996, 373 378. ’omputer ”raphics Proc.,

Annual ’onf. Series, A’M. A’M Press / A’M SI””RAPH. doi: . / .

.

‘urke, Edmund K., and ”raham Kendall, eds. 2014. Search Methodologies. 2nd ed. New

York: Springer Press. isbn: 978-1-4614-6940-7. doi: . / - - - -

.

Čadı́k, Martin, Robert Herzog, Karol Mantiuk Rafałand Myszkowski, and Hans-Peter Seidel.

2012. New Measurements Reveal Weaknesses of Image Quality Metrics in Evaluating

”raphics Artifacts. ACM Trans. Graph. (New York, USA) 31, no. 6 (November):

147:1 147:10. doi: . / . .

’handler, Damon M., and Sheila S. Jemami. 2007. VSNR: A Wavelet-‘ased Visual Signal-

to-Noise Ratio for Natural Images. Image Processing, IEEE Trans. 16 (9): 2284 2298.

doi: . /TIP. . .

67

http://malideveloper.arm.com/develop-for-mali/tools/astc-evaluation-codec/
http://malideveloper.arm.com/develop-for-mali/tools/astc-evaluation-codec/
http://dx.doi.org/10.1145/237170.237276
http://dx.doi.org/10.1145/237170.237276
http://dx.doi.org/10.1007/978-1-4614-6940-7
http://dx.doi.org/10.1007/978-1-4614-6940-7
http://dx.doi.org/10.1145/2366145.2366166
http://dx.doi.org/10.1109/TIP.2007.901820

68

Delp, Edward J., and O. Robert Mitchell. 1979. Image ’ompression Using ‘lock Truncation

’oding. Communications, IEEE Trans. 27 (9): 1335 1342. doi: . /TCOM.

. .

Downs, Julie S., Mandy ‘. Holbrook, Steve Sheng, and Lorrie “aith ’ranor. 2010. Are your

participants gaming the system?: screening mechanical turk workers. In Proc. 28th

International Conf. Human Factors in Computing Systems (CHI), 2399 2402. New

York: A’M. doi: . / . .

Duda, Jarek. 2014. Asymmetric numeral systems: entropy coding combining speed of

Hufman coding with compression rate of arithmetic coding. arXiv: . v

[cs.IT].

“airchild, Mark D. 2005. Color Appearance Models. 2nd ed. West Sussex, England: John

Wiley & Sons. isbn: 978-0470012161.

“enney, Simon. 2003. Texture compression using low-frequency signal modulation. In

Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. Graphics Hardware, 84 91. Aire-la-

Ville, Switzerland, Switzerland: Eurographics Association.

“erwerda, James A., Peter Shirley, Sumanta N. Pattanaik, and Donald P. ”reenberg. 1997.

A Model of Visual Masking for ’omputer ”raphics. In Proc. SIGGRAPH 97, Annual

Conference Series, 143 152. A’M. doi: . / . .

“ranzen, Rich. 2010. Kodak Lossless True Color Image Suite. http : / / r k . us /

graphics/kodak/index.html. Accessed Aug. 2010.

”lover, “red. 1989. Tabu Search Part I. ORSA Journal on Computing 1 (3): 190 206.

doi: . /ijoc. . . .

. 1990. Tabu Search Part II. ORSA Journal on Computing 2 (1): 4 32. doi: .

/ijoc. . . .

http://dx.doi.org/10.1109/TCOM.1979.1094560
http://dx.doi.org/10.1109/TCOM.1979.1094560
http://dx.doi.org/10.1145/1753326.1753688
http://arxiv.org/abs/1311.2540v2
http://arxiv.org/abs/1311.2540v2
http://dx.doi.org/10.1145/258734.258818
http://r0k.us/graphics/kodak/index.html
http://r0k.us/graphics/kodak/index.html
http://dx.doi.org/10.1287/ijoc.1.3.190
http://dx.doi.org/10.1287/ijoc.2.1.4
http://dx.doi.org/10.1287/ijoc.2.1.4

69

”riin, Wesley, and Marc Olano. 2014. Objective Image Quality Assessment of Texture

’ompression. In Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium

on Interactive 3D Graphics and Games, 119 126. A’M. doi: . / .

.

. 2015. Evaluating Texture ’ompression Masking Efects Using Objective Im-

age Quality Assessment Metrics. IEEE Transactions on Visualization and Computer

Graphics 21 (8): 970 979. doi: . /TVCG. . .

Hao, Pengwei, and Qingyun Shi. 2000. ’omparative Study of ’olor Transforms for Image

’oding and Derivation of Integer Reversible ’olor Transform. In Proceedings of the

15th International Conference on Pattern Recognition.

He, Yong, Tim “oley, Natalya Tatarchuck, and Kayvon “atahalian. 2015. A System for

Rapid, Automatic Shader Level-of-Detail. ACM Transactions on Graphics 34 (6):

187:1 187:12. doi: . / . .

Heidrich, Wolfgang, and Hans-Peter Seidel. 1998. View-independent environment maps.

In Proc. of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware,

39 45. A’M. doi: . / . .

Hong, ”uowei, and Ming R. Luo. 2002. Perceptually-based color diference for complex

images. Proc. SPIE 4421:618 621. doi: . / . .

Horita, Yuukou, Keiji Shibata, and Yoshikazu Kawayoke. 2011. MICT Image Quality Eval-

uation Database. http://mict.eng.u-toyama.ac.jp/mictdb.html.

Accessed Apr. 2011.

Howard, Paul ”., and Jefrey Scott Vitter. 1994. Arithmetic coding for data compression.

Proc. IEEE 82 (6): 857 865. doi: . / . .

Hufman, David A. 1952. A Method for the ’onstruction of Minimum-Redundancy ’odes.

Proc. of the IRE 40 (9): 1098 1101. doi: . /JRPROC. . .

http://dx.doi.org/10.1145/2556700.2556711
http://dx.doi.org/10.1145/2556700.2556711
http://dx.doi.org/10.1109/TVCG.2015.2429576
http://dx.doi.org/10.1145/2816795.2818104
http://dx.doi.org/10.1145/285305.285310
http://dx.doi.org/10.1117/12.464761
http://mict.eng.u-toyama.ac.jp/mictdb.html
http://dx.doi.org/10.1109/5.286189
http://dx.doi.org/10.1109/JRPROC.1952.273898

70

Inada, Tetsugo, and Michael D. Mc’ool. 2006. ’ompressed lossless texture representation

and caching. In Proc. ACM SIGGRAPH/EUROGRAPHICS Symp. Graphics Hardware,

edited by Marc Olano and Philipp Slussalek, 111 120. New York: A’M.

Iorcha, Konstantine I., Krishna S. Nayak, and Zhou Hong. 1999. System and Method for

“ixed-rate ‘lock-based Image ’ompression with Inferred Pixel Values 5956431 (US),

iled 1999.

ITU-R. 2012. Recommendation ITU-R BT.500-13: Methodology for the subjective assessment

of the quality of television pictures. http://www.itu.int/rec/R- REC-

BT. - - -I, January.

Joe, Stephen, and “rances Y. Kuo. 2003. Remark on algorithm 659: Implementing Sobol s

quasirandom sequence generator. ACM Trans. Math. Softw. 29 (1): 49 57. doi: .

/ . .

Johnson, ”arrett M., and Mark D. “airchild. 2001. Darwinism of ’olor Image Diference

Models. In Proc. 9th Color Imaging Conf. 108 112. Society for Imaging Science /

Technology.

Khronos ”roup. 2013. Extension #118: KHR_texture_compression_astc_hdr. http://

khronos.org/registry/gles/extensions/KHR/texture_compression_

astc_hdr.txt. Accessed Oct. 2013.

Kittur, Aniket, Ed H. ’hi, and ‘ongwon Suh. 2008. ’rowdsourcing user studies with

Mechanical Turk. In Proc. 26th Conf. Human Factors in Computing Systems (CHI),

453 456. New York: A’M. doi: . / . .

Larson, Eric ’., and Damon M. ’handler. 2010. Most apparent distortion: full-reference

image quality assessment and the role of strategy. J. Electron. Imaging 19 (011006).

doi: . / . .

http://www.itu.int/rec/R-REC-BT.500-13-201201-I
http://www.itu.int/rec/R-REC-BT.500-13-201201-I
http://dx.doi.org/10.1145/641876.641879
http://dx.doi.org/10.1145/641876.641879
http://khronos.org/registry/gles/extensions/KHR/texture_compression_astc_hdr.txt
http://khronos.org/registry/gles/extensions/KHR/texture_compression_astc_hdr.txt
http://khronos.org/registry/gles/extensions/KHR/texture_compression_astc_hdr.txt
http://dx.doi.org/10.1145/1357054.1357127
http://dx.doi.org/10.1117/1.3267105

71

Le ’allet, Patrick, and “lorent Autrusseau. 2005. Subjective quality assessment IRCCyN

/ IVC database. http://www.irccyn.ec-nantes.fr/ivcdb/. Accessed Apr.

2011.

Lindstrom, Peter, and ”reg Turk. 2000. Image-drive Simpliication. ACM Trans. Graph.

19, no. 3 (July): 204 241. doi: . / . .

Martin, ”. 1979. Range encoding: An algorithm for removing redundancy from a digitised

message. In Proc. Video and Data Recording Conf. (Southampton, UK, July 24–27).

Mitchell, Kenny. 2006. Next ”eneration ”ame Development. In Proc. 3rd European Conf.

on Visual Media and Production (CVMP). Invited Talk. London, UK: IET.

. 2015. personal communication.

NVIDIA. 2013. NVIDIA Texture Tools. http://code.google.com/p/nvidia-

texture-tools. Accessed Aug. 2013.

Olano,Marc, and Dan ‘aker. 2010. LEANMapping. In Proc. of the 2010 ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games, 181 188. A’M. doi: . /

. .

Olano, Marc, Dan ‘aker, Wesley ”riin, and Joshua ‘arczak. 2011. Variable ‘it Rate

”PU Texture ’ompression. Computer Graphics Forum 30 (4): 1299 1308. doi: .

/j. - . . .x.

Olano, Marc, ‘ob Kuehne, and Maryann Simmons. 2003. Automatic Shader Level of

Detail. In Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. Graphics Hardware, 7 14.

Aire-la-Ville, Switzerland, Switzerland: Eurographics Association.

Open”L AR‘. 2009. Extension #77: ARB_texture_compression_bptc. http://www.

opengl.org/registry/specs/ARB/texture_compression_bptc.txt.

Accessed Aug. 2010.

http://www.irccyn.ec-nantes.fr/ivcdb/
http://dx.doi.org/10.1145/353981.353995
http://code.google.com/p/nvidia-texture-tools
http://code.google.com/p/nvidia-texture-tools
http://dx.doi.org/10.1145/1730804.1730834
http://dx.doi.org/10.1145/1730804.1730834
http://dx.doi.org/10.1111/j.1467-8659.2011.01989.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01989.x
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
http://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt

72

Pedersen, Marius, and Jon Hardeberg. 2009. A New Spatial Hue Angle Metric for Percep-

tual Image Diference. In Computational Color Imaging, edited by Alain Trémeau,

Raimondo Schettini, and Shoji Tominaga, 5646:81 90. Lecture Notes in ’omputer

Science. Springer ‘erlin / Heidelberg. doi: . / - - - - _ .

Pellacini, “abio. 2005. User-conigurable automatic shader simpliication. ACM Trans.

Graphics 24 (3): 445 452. doi: . / . .

Ponomarenko, Nikolay, Lina Jin, Oleg Ieremeiev, Vladimir Lukin, Karen Egiazarian, Jaakko

Astola, ‘enoit Vozel, et al. 2015. Image database TID2013: Peculiarities, results and

perspectives. Signal Processing: Image Communication 30:57 77. doi: . /j.

image. . . .

Ponomarenko, Nikolay, Vladimir Lukin, Alexander Zelensky, Karen Egiazarian, Jaakko As-

tola, Marko ’arli, and “ederica ‘attisti. 2009. TID2008 - A database for evaluation of

full-reference visual quality assessment metrics. Advances of Modern Radioelectronics

10:30 45. http://www.ponomarenko.info/tid .htm.

Rouse, DavidM., and Sheila S. Hemami. 2008. Understanding and simplifying the structural

similarity metric. In Proc. 15th IEEE Int’l Conf. Image Processing (ICIP), 1188 1191.

IEEE. doi: . /ICIP. . .

Russell, Stuart, and Peter Norvig. 2003. Artiicial Intelligence, A Modern Approach. 2nd.

Upper Saddle River, New Jersey, US: Pearson Education. isbn: 0-13-790395-2.

Shapiro, Jerome M. 1993. Embedded image coding using zerotrees of wavelet coeicients.

Signal Processing, IEEE Trans. 41 (12): 3445 3462. doi: . / . .

Sheikh, Hamid Rahim, and Alan ’ ‘ovik. 2006. Image information and visual quality.

Image Processing, IEEE Trans. 15 (2): 430 444. doi: . /TIP. . .

http://dx.doi.org/10.1007/978-3-642-03265-3_9
http://dx.doi.org/10.1145/1073204.1073212
http://dx.doi.org/10.1016/j.image.2014.10.009
http://dx.doi.org/10.1016/j.image.2014.10.009
http://www.ponomarenko.info/tid2008.htm
http://dx.doi.org/10.1109/ICIP.2008.4711973
http://dx.doi.org/10.1109/78.258085
http://dx.doi.org/10.1109/TIP.2005.859378

73

Sheikh, Hamid Rahim, Muhammad “arooq Sabir, and Alan ’ ‘ovik. 2006. A Statistical

Evaluation of Recent “ull Reference Image Quality Assessment Algorithms. Image

Processing, IEEE Trans. 15 (11): 3440 3451. doi: . /TIP. . .

Sheikh, Hamid Rahim, Z. Wang, L. ’ormack, and A.’. ‘ovik. 2010. LIVE Image Quality

Assessment Database Release 2. http://live.ece.utexas.edu/research/

quality. Accessed Sep. 2010.

Simoncelli, Eero P. 2005. Statistical Modeling of Photographic Images. In Handbook of

Image and Video Processing, edited by Alan ’ ‘ovik, 431 441. Elsevier/Academic

Press.

Sitthi-Amorn, Pitchaya, Nicholas Modly, Westley Weimer, and Jason Lawrence. 2011. ”e-

netic programming for shader simpliication. ACM Trans. Graphics (Proc. SIGGRAPH

Asia’11) 30 (6): 152:1 152:12. doi: . / . .

Skodras, Athanassios, ’harilaos ’hristopoulos, and Touradj Ebrahimi. 2001. The JPE”

2000 still image compression standard. IEEE Signal Processing Magazine 18 (5):

36 58. doi: . / . .

Ström, Jacob, and Tomas Akenine-Möller. 2004. PA’KMAN: texture compression for

mobile phones. In ACM SIGGRAPH 2004 Sketches, 66 66. A’M. doi: . /

. .

. 2005. iPA’KMAN: high-quality, low-complexity texture compression for mobile

phones. In Proc. 20th ACM SIGGRAPH/EUROGRAPHICS Symp. Graphics Hardware,

63 70. New York: A’M. doi: . / . .

Ström, Jacob, and Martin Pettersson. 2007. ET’2: texture compression using invalid

combinations. In Proc. 22nd ACM SIGGRAPH/EUROGRAPHICS Symp. Graphics

Hardware, 49 54. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association.

http://dx.doi.org/10.1109/TIP.2006.881959
http://live.ece.utexas.edu/research/quality
http://live.ece.utexas.edu/research/quality
http://dx.doi.org/10.1145/2070781.2024186
http://dx.doi.org/10.1109/79.952804
http://dx.doi.org/10.1145/1186223.1186306
http://dx.doi.org/10.1145/1186223.1186306
http://dx.doi.org/10.1145/1071866.1071877

74

Van Waveren, J.M.P., and Ignacio ’astaño. 2007. Real-Time YCoCg-DXT Compression.

Technical report. iD Software, September. http://www.nvidia.com/object/

real-time-ycocg-dxt-compression.html.

Video Quality Experts ”roup. 2003. Final Report From the Video Quality Experts Group

on the Validation of Objective Models of Video Quality Assessment, Phase II. http:

//www.vqeg.org.

Wallace, ”regory K. 1991. The JPE” still picture compression standard. Comm. ACM 34

(4): 30 44. doi: . / . .

Wang, Zhou, and Alan ’ ‘ovik. 2006. Modern Image Quality Assessment. San Rafael, ’A,

US: Morgan & ’laypool Publishers.

Wang, Zhou, Alan ’ ‘ovik, Hamid Rahim Sheikh, and Eero P. Simoncelli. 2004. Image

quality assessment: from error visibility to structural similarity. Image Processing,

IEEE Trans. 13 (4): 600 612. doi: . /TIP. . .

Wang, Zhou, and Qiang Li. 2011. IW-SSIM: Information ’ontent Weighted Structural

Similarity Index for Image Quality Assessment. Image Processing, IEEE Trans. 20

(5): 1186 1198.

Wang, Zhou, and Xinli Shang. 2006. Spatial Pooling Strategies for Perceptual Image Quality

Assessment. In Proc. 2006 Int’l. Conf. Image Processing (ICIP). IEEE. doi: . /

ICIP. . .

Wang, Zhou, Eero P. Simoncelli, and Alan ’. ‘ovik. 2003. Multi-scale structural similarity

for image quality assessment. In IEEE Asilomar Conf. Signals, Systems, and Computers.

November.

Williams, Lance. 1983. Pyramidal parametrics. In Computer Graphics (Proc. of SIG-

GRAPH 83), 1 11. New York: A’M. doi: . / . .

http://www.nvidia.com/object/real-time-ycocg-dxt-compression.html
http://www.nvidia.com/object/real-time-ycocg-dxt-compression.html
http://www.vqeg.org
http://www.vqeg.org
http://dx.doi.org/10.1145/103085.103089
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/ICIP.2006.313136
http://dx.doi.org/10.1109/ICIP.2006.313136
http://dx.doi.org/10.1145/800059.801126

75

Witten, Ian H., Radford M. Neal, and John ”. ’leary. 1987. Arithmetic coding for data

compression. Comm. ACM 30 (6): 520 540. doi: . / . .

Zhang, Xuemei, and ‘rian A. Wandell. 1998. ’olor image idelity metrics evaluated using

image distortion maps. Signal Processing 70 (3): 201 214. doi: . /S -

() -X.

http://dx.doi.org/10.1145/214762.214771
http://dx.doi.org/10.1016/S0165-1684(98)00125-X
http://dx.doi.org/10.1016/S0165-1684(98)00125-X

	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Contributions
	1.2 Significance

	2 Background
	2.1 Image Compression
	2.2 Image Quality Assessment
	2.3 Optimization and Searching
	2.4 Rendering Optimization

	3 Chrominance Distortion Database
	3.1 Evaluation
	3.2 Analysis

	4 Texture Compression Evaluation
	4.1 Approach
	4.2 Results

	5 Texture Compression Optimization
	5.1 Approach
	5.2 Results

	6 Conclusion
	6.1 Future Work
	6.2 Model Credits

	References

