
Interaction Design and Activity Theory: Designing for Social Code Review

by
Randy Souza

December 2010

Presented to the
School of Information Arts and Technologies

University of Baltimore

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved by:                                                                                     
Kathryn Summers, IDIA Program Director

©2010 Randy Souza



Abstract

Abstract

This thesis applies activity theory to interaction design of a code review tool. The purpose 

of this project was two-fold: To understand the practice of code review, and to gain 

insight into the value of activity theory as a framework for interaction design. Decades of 

research have shown that code reviews are a valuable software engineering tool. But 

recent studies suggest that many software development organizations do not use code 

reviews to their full potential. While code review is often acknowledged as a social 

practice, few studies address the social, cultural, and historical context surrounding 

programmers as they conduct reviews. This paper uses activity theory to analyze these 

contextual factors within a department in a commercial software development 

organization. Code review practice is found to be informal, highly situated, and multi-

motivated. Based on these findings, interaction design concepts are proposed for a Web-

based tool that supports collaborative construction, execution, and resolution of code 

reviews.

©2010 Randy Souza



Acknowledgments

Acknowledgments

Thank you to Kathryn Summers, Nancy, Kaplan, Stuart Moulthrop, and the 

School of Information Arts & Technology for the knowledge and opportunity to (finally!) 

complete this project.

Thank you to M., K., J., A., G., C., L., P., and S. for sharing your code review 

experience.

Thank you to Matt, Josh, and Luke for letting me build on your work.

Eternal gratitude to Naida Rosenberger for love, patience, support, and everything 

else. This is for you

©2010 Randy Souza



Table of contents

Table of Contents

Introduction..........................................................................................................................1
Literature Review.................................................................................................................3

Software Inspection.........................................................................................................3
Benefits of code review..............................................................................................4
Limitations of code review.........................................................................................6
Evolution of the code review process.........................................................................8
The impact of developer skill on code review..........................................................12
Code reading techniques...........................................................................................14
Code review tools.....................................................................................................18
Summary...................................................................................................................23

Human-Computer Interaction and the Challenge of Context.......................................23
From human factors to human actors.......................................................................23
From usability to user experience.............................................................................25
From human-centered design to activity-centered design........................................26

Activity Theory and Interaction Design........................................................................27
Principles of activity theory......................................................................................28
Collective activity and activity systems...................................................................32
The role of theory in interaction design...................................................................34
HCI applications of activity theory...........................................................................35
Reevaluation of code review research in an activity theory context........................40

Research Project.................................................................................................................43
Background...................................................................................................................43

Setting.......................................................................................................................43
Design Research............................................................................................................44

Methodology.............................................................................................................45
Results......................................................................................................................47
Implications..............................................................................................................57

Interaction Design.........................................................................................................58
Architecture..............................................................................................................59
User interface............................................................................................................61

Discussion.....................................................................................................................64
References..........................................................................................................................65
Appendix 1: The activity checklist (design version).........................................................76
Appendix 2: Interview guide.............................................................................................78

©2010 Randy Souza



Table of contents

Table of Figures

Figure 1: The hierarchical structure of activity..................................................................31
Figure 2: Engeström’s model of the activity system..........................................................34
Figure 3: A code review activity system............................................................................47
Figure 4: Code review goals and actions...........................................................................49
Figure 5: Mediation of code review actions by artifacts....................................................54
Figure 6: Conceptual architecture for a Web-based code review tool...............................60
Figure 7: Presence awareness, showing available, offline, and busy users.......................61
Figure 8: Screen shots of the code review dashboard (top) and a review item (bottom). .62
Figure 9: Collaboration between author and reviewer.......................................................63

©2010 Randy Souza



Introduction 1

Introduction

“Reviews are about the people reviewing” (Karlsson, 2010, p. 29).

The practice of code review1 in software development has been actively studied 

since the mid-1970s. Researchers and practitioners extoll code review as a driver of 

software quality and methodological rigor. Reports have scrutinized the management and 

conduct of reviews, prescribing detailed procedures and suggesting varied techniques. 

But, as Matthias Karlsson succinctly concludes in the epigraph above, code reviews 

succeed or fail based on the activities of the programmers who write and review code. 

Supporting code review requires understanding and supporting a development team’s 

collective goals and actions. Interaction design provides a useful perspective on this 

effort: Studying human activity in order to create or improve products that support 

communication, socialization, and work is one of the central components of interaction 

design (Sharp, Rogers, & Preece, 2007).

This project originated in the author’s personal experience as a programmer 

struggling to integrate code review into regular practice. Reviews involved varied 

artifacts, including email, face-to-face communication, version control, and a very simple 

Web-based review tool, none of which truly fit the task at hand. Coordinating and 

tracking review activity was a manual process based on uncertain social cues—for 

example, how long was it appropriate to wait for a reviewer to provide feedback before 

following up? This work began as a response to these challenges, with three goals:

1. To better understand code review practice;

1 While code review is most often categorized as a subset of software inspection, this paper uses the 
terms interchangeably to mean the review of software source code by one or more programmers other 
than the original author of the code..

©2010 Randy Souza



Introduction 2

2. To design an improved code review tool;

3. To investigate activity theory as a design tool.

This paper begins with a literature review surveying code review research. Studies 

that highlight programmer practices are given special attention. After covering the 

evolution and application of code review, an interaction design perspective is applied to 

existing code review research. The emergence and growth of interaction design has led 

some researchers to search for a theoretical foundation. The second half of the literature 

review investigates one interaction design perspective—activity theory. No studies 

applying activity theory to code review practice were found, so the literature review 

concludes with hypothetical applications of activity theory to some key concepts 

uncovered in code review research.

The second section of this report describes a research project conducted to study 

the real-world use of code review and artifacts that mediate code review. Contextual 

interviews structured on insights from the literature review were conducted with nine 

developers. Data from these interviews were analyzed using models from activity theory, 

leading to a set of implications for designs meant to support code review.

This thesis concludes with discussion of interaction design concepts based on 

these implications. The design suggests an architectural approach based on flexibility and 

emergent integration. User interface components are oriented toward communication, 

coordination, and shared learning. Context is a pervasive design concept, both for code 

authors, who must provide reviewers enough context to focus the review, and for 

reviewers, who must navigate through a review and its supporting material.

©2010 Randy Souza



Literature review 3

Literature Review

Software Inspection

Software inspection research originated at IBM in the early 1970s as part of an 

overall software quality movement (Fagan, 1976). Fagan (1976) described inspections as 

“a formal, efficient, and economical method of finding errors in design and code” (p. 

189). Fagan (1976) presented software inspection as complementary to other quality 

assurance techniques like automated testing. Iisakka and Tervonen (2001) found that 

computer-executed unit, functional, and integration tests efficiently found one set of 

problems, while human code review identified a different set of defects. Wood, Roper, 

Brooks, and Miller (1997) recommended a project-sensitive combination of techniques, 

finding that the nature of the program and the types of defects in the code impacted the 

effectiveness of inspections, functional testing, and static analysis. Wiegers (1995) 

recommended inspections as a way to identify module interface errors, excessive 

complexity, unnecessary functionality, and badly structured code, but reflected that 

inspections were poor at identifying performance problems.

Ten years after his seminal introduction, Fagan (1986) reflected on the growth of 

software inspection. Companies expanded inspection beyond its initial focus on code 

quality to assess freedom from defects after deployment, ease of installation, 

documentation, portability, maintainability and extensibility, and fitness for use (Fagan, 

1986). Nielsen (1994) surveyed seven software-inspection-inspired empirical methods for 

assessing the usability of graphical user interfaces. Biffl (2000) studied the impact of 

inspections on developers’ estimates and found that inspections led to more accurate 

future estimates.

©2010 Randy Souza



Literature review 4

Benefits of code review.

The benefits of software inspection are covered by research in two different 

settings. In industry, inspection research analyzed the impact of inspections on quality 

and productivity. In academia, inspections were studied as teaching tools. Glass (1999) 

stated that “inspections, by all accounts, do a better job of error-removal than any 

competing technology (that is, inspections tend to find more errors), and they do it at 

lower cost” (p. 17).

Measuring software quality is a hard problem, impacted by intertwined variables 

including developer ability, technology choice, requirements quality, design quality, and 

code quality (Kemerer & Paulk, 2009). Inspections, specifically code reviews, have been 

shown to increase software quality in multiple ways. Code review was initially presented 

as a way to remove defects, reduce costs, and increase productivity (Fagan, 1976). In 

empirical studies, code review reduced defects—described as any requirements not 

satisfied when a project moves between phases—by 60% to 90% (Fagan, 1986; Tyran & 

George, 2002). Fagan (1976) associated a 38% reduction in production errors with code 

review. Rombach et al. (2008) reported that inspections were characteristic of successful 

software organizations, which mandated code review, used well-defined review 

techniques, had an internal inspection champion, and trained developers in inspection.

Code review reduced costs by finding defects early in the development process, 

when they required less time to fix (Fagan, 1976). Fagan (1976) associated a 25% savings 

in programmer resources with code reviews. Hewlett-Packard credited code review with 

cost savings of $21 million (Johnson, 1998). In a longitudinal study, NASA’s Jet 

Propulsion Laboratory estimated $25,000 savings per code review session (Tyran & 

©2010 Randy Souza



Literature review 5

George, 2002).

Programmers also benefited from code reviews. Fagan (1976) saw a 23% increase 

in programmer productivity due to the early detection of defects through code review. 

Code reviews improved productivity through “feed-forward,” preparing testers and 

maintenance programmers for the types of defects a program may include (Fagan, 1986). 

Within an organization, participants learned about different products by reviewing code 

for those products (Fagan, 1976). Participants in code review sessions experienced 

educational benefits, learning alternative solutions to problems that other reviewers had 

solved in different ways (Trytten, 2005; Tyran & George, 2002). Johnson (1998) 

suggested occasionally reviewing high-quality code to take advantage of the learning 

benefit that inspections provided.

Recent advances in development tools and methodologies shifted the focus of 

code review studies from defect reduction to maintainability. New tools, like integrated 

development environments, and language features, like static typing, eliminated entire 

classes of bugs that inspections once caught, limiting the ROI of reviews by reducing the 

number of defects to find (Siy & Votta, 2001). Researchers began to investigate the 

impact of refactoring—improving the structure of code without changing the observable 

behavior (Mäntylä & Lassenius, 2006). Mäntylä and Lassenius (2009) suggested dividing 

defects found in code reviews into two classes: Functional defects, which caused the code 

to fail, and evolvability defects, which made the code less compliant with standards, more 

error prone, or harder to understand and change. Despite the early focus on functional 

defects (Fagan, 1976; Fagan, 1986), later code review research showed that the majority 

of defects uncovered in inspections were evolvability defects (Mäntylä & Lassenius, 

©2010 Randy Souza



Literature review 6

2009; Siy & Votta, 2001). Mäntylä and Lassenius (2009) suggested that evolvability 

defects were more important for companies that develop in-house or commercial 

software, due to costs associated with ongoing maintenance of the code base. Siy and 

Votta (2001) associated the increased attention on evolvability defects with a change from 

immediate cost savings to future cost savings as the basic framework for evaluating the 

value of reviews.

In academia, code review was shown to improve learning outcomes in 

introductory programming classes, where students who reviewed other students’ 

assignments received significantly higher grades (Hundhausen, Agrawal, & Ryan, 2010; 

Reily, Finnerty, & Terveen, 2009). Turner, Quintana-Castillo, Pérez-Quiñones, and 

Edwards (2008) reported that code review helped teach complex, abstract concepts by 

engaging students in evaluation—one of the highest level skills in Bloom’s taxonomy of 

learning. The cooperative nature of code review led to more active learning in a study by 

Wang, Li, Collins, and Liu (2008). Trytten (2005) used academic code review to build 

teamwork skills and give students industrial experience. This approach was extended by 

Hundhausen, Agrawal, Fairbrother, and Trevisan (2009) to support a studio-based course 

that required students to apply industrial code review.

Limitations of code review.

Despite near-universal acknowledgment that code review is valuable, 

development teams reported limited adoption (Denger & Shull, 2007; Glass, 1999; 

Johnson, 1994). Denger and Shull (2007) reported that programming teams that avoided 

or abandoned inspections experienced difficulty connecting review results to quality in 

shipping products, mismatches between assumptions in review techniques and team 

©2010 Randy Souza



Literature review 7

expertise, and an unclear relationship between reviews and day-to-day work 

responsibilities. Rombach et al. (2008) found that even among organizations that had 

adopted software inspection, reviews were not done in all development phases—for 

example, only 30% of companies did code reviews. Transaction costs—money, schedule 

time, and programmer motivation lost due to the effort required to prepare, schedule, and 

conduct inspections—further limited the adoption of code review (Iisakka & Tervonen, 

2001; Trytten, 2005; Tyran & George, 2002). 

Social dynamics also affected the impact of code reviews. To paraphrase Trytten 

(2005), “group” does not imply “team.” Tyran and George (2002) concluded that 

problems related to group dynamics were evident in code review teams: Inspections 

suffered from dominant behavior by some members, sidetracking during face-to-face 

meetings, information overload when review scope was large, and participants forgetting 

or neglecting to raise issues. Johnson (1994) reported similar problems, including 

insufficient preparation by reviewers, domination of meetings by moderators, digression 

during meetings, and ego and personality conflicts. Group dynamics also led to social 

loafing, a phenomenon where people work less diligently in a group than they would 

individually (Trytten, 2005). While Trytten’s (2005) report focused on academic code 

reviews, Iisakka and Tervonen (2001) described social loafing in industry: Authors were 

frustrated when reviewers did not prepare adequately and reviewers were frustrated when 

authors did not follow up on suggestions. Inspections of all types are inherently 

criticisms, so review teams needed to accommodate power imbalances between reviewers 

and authors, particularly when authors expressed a sense of ownership over the code 

(Iisakka & Tervonen, 2001).

©2010 Randy Souza



Literature review 8

Johnson (1998) associated low adoption of code review in industry with failure to 

embrace changes in technology (the emergence of the Web), organization (distributed 

development), and research (computer supported cooperative work). To address these 

limitations, Johnson (1998) proposed:

1. Integration of inspection and development processes to connect reviews with day-

to-day work;

2. Asynchronous review in place of formal meetings to reduce waste associated with 

meetings and allow more frequent reviews;

3. Emphasizing learning over defect detection to build programmer skills and 

preclude repeat defects;

4. Creation of organization-wide review knowledge bases to streamline inspection;

5. Outsourcing review to consultants who teach the development team best 

practices;

6. Computer mediation to reduce overhead and support analysis and reflection;

7. Increasing the number of reviewers per project to improve coverage.

Evolution of the code review process.

When and how to review code has received more research attention than any 

other topic. Kemerer and Paulk (2009) reported that there is no consensus on the optimal 

timing for reviews, though Laitenberger and DeBaud (2001) demonstrated and 

recommended opportunities for review throughout the software development life cycle. 

Porter, Siy, Mockus, and Votta (1998) showed that more material in a review yielded 

more net defects found. Certain functional types (e.g., a parser versus a symbol table in a 

compiler) were more likely to contain defects, and therefore more important to review, 

©2010 Randy Souza



Literature review 9

than others (Porter, Siy, Mockus, & Votta, 1998).

Fagan (1976; 1986) described six stages for any review.

1. During the planning stage the code author collected the material to be reviewed, 

ensured that the material was ready to inspect, selected participants, and 

determined a location and time for the review (Fagan, 1976).

2. In the overview stage the author assigned roles, shared the goals of the inspection, 

and identified the portions of the material under review (Fagan, 1976).

3. During the preparation stage reviewers read the material to become familiar with 

the code, but were discouraged from looking for defects (Fagan, 1976).

4. During the inspection stage the team held a face-to-face meeting to step through 

the code, identify defects, and classify defects by type and severity (Fagan, 1976). 

Fagan (1986) cautioned against determining solutions during this meeting.

5. In the rework stage, the code author evaluated the list of defects and made repairs 

(Fagan, 1976).

6. Finally, during the follow up stage, the author verified the rework with the 

original review team (Fagan, 1976).

Subsequent research on the code review process included most or all of Fagan’s stages, 

but generalized them into preparation (Fagan’s planning through preparation stages), 

collection (Fagan’s inspection stage), and repair (Fagan’s rework and follow up stages) 

(Porter, Siy, Mockus, & Votta, 1998). Sauer, Ross, Land, and Yetton (2000) refined the 

common code review process, suggesting a discovery stage conducted by multiple 

independent expert reviewers, a collection stage conducted by only the author, and a 

discrimination stage conducted by an expert pair of reviewers. Defects were identified in 

©2010 Randy Souza



Literature review 10

the discovery stage, collected in the collection stage, and assessed in the discrimination 

stage (Sauer, Ross, Land, & Yetton, 2000).

Tailoring the inspection process was proposed as a way to introduce code review 

to a development organization or to revive waning interest in reviews (Denger & Shull, 

2007). Rather than relying on prescribed preparation, collection, report steps, TAQtIC 

(Tailoring Approach for Quality-Driven Inspections) was “highly customizable, so the 

resulting inspection techniques best fit current context characteristics, are integrated with 

other development activities, and focus clearly on improving final-product qualities” 

(Denger & Shull, 2007, pp. 79-80). Teams that implemented TAQtIC found more high-

priority defects and experienced greater programmer acceptance of inspections (Denger 

& Shull, 2007).

A constant in the preparation stage was the identification of roles. Three roles are 

common throughout the literature: The code author(s), the reviewer(s), and a meeting or 

review moderator. Less common inspection roles included tester (Fagan, 1976), designer 

(Fagan, 1976), producer (Stein, Riedl, Harner, & Mashayekhi, 1997), and recorder 

(Wiegers, 1995). Fagan (1986) called the moderator the most critical role, and 

characterized the ideal moderator as a player-coach throughout the inspection process. 

Mäntylä and Lassenius (2009) reported that certain classes of errors were only found by 

experienced reviewers. Sauer, Ross, Land, and Yetton (2000) suggested that development 

organizations could improve code review output by selecting expert reviewers for 

inspection teams, training reviewers, providing review aids to build experience, and 

growing inspection groups until performance began to decline.

Sauer, Ross, Land, and Yetton (2000) applied the behavioral theory of group 

©2010 Randy Souza



Literature review 11

performance to code review roles. The behavioral theory of group performance suggested 

that group effectiveness would be determined by the cumulative experience of the 

participants (Sauer, Ross, Land, & Yetton, 2000). This hypothesis was supported, leading 

Sauer, Ross, Land, and Yetton (2000) to conclude that individual expertise was the most 

important factor impacting review effectiveness. Similar findings were reported by 

Porter, Siy, Mockus and Votta, (1998) and Mäntylä and Lassenius (2009). Sauer, Ross, 

Land, and Yetton (2000) identified plurality effects in inspections: When a majority of 

participants agreed on a defect, that defect was included in the review report. Without a 

majority, agreement from two participants sufficed to identify a defect as important 

(Sauer, Ross, Land, and Yetton, 2000).

Contrary to early guidelines (e.g., Fagan, 1976), Votta (1993) found that in the 

collection stage asynchronous reviews, where reviewers independently identified defects 

and communicated them to the author, were at least as effective as synchronous meetings. 

Votta (1993) concluded that the transaction costs incurred while scheduling meetings 

made asynchronous inspection meetings more valuable than face-to-face meetings. 

Perpich, Perry, Porter, Votta, and Wade (1997) also recommended asynchronous reviews 

to ameliorate schedule bottlenecks, which were found to be worse in large teams and 

when geographical and temporal distance increased (significant time differences between 

teams made synchronous review meetings impractical). Perpich, Perry, Porter, Votta, and 

Wade (1997) suggested that asynchronous reviews were effective because they did not 

disrupt existing workflows, which made them appealing to developers and reduced 

transaction costs. Kelly and Shepard (2003) investigated individual versus group 

inspection techniques, and found minimally significant gains from face-to-face meetings. 

©2010 Randy Souza



Literature review 12

However, distinct findings uncovered during face-to-face meetings were classified as 

easy to identify, which further limited the value of face-to-face review (Kelly & Shepard, 

2003). Kelly and Shepard (2003) concluded that an author reviewing findings 

individually may be as effective as the author reviewing findings in a group, echoing the 

conclusions of Votta (1993). Votta (1993) and Sauer, Ross, Land, and Yetton (2000) 

reported that the primary benefit of a face-to-face inspection meeting was reduction of 

false positive defects.

The impact of developer skill on code review.

Changes to the code review process, such as the stages used, or a synchronous 

versus asynchronous collection stage, were shown to have minimal impact on defect 

detection rates (Porter, Siy, Mockus, & Votta, 1998). Porter, Siy, Mockus, and Votta 

(1998) concluded that improvements to reviewer skills and defect detection techniques 

had a greater impact on efficiency than process changes. Porter, Siy, Mockus, and Votta 

(1998) argued that reviewers had such a strong influence on inspection effectiveness that 

identification of reviewer skill should become an element of software team management. 

Reviewer skill was related to experience conducting reviews and to programmer training 

(Fagan, 1976; Porter, Siy, Mockus, & Votta, 1998; Sauer, Ross, Land, & Yetton, 2000). 

Devito Da Cunha and Greathead (2007) characterized different programming phases as 

requiring different activities, where each activity required different skills. A 10:1 

difference in skill between programmers was found in certain tasks (Devito Da Cunha & 

Greathead, 2007). Skill variance in code reviews was investigated by Kemerer and Paulk 

(2009), who reported that code review ability did not correlate with programming ability, 

but that reviewer effectiveness was a function of reviewer experience, the technology 

©2010 Randy Souza



Literature review 13

used in the review, and the effort expended by the developer. Similarly, Uwano, Monden, 

and Matsumoto (2008) found that code review ability did not correlate with design 

review ability, and vice versa.

Despite the rich collection of literature studying code review, sociological aspects 

such as programmer learning and development have received little attention (Iisakka & 

Tervonen, 2001). In an investigation of qualitative aspects of code review, Kelly and 

Shepard (2002) reported that “observations suggest that the success of inspections, both 

traditional and non-traditional, is influenced strongly by soft issues” (p. 7). According to 

Kelly and Shepard (2002), reviewer behavior was difficult to shape, and experienced 

reviewers tended to use their own familiar inspection techniques, even when told to use a 

structured technique in an academic setting. Given these behavioral observations, Kelly 

and Shepard (2002) suggested a set of people-centric maxims that may serve as 

guidelines for code review:

1. Specify the goals of the inspection, defining terms and indicating what is being 

reviewed and what type of feedback is desired.

2. Identify tradeoffs in reviewer skills, such as domain expertise versus 

implementation language expertise.

3. Clean up the product to be inspected. Automated tools may fix style issues that 

can distract reviewers from functional defects.

4. Use a structured inspection technique.

5. Build a process based on inspections. The infrastructure available must identify 

goals, timing, and participants for an inspection.

6. Give inspectors responsibility and authority. Make the author available to 

©2010 Randy Souza



Literature review 14

reviewers. Divide code among reviewers to foster a sense of ownership.

7. Ensure that inspectors have the time to inspect. Schedules must accommodate 

inspections.

8. Use metrics cautiously when assessing the effectiveness of an inspection activity. 

Metrics may be skewed by inconsistent definitions of defects, inconsistent 

granularity between reviewers, variations in the severity of defects, and 

disagreement over whether a finding is a defect.

Code reading techniques.

To accommodate varying skill levels among programmers, researchers have 

proposed and evaluated multiple defect detection techniques. Deimel (1985) was one of 

the first to suggest that program reading be included in the set of skills that programmers 

are taught. Deimel (1985) identified a range of types of program reading, including 

technical literature, new programming languages, previously written code, teammates’ 

code, and new code. Basili (1997) pointed out that reading precedes writing in natural 

language acquisition, but that programmers are taught first to write code and then, if at 

all, to read code. Basili (1997) suggested that effective code reading required that the 

reader understood that code reading is effective and that the reader used a sufficiently 

well-defined reading technique.

In an eye-tracking study that investigated code reading technique, Uwano, 

Nakamura, Monden, and Matsumoto (2006) discovered a relationship between reviewer 

ability and review rate. Eye scan patterns were correlated with cognitive effort—more 

effective reviewers took more time to scan the code and then back-tracked to identify 

defects (Uwano, Nakamura, Monden, & Matsumoto, 2006). Less effective reviewers 

©2010 Randy Souza



Literature review 15

skipped or shortened the scan period, and started looking for defects right away (Uwano, 

Nakamura, Monden, & Matsumoto, 2006).

Rombach et al. (2008) found that 40% of companies primarily used ad-hoc code 

reading: Reviewers read code without using any specific reading guidelines. Ad-hoc 

reading was described as popular, but ineffective unless reviewers were highly 

experienced (Laitenberger & DeBaud, 2001).

Aside from ad-hoc reading, checklist-based reading was the most popular 

technique reported by Rombach et al. (2008). Checklist-based reading was prescribed by 

Fagan (1986) as a way to guide reviewers in what to look for during an inspection. 

Parnin, Görg, and Nnadi (2008) expanded this definition to include guidance on how to 

classify defects. In-house coding standards—a specific type of checklist including rules 

for code structure and definitions of common terms—were identified by Kelly and 

Shepard (2002) as a way to review house style. Checklist-based reading was criticized as 

either too fine-grained to catch design defects or too course-grained to catch detailed 

statement-level bugs (Kelly & Shepard, 2002). Kelly and Shepard (2002) also pointed out 

that checklist-based reading risked causing tunnel vision in developers, who only 

reported defects included on the checklist. Laitenberger and DeBaud (2001) claimed that 

checklists lacked adequate context, as they could only be based on past projects and 

could not help programmers understand current code.

Reading by stepwise abstraction was highlighted by Deimel (1985), who 

suggested that to totally comprehend a program an inspector had to understand it at 

multiple levels of abstraction. In reading by stepwise abstraction, the inspector read a 

sequence of code statements, abstracted the function those statements provided, and 

©2010 Randy Souza



Literature review 16

repeated the process until the entire program had been abstracted (Basili, 1997). At this 

point the abstracted view of the program was compared with the requirements, and 

deviations were flagged as defects (Basili, 1997). Reading by stepwise abstraction was 

shown to be a challenging technique to learn, as programmers had to build different 

reading skills for different levels of analysis (Deimel, 1985). Kelly and Shepard (2002) 

reported a similar challenge with task-directed inspection, which increased reviewer 

effectiveness but to a degree that was highly dependent on reviewer experience.

Scenario-based reading was introduced as a meta-technique that applied different 

reading techniques to different project scenarios (Basili, 1997). A reading technique could 

be selected by assessing the project across dimensions including:

• The goals of the review, for example, to find bugs, to understand performance, or 

to evaluate maintainability;

• The context of the review, for example, the project phase or the availability of 

certain inspectors;

• The type of input under review, for example, code, requirements, or tests;

• The type of output desired;

• The degree of rigor required;

• The perspective of the reviewer;

• Qualities of the product, for example, the age of the code or level of test coverage;

• Qualities of the overall process, such as reviewer training (Basili, 1997).

Scenario-based reading suggested that there was no single definition of quality 

(Basili, 1997). This position was adopted separately by Basili et al. (1996) and 

Laitenberger and DeBaud (2001) in discussions of perspective-based reading. 

©2010 Randy Souza



Literature review 17

Perspective-based reading accepted that in the absence of a single definition of quality 

code should be reviewed from various points of view (Basili et al., 1996). In perspective-

based reading the author defined a perspective for each inspector, such as tester, designer, 

or user (Laitenberger & DeBaud, 2001). A suite of guidelines was distributed for each 

perspective, and reviewers scoped their comments to those guidelines (Laitenberger & 

DeBaud, 2001). Perspective-based reading resulted in more in-depth analysis because 

each reviewer could focus on a narrower view of the code (Basili et al., 1996). 

Perspective-based reading increased motivation among readers by reducing perceived 

duplication of effort: Each reviewer was unlikely to overlap another reader’s findings 

(Denger & Shull, 2007). However, perspective-based reading required larger review 

teams to ensure adequate coverage (Basili et al., 1996).

Thelin, Runeson, and Wohlin (2003) expanded on the user role in perspective-

based reading in their description of usage-based reading. Usage-based reading took a set 

of use cases as the starting point, and asked reviewers to focus on defects that had the 

most negative impact on end users’ perceptions of product quality (Thelin, Runeson, & 

Wohlin, 2003). In inspections of requirements, Thelin, Runeson, and Wohlin (2003) 

found that usage-based reading found more defects more quickly than checklist-based 

inspection of the same documents. For code review, checklist-based reading found more 

low-level defects than usage-based reading, in part because checklists worked at a low 

level of abstraction (Deimel, 1985; Thelin, Runeson, & Wohlin, 2003).

Pair programming has been classified as a reading technique, in the sense that it is 

a real-time review of newly-written code (Williams & Kessler, 2000). Evaluations of pair 

programming have shown benefits similar to code review—higher efficiency and higher 

©2010 Randy Souza



Literature review 18

quality (Williams & Kessler, 2000). The real-time code review provided by the observer 

on a pair programming team was classified by Williams and Kessler (2000) as one of the 

key elements in the success of pair programming.

Code review tools.

Two of the most frequently cited findings from the code review literature are that 

asynchronous and synchronous reviews are at least equally effective (Votta, 1993), and 

that reviewer skills and techniques have a greater impact on success than changes to the 

review process (Porter, Siy, Mockus, & Votta, 1998). These findings, combined with the 

emergence of networked communications platforms and increasingly distributed 

programming teams, have led to the development of software tools to support code 

review. These tools include research projects, commercial products (for example, Smart 

Bear Software Code Collaborator or Atlassian Crucible), and open source applications 

(for example, Codestriker, Review Board, or Rietveld). This section reviews tools 

documented in scholarly literature.

ICICLE (Intelligent Code Inspection Environment in a C Language Environment) 

used groupware technology to enhance defect collection and review meetings in a process 

following Fagan’s (1976) guidelines (Brothers, Sembugamoorthy, & Muller, 1990). 

ICICLE integrated static analysis tools to help reviewers find routine errors, a shared 

code window to focus review meetings, and shared comment proposal dialog boxes to 

support group-wide acceptance of issues (Brothers, Sembugamoorthy, & Muller, 1990). 

Brothers, Sembugamoorthy, and Muller (1990) reported that programmers altered their 

review practice by using ICICLE’s static analysis feature to refine code before submitting 

it for review.

©2010 Randy Souza



Literature review 19

CSRS (Collaborative Software Review System) was designed to address 

problems that made it “difficult to effectively carry out review . . . and difficult to 

measure the process and products of review in such a manner as to understand review, 

compare review experiences across organizations, and improve the process” (Johnson, 

1994, p. 115). CSRS used hypertext to link between review artifacts, integrate checklists, 

store issues, suggestions, and comments, and collect votes on which defects should be 

fixed (Johnson, 1994). Reviewers were able to mark artifacts as reviewed, which gave 

authors visibility into review progress (Johnson, 1994). CSRS was instrumented with 

activity and result reports to help development teams reflect on inspection activity 

(Johnson, 1994).

Perpich, Perry, Porter, Votta, and Wade (1997) studied use of an intranet to 

support asynchronous code review. The tool centered on two artifacts: An inspection 

package and email notifications (Perpich, Perry, Porter, Votta, & Wade, 1997). The 

inspection package included the status of the review, diff-annotated source code, and 

general or line-specific annotations (Perpich, Perry, Porter, Votta, & Wade, 1997). The 

inspection package was created by the code author and updated by reviewers (Perpich, 

Perry, Porter, Votta, & Wade, 1997). Email notifications were used to inform participants 

of status changes, such as the availability of an inspection package (Perpich, Perry, 

Porter, Votta, & Wade, 1997). A feature that differentiated the approach studied by 

Perpich, Perry, Porter, Votta, and Wade (1997) from subsequent tools was the 

preservation of the moderator role independent of the author role. In Perpich, Perry, 

Porter, Votta, and Wade’s (1997) study the moderator validated the author’s repair plans 

for each defect, and was the only participant who could mark a review complete, ensuring 

©2010 Randy Souza



Literature review 20

that all inspectors’ comments received attention from the author.

Stein, Riedl, Harner, and Mashayekhi (1997) invented AISA (Asynchronous 

Inspector of Software Artifacts), a Web-based code review tool. Like the intranet tool 

described by Perpich, Perry, Porter, Votta, and Wade (1997), AISA used email to 

synchronize communication between review participants. AISA included design elements 

intended to preserve positive elements of face-to-face inspection meetings (Stein, Riedl, 

Harner, & Mashayekhi, 1997). Group decision support features allowed the team to 

preserve consensus—the feeling that decisions were made and agreed on collaboratively

—and coordination—participants felt that there was a clear process to the inspection 

(Stein, Riedl, Harner, & Mashayekhi, 1997). Communication tools preserved values 

associated with face-to-face coordination, such as sustainable trains of thought and serial 

discussions between participants (Stein, Riedl, Harner, & Mashayekhi, 1997). A shared 

information space preserved visual cues and provided an inspection history (Stein, Riedl, 

Harner, & Mashayekhi, 1997). To encourage group decisions, participants were required 

to vote on each others’ contributions; this feature was found to be cumbersome and 

unnecessary (Stein, Riedl, Harner, & Mashayekhi, 1997). Stein, Riedl, Harner, and 

Mashayekhi (1997) found that the extended time frame provided by AISA reviews led to 

deeper comments between participants, including rebuttals, examples, and citations.

Laitenberger and Dreyer (1998) investigated the perceived ease of use and 

usefulness of a Web-based Inspection Process Support tool (WIPS). WIPS supported the 

defect collection stage of an inspection by allowing reviewers to enter and classify 

defects (Laitenberger & Dreyer, 1998). During the review meeting, WIPS allowed 

participants to add, combine, and accept defects (Laitenberger & Dreyer, 1998). 

©2010 Randy Souza



Literature review 21

Laitenberger and Dreyer (1998) evaluated WIPS with a questionnaire that assessed ease 

of use and usefulness; reviewers found WIPS easy to use and preferable to paper forms.

Tyran and George (2002) applied group support system technology as a mediating 

tool in face-to-face review meetings. In an experimental setting, some standard inspection 

meetings were augmented with chat windows to provide parallel conversation and a 

scrolling window of inspection results to provide group memory (Tyran & George, 2002). 

Control meetings inspected the same code but did not use the group support tools (Tyran 

& George, 2002). Tyran and George (2002) found that the supporting tools minimized 

some common meeting problems, like dominant behavior and sidetracking. Additionally, 

groups using the support tools reported more defects in the code they reviewed, but felt 

more information overload, and were subjectively less satisfied with the experience 

(Tyran & George, 2002).

Parnin, Görg, and Nnadi (2008) explored automated code inspection tools as a 

complement to code review. These tools proved useful for assessing design and code 

quality, in particular for maintainability defects that were overlooked by human 

inspectors focused on functional defects (Parnin, Görg, & Nnadi, 2008). However, 

automated inspection tools generated long lists of potential problems, most of which were 

false positives (Parnin, Görg, & Nnadi, 2008). To address the false positive issue, Parnin, 

Görg, and Nnadi (2008) designed a series of lightweight visualizations meant to provide 

additional information about defect warnings. The visualizations helped authors decide at 

a glance when a warning was likely to be a false positive, which sections of code had the 

most relevant warnings, and how warnings were spread throughout the code under review 

(Parnin, Görg, & Nnadi, 2008). While Parnin, Görg, and Nnadi (2008) did not apply their 

©2010 Randy Souza



Literature review 22

visualizations to defect lists generated by human code reviews, they also did not provide 

any evidence that this would be challenging.

Meyer (2008) provided an experience report of code review distributed across a 

worldwide programming language team. Rather than implementing a code-review-

focused tool, the team used a combination of collaboration tools to successfully replicate 

face-to-face review sessions (Meyer, 2008). Voice over IP telephony was used to 

communicate in real-time, chat filled in when participants could not connect or desired a 

side conversation, and a shared document repository and wiki allowed asynchronous 

review and documentation of inspection findings (Meyer, 2008).

Hedberg (2004) found that no code review tool had broken through in practical or 

research use. Tool research was criticized for not following advances in reading 

techniques, not supporting non-text artifacts, and focusing myopically on a single feature 

or theory (Hedberg, 2004). Hedberg (2004) classified code review tools into four 

generations, then proposed a set of guidelines for a new generation of tools that 

incorporated flexibility and integration across artifacts, process, and results. These 

“comprehensive tools” (Hedberg, 2004, p. 241) should support:

• Inspection of multiple artifact formats, including text and graphics, stored in 

multiple repository types, including file systems and source code control;

• Asynchronous or synchronous process, including integration with project 

management tools;

• Multifaceted results, including the severity, type, and resolution of defects 

(Hedberg, 2004).

©2010 Randy Souza



Literature review 23

Summary.

Software development research has explored increasing tension between 

emerging agile techniques and established engineering-driven methodologies (Beck, 

2004). Code review research has engaged this tension: Fagan’s (1976, 1986) pioneering 

research reported significant value from inspections but prescribed a formalized, 

standards-based process that organizations struggled to implement. Johnson (1998) and 

Glass (1999) separately challenged practitioners to reengineer inspections by 

emphasizing developer skills, embracing asynchronous activity, and integrating 

computer-mediated review tools. Multiple authors produced code review tools, but no 

tool achieved wide adoption (Hedberg, 2004). While context may play a critical role in 

successfully integrating code review into a development organization, few studies have 

addressed context in inspection practice (Denger & Shull, 2007). Design of new code 

review tools should address social, behavioral, and contextual factors (Iisakka & 

Tervonen, 2001; Kelly & Shepard, 2002; Denger & Shull, 2007).

Human-Computer Interaction and the Challenge of Context

Exploration of social, behavioral, and contextual issues in technology design is an 

ongoing theme in human-computer interaction (HCI) research. HCI research engaging 

the challenge of context in technology design and use emerged in three cycles: From 

human factors to human actors, from usability to user experience, and from user-centered 

design to activity-centered design.

From human factors to human actors.

This section takes its title from Bannon’s (1991) widely-cited article, which 

criticized the then-dominant information processing model of HCI. HCI research evolved 

©2010 Randy Souza



Literature review 24

from two precedents: A psychological program with roots in ergonomics and human 

factors studies during and after World War II, and work research dating to Taylor’s 

scientific management (Kuutti, 1999). Researchers embraced cognitive psychology as a 

way to harden the science behind HCI, partly to counterbalance the dominance of 

computer science in information technology research and practice (Newell & Card, 

1985).

Newell and Card (1985) attempted to develop an engineering-style theory that 

would support task analysis through calculation and formal models. This theory 

supported technology design with symbolic representations and mathematical models of 

users’ tasks (Newell & Card, 1985). This line of research resulted in multiple information 

processing models, including the Model Human Processor (Card, Moran, & Newell, 

1983), GOMS (Card, Moran, & Newell, 1983), the Keystroke-Level Model (Card, 

Moran, & Newell, 1983), ACT* (Newell & Card, 1985) and applications of Fitt’s and 

Hicks’ Laws (Raskin, 2000). Some of these models proved useful in specific design 

situations—Carroll (1997) reported that GOMS was effective when performance 

efficiency was critical to usability. Raskin (2000) recommended four quantitative 

methods, including GOMS and Fitt’s Law, for analyzing a user interface.

Bannon (1991) argued that the information processing model of HCI had not 

proven effective for practical design. Bannon (1991) pointed out that terminology can 

give insight into a discipline, and that the terms used in the information processing model 

belied human goals and capabilities. For example, Bannon (1991) claimed that the term 

“users” neglected participation in work that reached beyond the bounds of the user 

interface, and that “human factors” reduced people to units of analysis equal to other 

©2010 Randy Souza



Literature review 25

components of the system, measured by attention, memory and processing speed. Bannon 

(1991) criticized the information processing model for de-emphasizing the role of context

—motivation, community, and setting—in favor of time consuming and costly laboratory 

studies.

Bannon (1991) did not prescribe an alternative to the information-processing 

paradigm, but recommended approaches that focused on human agency in relation to 

technology. Agency was described as “the ability to act and the need to act” by Kaptelinin 

and Nardi (2006), and as “the capability to make a difference” by Rose, Jones, and Truex 

(2005). In a study of ERP implementations, Rose, Jones, and Truex (2005) found that 

agency was critical, and that, contrary to the assumptions of information processing 

models, machine and human agency were intertwined, but not equivalent. In successful 

ERP projects, machines facilitated and constrained human behavior, but human intentions 

and actions—agency—shaped organizational success (Rose, Jones, & Truex, 2005).

From usability to user experience.

Elaborating on Bannon (1991), Carroll (1997) considered the evolution of HCI 

beyond cognitive psychology. Carroll (1997) characterized the growth of usability 

engineering as an evolutionary jump: Projects began to be managed toward explicit 

usability goals, users were involved throughout the design process, and the focus of 

design research moved from the laboratory to the field. Tools shifted from formal, 

rigorous modeling to discount usability testing and rapid prototyping (Carroll, 1997). 

Carroll (1997) described a second evolutionary step beyond usability engineering that 

involved increased focus on context—the wider design rationale behind a system. Design 

teams considered the discussions, debates, and tradeoffs that determined a design, and 

©2010 Randy Souza



Literature review 26

created design tools like contextual inquiry and user models (Carroll, 1997).

Hassenzahl and Tractinsky (2006) positioned the evolution described by Carroll 

(1997) as the emergence of user experience, which “gained momentum in recent years, 

mostly as a countermovement to the dominant, task- and work-related ‘usability’ 

paradigm” (p. 91). Hassenzahl and Tractinsky (2006) characterized user experience as 

practitioner-driven, and attempted to establish a research agenda focused on three 

principles. First, user experience research should advance beyond instrumental studies of 

bounded tasks to address deeper human needs, such as surprise, diversion, stimulation, 

evocation, and identification (Hassenzahl & Tractinsky, 2006). Second, researchers 

should consider the affective and emotional impact of user experience (Hassenzahl & 

Tractinsky, 2006). Finally, researchers should investigate user experiences across time, 

and address the situated nature of technology use (Hassenzahl & Tractinsky, 2006).

While Hassenzahl and Tractinsky (2006) encouraged designers and researchers to 

take a wider view of HCI, they questioned the scope of their own recommendation: “Can 

designers exert enough control over all relevant elements in a way that a positive 

experience becomes certain? Or do we rather ‘design for an experience’, that is, to take 

experiential aspects into account while designing, without being able to guarantee a 

particular experience” (p. 95).

From human-centered design to activity-centered design.

The field of user experience has earned a prominent place in design, but is not 

without its own challenges. One important challenge was voiced by Norman (2005), who 

pointed out that many organizations with strong user experience teams continued to ship 

complex and confusing products. Norman (2005) echoed Hassenzahl and Tractinsky’s 

©2010 Randy Souza



Literature review 27

(2006) concern that the field of user experience may be focused on an overly ambitious 

target. A design team that enjoyed deep understanding of users’ situations, motivations, 

and emotions was likely to produce good, but not great, design (Norman, 2005). Norman 

(2005) expressed concern that while user-experience-oriented designers were likely to 

have a rich user model, the model might lead to designs that serve one user over another 

or that do not accommodate advances in users’ skills, and that “too much attention to the 

needs of the users can lead to a lack of cohesion and added complexity in the design” (pp. 

16-17).

Activity Theory and Interaction Design

Successful interaction design requires consideration of human agency, context, 

and activity (Bannon, 1991; Norman, 2005). Activity theory satisfies these 

considerations, and has been applied as a theoretical foundation for interaction design. 

This section provides an overview of activity theory and discusses the role of activity 

theory in interaction design research.

Activity theory evolved within the Soviet school of cultural-historical psychology 

developed by Vygotsky and his followers, notably Luria and Leontiev (Kaptelinin & 

Nardi, 2006). Cultural-historical psychology was itself built upon Hegel’s and Marx’s 

explorations of dialectical materialism and the philosophical role of breakdowns and 

contradictions in society (Stetsenko, 2005; Vygotsky, 1978). This Marxist and Hegelian 

heritage supported a grounding principle in activity theory: That there is no separation 

between mind and behavior or between mind and society (Gay & Hembrooke, 2004). 

Beginning in the 1970s Soviet psychological research became more widely available 

outside of the U.S.S.R., and activity theory grew into an internationalized and 

©2010 Randy Souza



Literature review 28

multidisciplinary theory (Engeström, 1999). Scandinavian studies of work practice leaned 

heavily on ideas from activity theory (Engeström, 1999; Kuutti, 1999). Activity theory 

was conceptually linked with disciplines including ethnomethodology, pragmatism, and 

systems theory (Engeström, 1999), ecological psychology (Bærentsen & Trettvik, 2002; 

Gay & Hembrooke, 2004), phenomenology (Gay & Hembrooke, 2004), and distributed 

computing and actor-network theory (Kaptelinin & Nardi, 2006). Carroll (1997) 

positioned activity theory as potentially the most theoretically rich application of these 

disciplines to HCI: “Activity theory shifts attention from characterizing static and 

individual competencies toward characterizing how people can negotiate with the social 

and technological environment to solve problems and learn, which subsumes many of the 

issues of situated and distributed cognition” (p. 512).

Principles of activity theory.

Activity theorists applied the concept of human activity as the theory’s central 

explanatory idea (Engeström, 1999). Human activity in this context was defined as 

“doing in order to transform something” (Kuutti, 1996, p. 25). Stetsenko (2005) 

explained the conceptual impact of centering the theory on human activity: “In even 

broader terms, the development of the human mind is conceptualized as originating from 

practical transformative involvements of people with the world, and as a process that can 

be understood only by tracing its origination in these involvements and practices” (p. 74).

At the intrapersonal level, activity theory dealt with the relationship between 

subject (a human being) and object (Vygotsky, 1978). Object has been a challenging 

concept for activity theorists to explain and apply (Miettinen, 2005; Stetsenko, 2005). 

Leontiev introduced the idea of object-oriented activity as a way to explain motivation: 

©2010 Randy Souza



Literature review 29

“the object of an activity is its true motive” (Leontiev, 1978, p. 62, quoted in Miettinen, 

2005). Kuutti (1996) elaborated that transforming an object into an outcome—some 

visible transformation in the world or in the head—is what motivates the existence of an 

activity. According to Kuutti (1996) an object could be anything that may be shared for 

manipulation and transformation by participants in an activity; an object could be 

material, minimally tangible (such as a plan), or intangible (such as an idea). Kaptelinin, 

Nardi, and Macaulay (1999) pointed out that an object is not limited to something with 

physical, chemical, or biological properties—an object may be culturally or socially 

determined.

Vygotsky (1978) contended that object-oriented activity did not occur directly 

between the subject and object, but was mediated by artifacts—tools and signs. Vygotsky 

focused mainly on semiotic mediation—mediation through signs and symbols, 

principally spoken language (Wertsch, 2007). Vygotsky (1978) characterized signs and 

tools as analogous but not equal supporters of mediated activity, with tool-mediated 

activity externally-oriented and sign-mediated activity internally-oriented. For Vygotsky 

(1978), mediation allowed social and cultural activity to develop: “The use of signs leads 

humans to a specific structure of behavior that breaks away from biological development 

and creates new forms of a culturally-based psychological process” (p. 40). HCI research 

applying activity theory has concentrated on mediation by tools, though, as pointed out 

by Bødker (1996), artifacts may mediate activity but may also be the object of activity 

themselves. Bødker (1996) defined three roles that an artifact may play in object-oriented 

activity: The object may be the artifact (as in a spreadsheet), the object may be 

represented in the artifact, (as in a letter), or the object may be outside of the artifact (as 

©2010 Randy Souza



Literature review 30

in a control panel). In any of these cases, a mediating artifact “works well in our activity 

if it allows us to focus our attention on the real object and badly if it does not” (Bødker, 

1996, p. 149).

Kaptelinin and Nardi (2006) pointed out that subjects oriented toward objects at 

different levels in a hierarchical structure (Figure 1). At the highest level, the object 

represented a motive that fulfilled a conscious or unconscious need or desire, and 

generated an activity (Engeström, 1999; Wilson, 2006). These activities represented the 

central unit of analysis in activity theory, and explained the “why” behind a subject’s 

activity (Bødker, 1996). However, human activities were not generally enacted directly at 

their motive (Kaptelinin & Nardi, 2006). Instead, according to Kaptelinin and Nardi 

(2006), activities were composed of actions, which were directed at goals. Stetsenko 

(2005) differentiated between motives and goals, characterizing motives as socialized and 

goals as individualized. Yet Stetsenko (2005) also illustrated that, while different, goals 

and their motive did not exist separately, but constructed and transformed each other. 

Kuutti (1996) claimed that the same action may be different when performed as part of a 

different activity: For example, a manager may present the same report differently when 

delivering the report to her team versus when delivering the report to senior management. 

Just as one action could change in the context of different activities, Bardram (1997) 

contended that a single action could be polymotivated. A polymotivated action occurred 

when multiple activities that shared the same goal temporarily overlapped (Bardram, 

1997).

Just as activities were composed of actions, actions were composed of operations 

oriented toward the conditions surrounding an action (Engeström, 1999; Wilson, 2006). 

©2010 Randy Souza



Literature review 31

Kaptelinin and Nardi (2006) described operations as generally unconscious “routine 

processes providing an adjustment of an action to the ongoing situation” (p. 62). 

Kaptelinin and Nardi (2006) stated that an action could transition to an operation, and 

become routine, and a previously unconscious operation could become an action when 

conditions broke down or deviated from what was expected. This relationship between 

goals and conditions was described by Norman (1993) as reflective (conscious) versus 

experiential (unconscious) cognition.

The creators of activity theory used the concepts of internationalization and 

externalization of activity to describe human development (Kaptelinin & Nardi, 2006). 

Transformations between levels of activity represented one type of development 

(Engeström, 1999). Vygotsky (1978) described internalization as a broader developmental 

process resulting in the “internal reconstruction of an external operation” (p. 56). 

According to Vygotsky (1978), internalization was the result of a series of developmental 

events that occurred over a period of time, as a subject first performed an activity with 

external assistance from people and artifacts, then reconstructed the activity internally, 

©2010 Randy Souza

Source: Engeström, 1999; Kaptelinin & Nardi, 2006; Kuutti, 1996; Wilson, 2005

Figure 1: The hierarchical structure of activity

Determine

Results in

Generates

Composed of

Composed of

Motive Activity Why activity occurs

Goal Action What activity occurs

Conditions Operation How activity occurs



Literature review 32

and finally was able to perform the activity individually. Béguin and Rebardel (2000) 

characterized internalization as the process that results in development of expertise. The 

complement to internalization, externalization, was described as a gap in foundational 

activity theory research (Engeström, 1999; Stetsenko, 2005). Engeström (1999) described 

externalization as the development of new activities from breakdowns in existing 

activities. Béguin and Rebardel (2000) positioned externalization as a key creative 

process, where a search for solutions led to the invention of new artifacts to facilitate 

performance. In this sense, externalization as described in activity theory echoes 

Winograd and Flores’ (1986) phenomenological approach to HCI: “new design can be 

created and implemented only in the space that emerges in the recurrent structure of 

breakdown. A design constitutes an interpretation of breakdown and a committed attempt 

to anticipate future breakdowns” (p. 78).

Historicity was presented as an important but under-researched corollary to 

activity theory’s investigation of human development through internalization and 

externalization (Nardi, 2007). Engeström (1999) suggested that researchers identify 

historical cycles of an activity to understand the evolution of mediating artifacts around 

the activity. Quek and Shah (2004) saw the elicitation of historical activity as a strength 

of activity theory when applied to information systems development.

Collective activity and activity systems.

Vygotsky and his followers applied the principles that became activity theory as a 

socialized, cultural reaction to dualist psychology (Bakhurst, 2007). Engeström (1999) 

found that this led to a restrictive focus on individual activity, even if that activity was 

acknowledged as mediated by social and cultural artifacts. Engeström (1999) worried that 

©2010 Randy Souza



Literature review 33

without a collective dimension the true motive of activity could be masked:

The outcomes of my actions [preparing and presenting a speech] appear to 

be very limited and situation bound: a particular text, a momentary impact 

on the listeners. If this is all there is to gain, why did I bother to prepare 

the speech in the first place? Somehow, this level of representation hides 

or obscures the motive behind the actions. (p. 30)

To address this limitation, Engeström (1999) introduced the activity system as a model of 

collective activity and a way to connect individual actions to collective activity (Figure 

2). Engeström’s (1999) approach built upon the central activity theory model of a 

subject’s activity directed at an object and mediated by artifacts, and added concepts 

describing mediated collective activity. Rules mediated a subject’s relationships with the 

community and object-oriented activity through explicit or implicit norms, conventions, 

and relationships (Kuutti, 1996). Division of labor provided a way to describe the 

community’s organization with regard to an object (Kuutti, 1996). Kaptelinin and Nardi 

(2006) used division of labor to explain socially distributed behavior—the common 

situation where an individual’s actions are motivated by one object but directed toward 

another. In these cases the object was shared (but not necessarily identical), it drove and 

coordinated the actions of many people in an activity system (Miettinen, 2005). Miettinen 

(2005) described this phenomenon as “multi-motivated” activity: “Because an object of 

activity is complex and contradictory by its very nature, various individual aspirations, 

desires, and motives are attached to it and developed during its creation. In this sense, any 

collective activity is multi-motivated” (p. 64). Holland and Reeves (1996) described a 

variation of multi-motivated activity in an academic software project. Holland and 

©2010 Randy Souza



Literature review 34

Reeves (1996) assumed that student teams performing the same activity—development of 

a software system for a class grade—would share an object of their activity—the 

software program under development. However, Holland and Reeves (1996) found very 

different motives between different teams—one team’s object was the documentation 

associated with the project, while another team’s object was elegant software code.

The role of theory in interaction design.

Human-computer interaction and computer supported cooperative work were two 

of the first fields to incorporate activity theory into Western research (Kaptelinin & 

Nardi, 2006). Bødker (1996) identified activity theory as particularly useful to HCI 

because activity theory supported instrument-level analysis without sacrificing context. 

Kuutti (1999) positioned HCI research as a central part of a broader challenge: How to 

handle contextuality in work research. Kuutti (1999) claimed that information systems 

were a major force driving changes in work, and that “[t]he transforming of work needs 

new kinds of support and poses new problems. Old conceptual tools are inadequate for 

solving them, and the IS debate is searching for new frameworks for doing precisely 

©2010 Randy Souza

Source: Engeström, 1999

Figure 2: Engeström’s model of the activity system

Artifacts

Community Division of
labor

Rules

Subject Object Outcome



Literature review 35

that.” (p. 171). Kuutti (1999) suggested activity theory as a new conceptual tool, mapping 

activity theory concepts to new research problems in IS and HCI.

Halverson (2002) described four roles that theory may play in HCI research:

• In an applicable role theory informs and guides design decisions;

• In an inferential role theory helps make inferences and predictions;

• In a rhetorical role theory provides a structure for naming things and mapping 

names to the real word;

• In a descriptive role theory provides a conceptual framework for describing and 

making sense of the world.

Activity theory has been applied primarily in rhetorical and descriptive roles. For 

example, Matthews, Rattenbury, and Carter (2007) used activity theory to provide 

common terminology in their retrospective of the design process for peripheral displays 

in ubiquitous computing. Fewer studies have investigated activity theory in an applicable 

role, through, as Winograd (2006) argued, theories have great value in shaping the 

understanding that a designer brings to a problem. Norman (2005, 2006) pointed out the 

importance of these applicable theories, arguing that organizations with strong design 

teams but no theoretical grounding continued to ship poorly-designed products. Norman 

(2005) called for a new approach to design based upon a shift in designers’ theoretical 

orientation from people to activities.

HCI applications of activity theory.

Kuutti (1996) explored contributions that activity theory could make to HCI. 

First, activity theory showed that supporting work practices was more important than 

improving usability—people would adapt to bad UI design but would reject applications 

©2010 Randy Souza



Literature review 36

that did not allow them to satisfy their goals and motives (Kuutti, 1996). This argument 

was reiterated by Norman (2006), who tweaked his own epigraph from Things that Make  

Us Smart (“People Propose, Science Studies, Technology Conforms”, Norman, 1993, 

p.253)–stating “[n]one of this tools adapt to the people nonsense—people adapt to the 

tools” (p.15). Kuutti (1996) suggested that activity theory provided a social context for 

understanding HCI beyond individuals, a perspective that incorporated change and 

development over time, and ways to understand activity at technical, conceptual, and 

contextual levels.

Quek and Shah (2004) surveyed five activity-theory-based information system 

development methodologies. The majority of these methods focused on early stages of 

the development process, including domain analysis and requirements elicitation, and 

none covered the entire development life cycle (Quek & Shah, 2004). Multiple studies 

used activity theory principles like mediation and the hierarchical structure of activity to 

classify research data (Quek & Shah, 2004). Others used models based on activity theory, 

primarily Engeström’s model of the activity system, to structure research results (Quek & 

Shah, 2004). Quek and Shah (2004) criticized the research for failing to apply all of the 

principles of activity theory and for providing minimal validation of the development 

methodologies. In Wilson’s (2006) review of information systems studies and 

implementations, activity theory provided a deep understanding of the information needs 

and uses driving development projects.

Kaptelinin, Nardi, and Macaulay (1999) stated “[w]e see [activity theory’s] main 

potential in supporting researchers and designers in their own search for solutions, in 

particular, by helping them to ask meaningful questions” (p. 32). Kaptelinin, Nardi, and 

©2010 Randy Souza



Literature review 37

Macaulay (1999) introduced the activity checklist to help designers and researchers 

structure their search for solutions. The activity checklist was designed to make concrete 

the abstract principles of activity theory (Kaptelinin, Nardi, & Macaulay, 1999). 

Kaptelinin, Nardi, and Macaulay (1999) stated that because activity theory resists 

deconstruction—subjects, objects, artifacts, and sociocultural relationships must be 

considered as a whole—the activity checklist was meant to provide guidance on where 

researchers should focus their attention.

Barthelmess and Anderson (2002) applied activity theory to design of a software 

development environment. Activity theory was chosen as a way to contrast the personal 

nature of programming with the team-oriented nature of software development 

(Barthelmess & Anderson, 2002). The motivating object in Barthelmess and Anderson’s 

(2002) study was defined as an evolving software system; the research objective was 

defined as integration of rules and division of labor into a software development 

environment. Barthelmess and Anderson (2002) focused their design on collaboration 

support: Providing programmers with a way to modify a document, observe 

modifications by others, and discuss the modifications within a single tool. Activity 

theory aided in evaluation of design work, showing that the design broke down by failing 

to align the programmer community towards a common object (Barthelmess & Anderson, 

2002). Barthelmess and Anderson (2002) used activity theory to reflect on and improve 

the design process, an approach also employed by Collins, Shukla, and Redmiles (2002). 

Gay and Hembrooke (2004) similarly suggested activity theory as a tool for reflecting on 

the design process: “[d]esign is situated in a network of influencing social systems, and 

building any technological system is a socially constructed and negotiable process. By 

©2010 Randy Souza



Literature review 38

using an interpretive flexibility framework, developers can understand stakeholders’ 

various goals and apparent inconsistencies” (p. 28).

Halverson (2002) argued that a useful HCI theory required enough descriptive 

power to structure ethnographic research results. A number of studies used activity theory 

in ethnographic analysis. Bryant, Forte, and Bruckman (2005) conducted an activity-

theoretic ethnography of Wikipedia participation. Miettinen and Hasu (2002) analyzed 

the design and marketing of a new medical research device. Activity theory was used by 

Turner, Turner, and Horton (1999) to structure and organize ethnographic data for 

requirements definition in a software firm. Collins, Shukla, and Redmiles (2002) also 

used activity theory to generate requirements, but focused on classifying mediating 

artifacts used in customer support activities. Gay and Hembrooke (2004) applied activity 

theory in an ethnographic analysis of the role that laptops played in mediating college 

students’ collaborative learning activities.

Bærentsen and Trettvik (2002) repositioned the well-known HCI concept of 

affordance using activity theory. Norman (1999) expressed concern about misconceptions 

in the popular understanding of affordance within the HCI community. Bærentsen and 

Trettvik (2002) contended that these misunderstandings came from a conceptual 

framework that separated cognition from the physical and social world—in Gibson’s 

original definition an affordance only emerged when organisms were acting in the 

environment. Activity theory provided a way to clarify the concept:

In an activity theoretical approach to affordance we find that there are two 

kinds of use to be considered in artifacts; the possible uses and the 

intended use. These two uses are not independent but neither are they 

©2010 Randy Souza



Literature review 39

identical, and a lot of problems arise if one assumes that the intended use 

corresponds to the possible uses. The task of design is in many cases not 

to eliminate the possible uses, but rather make sure that the intended use is 

visible for the user. (Bærentsen & Trettvik, 2002, p. 59)

Engeström (1999) argued that contradictions—breakdowns in an activity system

—allowed the emergence of new, culturally evolved activities. Turner, Turner, and 

Horton (1999) used the concept of contradictions as a design tool for derivation of 

requirements from unstructured ethnographic field data. The research methodology 

reported by Turner, Turner, and Horton (1999) began with diagrams of the activity 

systems under review, and identified four types of contradiction. Primary contradictions 

were defined as breakdowns within a node of the activity system, for example, the subject 

or object (Turner, Turner, & Horton, 1999). Secondary contradictions represented 

breakdowns between two nodes, such as when a subject encountered usability problems 

in an artifact (Turner, Turner, & Horton, 1999). Tertiary contradictions emerged between 

an activity and a new culturally more evolved activity, such as the common resistance 

encountered when a new system was introduced into an organization (Turner, Turner, & 

Horton, 1999). Quaternary contradictions occurred between two concurrent activities, for 

example, when a team in a meeting attempted to juggle multiple subjects of conversation 

(Turner, Turner, & Horton, 1999).

Bødker (1996) also used activity theory to analyze video research data, 

highlighting focus shifts and breakdowns. For each video, Bødker (1996) identified the 

purpose of the activity and its associated actions, the objects of each activity, and 

switches between objects. When a shift occurred, Bødker (1996) looked for breakdowns 

©2010 Randy Souza



Literature review 40

and causes. Bødker (1996) concluded that “[b]reakdowns and focus shifts provide good 

pointers for understanding how an application mediates (or does not mediate) work 

activity. They are useful in identifying problems of mediation and in designing an 

application as well as understanding when it is brought into use” (p.172).

Reevaluation of code review research in an activity theory context.

No research that directly applied activity theory to code review was identified by 

this literature review. However, many software inspection studies revealed opportunities 

for interpretation from an activity theoretic perspective. Brothers, Sembugamoorthy, and 

Muller (1990) may be taken as an example of why a sociocultural analysis tool like 

activity theory may be useful. Brothers, Sembugamoorthy, and Muller (1990) intended to 

implement a tool to support code review without changing existing organizational 

processes, but found that “the new technological capabilities—which themselves had 

arisen out of a human process—had an impact back on that human process, changing its 

structure” (p.178). This is an apt description of how artifacts mediate activity in a 

dialectical relationship that leads to development and reshapes activity.

The nature of code review and the agenda of activity theory appear to suit each 

other. Code review is a highly individual activity that occurs within a network of social 

organizations, including code review teams, project teams, development departments, and 

corporations. A central concern of activity theory is linking historical activity with social 

structure (Nardi, 2007). Barthelmess and Anderson (2002) illustrated the importance of 

historical change in software development tools, specifically with regard to changes in 

programming languages and methodologies, and changes to the division of labor as 

programming evolved from an individual to a team activity.

©2010 Randy Souza



Literature review 41

Barthelmess and Anderson (2002) characterized software as a symbolic 

representation, a fundamentally intangible artifact. Following Kuutti’s (1996) 

characterization of objects of activity, software source code may be considered an 

immaterial object of inspection activity. Deimel (1985) argued that the meaning of a 

software program comes from (a) a narrative generated by the computational processes 

followed when the program executes, and (b) a narrative in natural language made up of, 

among other sources, comments, variable and method names, tests, and version control 

commit messages. The symbolic nature of a program means that widely different natural 

language representations can result in the same computational process (Deimel, 1985). 

From an activity theory perspective, this suggests that it is useful to evaluate source code 

and related annotations (like commit messages) as semiotic mediating artifacts. For 

example, a well-commented and well-named source code file may help a new team 

member internalize the structure of a system more quickly than a terse file.

Miettinen (2005) considered software an example of a collective object. 

According to Miettinen (2005), this meant that “individuals contribute with their different 

capabilities to the construction of object, and attach different expectations to it” (p. 65). 

Miettinen (2005) suggested that researchers consider how sociocultural rules and division 

of labor mediated activity toward a collective software object. For example, a 

programmer’s esteem in the community, connected to their personal and professional 

identity, was driven by contributions to community activity, which, in turn, were 

mediated by rules and division of labor (Miettinen, 2005).

Seaman and Basili (1998) also studied an aspect of code review that may be 

considered a mediating artifact or an object of activity: Information flow between 

©2010 Randy Souza



Literature review 42

developers. Seaman and Basili (1998) reported that information flow affected 

productivity and quality, which suggests that treating information flow as an object of 

activity may uncover opportunities for improvement. Seaman and Basili (1998) also 

reported that information flow is affected by factors including development process, 

organizational structure, organizational hierarchy, physical distance between team 

members, frequency of interaction between team members, and team experience working 

together. In this context, it could be useful to take collaborative software development as 

the object of activity and study the role that information flow plays in rules, division of 

labor, and subject-subject mediation.

Laitenberger and DeBaud (2001) contended that reading technique was the most 

important factor driving code reviewer effectiveness. However, reading techniques 

suffered breakdowns: Checklists, for example, were found to lack instructions, not 

include sufficiently specific questions, and cause tunnel vision in reviewers (Laitenberger 

& DeBaud, 2001). An activity theory approach might treat the checklists as artifacts 

mediating the subject-object relationship between a reviewer and the code under review, 

which could lead to analysis of breakdowns in the activity.

Vygotsky (1978) used the zone of proximal development to help explain the social 

nature of learning and development. A person inside the zone of proximal development 

learns more quickly by using other people as sources of knowledge (Vygotsky, 1978). 

Johnson (1998) recommended that teams review defects in inspection meetings and focus 

on good code as well as bad. The value of this approach may be partly explained by the 

zone of proximal development: In a code review with more experienced programmers, a 

developer can generate more advanced solutions than they could on their own.

©2010 Randy Souza



Research Project 43

Research Project

Background

The literature reviewed above suggests that code review is a valuable software 

development activity. However, adoption of code review by programming teams is 

limited by methodological guidelines that conflict with real-world practice and 

supporting artifacts that provide incomplete support for collaboration and learning. Code 

review research has not adequately addressed the social and behavioral context 

surrounding reviewers and authors.

Understanding the context surrounding technical activity is an ongoing subject of 

HCI research. Activity theory has potential as an orienting theory for HCI research and 

design that seeks to understand context. The central principles of activity theory have 

been applied as evaluation tools and as a framework for requirements analysis. Few 

studies applied activity theory late in the interaction design process, as requirements were 

translated into user interface concepts, prototypes, and implementations.

This research provides a case study applying activity theoretic concepts to the 

interaction design of a code review tool. The research was conducted in three phases: A 

series of contextual interviews with programmers, analysis of those interviews with 

activity theory models, and design of user interface components informed by activity 

theory principles.

Setting.

Research was conducted at an established medium-sized software company 

headquartered in the United States. The company has a large, worldwide development 

organization divided into multiple departments. The department studied creates and 

©2010 Randy Souza



Research Project 44

maintains a portfolio of Web-based products and online community, documentation, and 

support tools. The department staff consists of multiple teams of programmers, quality 

engineers, marketing professionals, program managers, and development managers. The 

department was created less than two years ago in a merger of staff from the desktop 

software department and the internal business systems group. The department uses Java, 

Ruby on Rails, and Adobe Flex to develop and deliver products. Teams use an internally-

developed bug tracking system, and a commercial version control system. Developers use 

a heterogeneous collection of development environments, operating systems, and 

programming tools.

Code review is only mandatory for bug fixes made in a period between code 

freeze and a release of new software. In these cases, developers must have another 

developer certify that the code was reviewed by adding an annotation to the relevant bug 

report. The development organization has not formally adopted any processes or tools for 

software inspection. However, in 2007 a group of programmers created a simple Web-

based code review tool. This tool allows authors to cut and paste one or more code 

samples for review and send email invitations to reviewers. Reviewers are able to add 

comments on lines of code. The code review tool has been used sporadically, with 

roughly 200 reviews conducted between 2007 and 2010. The original developers make 

occasional bug fixes and enhancements.

Design Research

To understand current code review practices field research was done within the 

development department discussed above. Interviews were conducted using contextual 

interview techniques (Beyer & Holtzblatt, 1998). Interview data was analyzed using 

©2010 Randy Souza



Research Project 45

Kaptelinin, Nardi, and Macaulay’s (1999) activity checklist as an organizational aid; 

those findings helped model a code review activity system (Engeström, 1999).

Methodology.

The research method used in this project is similar to the process employed by 

Collins, Shukla, and Redmiles (2002) to define requirements for a customer support 

knowledge authoring tool. Collins, Shukla, and Redmiles (2002) conducted a series of 

interviews and applied activity theory models to analyze the data. According to Collins, 

Shukla, and Redmiles (2002), these models were an efficient way to organize data, focus 

analysis, and elicit requirements. Contradictions proved to be a particularly useful tool for 

uncovering requirements that participants did not explicitly identify.

This study used the contextual interview introduced as a component of Beyer and 

Holtzblatt’s (1998) contextual inquiry. Contextual inquiry was created to help reveal 

unarticulated knowledge and work structures within groups (Beyer & Holtzblatt, 1998). 

Contextual inquiry is based on a redefinition of the master/apprentice model, with the 

researcher acting as an apprentice to the interview participant (Beyer & Holtzblatt, 1998). 

This shares a conceptual foundation with ethnomethodology, which suggests that, 

because social order is an ongoing creation of people in an activity, investigators should 

employ the same sense-making actions as participants (Goguen & Linde, 1993).

A contextual interview is based on four principles: context, partnership, 

interpretation, and focus (Beyer & Holtzblatt, 1998). Context is established by going to 

where the participant works and observing situated behavior (Beyer & Holtzblatt, 1998). 

Direct observation of real work allows researchers to identify unconscious operations 

associated with actions, and removes the burden on the interviewee to try to remember all 

©2010 Randy Souza



Research Project 46

elements of an activity (Beyer & Holtzblatt, 1998). As Goguen and Linde (1993) stated, 

“[p]eople know how to do many things they can’t describe” (p. 155). The partnership 

principle allows a contextual interviewer and interviewee to concentrate on work 

practice, as the conversation is centered on the interviewee teaching the researcher how to 

do the work (Beyer & Holtzblatt, 1998). In a contextual interview, the principle of 

interpretation surfaces as part of the interview process. Interviewers are encouraged to 

immediately validate their interpretations with the participant, rather than delaying 

analysis until after all the facts are collected (Beyer & Holtzblatt, 1998). Researchers 

share hypotheses about the facts with participants and incorporate any corrections or 

elaborations (Beyer & Holtzblatt, 1998). Finally, the principle of focus encourages the 

interviewer to define a point-of-view, set goals for the interview, and enter an interview 

assuming that everything the participant does will be unique (Beyer & Holtzblatt, 1998).

Kaptelinin, Nardi, and Macaulay’s (1999) activity checklist was used to analyze 

contextual interview data. The activity checklist was designed for use with 

ethnographically-inspired research techniques like contextual inquiry as a “guide to the 

specific areas to which a researcher or practitioner should be paying attention when 

trying to understand the context in which a tool will be or is used” (Kaptelinin, Nardi, & 

Macaulay, 1999, p. 28). Kaptelinin, Nardi, and Macaulay (1999) provided two versions of 

the activity checklist, one for evaluation of existing systems and one for design of new 

systems. The design version of the checklist was used in this project and is included as 

Appendix 1. Each version of the checklist provides a set of contextual factors grouped 

into activity-theoretic “perspectives” of means/ends, environment, 

learning/cognition/articulation, and development (Kaptelinin, Nardi, & Macaulay, 1999). 

©2010 Randy Souza



Research Project 47

This project used the activity checklist before conducting contextual interviews to ensure 

that the interview plan addressed issues of learning, development, and historicity. The 

activity checklist was then used to identify gaps in interview data and to prioritize 

interface design concepts.

Results.

Over the course of two weeks interviews were conducted with nine developers 

across seven teams. Interviews lasted between 30 and 60 minutes, and were recorded in 

notes taken by the interviewer. Interviews followed the structure for a contextual 

interview found in Beyer and Holtzblatt (1998). An interview guide was used to ensure 

discussion of critical topics (Appendix 2).

Analysis of the interviews revealed a collective activity system surrounding code 

review (Figure 3). The subject is a group of collaborating developers who act 

alternatively as code review authors or reviewers. The collective object of their activity is 

©2010 Randy Souza

Figure 3: A code review activity system

Code under review,
supporting material,

IDEs, diff tools, VCS,
code review tool

QE, managers,
developers

Who reviews,
review follow-up,

asynchronous/
synchronous review

When to review,
how much to review,

standards &
guidelines

Authors, reviewers
Development

project
Quality code,

skilled developers



Research Project 48

an evolving software system. Broader activity oriented at the same software system may 

include creating enhancements or maintaining and fixing existing code. The projected 

outcomes—software quality and developer skill—suggest that code review activity in this 

department is polymotivated. Most developers were motivated by improving software 

quality: “[T]he point is that everyone is trying to make the system better.” This objective 

motivates activity over time. A participant expressed that “part of efficiency is getting it 

right, and we always find something not right in a code review. Even if it only improves 

marginally, that reduces your technical debt.” Echoing conclusions drawn by Johnson 

(1998), Trytten (2005), and Tyran and George (2002), multiple participants were 

motivated by the learning opportunities that code review presented. A participant 

described how educational benefits accrued for her entire team: “We try to keep the 

format of our reviews predictable because there’s a cross-training element. The other two 

people on my team are learning the technology, so it helps to have the time to go through 

each review item as needed.” Another developer tailored his approach as a reviewer 

based on the opportunity to teach: “If the author has less experience I’ll focus less on 

patterns and more on syntax. If I can read the code beforehand I can go into the review 

knowing whether I want to focus more on the quality of the code versus the quality of the 

developer.”

Activity theory suggests analysis at the level of actions—conscious, goal-directed 

hierarchies of processes that are enacted to achieve the object (Kaptelinin & Nardi, 

2006). Code review in the department is summarized as sequences of actions in Figure 4. 

Lightning symbols ( ) ☇ in Figure 4 represent contradictions identified by interviewees.

Code review authors expressed tension between recruiting the most qualified 

©2010 Randy Souza



Research Project 49

reviewers versus reviewers who were immediately available. Many teams used “over-the-

shoulder” reviews, calling in a fellow developer as needed. This breaks down when the 

reviewer is busy or out of the office. A participant reported difficulty using the Web-based 

code review tool because there was no way to set a deadline for reviewers, and no way to 

©2010 Randy Souza

Figure 4: Code review goals and actions

Receive timely, actionable
suggestions

Receive suggestions scoped
to specific concerns

Identify appropriate reviewer(s)

Schedule review(s)

Describe review scope

Distribute review material
(code, documentation, tests, etc.)

AuthorGoal Action

Notify reviewer(s)

Make improvements based on
review suggestions

Record suggestions

Implement suggestions

☇

☇

Follow up after implementation

☇

Understand review goals
and context

Read supporting materials

Communicate with author

ReviewerGoal Action

☇

Make useful suggestions Read code

Record suggestions

Communicate suggestions
to author

☇

☇



Research Project 50

receive notification when reviewers added suggestions. Authors sometimes ignored or 

deferred suggestions, indicating breakdown moving from the act of recording suggestions 

to implementing those recommendations: “Sometimes I pick the low-hanging fruit, skip 

some suggestions that might take hours of refactoring that we don’t have time budgeted 

for.” Multiple code reviewers complained that authors did not provide sufficient context 

to understand the goals of the review. In some cases the author failed to relay the purpose 

of the code—what it was meant to do and why. In other cases the author did not provide 

enough supporting material, such as use cases and unit tests: “I always have to ask other 

authors for background material.”

Asynchronous review introduced contradictions in developers’ actions. Authors 

worried that the distributed nature of asynchronous review would lead to social loafing 

because “there’s no way to guarantee a thorough review, if there are other people 

reviewing you may not flag everything.” This led some participants to complain that 

asynchronous reviews provided less feedback than expected. However, one developer 

saw this as an advantage: “You can use the shotgun approach, send a review out to four 

people and if only two reply that’s OK.”

Engeström (1999) suggested that activity has its social basis in the wider 

community surrounding subjects’ actions. In the department studied, community was 

defined by development teams and by technology expertise. Developers most often 

reviewed code with members of their own team. Review within the team was seen as the 

most practical approach because team members were likely to be nearby and familiar 

with the components under review. Team-based review also supported development of 

mediating artifacts and social relationships. One participant stated that “having code 

©2010 Randy Souza



Research Project 51

review as part of the team process helps maintain standards and strengthens traditions 

that other developers keep.” Expertise also defined code review communities; 

participants were likely to recruit reviewers who had experience with specific code 

libraries or technologies. Occasional participants in the code review community included 

quality engineers, who might have questions for a reviewer, and managers, who 

sometimes tracked the action items that emerged from code reviews.

The relationship between subjects and communities is mediated by rules and 

social norms (Engeström, 1999). Only one company-wide rule affected participants’ code 

review activity: Code changes made in a specific period of time before a release must be 

approved by an engineering code reviewer. In most cases this rule affected small changes 

handled by one-on-one, over-the-shoulder code reviews. Beyond this, the rules mediating 

code review were very informal. Some participants felt that code review should be more 

formal. Often this was based on experiences at other firms. For example, one participant 

said “Our team’s code review can be too informal, compared with other places I’ve 

worked. What we do is closer to pair programming, fix-as-you-go type review.” Others 

disagreed about the level of formality: “We instituted a lightweight process in our team, 

we want to be as agile as possible but still have some checkpoint. So we just do a one-on-

one review before anyone checks in code.” Even among participants who thought that the 

process was too informal there was tension around making the process more formal. One 

developer stated “I’m a fan of enforcing code review whenever you check in code, but 

the Catch-22 is that I want control without being controlled.” This tension over formality 

was reflected in other rules that mediated code review activity.

Some participants valued rules enforced by coding standards. However, the 

©2010 Randy Souza



Research Project 52

standards in use tended to be informal documents maintained by individual teams to 

enforce naming and formatting conventions. Rules about when to review code varied 

from participant to participant. One developer reviewed his code before any commit to 

version control, but stated “reviews for one-line changes can feel silly” and “you may not 

always want to review things when you feel like they’re not quite done yet.” Another 

developer reviewed code after it had unit tests but before it was built, though urgent 

changes were often built and then reviewed when time permitted.

Collective activity is also mediated by division of labor (Engeström, 1999). From 

an activity theoretic perspective, division of labor is a useful way to analyze tradeoffs 

between synchronous and asynchronous reviews. As described above, some interview 

participants feared that the asynchronous model would allow reviewers to ignore 

requests, or to provide cursory feedback. The lack of back-and-forth discussion he 

experienced in asynchronous reviews led one participant to state “if the author and 

reviewer agree on the problem and the approach to the solution, then an asynchronous 

approach might work; then it becomes ‘is this correct’ rather than ‘is this appropriate?’ 

Anything other than ‘check if I goofed’ needs conversation.”

Code review work was divided into actions conducted by the author, actions 

conducted by the reviewer, and actions conducted between authors and reviewers. 

Seniority and experience imbalances sometimes led to contradictions in this division of 

labor. One participant stated “code review can look threatening at first, having three other 

developers look at your work tends to feel personal. But developers get more comfortable 

over time, they see that everyone goes through it, you just have to keep it professional.” 

Another participant preferred in-person reviews because “it feels more personal, I can 

©2010 Randy Souza



Research Project 53

defend myself, and provide the rationale behind a decision.” Knowledge of a code base 

also determined how work was distributed within the department, or even within teams. 

One participant described challenges related to the distribution of experience within his 

team: “Each person has specialties, but we try to get everyone involved. Sometimes you 

have to expect to bring the reviewer up to speed about the context and the code they’re 

looking at. For now our code base is small enough that it’s not a burden.

Participants described many artifacts that mediated their code review activity 

(Figure 5). The code under review was the most visible artifact. Code is an abstract 

artifact, so participants relied on different representations to support their reviews. In 

some cases changed files were simply printed out and read. This practice was 

improvisational for one participant, who reported that “if the change is large or we have 

too many files we will put the code in a Microsoft Word document and review that in a 

meeting room.” Other participants gained an understanding of the changed code by 

running it, either on a development server or on their personal workstation. Treating the 

changed code as a runnable artifact allowed one participant to learn about dependencies 

within the system, in addition to simply seeing if the code would execute properly. In 

some cases reviewing changes to the code sharpened the developer’s understanding of the 

wider system: “The act of code review can tell you a lot about the code. Is that necessary 

complexity or just failure to simplify?”

Unit tests, class diagrams, white board sketches, and technical specifications were 

mentioned as supporting artifacts that help reviewers understand the code under review. 

Most reviewers wanted unit tests included in the code review, and considered it a 

breakdown when unit tests were missing. Some participants ran the unit tests to verify the 

©2010 Randy Souza



Research Project 54

code’s behavior, others read the tests in parallel with the code. One participant’s team 

distributed a template-based technical specification document with every code review. 

However, most documents supporting reviews were created ad-hoc: “Sometimes, for 

larger [reviews], we create a design doc for the review, with the notable things on it. We 

track what will be deployed, lists of configuration changes, and code changes, anything 

©2010 Randy Souza

Subject Action Mediating artifacts

Author Identify appropriate reviewer(s) Past reviews, discussions with other 
developers, intranet

Schedule review(s) Email, calendar software, discussion

Notify reviewer(s) Email, instant messenger (IM), discussion

Describe review scope Code under review, email, presentation 
software, word processing software, white 
boards, code comments, IDE/text editor, 
design documentation, unit tests, Web-
based review tool, discussion

Distribute review materials Code under review, email, Web-based 
review tool, paper printouts, white board, 
IM, version control software (VCS)

Record suggestions Code under review, IDE/text editor, white 
board, notepads, Web-based review tool

Implement suggestions IDE/text editor, recorded suggestions

Follow up after implementation Email, IM, VCS

Reviewer Read supporting materials Code under review, email, Web-based 
review tool, paper printouts, white board, 
word processing software

Communicate with author Email, IM, discussion

Read code Code under review, email, IDE/text 
editor, Web-based review tool, paper 
printouts, VCS, white board

Record suggestions Code under review, IDE/text editor, white 
board, notepads, Web-based review tool

Communicate suggestions to 
author

Email, IM, discussion, Web-based review 
tool

Figure 5: Mediation of code review actions by artifacts



Research Project 55

we touched.”

Code authors used varied tools to collect and organize the suggestions reviewers 

made. Most interview participants took paper notes in face-to-face meetings or while 

reviewing feedback sent via email or through the Web-based review tool. In reviews that 

used code printouts, some authors added notes directly to the printouts. Notes were 

mainly for the author’s benefit, as follow-up on suggestions was uncommon and 

informal. One participant described follow up as “the author’s responsibility, after they 

make a change they might get back together and go over how the change was 

implemented.” Most participants said that if follow-up was required the author would 

send an email containing the new code or a link to changes in version control.

The version control system (VCS) played an important role as a mediator of code 

review activity. A relatively new feature allowed programmers to check changed code 

into a staging area, making the changes visible to anyone without affecting the main 

development branch. The VCS vendor implemented this feature specifically to help with 

code review. One participant commented that before this feature was available the VCS 

was a bottleneck to review, because an author had to commit volatile changes to the main 

branch. Despite the perceived value, only two participants described actively using the 

new staging feature; two participants were unaware of the feature.

The VCS incorporated a diff tool that all participants found valuable. One 

participant claimed that a good diff tool was the most important part of code review, 

because “the diff is the thing that proves that only one thing changed.” In this instance, 

the diff tool served to keep the author from intentionally or accidentally making changes 

that were outside the scope of the review. For other participants, the diff tool structured 

©2010 Randy Souza



Research Project 56

the review. The author and reviewer opened the diff tool, then stepped through and 

analyzed each change. The diff tool reshaped the participants’ view of the code under 

review, shifting the perspective from files and classes to sets of changes. However, the 

diff tool caused some low-level breakdowns. One participant reported that the keyboard 

bindings in the diff tool were non-standard, making navigation challenging. In activity 

theoretic terms, this tool caused a normally unconscious operation, keystroke-based 

navigation, to become a conscious action. Another participant used a diff tool built into 

his interactive development environment, which was not as feature-rich as the VCS diff 

tool but which he had better internalized as a part of routine use.

Interactive development environments (IDEs) are important mediators of 

programmers’ work (Barthelmess & Anderson, 2002). IDE features helped interview 

participants internalize the code reading process. Syntax highlighting simplified the 

structure of code. Search tools allowed programmers to find code in multiple scopes. 

Some IDEs could automatically link from a method call to the method’s definition, which 

“helps you figure things out in the context of the code, it’s a more natural way to 

navigate.” However, development environments could introduce contradictions as well. 

One participant detailed a development tool that complicated code reading actions: 

“There’s nothing useful, no syntax highlighting, some of the fields are very cramped, and 

the code in those fields are some of the hardest to get right, the ones we want to review 

the most. Once in a while we’ll copy the code into a text editor just to get the formatting 

useful.” A different team attempted to adopt a code review plug-in for their IDE, but gave 

up because it was cumbersome to install and poorly matched their workflow.

©2010 Randy Souza



Research Project 57

Implications.

From an interaction design perspective, code review practice in the department 

studied is informal, situated, mediated, and developmental. Tools meant to support code 

review activity should address each of these perspectives.

The informal nature of code review means that tools must allow authors and 

reviewers to apply varying amounts of structure. For example, an author may wish to 

send a review to many reviewers hoping for some commentary in a short time frame. 

Another author may want suggestions from a specific group of reviewers, but be open to 

a longer time frame. The ad-hoc nature of many code reviews suggests that authors 

should be able to initiate a review from multiple contexts—for instance, from an IDE or a 

bug report. Authors tend to work with the same small group of colleagues; tools should 

reflect this by making it easy for authors to choose from common collaborators or, when 

needed, find potential reviewers based on technical experience. Informality led some 

interviewees to worry about the amount of focus and rigor that reviewers applied when 

reading code. A review tool could help mitigate this by allowing the code author to set 

deadlines, which would push reviewers to either read the code or refuse to participate in 

the review. Additionally, the tool could reward reviewers for their contributions, adding 

an informal indicator of status and accomplishment to a highly informal activity.

A code review tool must also accommodate the situated nature of reviews. Many 

reviews happen with two programmers sitting side-by-side reading code on the same 

screen. The interface should be flexible enough to support co-reading comfortably. The 

tool should support situations where a reviewer and author are in separate locations but 

want to communicate, in real time or asynchronously. Finally, a code review tool must 

©2010 Randy Souza



Research Project 58

handle not only changes to existing code, which may be represented in a diff tool that 

compares past and current versions, but also new code, which usually requires external 

documentation to provide context.

As a mediating artifact, a code review tool is integral in users’ progress toward 

their goals. A well-designed tool will help users internalize common operations, such as 

selecting reviewers or navigating through source code. In addition, the tool should be 

flexible enough to support externalization, as users evolve their existing activity. One 

possible avenue for externalization is the relationship between a code review tool and the 

wider development process—integrating a code review tool with version control and 

deployment systems could shape new ways of doing work. A code review tool may 

mediate reviewers’ efforts to analyze code by integrating supporting documentation, such 

as specifications provided by authors and artifacts like checklists and author-reviewer 

conversations.

Several interviewees listed development—personal or collaborative—as an 

objective of code review. Tools can facilitate development by, for example, grouping and 

recording reviewers’ suggestions across reviews, forming a list of anti-patterns. 

Reviewers may also highlight code samples that they find exemplary, allowing new 

developers to see examples of elegant or canonical solutions. By supporting discussion 

and proposed solutions, a code review tool may become a space for problem solving in 

addition to problem identification.

Interaction Design

This section describes a prototype user interface based on the implications above. 

The prototype was designed within a conceptual architecture informed by Hedberg’s 

©2010 Randy Souza



Research Project 59

(2004) guidelines for next-generation code review tools:

• Inspection of multiple artifact formats;

• Integration of multiple repository types;

• Asynchronous or synchronous process;

• Integration with project management tools;

• Results that include severity, type, and resolution of defects.

Architecture.

Figure 6 divides the architecture of the user interface into seven conceptual layers, 

each of which illustrates a concrete or conceptual tool mediating code review. The code 

review tool itself is at the center of the architecture, providing a representation of reviews 

and review items (for example, files, consolidated change lists, or uploaded graphics). 

The code review architecture specifies an interface connecting the review tool to version 

control, enabling developers to create a review directly from a VCS change list. This will 

also allow reviewers to browse a file’s version history within the code review tool. The 

review tool will also integrate with IDEs and editors that support remote editing. In face-

to-face reviews, this feature will allow developers to make immediate edits and submit 

those edits in VCS.

The architecture also incorporates a presence layer, which will provide 

information about developers’ most common collaborators. While review participation 

will not be limited to these collaborators, research with developers showed that most 

reviews were conducted within teams or between closely aligned teams. The presence-

based component of the architecture will simplify the process of initiating a review with 

teammates. Additionally, the review tool will integrate with open messaging systems like 

©2010 Randy Souza



Research Project 60

©2010 Randy Souza

Figure 6: Conceptual architecture for a Web-based code review tool

Changelist
Changed

file
Previous
changes

CollaboratorsPresence

Review

Activity
stream

Review item

Feedback

Commitment

FeedsEmail

Best practiceResources

Editable
view

IDE / editor

Code review tool

Version control system

Presence

Resources

Actions

Notification



Research Project 61

Jabber, allowing asynchronous reviews that include live chat when author and reviewer 

are both online (Figure 7).

Reviewers will be able to add multiple types of feedback to review items, 

including questions, comments, and flags—a collective label for suggestions and defects. 

Reviewers may also highlight good examples, which are collected across reviews into 

sets of language- or subject-specific best practices. All activity is reported in an activity 

stream for each user. The activity stream is available through the Web user interface, but, 

as represented in the notification layer of the architecture, users may elect to subscribe to 

their activity stream in Atom Publishing Protocol format and optionally receive email 

alerts about specific activities.

Multiple interview participants expressed dissatisfaction with review follow-up. 

Authors used ad-hoc methods to track recommendations, and reviewers voiced concerns 

that their suggestions might be ignored. The architecture discussed here focuses on 

actions resulting from reviews in the form of commitments that authors make based on 

reviewers’ suggestions.

User interface.

Specific elements of the prototype user interface address breakdowns identified in 

contextual interviews, opportunities for mediation identified as implications of those 

breakdowns, and recommendations from scholarly code review research (Figure 8).

The review tool applies lightweight process mechanics to the predominantly ad-

©2010 Randy Souza

Figure 7: Presence awareness, showing available, offline, and busy users



Research Project 62

hoc review process. As seen in the review dashboard in Figure 8, review authors may set 

deadlines for reviews—the dashboard indicates when contributions are due soon. Authors 

may also close reviews, which de-emphasizes the closed review and allows the 

©2010 Randy Souza

Figure 8: Screen shots of the code review dashboard (top) and a review item (bottom)



Research Project 63

author/reviewer to attend to active reviews. The dashboard also highlights the user’s 

frequent collaborators and centers on the activity stream discussed above.

Figure 9 reflects the primary mode of interaction between reviewers and authors. 

Reviewers may flag sections of code, suggest improvements, and indicate the importance 

of the suggestion; either minor, moderate, or critical. The author can reply in-line, or 

agree to implement the suggestion. If the author agrees to the suggestion, it is added to a 

review-wide list of action items. When aggregated across review files, this list of action 

items becomes a representation of activity that will improve the overall quality of the 

software project.

©2010 Randy Souza

Figure 9: Collaboration between author and reviewer



Research Project 64

Discussion

This thesis addressed code review from an activity theoretic perspective. The 

literature review showed that activity theory could be a compelling tool for engaging the 

human- and context-centered challenges of modern code review. Research conducted 

within a software development organization was analyzed using tools from interaction 

design and activity theory. Implications derived from this research were applied to create 

an interaction design model and user interface prototypes for a Web-based code review 

tool.

Activity theory proved to be a useful tool for framing interaction design 

questions, shaping research objectives, and analyzing research data. However, as the 

design became more concrete, the direct applicability of activity theoretic concepts 

waned. Future extensions of this research may proceed in at least two directions. First, a 

more complete implementation of the code review tool should be deployed and observed 

in use. This will allow further validation of the premise that activity-theory-driven 

requirements result in usable, desirable, and useful products. Finally, specific user 

interface design decisions should be more closely associated with concepts from activity 

theory. This research may be conducted in concert with the observational studies 

proposed above, but with a sharper focus on specific actions and operations. For example, 

a more focused future study could investigate whether checklists and collections of 

reviewer-identified best practices mediate increased learning in programmers who are 

new to a technology or project.

©2010 Randy Souza



References 65

References

Bærentsen, K. B., & Trettvik, J. (2002). An activity theory approach to affordance. 

Proceedings of the second Nordic conference on Human-computer interaction 

(pp. 51-60). New York: ACM.

Bakhurst, D. (2007). Vygotsky’s Demons. In H. Daniels, M. Cole, & J. V. Wertsch (Eds.), 

The Cambridge companion to Vygotsky (pp. 50-76). New York: Cambridge 

University Press.

Bannon, L. J. (1991). From human factors to human actors: The role of psychology and 

human-computer interaction studies in systems design. In J. Greenbaum & M. 

King (Eds.), Design at work: Cooperative design of computer systems (pp. 25-

44). Hillsdale, NJ: Erlbaum.

Bardram, J. E. (1997). Plans as situated action: An activity theory approach to workflow 

systems. Proceedings of the 5th European Conference on Computer Supported 

Cooperative Work (pp. 17-32). Norwell, MA: Kluwer Academic Publishers.

Barthelmess, P., & Anderson, K. M. (2002). A view of software development 

environments based on activity theory. Computer Supported Cooperative Work,  

11, 13-37.

Basili, V. R. (1997). Evolving and packaging reading technologies. Journal of Systems 

and Software, 38, 3-12.

Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgard, S., & 

Zelkowitz, M. V. (1996). The empirical investigation of perspective-based 

reading. Empirical Software Engineering: An International Journal, 1, 133-164. 

Beck, K. (with Andres, C.). (2004). Extreme programming explained (2nd Ed.). Boston, 

©2010 Randy Souza



References 66

MA: Addison-Wesley.

Beyer, H., & Holtzblatt, K. (1998). Contextual design: Defining customer-centered 

systems. San Francisco: Morgan Kaufmann.

Béguin, P., & Rebardel, P. (2000). Designing for instrument-mediated activity. 

Scandinavian Journal of Information Systems, 12(1-2), 173-190.

Biffl, S. (2000, November-December). Using inspection data for defect estimation. IEEE 

Software, 36-43.

Bødker, S. (1996). Applying activity theory to video analysis: How to make sense of 

video data in human-computer interaction. In B. A. Nardi (Ed.), Context and 

consciousness: Activity theory and human-computer interaction (pp. 147-174). 

Cambridge, MA: MIT Press.

Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S., Cheung, W., Kaplan, J., . . . 

LaViola, J. J., Jr. (2010). Code Bubbles: A working set-based interface for code 

understanding and maintenance. Proceedings of the 28th International Conference  

on Human Factors in Computing Systems (pp. 2503-2512). New York: ACM.

Brothers, L., Sembugamoorthy, V., & Muller, M. (1990). ICICLE: Groupware for code 

inspection. Proceedings of the 1990 ACM Conference on Computer-Supported  

Cooperative Work (pp. 169-181). New York: ACM.

Bryant, S. L., Forte, A., & Bruckman, A. (2005). Becoming Wikipedian: Transformation 

of participation in a collaborative online encyclopedia. Proceedings of the 2005 

International ACM SIGGROUP Conference on Supporting Group Work (pp. 1-

10). New York: ACM.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer  

©2010 Randy Souza



References 67

interaction. Hillsdale, NJ: Erlbaum.

Carroll, J. M. (1997). Human-computer interaction: Psychology as a science of design. 

International Journal of Human-Computer Studies, 46, 501-522.

Collins, P., Shukla, S., & Redmiles, D. (2002). Activity theory and system design: A view 

from the trenches. Computer Supported Cooperative Work, 11, 55-80.

Deimel, L. E., Jr. (1985). The uses of program reading. SIGCSE Bulletin, 17(2), 5-14. 

Denger, C., & Shull, F. (2007, March-April). A practical approach for quality-driven 

inspections. IEEE Software, 79-86.

Devito Da Cunha, A., & Greathead, D. (2007). Does personality matter? An analysis of 

code-review ability. Communications of the ACM, 50(5), 109-112.

Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. 

Engeström, R. Miettinen, & R-L. Punamäki (Eds.), Perspectives on activity  

theory (pp. 19-38). New York: Cambridge University Press.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program 

development. IBM Systems Journal, 15, 182-211.

Fagan, M. E. (1986). Advances in software inspections. IEEE Transactions on Software  

Engineering, 12, 744-751.

Gay, G., & Hembrooke, H. (2004). Activity-centered design: An ecological approach to 

designing smart tools and usable systems. Cambridge, MA: MIT Press.

Glass, R. L. (1999). Inspections—some surprising findings. Communications of the  

ACM, 42(4), 17-19.

Goguen, J. A., & Linde, C. (1993). Techniques for requirements elicitation. Proceedings  

of the 1993 IEEE International Symposium on Requirements Engineering (pp. 

©2010 Randy Souza



References 68

152-164). Los Alamos, CA: IEEE Computer Society Press.

Halverson, C. A. (2002). Activity theory and distributed cognition: Or what does CSCW 

need to DO with theories? Computer Supported Cooperative Work, 11, 243-267.

Hassenzahl, M., & Tractinsky, N. (2006). User experience—a research agenda. 

Behaviour & Information Technology, 25(2), 91-97.

Hedberg, H. (2004). Introducing the next generation of software inspection tools. In F. 

Bomarius, H. Iida (Eds.), Product Focused Software Process Improvement: 5th 

International Conference, PROFES 2004 (pp. 234-247). Berlin, Germany: 

Springer.

Holland, D., & Reeves, J. R. (1996). Activity theory and the view from somewhere: Team 

perspectives on the intellectual work of programming. In B. A. Nardi (Ed.), 

Context and consciousness: Activity theory and human-computer interaction (pp. 

257-281). Cambridge, MA: MIT Press.

Hundhausen, C., Agrawal, A., Fairbrother, D., & Trevisan, M. (2009). Integrating 

pedagogical code reviews into a CS 1 course: An empirical study. SIGCSE 

Bulletin, 41(1), 291-295.

Hundhausen, C., Agrawal, A., & Ryan, K. (2010). The design of an online environment to 

support pedagogical code reviews. Proceedings of the 41st ACM Technical  

Symposium on Computer Science Education (pp. 182-186). New York: ACM.

Hyysalo, S. (2005). Objects and motives in a product design process. Mind, Culture, and 

Activity, 12, 19-36.

Iisakka, J., & Tervonen, I. (2001). The darker side of inspections. In M. Lawford & D. L. 

Parnas (Eds.), WISE’01: Proceedings of the 1st Workshop on Inspection in  

©2010 Randy Souza



References 69

Software Engineering (pp. 99-104), Hamilton, Canada: McMaster University.

Johnson, P. M. (1994). An instrumented approach to improving software quality through 

formal technical review. Proceedings of the 16th International Conference on 

Software Engineering (pp. 113-122). Los Alamitos, CA: IEEE Computer Society 

Press,

Johnson, P. M. (1998). Reengineering inspection. Communications of the ACM, 41(2), 

49-52.

Kaptelinin, V., & Nardi, B. A. (2006). Acting with technology: Activity theory and 

interaction design. Cambridge, MA: MIT Press.

Kaptelinin, V., Nardi, B. A., & Macaulay, C. (1999, July-August). The activity checklist: 

A tool for representing the “space” of context. Interactions, 27-39.

Karlsson, M. (2010). Code reviews. In K. Henney (Ed.), 97 things every programmer 

should know (pp. 28-29). Sebastopal, CA: O’Reilly Media.

Kelly, D., & Shepard, T. (2003). An experiment to investigate interacting versus nominal 

groups in software inspection. Proceedings of the 2003 Conference of the Centre 

For Advanced Studies on Collaborative Research (pp. 122-134). Indianapolis, IN: 

IBM Press.

Kemerer, C. F., & Paulk, M. C. (2009). The impact of design and code reviews on 

software quality: An empirical study based on PSP data. IEEE Transactions on 

Software Engineering, 35, 534-550.

Kuutti, K. (1996). Activity theory as a potential framework for human-computer 

interaction research. In B. A. Nardi (Ed.), Context and consciousness: Activity  

theory and human-computer interaction (pp. 17-44). Cambridge, MA: MIT Press.

©2010 Randy Souza



References 70

Kuutti, K. (1999) Activity theory, transformation of work and information systems 

design. In Y. Engeström, R. Miettinen, & R. Punamäki (Eds.), Perspectives on 

Activity Theory (pp. 360-376). Cambridge, UK: Cambridge University Press. 

Laitenberger, O., & Dreyer, H. M. (1998). Evaluating the usefulness and the ease of use 

of a web-based inspection data collection tool. Proceedings of the 5th 

International Symposium on Software Metrics (pp. 122-134). Washington, DC: 

IEEE.

Laitenberger, O., & DeBaud, J-M. (2001). An encompassing life-cycle centric survey of 

software inspection. Journal of Systems and Software, 50, 5-31.

Leontiev, A. N. (1978). Activity, consciousness, and personality. Hillsdale: Prentice-Hall.

Matthews, T., Rattenbury, T., & Carter, S. (2007). Defining, designing, and evaluating 

peripheral displays: An analysis using activity theory. Human-Computer  

Interaction, 22(1), 221-261.

Mäntylä, M. V., & Lassenius, C. (2006). Drivers for software refactoring decisions. 

Proceedings of the 2006 ACM/IEEE International Symposium on Empirical  

Software Engineering (pp. 297-306). New York: ACM.

Mäntylä, M. V., & Lassenius, C. (2009). What types of defects are really discovered in 

code reviews? IEEE Transactions on Software Engineering, 35, 430-448.

Meyer, B. (2008). Design and code reviews in the age of the Internet. Communications of  

the ACM, 51(9), 67-71.

Miettinen, R. (2005). Object of activity and individual motivation. Mind, Culture, and 

Activity, 12, 52-69.

Miettinen, R., & Hasu, M. (2002). Articulating user needs in collaborative design: 

©2010 Randy Souza



References 71

Towards an activity-theoretical approach. Computer Supported Cooperative  

Work, 11, 129-151.

Nardi, B. A. (2007). Placeless organizations: Collaborating for transformation. Mind,  

Culture, and Activity, 14, 5-22.

Newell, A., & Card, S. K. (1985). The prospects for psychological science in human-

computer interaction. Human Computer Interaction, 1, 209-242.

Nielsen, J. (1994). Usability inspection methods. Conference Companion on Human 

Factors in Computing Systems (pp. 413-414). New York: ACM.

Norman, D. A. (1993). Things that make us smart: Defending human attributes in the age  

of the machine. Cambridge, MA: Perseus Books.

Norman, D. A. (2005, July-August). Human-centered design considered harmful. 

interactions, 14-19.

Norman, D. A. (2006, November-December). Logic versus usage: The case for activity-

centered design. interactions, 45, 63.

Omoronyia, I., Ferguson, J., Roper, M, & Wood, M. (2009). Using developer activity data 

to enhance awareness during collaborative software development. Computer  

Supported Cooperative Work, 18, 509-558.

Parnin, C., Görg, C., & Nnadi, O. (2008). A catalogue of lightweight visualizations to 

support code smell inspections. Proceedings of the 4th ACM Symposium on 

Software Visualization (pp. 77-86). New York: ACM.

Perpich, J. M., Perry, D. E., Porter, A. A., Votta, L. G., & Wade, M. W. (1997). Anywhere, 

anytime code inspections: Using the Web to remove inspection bottlenecks in 

large-scale software development. Proceedings of the 19th International  

©2010 Randy Souza



References 72

Conference on Software Engineering (pp. 14-21). New York: ACM.

Porter, A., Siy, H., Mockus, A., & Votta, L. G. (1998). Understanding the sources of 

variation in software inspections. ACM Transactions on Software Engineering  

and Methodology, 7, 41-79.

Quek, A., & Shah, H. (2004). A comparative survey of activity-based methods for 

information systems development. Proceedings of the 6th International  

Conference on Enterprise Information Systems (pp. 221-232). Lisbon, Portugal: 

INSTICC.

Raskin, J. (2000). The humane interface: New directions for designing interactive  

systems. Reading, MA: Addison-Wesley.

Reily, K., Finnerty, P. L., & Terveen, L. (2009). Two peers are better than one: 

aggregating peer reviews for computing assignments is surprisingly accurate. 

Proceedings of the ACM 2009 International Conference on Supporting Group 

Work (pp. 115-124). New York: ACM.

Rombach, D., Ciolkowski, M., Jeffery, R., Laitenberger, O., McGarry, F., & Shull, F. 

(2008). Impact of research on practice in the field of inspections, reviews, and 

walkthroughs: Learning from successful industrial uses. SIGSOFT Software 

Engineering Notes, 33(6), 26-35.

Rose, J., Jones, M., & Truex, D. (2005). Socio-theoretic accounts of IS: The problem of 

agency. Scandinavian Journal of Information Systems, 17(1), 133-152.

Sauer, C. D., Ross, J., Land, L., & Yetton, P. (2000). The effectiveness of software 

development technical reviews: A behaviorally motivated program of research. 

IEEE Transactions on Software Engineering, 26, 1-14.

©2010 Randy Souza



References 73

Seaman, C. B., & Basili, V. R. (1998). Communication and organization: An empirical 

study of discussion in inspection meetings. IEEE Transactions on Software  

Engineering, 24, 559-572.

Sharp, H., Rogers, Y., & Preece, J. (2007). Interaction design: Beyond human-computer  

interaction (2nd Ed.). West Sussex, UK: John Wiley & Sons.

Siy, H., & Votta, L. (2001). Does the modern code inspection have value? Proceedings of  

the IEEE International Conference on Software Maintenance (pp. 281-290). 

Washington, DC: IEEE.

Stein, M., Riedl, J., Harner, S. J., & Mashayekhi, V. (1997). A case study of distributed, 

asynchronous software inspection. Proceedings of the 19th International  

Conference on Software Engineering (pp. 107-117). New York: ACM.

Stetsenko, A. (2005). Activity as object-related: Resolving the dichotomy of individual 

and collective planes of activity. Mind, Culture, and Activity, 12, 70-88.

Storey, M-A., Cheng, L-T., Bull, I., & Rigby, P. (2006). Shared waypoints and social 

tagging to support collaboration in software development. Proceedings of the 

2006 20th Anniversary Conference on Computer Supported Cooperative Work (pp. 

195-198). New York: ACM.

Thelin, T., Runeson, P., & Wohlin, C. (2003). An experimental comparison of usage-

based and checklist-based reading. IEEE Transactions on Software Engineering,  

29, 687-704.

Trytten, D. A. (2005). A design for peer code review. Proceedings of the 36th SIGCSE 

Technical Symposium on Computer Science Education (pp. 455-459). New York: 

ACM.

©2010 Randy Souza



References 74

Turner, P., Turner, S., & Horton, J. (1999). From description to requirements: An activity 

theoretic perspective. Proceedings of the International ACM SIGGROUP 

Conference on Supporting Group Work (pp. 286-295). New York: ACM.

Turner, S. A., Quintana-Castillo, R., Pérez-Quiñones, M. A., & Edwards, S. E. (2008). 

Misunderstandings about object-oriented design: Experiences using code reviews. 

Proceedings of the 39th SIGCSE Technical Symposium on Computer Science 

Education (pp. 97-101). New York: ACM.

Tyran, C. K., & George, J. F. (2002). Improving software inspections with group process 

support. Communications of the ACM, 45(9), 87-92.

Uwano, H., Monden, A., & Matsumoto, K. (2008). Are good code reviewers also good at 

design review? Proceedings of the Second ACM-IEEE International Symposium 

on Empirical Software Engineering and Measurement (pp. 351-353). New York: 

ACM.

Uwano, H., Nakamura, M., Monden, A., & Matsumoto, K. (2006). Analyzing individual 

performance of source code review using reviewers’ eye movement. Proceedings  

of the 2006 Symposium on Eye Tracking Research & Applications (pp. 133-140). 

New York: ACM.

Votta, L. G. (1993). Does every inspection need a meeting? Proceedings of the 1st ACM 

SIGSOFT Symposium on Foundations of Software Engineering (pp. 107-114). 

New York: ACM.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological  

processes. Cambridge, MA: Harvard University Press.

Wang, Y., Li, Y., Collins, M., & Liu, P. (2008). Process improvement of peer code review 

©2010 Randy Souza



References 75

and behavior analysis of its participants. Proceedings of the 39th SIGCSE 

Technical Symposium on Computer Science Education (pp. 107-111). New York: 

ACM.

Wertsch, J. V. (2007). Mediation. In H. Daniels, M. Cole, & J. V. Wertsch (Eds.), The 

Cambridge companion to Vygotsky (pp. 178-192). New York: Cambridge 

University Press.

Wiegers, K. E. (1995). Improving quality through software inspections. Software 

Development, 3(4), 55-64.

Williams, L. A., & Kessler, R. R. (2000). All I really needed to know about pair 

programming I learned in kindergarten. Communications of the ACM, 43(5), 108-

114.

Wilson, T. D. (2006). A re-examination of information seeking behaviour in the context 

of activity theory. Information Research 11(4). Retrieved from 

http://informationr.net/ir/11-4/paper260.html

Winograd, T. (2006). Designing a new foundation for design. Communications of the  

ACM, 49(5), 71-73.

Winograd, T., & Flores, F. (1986). Understanding computers and cognition: A new 

foundation for design. Norwood, NJ: Ablex.

Wood, M., Roper, M., Brooks, A., & Miller, J. (1997). Comparing and combining 

software defect detection techniques: A replicated empirical study. Proceedings of  

the 6th European Software Engineering Conference Held Jointly with the 5th ACM 

SIGSOFT International Symposium on Foundations of Software Engineering (pp. 

262-277). New York: Springer-Verlag.

©2010 Randy Souza



Appendix 76

Appendix 1: The activity checklist (design version)

Means/ends
• People who use the target technology
• Goals and subgoals of the target actions (target goals)
• Criteria for success or failure of achieving target goals
• Decomposition of target goals into subgoals
• Setting of target goals and subgoals
• Potential conflicts between target goals
• Potential conflicts between target goals and goals associated with other 

technologies and activities
• Resolution of conflicts between various goals
• Integration of individual target actions and other actions into higher-level actions
• Constraints imposed by higher-level goals on the choice and use of target 

technology
• Alternative ways to attain target goals through lower-level goals
• Troubleshooting strategies and techniques
• Support of mutual transformations between actions and operations
• Goal that can be changed or modified, and goals that have to remain after new 

technology is implemented
• Parties involved in the process of design
• Goals of designing a new system
• Criteria of success or failure of design
• Potential conflicts between goals of design and other goals (e.g., stability of the 

organization, minimizing expenses)
Environment

• Role of existing technology in producing the outcomes of target actions
• Tools, available to users
• Integration of target technology with other tools
• Access to tools and materials necessary to perform target actions
• Tools and materials shared between several users
• Spatial layout and temporal organization of the working environment
• Division of labor, including synchronous and asynchronous distribution of work 

between different locations
• Rules, norms, and procedures regulating social interactions and coordination 

related to target actions
• Resources available to the parties involved in design of the system
• Rules, norms, and procedures regulating interaction between the parties

Learning/cognition/articulation
• Components of target actions that are to be internalized
• Time and effort necessary to learn how to use existing technology
• Self-monitoring and reflection through externalization
• Possibilities for simulating target actions before their actual implementation
• Support of problem articulation and help request in case of breakdowns

©2010 Randy Souza



Appendix 77

• Strategies and procedures of providing help to colleagues and collaborators
• Coordination of individual and group activities through externalization
• Use of shared representation to support collaborative work
• Representations of design that support coordination between the parties
• Mutual learning of the content of the work (designers) and possibilities and 

limitations of technology (users)
Development

• Use of tools at various stages of target action "life cycles"—from goal setting to 
outcomes

• Transformation of existing activities into future activities supported with the 
system

• History of implementation of new technologies to support target actions
• Anticipated changes in the environment and the level of activity they directly 

influence (operations, actions, or activities)
• Anticipated changes of target actions after new technology is implemented
• Anticipated changes in the requirements to the system

Source: Kaptelinin, Nardi, & Macaulay, 1999

©2010 Randy Souza



Appendix 78

Appendix 2: Interview guide

Activity: Reviewing code
• Can you show me the last code you reviewed?
• Can you show me how the author asked you to review the code?
• Can you show me how you got access to the code to review?
• Can you show me what you did once you had access to the code?
• Did you record your feedback while reading the code?
• Did you use a checklist or anything else to decide what to look for?
• Can you show me how you gave your feedback to the author?
• Did the author follow up after you gave your feedback?

Activity: Initiating a code review
• Can you show me the last code you had reviewed?
• Why did you decide to have it reviewed?
• Did you stop working on the code while it was being reviewed?
• How did you decide who should review it?
• What did you do to make the code available to the reviewer(s)?
• Can you show me what you made available to the reviewer(s)? Did you post 

complete files, or snippets of code?
• Can you show me how you instructed the reviewer(s)?

Activity: Acting on review feedback
• Can you show me changes that you made based on the last code review you ran?
• Can you show me any examples of feedback that you chose not to make?
• Did you tie any changes explicitly back to the review, like in your source control 

change logs?
• Did you follow up with the reviewer(s)?

Perspective: Goals, and actions oriented toward those goals
• Why did you do it that way?
• Were there any other ways you could have done it?

Perspective: Division of labor; rules and procedures
• Was anyone else involved in that?
• Why did you do it that way?

Perspective: Learning, contradictions, and breakdowns
• Has that become easier/harder over time?
• Did you experience any problems?
• Were there any tools that helped you do that?
• Were there any other ways you could have done it?

Perspective: Development
• Can you show me any examples where you did that differently?
• Were there any other ways you could have done it?

©2010 Randy Souza


	Introduction
	Literature Review
	Software Inspection
	Benefits of code review.
	Limitations of code review.
	Evolution of the code review process.
	The impact of developer skill on code review.
	Code reading techniques.
	Code review tools.
	Summary.

	Human-Computer Interaction and the Challenge of Context
	From human factors to human actors.
	From usability to user experience.
	From human-centered design to activity-centered design.

	Activity Theory and Interaction Design
	Principles of activity theory.
	Collective activity and activity systems.
	The role of theory in interaction design.
	HCI applications of activity theory.
	Reevaluation of code review research in an activity theory context.


	Research Project
	Background
	Setting.

	Design Research
	Methodology.
	Results.
	Implications.

	Interaction Design
	Architecture.
	User interface.

	Discussion

	References
	Appendix 1: The activity checklist (design version)
	Appendix 2: Interview guide

