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This thesis studies spectral and weakly spectral sets/functions on Euclidean Jordan

algebras. These are generalizations of similar well-known concepts on Sn and Hn, the

algebras of n× n real symmetric and complex Hermitian matrices. Spectral sets and

functions on a Euclidean Jordan algebra V are defined by:

E := λ−1(Q) and F := f ◦ λ,

where Q ⊆ Rn and f : Rn → R are permutation invariant and λ denotes the

eigenvalue map that takes an element x ∈ V to its eigenvalue vector in Rn consisting

of eigenvalues of x written in the decreasing order.

In this thesis, we study properties of such sets/functions and show how they are re-

lated to algebra automorphisms and majorization. We show they are indeed invariant

under algebra automorphisms of V , hence weakly spectral with converse holding when

V is essentially simple.

For a spectral set K, we discuss the transfer principle and a related metaformula.

When K is also a cone, we show that the dual of K is a spectral cone under cer-



tain conditions. We also discuss the dimension of K, and characterize the pointed-

ness/solidness of K. Specializing, we study permutation invariant (proper) polyhedral

cones in Rn. We show that the Lyapunov rank of such a cone divides n.

Lastly, we study Schur-convexity of a spectral function F and describe some applica-

tions.
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Notation

Symbol Meaning

R The field of real numbers

R+ The set of nonnegative numbers

Rn The vector space of n-tuples with components in R
Rn

+ The nonnegative orthant in Rn

Sn The space of all n× n real symmetric matrices

Hn The space of all n× n complex Hermitian matrices

Ln The Jordan spin algebra

V Euclidean Jordan algebra

V+ The symmetric cone of V
Σn The set of all n× n permutation matrices

1 The vector of ones in an appropriate vector space Rd

AT The transpose of a matrix A

〈x, y〉 Inner product of x and y in V
‖x‖ Norm of x in V defined by

√
〈x, x〉

S◦ The interior of a set S

S The closure of a set S

∂S The boundary of a set S

S∗ The dual cone of a set S

S⊥ The orthogonal complement of a set S

conv(S) The convex hull of a set S

cone(S) The conic hull of a set S

Σn(S) The set given by {σ(u) | u ∈ S, σ ∈ Σn}

Aut(V) The set of all algebra automorphisms on V
Aut(V+) The set of all cone automorphisms on V
Orth(V) The set of all orthogonal transformations on V
DS(V) The set of all doubly stochastic transformations on V
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Chapter 1

Introduction

This dissertation mainly deals with spectral sets and functions on Euclidean Jordan

algebras.

In matrix algebra, a permutation matrix is obtained by permuting rows of the n× n

identity matrix. The set of all permutation matrices is denoted by Σn. A set Q ⊆ Rn

is permutation invariant if σ(Q) = Q for all σ ∈ Σn. Likewise, a function f : Rn → R

is said to be permutation invariant (also called symmetric) if f(σ(u)) = f(u) for all

u ∈ Rn and σ ∈ Σn, respectively. The permutation invariance of sets/functions has

numerous applications in various fields.

Now, we generalize these concepts to Euclidean Jordan algebras.

A set E in a Euclidean Jordan algebra V is said to be a spectral set [1] if it is of

the form

E = λ−1(Q),

where Q is a permutation invariant set in Rn and λ : V → Rn is the eigenvalue

map (which takes x to λ(x), the vector of eigenvalues of x with entries written in the

decreasing order). A function F : V → R is said to be a spectral function [1] if it
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is of the form

F = f ◦ λ,

where f : Rn → R is a permutation invariant function.

The above concepts are generalizations of similar concepts that have been extensively

studied in the setting of Rn and in Sn (Hn), the space of all n × n real symmetric

(respectively, complex Hermitian) matrices, see for example, [6], [8], [9], [20], [22],

[27], [28], [30], [43], and the references therein. In the case of Sn (Hn), spectral

sets/functions are precisely those that are invariant under linear transformations of

the form X → UXU∗, where U is an orthogonal (respectively, unitary) matrix.

There are a few works that deal with spectrality on general Euclidean Jordan algebras.

Baes [1] discusses some properties of Q which get transferred to E (such as closedness,

openness, boundedness/compactness, and convexity) and properties of f which get

transferred to F (such as convexity and differentiability). Sun and Sun [47] deal

with the transferability of the semismoothness properties of f to F . Ramirez, Seeger,

and Sossa [39] and Sossa [46] deal with a commutation principle and a number of

applications.

For a Euclidean Jordan algebra V , a linear transformation φ : V → V is an algebra

automorphism if it is invertible and preserves Jordan products:

φ(x ◦ y) = φ(x) ◦ φ(y),

for all x, y ∈ V . We say that a set E ⊆ V and a function F : V → R are weakly

spectral [23] if φ(E) = E and F (φ(x)) = F (x) for all x ∈ V and all algebra auto-
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morphisms φ ∈ Aut(V), respectively. Note that a permutation matrix σ ∈ Σn is an

algebra automorphism on Rn if we regard σ as a transformation from Rn to itself.

Thus, we can naturally generalize the permutation invariance on Rn to any Euclidean

Jordan algebra V by means of algebra automorphisms.

There are only a few works dealing with weak spectrality on Euclidean Jordan al-

gebras, for instance, see [23], [24], [19]. In this thesis, we study some properties

of permutation invariant sets/functions on Rn which get transferred to the corre-

sponding spectral sets/functions on V . Interconnections and relationships between

spectrality and weak spectrality on V are also discussed.

1.1 Organization of the thesis

A brief outline of each chapter is as follows:

• In Chapter 2, we introduce basic definitions and properties of concepts in Eu-

clidean Jordan algebra, convex analysis, and majorization which will be used in

the thesis.

• Chapter 3 deals with spectral sets in Euclidean Jordan algebras. Specifically,

we show that how spectral sets are related to weakly spectral sets. The transfer

principle and a metaformula are also discussed in this chapter.

• Specializing results in Chapter 3, spectral cones in Euclidean Jordan algebras

are studied in Chapter 4. Here, we study equivalent characterizations as well

as dimensionality, pointedness, and solidness of spectral cones.

• Based on a result of Gowda and Tao [16], we investigate the Lyapunov rank of

3



permutation invariant proper polyhedral cone in Chapter 5.

• Chapter 6 focuses on spectral functions in Euclidean Jordan algebras. We relate

spectrality and Schur-convexity and prove some majorization inequalities.

• In the final chapter, we make some concluding remarks as well as pose some

open questions.
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Chapter 2

Preliminaries

2.1 Euclidean Jordan algebras

2.1.1 Definitions and some properties

Definition 2.1.1 Let (V , 〈·, ·〉) be a finite dimensional real Hilbert space with a

bilinear product (x, y) 7→ x ◦ y : V × V → V satisfying the following:

(i) x ◦ y = y ◦ x for all x, y ∈ V .

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x.

(iii) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ V .

Then the triple (V , ◦, 〈·, ·〉) is called a Euclidean Jordan algebra and the prod-

uct x ◦ y is called the Jordan product of x and y.

In what follows, we assume that there exists a unit element e ∈ V such that x◦e = x

for all x ∈ V . The set of squares V+ = {x2 | x ∈ V} is called the symmetric cone of

V . We say that x and y operator commute if x ◦ (y ◦ z) = y ◦ (x ◦ z) for all z ∈ V .

Example 2.1.2 Some basic examples of Euclidean Jordan algebras are:
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(0) Euclidean Jordan algebra of n-dimensional vectors:

V = Rn, 〈x, y〉 =
n∑
i=1

xiyi, x ◦ y = x ∗ y,

where x ∗ y denotes the component-wise product of vectors x and y. Here,

the unit element is e = (1, . . . , 1) ∈ Rn and the symmetric cone of Rn is the

nonnegative orthant Rn.

(1) Euclidean Jordan algebra of n× n symmetric matrices:

V = Sn, 〈X, Y 〉 = tr(XY ), X ◦ Y =
1

2
(XY + Y X).

Here, tr denotes the trace of a matrix. The identity matrix I ∈ Sn is the unit

element of this algebra. Also, Sn+, the set of n×n positive semidefinite matrices,

is the symmetric cone of Sn.

(2) The Jordan spin algebra: Here, V = Rn (n ≥ 2) with the usual inner product.

With the notation z =

[
z1

z

]
where z1 ∈ R and z ∈ Rn−1,

〈[
x1

x

]
,

[
y1

y

]〉
= x1y1 + 〈x, y〉 ,

[
x1

x

]
◦

[
y1

y

]
=

[
x1y1 + 〈x, y〉
x1y + y1y

]
.

In this algebra, the unit element is e =

[
1

0

]
, where 0 is the zero vector in Rn−1.

The symmetric cone of Ln is given by

Ln+ =

{[
x1

x

]
∈ R×Rn−1

∣∣∣∣∣ x1 ≥ ‖x‖

}
.

This cone is called the second-order cone or the Lorentz cone.

Let V be a Euclidean Jordan algebra. A subspace I ⊆ V is an ideal of V provided
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x ∈ I and y ∈ V implies x ◦ y ∈ I. A nonzero Euclidean Jordan algebra V is

said to be simple if {0} and V are the only ideals of V . The classification theorem

([11], Theorem V.3.7 and Proposition III.4.4) says that there are, up to isomorphism,

only five simple Euclidean Jordan algebras. Moreover, any nonzero Euclidean Jordan

algebra is, in a unique way, a direct sum/product of simple Euclidean Jordan algebras.

Note that the Item (0) in the examples above is not simple as, for example, Rn−1×{0}

is an ideal of Rn. However, the Items (1) and (2) for n ≥ 3 are simple Euclidean

Jordan algebras. Other three simple Euclidean Jordan algebras are:

(3) the algebra Hn of n× n complex Hermitian matrices,

(4) the algebra Qn of n× n quaternion Hermitian matrices,

(5) the algebra O3 of 3× 3 octonian Hermitian matrices.

Definition 2.1.3 We say that a Euclidean Jordan algebra V is essentially simple

if it is either simple or Rn.

An element c ∈ V is an idempotent if c2 = c and is primitive idempotent if c

cannot be written as the sum of two nonzero idempotents. Two idempotents c1 and

c2 are orthogonal if c1 ◦ c2 = 0. Let c1, c2 be idempotents. Then

c1 ◦ c2 = 0 =⇒ 〈c1, c2〉 =
〈
c2

1, c2

〉
= 〈c1 ◦ c1, c2〉 = 〈c1, c1 ◦ c2〉 = 〈c1, 0〉 = 0.

Definition 2.1.4 Let V be a Euclidean Jordan algebra. A set {e1, e2, . . . , en}

of nonzero orthogonal primitive idempotents is called a Jordan frame of V if

e = e1 + e2 + · · ·+ en.

7



The rank of V is defined by r = max {deg(x) | x ∈ V}, where deg(x) is the degree of

x ∈ V given by deg(x) = min
{
k > 0

∣∣ {e, x, x2, . . . , xk} is linearly dependent
}

. In

what follows, we assume that rank(V) = n unless explicitly mentioned.

Example 2.1.5

(0) rank(Rn) = n.

(1) rank(Sn) = n, while dim(Sn) = n(n+ 1)/2.

(2) rank(Ln) = 2.

An x ∈ V is said to be invertible if there exists y ∈ span{e, x, x2, . . .} such that

x ◦ y = e. Such a y is unique and we write y = x−1. Note that this is NOT the same

as saying that there exists y ∈ V such that x ◦ y = e.

2.1.2 Spectral and Peirce decompositions

Proposition 2.1.6 (Spectral decomposition theorem, [11], Theorem III.1.2) Sup-

pose V is a Euclidean Jordan algebra of rank n. Then, for every x ∈ V , there

exists a Jordan frame {e1, e2, . . . , en} and real numbers λ1(x), λ2(x), . . . , λn(x)

such that

x = λ1(x)e1 + λ2(x)e2 + · · ·+ λn(x)en.

The numbers λi(x)’s are uniquely determined and are called the eigenvalues of x.

Note that, by renumbering the indices, we may assume that λ1(x) ≥ λ2(x) ≥ · · · ≥

λn(x). So from now on, without loss of generality, we assume that the eigenvalues in

8



the spectral decomposition of x have decreasing order.

It is easy to show that x ∈ V+ if and only if λi(x) ≥ 0 for all i. Hence,

V+ = {x ∈ V | λi(x) ≥ 0 for all i} .

Due to the uniqueness of the eigenvalues, we can respectively define the trace and

the determinant of x as

tr(x) :=
n∑
i=1

λi(x) and det(x) :=
n∏
i=1

λi(x).

Note that tr(c) = 1 for any primitive idempotent c in V , and tr(e) = n and det(e) = 1.

It is known ([11], Proposition III.4.1) that, in any simple Euclidean Jordan algebra

V , there exists a θ > 0 such that 〈x, y〉 = θ tr(x◦y). Here, θ = 〈c, e〉 = ‖c‖2 for every

primitive idempotent c in V . In particular, we have ‖ej‖2 = θ for every element of a

Jordan frame {e1, . . . , en}.

Given any Euclidean Jordan algebra, we define an equivalent inner product called

the canonical inner product by 〈x, y〉 = tr(x ◦ y). Various concepts, results, and

decompositions remain the same when the given inner product is replaced by the

canonical inner product. In particular, for an element of V , the spectral decomposi-

tion, eigenvalues, and trace remain the same. We note that under the canonical inner

product, the norm of any primitive element is one and tr(x) = 〈x, e〉.

Proposition 2.1.7 x ∈ V is invertible if and only if all eigenvalues of x are nonzero.

9



In this case, we have

x =
n∑
i=1

λi(x)ei =⇒ x−1 =
n∑
i=1

1

λi(x)
ei.

Definition 2.1.8 The mapping λ : V → Rn defined by

λ(x) =
(
λ1(x), λ2(x), . . . , λn(x)

)T ∈ Rn,

where λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x), is called the eigenvalue mapping.

Example 2.1.9

(0) Take V = Rn. Let ej ∈ Rn be a vector with 1 in jth entry and 0s elsewhere.

Then the set {e1, e2, . . . , en} is the only Jordan frame in Rn. For any x =

(x1, x2, . . . , xn)T ∈ Rn, we have x = x1e1 + x2e2 + · · ·+ xnen.

(1) Let V = Sn and X ∈ V . As X is symmetric, the classical spectral decompo-

sition theorem asserts that X = UΛUT, where Λ is the diagonal matrix with

eigenvalues λ1, λ2, . . . , λn of X in the diagonal and U = [u1, u2, . . . , un] is an

orthogonal matrix. Then we have the spectral decomposition

X = λ1u1u
T
1 + λ2u2u

T
2 + · · ·+ λnunu

T
n .

One can verify that {u1u
T
1 , u2u

T
2 , . . . , unu

T
n} forms a Jordan frame.

(2) For any x =

[
x1

x

]
∈ Ln with x 6= 0, we have

x = (x1 + ‖x‖)︸ ︷︷ ︸
=λ1

1

2

[
1

x
‖x‖

]
︸ ︷︷ ︸

=e1

+ (x1 − ‖x‖)︸ ︷︷ ︸
=λ2

1

2

[
1

−x
‖x‖

]
︸ ︷︷ ︸

=e2

= λ1e1 + λ2e2.

10



It is easy to check that e1 ◦ e1 = e1, e2 ◦ e2 = e2, e1 ◦ e2 = 0, and e1 + e2 = e.

Then, x = λ1e1 + λ2e2 is a spectral decomposition of x.

We recall the following result from [18].

Proposition 2.1.10 Let V1 and V2 be two non-isomorphic simple Euclidean Jordan

algebras. If φ ∈ Aut(V1×V2), then φ is of the form (φ1, φ2) for some φi ∈ Aut(Vi),

i = 1, 2, that is,

φ(x) =
(
φ1(x1), φ2(x2)

)
, ∀x = (x1, x2) ∈ V1 × V2.

Another important tool in Euclidean Jordan algebras is the Peirce decomposition.

Proposition 2.1.11 (Peirce decomposition theorem, [11], Theorem IV.2.1) Let V

be a Euclidean Jordan algebra and {e1, . . . , en} be a Jordan frame of V . For

i, j ∈ {1, . . . , n}, we define the eigenspaces

Vii := {x ∈ V : x ◦ ei = x} = Rei,

Vij := {x ∈ V : x ◦ ei = 1
2
x = x ◦ ej} (i 6= j).

Then, V is orthogonal direct sum of Vijs, i.e.,

V =
∑
i≤j

Vij =
n∑
i=1

Rei +
∑
i<j

Vij.

Furthermore, the following hold:

(1) Vij ◦ Vij ⊆ Vii + Vjj.

(2) Vij ◦ Vjk ⊆ Vik if i 6= k.

(3) Vij ◦ Vkl = {0} if {i, j} ∩ {k, l} = ∅.

11



As a consequence, given any Jordan frame {e1, . . . , en} in V , we can write any element

x ∈ V as

x =
∑

1≤i≤j≤n

xij =
n∑
i=1

xiei +
∑

1≤i<j≤n

xij,

where xi ∈ R and xij ∈ Vij. This expression is called the Peirce decomposition of

x associated with {e1, . . . , en}.

Example 2.1.12

(0) Let V = Rn and {e1, . . . , en} be the Jordan frame of Rn. Then

Vii = {aei : a ∈ R}, i = 1, . . . , n and Vij = {0}, i 6= j.

Hence, any element x ∈ Rn can be written as x =
∑n

i=1 xiei and thus there is

no difference between spectral and Peirce decomposition in Rn.

(1) Let V = Sn and define the set {E1, . . . , En}, where Ej is a diagonal matrix

with 1 in the (j, j)-entry and 0’s elsewhere. It can be verified that this set is a

Jordan frame in Sn. Associated with this Jordan frame, we have

Vii = {aEi : a ∈ R}, i = 1, . . . , n and Vij = {bEij : b ∈ R}, i 6= j,

where Eij is a matrix with 1 in the (i, j) and (j, i)-entries and 0’s elsewhere.

Thus, X ∈ Sn has the Peirce decomposition with respect to {E1, . . . , En} by

X =
n∑
i=1

xiEi +
∑

1≤i<j≤n

xijEij.

(2) Let V = Ln and {e1, e2} defined by e1 = (1
2
, 1

2
, 0n−2) and e1 = (1

2
, −1

2
, 0n−2),

12



where 0n−2 is a vector of zeros in Rn−2. Clearly, this set is a Jordan frame of

Ln. It is easy to show that

Vii = {aei : a ∈ R}, i = 1, 2 and V12 = {x ∈ Rn : x1 = x2 = 0}.

Thus, given an x ∈ Ln, we can write

x = (x1 + x2)e1 + (x1 − x2)e2 + (0, 0, x3, . . . , xn),

which is the Peirce decomposition of x associated with {e1, e2}.

2.1.3 Some special linear transformations

In any Euclidean Jordan algebra V , one can define automorphism groups in the

following way:

Definition 2.1.13 Let φ : V → V be a linear transformation. Then,

(i) φ is called an algebra automorphism of V if it is invertible and φ(x ◦ y) =

φ(x) ◦ φ(y) for all x, y ∈ V . The set of all algebra automorphisms of V is

denoted by Aut(V).

(ii) φ is a (symmetric) cone automorphism if φ(V+) = V+. The set of all cone

automorphisms of V is denoted by Aut(V+).

(iii) φ is said to be doubly stochastic if φ is positive (i.e., φ(V+) ⊆ V+), unital

(i.e., φ(e) = e), and trace preserving (i.e., tr(φ(x)) = tr(x) for all x ∈ V). We

denote the set of all doubly stochastic linear transformations by DS(V).

(iv) φ is said to be orthogonal if 〈φ(x), φ(y)〉 = 〈x, y〉 for all x, y ∈ V . The set of

13



all orthogonal linear transformations is denoted by Orth(V).

Example 2.1.14

(0) For Rn, we easily see that Aut(Rn) consists of permutation matrices, and any

element in Aut(Rn
+) has a form DP , where P is a permutation matrix and D is

a diagonal matrix with positive diagonal entries. Take any A = [aij] ∈ DS(Rn).

Then one can show that all entries of A are nonnegative and A1 = 1 = AT1,

where 1 ∈ Rn denotes the vector of ones. This is precisely the definition of

doubly stochastic matrix on Rn.

(1) In Sn, it is known [12] that, corresponding to any φ ∈ Aut(Sn), there exists

an orthogonal matrix U ∈ Rn×n such that φ(X) = UXUT for all X ∈ Sn.

Also, for ψ ∈ Aut(Sn+), there exists an invertible matrix Q ∈ Rn×n such that

ψ(X) = QXQT for all X ∈ Sn.

(2) For Ln, if φ ∈ Aut(Ln), then (because of φ(e) = e) it can be written as

φ =

[
1 0

0 U

]
, where U is an (n − 1) × (n − 1) orthogonal matrix. Al-

though the explicit description of Aut(Ln+) is not verified, it is known [31] that

ψ ∈ Aut(Ln+) if and only if there exists µ > 0 such that ψTJψ = µJ , where

J = diag(1, −1, . . . , −1) ∈ Rn×n.

The following result will be used in many of our theorems, particularly, in the converse

statements. Here and elsewhere, we implicitly assume that a Jordan frame, in addition

to being a set, is also an ordered listing of its objects.

Proposition 2.1.15 Algebra automorphisms map Jordan frames to Jordan frames.
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Thus, eigenvalues of an element remain the same under the action of an automor-

phism. In particular,

λ(φ(x)) = λ(x), ∀x ∈ V , φ ∈ Aut(V).

Furthermore, if V is essentially simple and {e1, . . . , en} and {e′1, . . . , e′n} are any

two Jordan frames in V , then there exists φ ∈ Aut(V) such that φ(ei) = e′i for all

i = 1, . . . , n. In particular, if λ(x) = λ(y) in V , then there exists φ ∈ Aut(V) such

that x = φ(y).

We list below some more properties of linear transformations.

Proposition 2.1.16 For a Euclidean Jordan algebra V with the canonical inner

product, the following hold:

(a) The positivity of φ : V → V is equivalent to that of φT : V → V , see [18].

(b) The trace preserving (unital) property of φ is equivalent to the unital (trace

preserving) property of its transpose. In particular, φ is doubly stochastic if

and only if φT is doubly stochastic, see [18].

(c) It is known ([11], p.57) that Aut(V) = Aut(V+)∩Orth(V). Gowda [18] showed

that, if V is simple, we further have Aut(V) = Aut(V+) ∩DS(V).

2.2 Convex cones

We explain some definitions and properties of closed convex cones which will be used

throughout the thesis. Further concepts and results of closed convex cones can be
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found in [2].

Definition 2.2.1 For a nonempty set K in an inner product space V , we say that

(1) K is convex if (1− t)x+ ty ∈ K for all x, y ∈ K and 0 ≤ t ≤ 1.

(2) K is a cone if tx ∈ K for all x ∈ K and t ≥ 0.

(3) K is closed if it is closed in the topology of V .

Note that if K is a convex cone in V , then K−K = {x− y | x, y ∈ K} is the minimal

subspace of V containing K, and K ∩ (−K) is the maximal subspace of V contained

in K.

Definition 2.2.2 Let K be a convex cone in an inner product space V . We say

that

(1) K is pointed if K ∩ (−K) = {0}.

(2) K is solid if K◦ 6= ∅, and reproducing if K −K = V .

(3) K is said to be proper if it is closed, pointed, and solid.

For any nonempty set S in V , the dual cone of S is

S∗ := {x ∈ V | 〈x, y〉 ≥ 0 for every y ∈ S} .

It is known that the dual cone of any set S is a closed convex cone.

Proposition 2.2.3 ([2], Propositions 1.17, 1.18) For a closed convex cone K in V ,

(1) K is solid if and only if it is reproducing.
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(2) K is pointed if and only if K∗ is solid.

Given a nonempty set S in V , the convex hull of S is

conv(S) =

{
k∑
i=1

αixi

∣∣∣∣∣ k ∈ N, xi ∈ S, αi ≥ 0,
k∑
i=1

αi = 1

}

and the conic hull of S is

cone(S) =

{
k∑
i=1

αixi

∣∣∣∣∣ k ∈ N, xi ∈ S, αi ≥ 0

}
.

Note that conv(S) is always a convex set and cone(S) is always a convex cone for any

nonempty S.

Definition 2.2.4 A convex cone K is a polyhedral cone if it is finitely generated,

that is, K = cone(S) for some finite set S.

Definition 2.2.5 Let K be a convex cone. A nonzero vector x ∈ K is called an

extreme vector of K if x = y + z, where y, z ∈ K, implies that y and z are

both nonnegative scalar multiples of x. We say that two extreme vectors x1 and x2

are equivalent (and hence consider them to be the ‘same’) if they are nonnegative

scalar multiples of each other. Define

ext(K) = {x ∈ K | x is an extreme vector of K} .

Proposition 2.2.6 ([2], Proposition 1.19, Theorem 1.38) Let K be a convex cone

in V . We have the following:

(1) If K is a polyhedral cone, then it is necessarily closed.
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(2) K is a polyhedral cone if and only if K has a finite number of extreme vectors.

(3) K is a polyhedral cone if and only if it is the finite intersection of closed half-

spaces.

Theorem 2.2.7 (Caratheodory’s Theorem, [41]) Let S be a nonempty set in an

inner product space V of dimension d. Then any x ∈ conv(S) is a convex combi-

nation of at most d+ 1 elements of S. Similarly, any x ∈ cone(S) can be expressed

as a nonnegative combination of at most d elements of S.

Definition 2.2.8 Let S be a nonempty set in V . The set

S∗ := {y ∈ V | 〈y, x〉 ≥ 0 for every x ∈ S}

is called the dual of S.

2.3 Permutation matrices and majorization

2.3.1 Permutation matrices

Vectors in Rn are considered as column vectors and Rn carries the usual inner prod-

uct. An n × n permutation matrix is a matrix obtained by permuting the rows

of an n × n identity matrix. The set of all n × n permutation matrices is denoted

by Σn. For notational convenience, an element σ ∈ Σn can be regarded as either a

permutation matrix P or a permutation σ of indices {1, 2, . . . , n}.
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For any u = (u1, u2, . . . , un)T in Rn consider

Σn(u) = {σ(u) : σ ∈ Σn},

the set of all possible permutations of u. If we look (only) at the first components of

vectors in this collection, we see ui (for i = 1, 2, . . . , n) appearing exactly (n − 1)!-

times. Hence, adding all these first components, we get the sum (n− 1)! tr(u), where

tr(u) = u1 + u2 + · · · + un. The same sum is obtained when other components are

considered. Thus,

∑
σ∈Σn

σ(u) = (n− 1)! tr(u) 1, (2.1)

where 1 denotes the vector in Rn with all entries 1.

2.3.2 Majorization in Rn

For any vector u ∈ Rn, we write u↓ for its decreasing rearrangement.

Definition 2.3.1 Given two vectors u and v in Rn with their decreasing rearrange-

ments u↓ and v↓, we say that u is majorized by v and write u ≺ v if

(i)
k∑
i=1

u↓i ≤
k∑
i=1

v↓i for all 1 ≤ k ≤ n− 1, and

(ii)
n∑
i=1

u↓i =
n∑
i=1

v↓i .

If u ≺ v, then we have, by setting k = 1 and k = n− 1,

max
i
ui ≤ max

i
vi and min

i
ui ≥ min

i
vi. (2.2)

We start by recalling two classical results in matrix theory. The first one is due to
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Hardy, Littlewood, and Pólya and the second one is due to Birkhoff.

Proposition 2.3.2 ([3], Theorem II.1.10) Let u, v ∈ Rn. A necessary and sufficient

condition for u ≺ v is that there exists a doubly stochastic matrix A such that

u = A(v).

Proposition 2.3.3 ([3], Theorem II.2.3) The set of all n×n doubly stochastic ma-

trices is a compact convex set whose extreme points are permutation matrices. In

particular, every doubly stochastic matrix is a convex combination of permutation

matrices.

Hence, combining two propositions above, u ≺ v if and only if

u =
N∑
i=1

αiPi(v) (2.3)

where αi ≥ 0 with
∑N

i=1 αi = 1, and Pi ∈ Σn.

The next proposition, which is essential for Sections 4 and 6, is somewhat classical

and well known. It easily follows from the above two propositions.

Proposition 2.3.4

(1) If Q is convex and permutation invariant in Rn, then

u ≺ v, v ∈ Q =⇒ u ∈ Q.

(2) If f : Rn → R is convex and permutation invariant, then f is Schur-convex,

that is,

u ≺ v =⇒ f(u) ≤ f(v).
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Proof.

(1) As u ≺ v, there exists αi ≥ 0 with
∑N

i=1 αi = 1, and Pi ∈ Σn such that (2.3)

holds. Since Q is permutation invariant, each Pi(v) ∈ Q. Since Q is also convex,

u, a convex combination of elements in Q, is in Q.

(2) Let u ≺ v. From (2.3) and the fact that f is convex and permutation invariant,

it is easy to see that

f(u) = f

( N∑
i=1

αiPi(v)

)
≤

N∑
i=1

αif(Pi(v)) =
N∑
i=1

αif(v) = f(v).

Hence, f(u) ≤ f(v) completing the proof.

The following elementary proposition will be useful.

Proposition 2.3.5 Suppose u (6= 0) and v be vectors in Rn with decreasing entries

and
∑n

i=1 ui =
∑n

i=1 vi = 0. Then,

(1)
∑k

i=1 ui > 0 for all k with 1 ≤ k ≤ n− 1, and

(2) v ≺ αu for some positive number α.

Proof.

(1) Suppose
∑k

i=1 ui ≤ 0 for some k with 1 ≤ k ≤ n− 1. As
∑n

i=1 ui = 0, we have∑n
i=k+1 ui ≥ 0. Since the entries of u are decreasing, we must have uk+1 ≥ 0.

This implies that u1 ≥ u2 ≥ · · · ≥ uk ≥ 0. But then,
∑k

i=1 ui ≤ 0 implies that

u1 = u2 = · · · = uk = 0. From this we get 0 ≥ uk+1 ≥ uk+2 ≥ · · · ≥ un. As

these inequalities imply 0 ≥
∑n

i=k+1 ui, we see that 0 =
∑n

i=k+1 ui from which

we get 0 = uk+1 = uk+2 = · · · = un. Thus, u = 0, leading to a contradiction.
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Hence we have (i).

(2) Now, because of (i), we can find a positive α such that
∑k

i=1 vi ≤ α(
∑k

i=1 ui)

for all k with 1 ≤ k ≤ n − 1. Since α(
∑n

i=1 ui) =
∑n

i=1 vi = 0, we see that

v ≺ αu. This gives (ii).

2.3.3 Majorization in Euclidean Jordan algebras

Definition 2.3.6 Let x, y be elements in a Euclidean Jordan algebra V . We say x

is majorized by y in V and write x ≺ y if λ(x) ≺ λ(y) in Rn.

Recall that V is essentially simple if it is either simple or Rn. The result below

describes a connection between majorization, automorphisms, and doubly stochastic

transformations in the setting of Euclidean Jordan algebras.

Proposition 2.3.7 (Gowda [18]) For x, y ∈ V , consider the following statements:

(a) x = Φ(y), where Φ is a convex combination of automorphisms of V .

(b) x = Ψ(y), where Ψ is doubly stochastic on V .

(c) x ≺ y.

Then, (a) ⇒ (b) ⇒ (c). Furthermore, when V is essentially simple, reverse impli-

cations hold.

When V is a simple Euclidean Jordan algebra, it is known [37] that λ(x + y) ≺

λ(x) + λ(y) for all x, y ∈ V . Here is a generalization of this result.
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Proposition 2.3.8 Let V be a Euclidean Jordan algebra of rank n. Then for

x, y ∈ V , there exist n× n doubly stochastic matrices A and B such that

λ(x+ y) = Aλ(x) +Bλ(y). (2.4)

When V is simple, we can take A = B.

Proof. As the result for a simple algebra is known, we assume that V is non-simple,

that is, V is a product of simple algebras. For simplicity, we assume V = V1 × V2,

where V1, V2 are simple algebras of rank n1, n2, respectively. Now, let x = (x1, x2),

y = (y1, y2), where xi, yi ∈ Vi for i = 1, 2. Define ui = λ(xi) ∈ Rni for i = 1, 2 and

u = (u1, u2) ∈ Rn1+n2 = Rn. As eigenvalues of x come from the eigenvalues of x1

and x2, we have λ(x) = σ1(u) for some σ1 ∈ Σn. Similarly, there exist σ2, σ3 ∈ Σn

such that

λ(y) = σ2(v)

λ(x+ y) = σ3(w)

where
v = (v1, v2), vi = λ(yi)

w = (w1, w2), wi = λ(xi + yi)

for i = 1, 2.

Since V1, V2 are simple,

wi = λ(xi + yi) ≺ λ(xi) + λ(yi) = ui + vi for i = 1, 2.

Thus, there are doubly stochastic matrices Ci on Rni such that wi = Ci(ui + vi) for

i = 1, 2. So, [
w1

w2

]
=

[
C1 0

0 C2

][
u1 + v1

u2 + v2

]
.

Letting C denote the the block diagonal matrix that appears above, one can easily
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verify that C is doubly stochastic on Rn. Moreover, we have w = C(u + v) =

C(u) + C(v). Now, define matrices A and B by

A = σ3Cσ
−1
1 and B = σ3Cσ

−1
2 .

As products of doubly stochastic matrices are doubly stochastic, A and B are

doubly stochastic. Finally, we have Aλ(x) +Bλ(y) = λ(x+ y).
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Chapter 3

Spectral Sets in Euclidean Jordan Algebras

3.1 Introduction

This chapter focuses on interconnections between spectral sets in V and the cor-

responding permutation invariant sets in Rn. We first note that permutations are

(algebra) automorphisms of Rn. A set in V is said to be weakly spectral if it is

invariant under algebra automorphisms of V . In this manner, we see that weakly

spectral sets are direct generalization of permutation invariant sets. We also define a

spectral set E = λ−1(Q) in V , where Q is a permutation invariant set in Rn.

When V = Sn, it is known that a set E is spectral if and only if

X ∈ E =⇒ UXUT ∈ E, ∀U ∈ On,

where On denotes the set of all n×n orthogonal matrices. Since a map X 7→ UXUT

is an algebra automorphism of Sn, spectral sets and weak spectral sets coincide when

V = Sn. Indeed, it is shown that every spectral set is weakly spectral, and the converse

holds when V is essentially simple. The behavior of the inverse of the eigenvalue

mapping is also explored.

We conclude the chapter with a discussion on the Transfer Principle which asserts
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that numerous properties of a permutation invariant set Q, such as closedness, con-

vexity, connectedness, etc., get transferred to a spectral set E = λ−1(Q). We also

prove a metaformula

#♦ = ♦#,

where # is a set operation (such as the closure, interior, boundary, convex hull, etc.)

and ♦ is the set operation defined by

Q♦ = λ−1(Q) for Q ⊆ Rn and E♦ = Σn(λ(E)) for E ⊆ V ,

with Σn denoting the set of all n× n permutation matrices.

The organization of this chapter is as follows:

• Section 2 deals with spectral and weakly spectral sets in V . Especially, a char-

acterization of a spectral set and a relation between spectral sets and weakly

spectral sets are discussed.

• The transfer principle and a metaformula are presented in Section 3.

3.2 Spectral and weakly spectral sets

Throughout this paper, V is assumed to be a Euclidean Jordan algebra of rank n.

Definition 3.2.1 A set E in V is spectral if there exists a permutation invariant

set Q in Rn such that E = λ−1(Q). Also, E is said to be weakly spectral if it is

invariant under algebra automorphisms of V .
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Note that the symmetric cone V+ can be written as

V+ = {x ∈ V | λ(x) ≥ 0} = λ−1(Rn
+).

This shows that V+ is spectral. As automorphisms preserve eigenvalues, it is easily

seen that every spectral set is weakly spectral.

The following result can be readily obtained by using the definition, thus we state it

without proof.

Proposition 3.2.2 Let E1 and E2 be spectral/weakly spectral sets. Then union,

intersection, and/or complements of E1 and E2 are also spectral/weakly spectral.

We first characterize spectral sets via spectral equivalence and a ‘diamond’ operation.

This operation is motivated by the question of recovering Q from E. We note that

in the case of V = Sn, if E is a spectral set, then the corresponding Q is given by

Q = {u ∈ Rn : Diag(u) ∈ E}, where Diag(u) is a diagonal matrix with u as the

diagonal [22].

Definition 3.2.3 For a set Q in Rn, we define the set Q♦ in V by

Q♦ := λ−1(Q) = {x ∈ V : λ(x) ∈ Q}. (3.1)

For a set E in V , we let E♦ in Rn be

E♦ := Σn(λ(E)) =
{
u ∈ Rn : u↓ = λ(x) for some x ∈ E

}
. (3.2)

For simplicity, we write Q♦♦ in place of (Q♦)♦, etc.
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From now on, for elements x, y ∈ V , we write x ∼ y if and only if λ(x) = λ(y).

Theorem 3.2.4 The following statements hold:

(i) For any Q that is permutation invariant in Rn, Q♦ is a spectral set in V and

Q♦♦ = Q.

(ii) For any set E in V , E♦ is permutation invariant in Rn.

(iii) E♦♦ = {x ∈ V : x ∼ y for some y ∈ E}.

Proof. For any set Q in Rn, we define the core of Q by

Q↓ := {u↓ : u ∈ Q}.

We immediately note the following when Q is permutation invariant:

Q↓ ⊆ Q, Q = Σn(Q↓), and λ(λ−1(Q)) = Q↓.

(i) Let Q be permutation invariant. Then E := Q♦ is a spectral set by the defini-

tion. We also have

(Q♦)♦ = E♦ = Σn(λ(E)) = Σn(λ(λ−1(Q)) = Σn(Q↓) = Q.

(ii) Since Σn is a group, Σn(E♦) = Σn(Σn(λ(E)) = Σn(λ(E)) = E♦. Thus, E♦ is

permutation invariant.

(iii) This follows from the fact that

E♦♦ = (E♦)♦ =
{
x ∈ V

∣∣ λ(x) ∈ E♦
}

= {x ∈ V | λ(x) = λ(y) for some y ∈ E} .
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Example 3.2.5 This example shows that in Item (i) above, one needs the permu-

tation invariance property of Q to get the equality Q♦♦ = Q. Let V = S2 and

Q1 = {u ∈ R2
+ : u1 ≥ u2}. Then, it is easy to see that Q♦1 = S2

+ and so Q♦♦1 = R2
+.

Thus, we have Q1 ( Q♦♦1 . On the other hand, consider Q2 = {u ∈ R2
+ : u1 ≤ u2}.

Then, Q♦2 = {aI : a ≥ 0}; therefore Q♦♦2 = {u ∈ R2
+ : u1 = u2}. This means

Q♦♦2 ( Q2.

We now characterize spectral sets.

Theorem 3.2.6 The following are equivalent for any set E in V .

(a) E = λ−1(Q), where Q is permutation invariant in Rn.

(b) If x ∼ y and y ∈ E, then x ∈ E.

(c) E♦♦ = E.

Proof. (a) ⇒ (b): Let E = λ−1(Q), where Q is permutation invariant. If x ∼ y

with y ∈ E, then λ(x) = λ(y) ∈ Q. Hence, x ∈ λ−1(Q) = E.

(b)⇒ (c): By Item (iii) in Theorem 3.2.4, we have

E♦♦ = {x ∈ V : x ∼ y for some y ∈ E}.

Then E ⊆ E♦♦ is now clear from this observation. To see the reverse implication,

take x ∈ E♦♦, then there exists y ∈ E with x ∼ y. This implies x ∈ E from (b).

Hence, E♦♦ ⊆ E.

(c)⇒ (a): When E♦♦ = E, we let Q := E♦. Since Σn forms a group,

Σn(E♦) = Σn(Σn(λ(E)) = Σn(λ(E)) = E♦.
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Thus, Q = E♦ is permutation invariant; hence E = Q♦ = λ−1(Q) is spectral.

Remarks.

(1) The above result shows that Q 7→ Q♦ sets up is a one-to-one correspondence

between permutation invariant sets in Rn and spectral sets in V .

(2) For any spectral set E in V , we can obtain the corresponding permutation

invariant set Q in Rn by taking Q = E♦.

We now describe the relation between spectral and weakly spectral sets. This result

explains why in Sn orHn, spectral sets are completely characterized by automorphism

invariance.

Theorem 3.2.7 Every spectral set in V is weakly spectral. Converse holds when

V is essentially simple.

Proof. Suppose E is a spectral set, x ∈ E, and φ ∈ Aut(V). As eigenvalues remain

the same under the action of automorphisms, we see that φ(x) ∼ x. By Item (b)

in Theorem 3.2.6, φ(x) ∈ E. This proves that E is weakly spectral.

To see the converse, assume that E is weakly spectral and V is essentially simple.

We verify Item (b) in Theorem 3.2.6 to show that E is spectral. To this end, let

x ∼ y, y ∈ E. Then, λ(x) = λ(y). By Proposition 2.1.15, there exists φ ∈ Aut(V)

such that x = φ(y). As E is invariant under automorphisms, we must have x ∈ E.

This concludes the proof.

Example 3.2.8 In the theorem above, the converse may not hold for general al-
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gebras. To see this, consider V = R × S2 and E = R × S2
+. Then, by Propo-

sition 2.1.10, every automorphism φ on V is of the form φ = (φ1, φ2), where

φ1 ∈ Aut(R), φ2 ∈ Aut(S2). It is easy to check that E is invariant under au-

tomorphisms. Now consider two elements,

x =

(
0,

[
1 0

0 −1

])
/∈ E, and y =

(
−1,

[
1 0

0 0

])
∈ E.

As λ(x) = λ(y) = (1, 0, −1)T, we have x ∼ y. Thus, E violates condition (b) in

Theorem 3.2.6. Hence, E is not a spectral set. It is easy to verify that x ∈ E♦♦.

Thus, E 6= E♦♦ even though E is invariant under automorphisms.

The following result shows that on permutation invariant (convex) sets, λ−1 has linear

behavior.

Theorem 3.2.9 The following statements hold:

(i) Let Q be a permutation invariant set in Rn and α ≥ 0 in R. Then

λ−1(−Q) = −[λ−1(Q)] and λ−1(αQ) = αλ−1(Q).

(ii) Let Q1 and Q2 be permutation invariant convex sets in Rn. Then,

λ−1(Q1 +Q2) = λ−1(Q1) + λ−1(Q2).

Proof.

(i) We first observe that −Q is permutation invariant. Let x ∈ λ−1(Q) with

its spectral decomposition x =
∑n

1 λi(x)ei. From −x =
∑n

1 [−λi(x)]ei we get

λ(−x) = [−λ(x)]↓ = −[λ(x)]↑, where u↑ denotes the increasing rearrangement
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of u. Since Q is permutation invariant and λ(x) ∈ Q, we have λ(x)↑ ∈ Q and

−[λ(x)]↑ ∈ −Q. Thus, λ(−x) ∈ −Q and −x ∈ λ−1(−Q). Hence, −[λ−1(Q)] ⊆

λ−1(−Q). Now, let y ∈ λ−1(−Q). Then, by the previous inclusion applied to

−Q, −y ∈ λ−1[−(−Q)] = λ−1(Q), or equivalently, y ∈ −[λ−1(Q)]. This proves

the inclusion λ−1(−Q) ⊆ −[λ−1(Q)]. Thus we have the first part of statement

(i). The second part, for α = 0 is obvious; the case α > 0 follows easily from

the positive homogeneity of λ.

(ii) Now suppose that Q1 and Q2 are permutation invariant convex sets in Rn.

Then Q1 + Q2 is also permutation invariant and convex. Let x ∈ λ−1(Q1) and

y ∈ λ−1(Q2) so that λ(x) ∈ Q1 and λ(y) ∈ Q2. Then, by Proposition 2.3.8,

λ(x+ y) = Aλ(x) +B λ(y),

where A and B are doubly stochastic matrices on Rn. By a well-known theorem

of Birkhoff ([3], Theorem II.2.3) A and B are convex combinations of permuta-

tion matrices. As Q1 and Q2 are permutation invariant convex sets, it follows

that Aλ(x) ∈ Q1 and Bλ(y) ∈ Q2. Thus, λ(x+ y) ∈ Q1 +Q2. This implies that

x+ y ∈ λ−1(Q1 +Q2). Hence,

λ−1(Q1) + λ−1(Q2) ⊆ λ−1(Q1 +Q2).

To see the reverse inclusion, let z ∈ λ−1(Q1 +Q2) with spectral decomposition

z =
∑n

1 λi(z)ei. Then, λ(z) ∈ Q1 + Q2. Let λ(z) = u + v, where u ∈ Q1

and v ∈ Q2. Define x =
∑n

1 uiei and y =
∑n

1 viei so that z = x + y. As

λ(x) = u↓ ∈ Q1 and λ(y) = v↓ ∈ Q2, we see that x ∈ λ−1(Q1), y ∈ λ−1(Q2).
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Thus, z = x+y ∈ λ−1(Q1)+λ−1(Q2). Hence, λ−1(Q1+Q2) ⊆ λ−1(Q1)+λ−1(Q2).

Thus we have (ii).

The following is an easy consequence.

Corollary 3.2.10 Let Q1 and Q2 be permutation invariant convex sets in Rn and

α1, α2 ∈ R. Then,

λ−1(α1Q1 + α2Q2) = α1 λ
−1(Q1) + α2 λ

−1(Q2).

The following theorem describes how the convexity gets transferred between spectral

sets and the corresponding permutation invariant sets.

Theorem 3.2.11 Let Q ∈ Rn be a permutation invariant set and E = λ−1(Q) be

a spectral set in V . Then Q is convex if and only if E is convex.

Proof. Let E = λ−1(Q), where Q is permutation invariant and convex in Rn. The

convexity of E has already been proved in Theorem 27, [1]. For completeness, we

provide a (slightly different) proof. Let x, y ∈ E and t ∈ [0, 1]. By Proposition

2.3.8, λ(tx+ (1− t)y)) = tu+ (1− t)v, where u = A(λ(x)), v = B(λ(y)) for some

doubly stochastic matrices A and B. By Proposition 2.3.4, we see that u, v ∈ Q.

As Q is convex, λ(tx + (1 − t)y) ∈ Q. Thus, tx + (1 − t)y ∈ E. This proves the

convexity of E.

Now, let E = λ−1(Q) be convex in V . To show that Q is convex, let u, v ∈ Q and
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t ∈ [0, 1]. Then there exist x, y ∈ E such that x :=
∑n

1 uiei and y :=
∑n

1 vie
′
i for

some Jordan frames {e1, e2, . . . , en} and {e′1, e′2, . . . , e′n}. Now, define x =
∑n

1 uie
′
i.

Then λ(x) = λ(x), hence x ∈ E by Item (b) in Theorem 3.2.6. As x, y ∈ E and E

is convex, we get

n∑
i=1

(tui + (1− t)vi)e′i = t
n∑
i=1

uie
′
i + (1− t)

n∑
i=1

vie
′
i

= tx+ (1− t)y ∈ E.

This proves that tu+ (1− t)v ∈ Q. Thus, Q is convex.

3.3 The transfer principle and metaformulas

In the context of spectral sets E = λ−1(Q) and spectral functions F = f ◦ λ, the

Transfer Principle asserts that (many) properties of Q (of f) get transferred to E

(respectively, to F ). Theorem 3.2.11, where convexity gets transferred, illustrates this

principle. In addition to this, Baes ([1], Theorem 27) shows that closedness, openness,

boundedness and compactness properties of Q are carried over to E. Sun and Sun

[47] show that semismoothness property of f gets transferred to F in the setting of

a Euclidean Jordan algebras. Numerous specialized results exist in the setting of

Sn and Hn; see the recent article [9] and the references therein for a discussion on

the transferability of C∞-manifold property of Q and various types differentiability

properties of f (e.g., prox-regularity, Clarke-regularity, and smoothness). Related to

this, in the context of normal decomposition systems, Lewis [27] has observed that
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the ’metaformula’

#(λ−1(Q)) = λ−1(#(Q))

holds for sets Q that are invariant under a group of orthogonal transformations and

certain set operations #. In particular, it was shown in Theorem 5.4, [27], that

the formula holds when # is the closure/interior/boundary operation. Consequently,

because of a result in [35], it is also valid in any (essentially) simple Euclidean Jordan

algebra; see [20], [22] for results of this type for spectral cones in Sn. Motivated

by these, we present the following ‘metaformula’ in the setting of general Euclidean

Jordan algebras.

In what follows, for a set S (either in Rn or in V), we consider closure, interior,

boundary, convex hull, and conic hull operations, which are respectively denoted by

S, S◦, ∂ S, conv(S), and cone(S). Recall that for a set Q in Rn and a set E in V ,

Q♦ := λ−1(Q) and E♦ := Σn(λ(E)).

(We remark that when V = Rn and E = Q, these two definitions coincide.)

Theorem 3.3.1 Let # denote one of the operations of closure, interior, boundary,

convex hull, or conic hull. Then, over permutation invariant sets inRn and spectral

sets in V , the operations # and ♦ commute; symbolically,

#♦ = ♦#.

In preparation for the proof, we first state and prove the following result:
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Proposition 3.3.2 Let Q be a permutation invariant set in Rn and E = λ−1(Q)

in V . Then,

(i) E = λ−1(Q).

(ii) E◦ = λ−1(Q◦).

(iii) ∂E = λ−1(∂Q).

(iv) conv(λ−1(Q)) = λ−1(conv(Q)).

(v) cone(λ−1(Q)) = λ−1(cone(Q)).

Consequently, the closure/interior/boundary/convex hull/conic hull of a spectral

set is spectral.

Proof.

(i) By continuity of λ (see [1], Corollary 24), E = λ−1(Q) ⊆ λ−1(Q). To see the

reverse inclusion, let x ∈ λ−1(Q) so that λ(x) ∈ Q. Let λ(x) = lim qk, where

qk ∈ Q. We consider the spectral decomposition x =
∑n

1 λi(x)ei and define

xk :=
∑n

1 (qk)iei, for k = 1, 2, . . . . Then, λ(xk) = q↓k ∈ Q (recall that Q is

permutation invariant). Thus, xk ∈ λ−1(Q) for all k. As xk → x, we see that

x ∈ E. Hence, E = λ−1(Q).

(ii) As Qc is permutation invariant and λ−1 preserves complements, we see, by (i),

that Ec = λ−1(Qc). Taking complements and using the identity E◦ = (Ec)c, we

get E◦ = λ−1(Q◦).

(iii) This comes from the previous items using the definition ∂E = E\E◦ and the

fact that λ−1 preserves set differences.
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(iv) We first prove that conv(λ−1(Q)) ⊆ λ−1(conv(Q)) in V . It is clear that conv(Q)

is convex and permutation invariant. Hence, by Theorem 3.2.11, λ−1(conv(Q))

is convex. As λ−1(Q) ⊆ λ−1(conv(Q)), we see that conv(λ−1(Q)) ⊆ λ−1(conv(Q)).

To prove the reverse implication, let x ∈ λ−1(conv(Q)). Then, λ(x) =
∑N

k=1 αk qk,

where αks are positive with sum one and qk ∈ Q for all k. Writing the spectral

decomposition of x =
∑n

i=1 λi(x)ei, we see that

x =
n∑
i=1

( N∑
k=1

αk (qk)i

)
ei =

N∑
k=1

αk

( n∑
1

(qk)iei

)
.

Letting xk :=
∑n

1 (qk)iei, we get λ(xk) = q↓k ∈ Q. Hence, xk ∈ λ−1(Q) and x

is now a convex combination of elements of λ−1(Q). Thus, x ∈ conv(λ−1(Q))

proving the required reverse inclusion.

(v) Using (iv) and the positive homogeneity of λ, it is easy to verify that λ−1(cone(Q))

is a convex cone. Together with this fact, λ−1(Q) ⊆ λ−1(cone(Q)) implies

cone(λ−1(Q)) ⊆ λ−1(cone(Q)). For the reverse implication, we repeat the proof

of (iv) except qks are now not required to have the sum one.

Finally, the last statement follows from Items (i) - (v) together with the observa-

tion that the closure/interior/boundary/convex hull/conic hull of a permutation

invariant set in Rn is permutation invariant.

Proof of the Theorem. Suppose Q is any permutation invariant set in Rn. Then

from Proposition 3.3.2 we have λ−1(#(Q)) = #(λ−1(Q)), that is,

[#(Q)]♦ = #(Q♦).
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This means that on permutation invariant sets in Rn, the operations # and ♦

commute.

Now suppose that E is any spectral set in V . Then, Q := E♦ is permutation

invariant and Q♦ = E♦♦ = E (by Theorem 3.2.6). Hence, #(E) = #(Q♦) =

[#(Q)]♦. As #(Q) is permutation invariant, from Theorem 3.2.4 (i), [#(Q)]♦♦ =

#(Q). Thus,

[#(E)]♦ = [#(Q)]♦♦ = #(Q) = #(E♦).

This proves that the operations # and ♦ commute on spectral sets in V .

It will be shown below that the equality E♦ = E♦ holds for any set E ⊆ V . We now

provide examples to show that in the above theorem, permutation invariance of Q

and/or spectrality of E is needed to get the remaining results.

Example 3.3.3

(a) Let V = Sn and Q = {u ∈ Rn
+ : u1 < u2 < · · · < un}. Clearly, Q is not

permutation invariant. As Q♦ = λ−1(Q) = ∅, we have Q♦ = ∅. On the other

hand, we have Q = {u ∈ Rn
+ : u1 ≤ u2 ≤ · · · ≤ un} and Q♦ = λ−1(Q) is

the (nonempty) set of all nonnegative multiples of the identity matrix. Thus,

Q♦ 6= Q♦.

(b) One consequence of Theorem 3.2.11 is that when E is spectral and convex, E♦

is convex. This may fail if E is not spectral: In V = R2, let e1 and e2 denote the

standard coordinate vectors. Then, E = {e1} is convex, while E♦ = {e1, e2} is

not. In particular, [conv(E)]♦ 6= conv(E♦).
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(c) Let V = S2 and let E be the set of all nonnegative diagonal matrices. Then,

one can easily verify that E♦ = R2
+ and so (E♦)◦ = R2

++, where R2
++ denotes

the set of all positive vectors in R2. However, we have E◦ = ∅ and (E◦)♦ = ∅.

Hence, (E♦)◦ 6= (E◦)♦.

The preservation of certain properties is an important feature of the ‘diamond’ oper-

ation.

Theorem 3.3.4 If a set E is closed/open/bounded/compact in V , then so is E♦

in Rn.

Proof. We assume, without loss of generality, that E is nonempty.

• Suppose that E is closed. Let {uk} be a sequence in E♦ such that uk → u

for some u ∈ V . For each uk ∈ E♦, we can find xk ∈ E with λ(xk) = u↓k.

Let xk =
∑

i λi(xk)e
(k)
i be the spectral decomposition of xk for each k. As the

set of all primitive idempotents in V forms a compact set (see [11], page 78),

there exists a sequence km such that e
(km)
i → ei for all i = 1, 2, . . . , n. Then

{e1, e2, . . . , en} forms a Jordan frame and

xkm =
n∑
i=1

λi(xkm)e
(km)
i →

n∑
i=1

u↓i ei.

Since E is closed, we have x := limxkm ∈ E, which implies that λ(x) = u↓.

Hence, u ∈ E♦ proving the closedness of E♦.

• For any (primitive) idempotent c in V we observe that ||c||2 = 〈c, c〉 = 〈c ◦

c, e〉 = 〈c, e〉 ≤ ||c|| ||e|| and hence ||c|| ≤ ||e||. Then, for any Jordan frame

39



{e1, e2, . . . , en} in V and u ∈ Rn, we have∥∥∥∥∥
n∑
i=1

uiei

∥∥∥∥∥ ≤
( n∑

i=1

|ui|
)
||e|| ≤

√
n ||u|| ||e|| (3.3)

where ||u|| denotes the 2-norm of u.

Now assume that E is open in V . To show that E♦ open, let u ∈ E♦. Then

there exists x ∈ E such that λ(x) = u↓. As E is open, there exists ε > 0 such

that B(x, ε) := {y ∈ V : ‖y − x‖ < ε} ⊆ E. Putting δ := ε√
n||e|| , we show

that the ball B(u, δ) := {v ∈ Rn : ‖u− v‖ < δ} is contained in E♦. To this

end, let x =
∑

i u
↓
i ei be the spectral decomposition of x. Then, there exists a

permutation matrix σ ∈ Σn such that x =
∑

i uieσ(i). Now, for any v ∈ B(u, δ),

define y :=
∑

i vieσ(i) ∈ V . Then, from (3.3),

‖x− y‖ ≤
√
n ||e|| ‖u− v‖ < ε.

This proves that y ∈ E. As λ(y) = v↓, we see that v ∈ E♦. This shows that

B(u, δ) ⊆ E♦; hence E♦ is open.

• Now let E be compact. Then λ(E) is compact, by the continuity of λ. As Σn

is compact, we see that E♦ = Σn(λ(E)) is also compact.

• Finally, if E is bounded, then E is compact. Hence, (E)♦ is compact. Clearly,

E♦ is bounded as it is a subset of (E)♦.

Corollary 3.3.5 For any set E in V , E♦ = E♦.

Proof. Without loss of generality, we assume that E is nonempty.

Since E♦ ⊆ E♦ and E♦ is closed by the above Theorem, we have E♦ ⊆ E♦.
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To see the reverse inclusion, let u ∈ E♦. Then there exists x ∈ E such that

λ(x) = u↓. As u↓ is some permutation of u, there exists a permutation σ ∈ Σn such

that σ−1(u) = u↓ = λ(x). As x ∈ E, there exists a sequence {xk} of E converging

to x. Then, by the continuity of λ, we get λ(x) = limk→∞ λ(xk). This implies

u = σ(λ(x)) = σ
(

lim
k→∞

λ(xk)
)

= lim
k→∞

σ(λ(xk)).

Letting uk := σ(λ(xk)), we get u↓k = λ(xk); thus uk ∈ E♦ for all k. As uk → u, we

have u ∈ E♦ proving E♦ ⊆ E♦. This completes the proof.

Our final result deals with the ‘double diamond’ operation. For a set E in V , we call

E♦♦, the spectral hull of E in V . Here are some properties of the spectral hull.

Proposition 3.3.6 For any set E ⊆ V , we have

(i) E ⊆ E♦♦.

(ii) If E1 ⊆ E2, then E♦♦1 ⊆ E♦♦2 .

(iii) E♦♦ is the smallest spectral set containing E.

(iv) E is spectral if and only if E = E♦♦.

(v) (E1 ∩ E2)♦♦ = E♦♦1 ∩ E♦♦2 , (E1 ∪ E2)♦♦ = E♦♦1 ∪ E♦♦2 .

(vi) E♦♦ = (E)♦♦. In particular, if E is closed, then so is E♦♦.

(vii) If E is open, then E♦♦ is open.

(viii) If E is compact, then E♦♦ is compact.

Proof. Items (i)-(v) follow from Item (iii), Theorem 3.2.4.
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(vi) As E♦(= Q) is permutation invariant, this follows from Proposition 3.3.2 and

Corollary 3.3.5.

(vii) As E♦ is permutation invariant, it is clear from Theorem 3.3.4 and Proposition

3.3.2 that E♦♦ is open whenever E is open.

(viii) When E is compact, by Theorem 3.3.4, Q := E♦ is compact and permutation

invariant. By Theorem 27 in [1], E♦♦ = λ−1(Q) is also compact.
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Chapter 4

Spectral Cones in Euclidean Jordan Alge-

bras

4.1 Introduction

Continuing the study of spectral sets in V , in this chapter, we study a special case

of spectral sets, namely spectral cones. A convex cone K in a Euclidean Jordan

algebra is spectral if K = λ−1(Q) for some permutation invariant convex cone in

Rn. The symmetric cone in a Euclidean Jordan algebra is an important example of

a spectral cone as it comes from Q = Rn
+ (the nonnegative orthant in Rn). Because

any spectral cone is a spectral set, all properties/theorems of spectral sets can be

applied to spectral cones.

Moreover, due to rich properties of cones, we may expect additional properties of a

spectral cone K can get transferred from the corresponding Q. To be specific, when

V is simple or carries the canonical inner product, we show that the dual of spectral

cone is also spectral and be written as K∗ = λ−1(Q∗). The pointedness and solidness

of a spectral cone are characterized for any V . We also show that for any spectral

cone K in V , dim(K) ∈ {0, 1, d − 1, d}, where dim(K) denotes the dimension of of

K and d is the dimension of V .
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The organization of this chapter is as follows:

• We relate, in Section 3, spectral cones with majorization, doubly stochastic

maps, and algebra automorphisms.

• In Section 4, dimensionality of a given spectral cone is discussed.

• Characterizations of pointedness and solidness of spectral cones are presented

in Section 5.

4.2 Equivalence formulations of spectral cones

Definition 4.2.1 A convex cone K in V is called a spectral cone if K = λ−1(Q)

for some permutation invariant convex cone Q in Rn.

It is easy to verify, by the positive homogeneity of λ, that K is indeed a cone and,

by Proposition 3.2.11, convex. Thus, every spectral cone is a convex cone. The

metaformula (Theorem 3.3.1) shows that the closure/interior/convex hull of a spectral

cone is again a spectral cone. For a list of spectral cones in Sn, see [22].

The following result characterizes spectral cones among convex cones in V .

Theorem 4.2.2 For a convex cone K in V , consider the following statements:

(a) K is a spectral cone.

(b) If x ≺ y and y ∈ K, then x ∈ K.

(c) If x ∼ y and y ∈ K, then x ∈ K.

(d) For every doubly stochastic map Ψ on V , Ψ(K) ⊆ K.
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(e) For every algebra automorphism φ on V , φ(K) ⊆ K.

Then, (a) ⇔ (b) ⇔ (c) and (b) ⇒ (d) ⇒ (e). Moreover, when V is essentially

simple, all the above statements are equivalent.

Proof. (a) ⇒ (b): Suppose x ≺ y and y ∈ K. Then, λ(x) ≺ λ(y) and λ(y) ∈ Q.

By Proposition 2.3.4, λ(x) ∈ Q and hence x ∈ K.

(b)⇒ (c): This is obvious as x ∼ y implies x ≺ y.

(c)⇒ (a): When (c) holds, by Theorem 3.2.6, K is spectral. Now, let K = λ−1(Q),

where Q is permutation invariant. To show that Q is convex, let u, v ∈ Q and

t ∈ [0, 1]. Then there exist x, y ∈ K such that x :=
∑n

i=1 uiei and y :=
∑n

i=1 vie
′
i

for some Jordan frames {e1, e2, . . . , en} and {e′1, e′2, . . . , e′n}. Now, define x =∑n
i=1 uie

′
i. Then λ(x) = λ(x), hence x ∈ K by (c). As x, y ∈ K and K is convex,

we get

n∑
i=1

(tui + (1− t)vi)e′i = t
n∑
i=1

uie
′
i + (1− t)

n∑
i=1

vie
′
i

= tx+ (1− t)y ∈ K.

This proves that tu + (1 − t)v ∈ Q. Thus, Q is convex. Since K is given to be a

cone, we see that Q (which equals Σn(λ(K)), see (3.2)) is a cone. Thus, K is a

spectral cone.

(b) ⇒ (d): Assume that K is spectral cone and let Ψ be a doubly stochastic map

on V . For y ∈ K, let x = Ψ(y). Then by Proposition 2.3.7, x ≺ y. It follows that

x ∈ K.

(d)⇒ (e): This is obvious, as every algebra automorphism is doubly stochastic.
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Now we prove (e) ⇒ (b) assuming V is essentially simple. Let x ≺ y in V . Then,

Proposition 2.3.7 shows that x = Φ(y) where Φ is a convex combination of algebra

automorphisms. Using the convexity of K and (e), it is easy to see that x ∈ K,

which proves (b).

Example 4.2.3 We can use Example 3.2.8 to show that in a general V , (d) may

not imply (a), (b), or (c) in the above theorem.

Remark. When V is not essentially simple, the reverse implications in the above

theorem may not hold. For instance, consider V = R× S2, K = R+ × S2, and

x =

(
−1,

[
1 0

0 2

])
, y =

(
1,

[
−1 0

0 2

])
.

From Proposition 2.1.10, we see that K is invariant under automorphisms of V .

However, K is not a spectral set as x ∼ y, y ∈ K, and x /∈ K. Thus, (e) holds, but

not (a).

The above example shows that the Cartesian product of two spectral cones need not be

spectral. However, as we see below, certain projections of a spectral cone are spectral.

Corollary 4.2.4 Suppose V = V1×V2×· · ·×VN be the product of simple Euclidean

Jordan algebras. Let Πj : V → Vj denote the projection map and K be a spectral

cone in V . Then Πj(K) is a spectral cone in Vj for all j = 1, 2 . . . , N .

Proof. By the linearity of Πj, Πj(K) is a convex cone in Vj. To show that Πj(K)

is a spectral cone in the simple algebra Vj, we show that it is invariant under

automorphisms of Vj and apply Theorem 4.2.2. Now, without loss of generality, let
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j = 1, x1 ∈ Π1(K) and φ1 ∈ Aut(V1). Then, there exists xi ∈ Vi, i = 2, 3, . . . , N

such that x := (x1, x2, . . . , xN) ∈ K. Let φi be the identity transformation on Vi,

i = 2, . . . , N . Then, φ := (φ1, φ2, φ3, . . . , φN) ∈ Aut(V), where the action of φ on

V1 × V2 × · · · × VN is given by φ(z1, z2, . . . , zn) := (φ(z1), φ(z2), . . . , φ(zn)). Since

φ(x) ∈ K by Theorem 4.2.2, we see that φ1(x1) ∈ Π1(K). This completes the

proof.

Remarks.

(1) The automorphisms of Rn are just permutation matrices. Since Rn is also

essentially simple, spectral cones in Rn are just permutation invariant convex

cones.

(2) Let V be essentially simple. For any z ∈ V , consider

K = cone{φ(z) : φ ∈ Aut(V)},

the convex cone generated by {φ(z) : φ ∈ Aut(V)}. Then, by Theorem 4.2.2,

K is a spectral cone.

Theorem 4.2.5 Suppose V is either simple or carries the canonical inner product.

Then, for any permutation invariant set Q in Rn,

[
λ−1(Q)

]∗
= λ−1(Q∗).

Proof. By assumption, all primitive idempotents in V have the same norm. Let

ω := ||c||2 for any primitive idempotent c in V . Now, let x ∈ [λ−1(Q)]
∗

and

x =
∑

i λi(x)ei be its spectral decomposition. For any q ∈ Q, set y =
∑

i qiei. As
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λ(y) = q↓ ∈ Q, we have y ∈ λ−1(Q) and so 〈x, y〉 ≥ 0. Thus, we have

0 ≤ 〈x, y〉

=

〈
n∑
i=1

λi(x)ei,
n∑
i=1

qiei

〉

=
n∑
i=1

λi(x)qi ‖ei‖2

= ω 〈λ(x), q〉 ,

where 〈λ(x), q〉 denotes the usual inner product between the vectors λ(x) and q in

Rn. Since ω > 0, 〈λ(x), q〉 ≥ 0. As q is arbitrary in Q, we have λ(x) ∈ Q∗ and so

x ∈ λ−1(Q∗). This shows [λ−1(Q)]
∗ ⊆ λ−1(Q∗).

To prove the reverse implication, let x ∈ λ−1(Q∗) so that λ(x) ∈ Q∗. Now, let

y ∈ λ−1(Q) with its spectral decomposition y =
∑

i λi(y)ei. We write the Peirce

decomposition of x with respect to the Jordan frame {e1, . . . , en} as

x =
n∑
i=1

xiei +
∑
i<j

xij,

and define diag(x) :=
∑n

i=1 xiei. Let u := (x1, x2, . . . , xn)T in Rn. Because of the

orthogonality of the Peirce spaces, we have

〈x, y〉 =

〈
n∑
i=1

xiei,

n∑
i=1

λi(y)ei

〉

=
n∑
i=1

xiλi(y) ‖ei‖2 (4.1)

= ω 〈u, λ(y)〉 .

Now, it is known that diag(x) ≺ x (see [18], Example 7); hence, u ≺ λ(x). By
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Proposition 2.3.2, u = Aλ(x) for some doubly stochastic matrix A; furthermore, by

Proposition 2.3.3, this A is a convex combination of permutation matrices. Thus,

u =

( N∑
k=1

αkσk

)
λ(x), where αk > 0 with

N∑
k=1

αk = 1, and σk ∈ Σn.

Since Q∗ is permutation invariant and convex, u ∈ Q∗.

Since y ∈ λ−1(Q)⇒ λ(y) ∈ Q, we must have 〈u, λ(y)〉 ≥ 0. Hence, from (4.1), we

get 〈x, y〉 ≥ 0. As y is arbitrary in λ−1(Q), this proves that x ∈ [λ−1(Q)]∗. Thus,

λ−1(Q∗) ⊆ [λ−1(Q)]
∗
, completing the proof.

We now summarize the following:

Corollary 4.2.6 Let K1, K2, and K be spectral cones in V and α1, α2 ∈ R. Then,

the following hold:

(a) α1K1 + α2K2, K, and K◦ are spectral cones.

(b) When V is simple or carries the canonical inner product, K∗ andK⊥ are spectral

cones.

Proof.

(a) Let Ki = λ−1(Qi), where Qi is a permutation invariant convex cone in Rn for

i = 1, 2. Then, α1Q1 +α2Q2 is a permutation invariant convex cone in Rn and

from Corollary 3.2.10, α1K1 +α2K2 = λ−1(α1Q1 +α2Q2). Thus, α1K1 +α2K2

is a spectral cone. Let K = λ−1(Q), where Q is a permutation invariant convex

cone in Rn. It is easy to see that Q, Q◦, Q∗ and Q⊥ (defined with respect to

the usual inner product in Rn) are permutation invariant convex cones in Rn.

49



(Note that Q⊥ = Q∗ ∩ −Q∗.) That K and K◦ are spectral cones follow by

Theorem 3.3.1. Thus we have (a).

(b) Suppose that V is simple or carries the canonical inner product. Then, Theorem

4.2.5 shows that K∗ is a spectral cone. Finally, the equality

K⊥ = K∗ ∩ −K∗ = λ−1(Q∗) ∩ λ−1(−Q∗) = λ−1(Q∗ ∩ −Q∗) = λ−1(Q⊥) (4.2)

shows that K⊥ is a spectral cone.

Example 4.2.7 Consider the algebra V = R2, where for x = (x1, x2) and y =

(y1, y2), the Jordan and inner products are defined, respectively, by

x ∗ y := (x1y1, x2y2) and 〈x, y〉 := 2x1y1 + 3x2y2.

Since the set (subspace) Q := {(x1, x2) | x1 = x2} in R2 is permutation invariant,

K := λ−1(Q) = R e is a spectral set in our algebra V . With respect to the above

inner product,

K∗ = K⊥ = {(x1, x2) | 2x1 + 3x2 = 0} .

Now, (2, −3) ∼ (−3, 2) with (−3, 2) ∈ K∗ and (2, −3) 6∈ K∗. Hence, by Proposi-

tion 3.2.6, K∗ is not spectral.

Remark. In [22], Lemma 3, it is shown that the dual of a spectral cone in Sn is

a spectral cone. Item (b) in the above theorem is a generalization. However, it

does not hold in a general algebra: The set K in Example 4.2.7 is a spectral cone

(actually, a subspace) while K∗ (which is K⊥) is not even a spectral set.
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4.3 A dimensionality result

Inspired by a result of Lahtonen and its proof in [26], we present the following di-

mensionality result for spectral cones. Recall that the dimension of a convex cone K

is the dimension of the subspace K −K. Throughout this section, for the Euclidean

Jordan algebra V , we let

d := dim(V).

Theorem 4.3.1 For any spectral cone K in V ,

dim(K) ∈ {0, 1, d− 1, d}.

Proof. We assume without loss of generality that K is nonempty and that V carries

the canonical inner product so that the norm of any primitive idempotent is one.

(See the paragraph right before Proposition 2.1.7). Now we show that either every

element of K is a scalar multiple of e or every element of K⊥ is a scalar multiple

of e. Assuming the contrary, let x ∈ K and y ∈ K⊥ have at least two distinct

eigenvalues. Writing their spectral decompositions,

x = x1e1 + x2e2 + · · ·+ xnen and y = y1e
′
1 + y2e

′
2 + · · ·+ yne

′
n,

we assume, without loss of generality, x1 6= x2 and y1 6= y2. Now, define x, x by

x := x1e
′
1 + x2e

′
2 + x3e

′
3 + · · ·+ xne

′
n,

x := x2e
′
1 + x1e

′
2 + x3e

′
3 + · · ·+ xne

′
n.
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We note that x ∼ x and x ∼ x. Since K is a spectral set and x ∈ K, by Theorem

4.2.2, x, x ∈ K; hence, x, x ⊥ y. Then,

0 = 〈x, y〉 −
〈
x, y

〉
=
〈
x− x, y

〉
= 〈(x1 − x2)(e′1 − e′2), y1e

′
1 + y2e

′
2 + · · ·+ yne

′
n〉

= (x1 − x2)y1 − (x1 − x2)y2

= (x1 − x2)(y1 − y2)

6= 0.

We reach a contradiction. This shows that either K or K⊥ must contain just

multiples of e. Thus, the dimension of K or K⊥ is at most 1. As dim(K) +

dim(K⊥) = dim(V) = d, we deduce that the possible values for dim(K) are 0, 1, d−

1, and d.

It is easy to see that a nonempty (spectral) cone has dimension zero if and only if

it is {0}. Also, it is of dimension d if and only if it has nonempty interior. We now

describe nonempty spectral cones in V with dimensions 1 and d− 1.

Theorem 4.3.2 For a nonempty spectral cone K in V , the following statements

hold.

(a) dim(K) = 1 if and only if K is a nonzero cone contained in R e.

(b) dim(K) = d− 1 if and only if K = {x ∈ V | tr(x) = 0}.

Proof.
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(a) As the ‘if’ part is obvious, We prove the ‘only if’ part. Suppose dim(K) = 1.

Let K = λ−1(Q), where Q is a permutation invariant convex cone in Rn. We

claim thatQ has dimension one. If, on the contrary, u, v are linearly independent

vectors in Q, then for any Jordan frame {e1, e2, . . . , en}, x :=
∑n

1 uiei and y :=∑n
1 viei are two linearly independent elements in K contradicting dim(K) = 1.

Thus, Q has dimension one; let Q be contained in the span of a nonzero vector

w. As Q is permutation invariant, this w must be a multiple of 1. Then

K = λ−1(Q) is contained in R e, as {e} = λ−1({1}).

(b) If K = {x ∈ V : tr(x) = 0}, then it has dimension d − 1 as x 7→ tr(x) from V

to R is linear with null space K.

Now suppose K has dimension d− 1. Letting K = λ−1(Q), we see, from (4.2),

K⊥ = λ−1(Q⊥) has dimension one. As in Item (a), we can show that Q⊥ is

spanned by the vector 1 in Rn; hence, tr(v) = 〈v, 1〉 = 0 for all v ∈ Q. This

means that Q ⊆ M , where M = {v ∈ Rn | tr(v) = 0}. Now, take any vector

v ∈ M and a nonzero u ∈ Q. As M and Q are permutation invariant, we

may assume that the entries of u and v are decreasing. Note that
∑n

i=1 vi =∑n
i=1 ui = 0. Now, from Proposition 2.3.5, v ≺ αu for some α > 0. Since Q is a

permutation invariant convex cone, αu ∈ Q and by Theorem 4.2.2, v ∈ Q. This

proves that Q = M . From this, we get K = λ−1(Q) = {x ∈ V | tr(x) = 0} .

This proves the result.

Remark. We note that in V , there are only five nonzero cones contained in R e,
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namely, R+ e, R++ e, −R+ e, −R++ e, and R e, where R++ is the set of positive

numbers in R.

Corollary 4.3.3 Suppose K is a spectral cone in V such that

{0} ⊆ K ⊆ {x ∈ V | tr(x) = 0} .

Then, either K = {0} or K = {x ∈ V | tr(x) = 0}.

Proof. For the specified K, let K = λ−1(Q), where Q is a permutation invariant

convex cone in Rn. Then,

{0} ⊆ λ−1(Q) ⊆ λ−1(M),

where M = {v ∈ Rn : tr(v) = 0}. Now, from Theorem 3.2.4, P = Σn(λ(λ−1(P )))

for any permutation invariant set P in Rn; thus,

{0} ⊆ Q ⊆M.

The proof of Item (b) in the above theorem shows that either Q = {0} or Q = M .

Then, K, which is λ−1(Q), is either {0} or {x ∈ V : tr(x) = 0}.

Remark. Suppose K is a nonempty spectral cone which is different from {0} and

{x ∈ V | tr(x) = 0}. Then, either e ∈ K or −e ∈ K. This is seen as follows. Let

K = λ−1(Q), where Q is a permutation invariant convex cone in Rn. Then, Q is

nonempty and different from {0} and {u ∈ Rn : tr(u) = 0}. Let u be a nonzero
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element of Q with tr(u) 6= 0. As Q is permutation invariant, from (2.1),

(n− 1)! tr(u) 1 =
∑
σ∈Σn

σ(u) ∈ Q.

Since Q is a cone, we see that either 1 ∈ Q or −1 ∈ Q. From this, we see that

either e ∈ K or −e ∈ K.

4.4 Pointed/Solid spectral cones

The following result is a generalization of a similar result stated in the setting of

V = Sn (see [20], Theorem 3.3).

Theorem 4.4.1 Let K = λ−1(Q), where Q is a permutation invariant convex cone

in Rn. Then

(i) K is pointed if and only if Q is pointed,

(ii) K is solid if and only if Q is solid.

Proof. (i) From Theorem 3.2.9, K ∩ −K = λ−1(Q ∩ −Q). Thus, K ∩ −K ⊆ {0}

if and only if Q ∩ −Q ⊆ {0}. This proves (i).

(ii) This follows from the fact that K◦ = λ−1(Q◦), see Proposition 3.3.1.

Lemma 4.4.2 Let Q be a nonempty nonzero permutation invariant convex cone in

Rn. Then Q is pointed if and only if exactly one of the following conditions holds:

(i) tr(u) > 0 for all nonzero u ∈ Q (and 1 ∈ Q).

(ii) tr(u) < 0 for all nonzero u ∈ Q (and −1 ∈ Q).
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Proof. Suppose Q is pointed. We first show that tr(u) 6= 0 for every nonzero u ∈ Q.

Suppose, on the contrary, there is a nonzero vector u ∈ Q such that tr(u) = 0. Then

by (2.1), 0 = (n− 1)! tr(u) 1 =
∑

σ∈Σn
σ(u). This implies

v :=
∑

σ∈Σn, σ 6=I

σ(u) =

[∑
σ∈Σn

σ(u)

]
− I(u) = −I(u) = −u,

where I is the identity matrix. However, as both u and v are in Q, we reach a

contradiction to the pointedness of Q. Now, if there exist nonzero u, v ∈ Q such

that tr(u) > 0 and tr(v) < 0, then for a suitable convex combination w of u and v,

we have tr(w) = 0. As Q is convex, w ∈ Q. From what has been proved earlier,

w = 0. This contradicts the pointedness of the convex cone Q. Hence, either

tr(u) > 0 for all nonzero u ∈ Q or tr(u) < 0 for all nonzero u ∈ Q.

Now, in the first case, by (2.1),

(n− 1)! tr(u) 1 =
∑
σ∈Σn

σ(u) ∈ Q.

It follows (by scaling) that 1 ∈ Q. This is Item (i). Similarly, when tr(u) < 0 for

all nonzero u ∈ Q, we get Item (ii). By the pointedness of Q, both (i) and (ii)

cannot hold simultaneously.

To see the reverse implication, suppose without loss of generality (i) holds so that

tr(u) > 0 for every nonzero u ∈ Q. By the linearity of the trace function, −u

cannot be in Q for any nonzero u ∈ Q. Thus, Q is pointed.

Theorem 4.4.3 Let K be a nonempty, nonzero spectral cone in V . Then K is

pointed if and only if exactly one of the following conditions holds:
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(i) tr(x) > 0 for all nonzero x ∈ K (and e ∈ K).

(ii) tr(x) < 0 for all nonzero x ∈ K (and −e ∈ K).

Proof. Let K = λ−1(Q) where Q is a permutation invariant convex cone. Then,

by an earlier result, K is pointed if and only if Q is pointed. Thus, by the above

lemma, K is pointed if and only if either tr(u) > 0 for all u ∈ Q (and 1 ∈ Q) or

tr(u) < 0 for all u ∈ Q (and −1 ∈ Q). As tr(λ(x)) = tr(x), and ±1 ∈ Q if and

only if ± e ∈ K, we get the stated results from K = λ−1(Q).

We say that a vector in Rn is a nonconstant vector if it is not a multiple of 1.

Lemma 4.4.4 Let Q be a permutation invariant convex cone in Rn. Then the

following are equivalent:

(a) Q is solid.

(b) 1 ∈ Q◦ or −1 ∈ Q◦.

(c) When n ≥ 2, Q has a nonconstant vector, and either 1 ∈ Q or −1 ∈ Q.

Proof. (a)⇒ (b): Suppose Q is solid, that is, Q◦ 6= ∅. As Q◦ cannot be contained

in the subspace {u ∈ Rn : tr(u) = 0}, there exists a nonzero vector u ∈ Q◦ with

tr(u) 6= 0. As Q◦ is permutation invariant, σ(u) ∈ Q◦ for every σ ∈ Σn. Now, as

Q◦ is a convex cone, by (2.1),

(n− 1)! tr(u) 1 =
∑
σ∈Σn

σ(u) ∈ Q◦.

Since tr(u) 6= 0, we must have, ±1 ∈ Q◦.
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(b)⇒ (c): This is obvious.

(c)⇒ (a): Let n ≥ 2. Assume that there is a nonconstant vector u = (u1, u2, . . . , un)T

in Q and (without loss of generality) 1 ∈ Q. Suppose, if possible, Q is not solid.

Then Q − Q 6= Rn and so there exists a nonzero v ∈ (Q − Q)⊥ = Q⊥. As 1 ∈ Q,

we must have
∑

i vi = 〈1, v〉 = 0, where v = (v1, v2, . . . , vn)T. Now, as u has

at least two distinct components, we may assume (by permuting the coordinates)

that u1 6= u2. Let ū be the vector in Q obtained from u by interchanging u1 and

u2. Since u, ū ⊥ v, we get

〈u, v〉 = u1v1 + u2v2 +
n∑
i=3

uivi = 0, and

〈u, v〉 = u2v1 + u1v2 +
n∑
i=3

uivi = 0.

From these, we get 0 = 〈u − ū, v〉 = (u1 − u2)(v1 − v2). As u1 − u2 6= 0, we must

have v1 = v2. Now, we can permute u so that the resulting vector has different

entries in i and j slots, i 6= j. Then, the above argument can be repeated to get

vi = vj. Hence, v is a multiple of 1. However, as
∑

i vi = 0, we must have v = 0, a

contradiction. Thus (a) holds.

Theorem 4.4.5 Let K be a spectral cone in V . Then the following are equivalent:

(a) K is solid.

(b) e ∈ K◦ or −e ∈ K◦.

(c) When n ≥ 2, K has a vector which is not a multiple of e, and either e ∈ K or

−e ∈ K.
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Proof. Let K = λ−1(Q) where Q is a permutation invariant convex cone. As

K◦ = λ−1(Q◦) and λ(e) = 1, we see that the items listed above are equivalent to

the similar ones in the previous lemma. This completes the proof.
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Chapter 5

The Lyapunov Rank of Permutation Invari-

ant Proper Polyhedral Cones

5.1 Introduction

In optimization theory, a complementarity problem corresponding to a mapping f :

V → V and a closed convex cone K in V is to find x ∈ V such that

x ∈ K, s = f(x) ∈ K∗, 〈x, s〉 = 0, (5.1)

where K∗ denotes the dual of K.. There are various strategies for solving comple-

mentarity problems, see [4]. Notice that, when dim(V) = n, there are 2n variables

xi, si for i = 1, 2, . . . , n, while there are n + 1 equations, namely, si = fi(x) for

i = 1, 2, . . . , n and 〈x, s〉 = 0. Thus, we may want to rewrite the last bilinear rela-

tion 〈x, s〉 = 0 by an equivalent system of n linearly independent bilinear relations

in order to get a square system. If V = Rn and K = Rn
+, then 〈x, s〉 = 0 can be

replaced by xisi = 0 for i = 1, 2, . . . , n. Although this situation does not always

happen, it will be useful to identify cones where this is possible.

Now, for a closed convex cone K in V , a linear transformation L : V → V is said to

be a Lyapunov-like transformation on K provided

x ∈ K, s ∈ K∗, 〈x, s〉 = 0 =⇒ 〈L(x), s〉 = 0. (5.2)
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This concept was first introduced in [14] as a generalization of the Lyapunov trans-

formation X 7→ AX +XAT that appears in the linear dynamical system theory, and

has been a subject of several recent works. Some examples and properties related to

the Lyapunov-like transformation can be found in [14], [16], and [17].

Recently, G. Rudolf et al [42] and Gowda and Tao [16] introduced the following: For

a proper cone K ∈ V , the Lyapunov rank of K is defined by

β(K) = dim LL(K) = dim Lie(Aut(K)),

where LL(K) represents the set of all Lyapunov-like transformations on K. Thus,

β(K) measures the number of independent Lyapunov-like transformations on K. In

the case of β(K) < n, the complementarity problem can never be written as a square

system with Lyapunov-like transformations alone. When β(K) > n, one needs to

carefully choose n linearly independent Lyapunov-like transformations to get a square

system. Hence, the problem is desirable when β(K) = n.

The below is a summary of results on the Lyapunov rank: Gowda et al ([16], [17],

and [38]) have shown that

(1) For any proper cone K ⊆ Rn, β(K) ≤ (n− 1)2.

(2) For any proper polyhedral cone in K ⊆ Rn, 1 ≤ β(K) ≤ n, β(K) 6= n− 1.

(3) β(Sn+) = n2 and β(CPn) = n where CPn denotes the set of all n×n completely

positive matrices.

(4) In Rn, for n ≥ 3, the lp-cone, defined by lp,+ := {u = (u0, ū) ∈ R × Rn−1 :

u0 ≥ ||u||p}, β(lp,+) = 1 where 1 ≤ p ≤ ∞, p 6= 2. When p = 2, β(l2,+) =
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(n2 − n+ 2)/2.

Inspired by Item 2, we prove that the Lyapunov rank of a permutation invariant

proper polyhedral cone divides n. The organization of this chapter is as follows:

• In Section 2, a special type of spectral cone in Rn, namely a rearrangement

cone is studied. The Lyapunov rank this cone is provided.

• In Section 3, we compute the Lyapunov rank of a permutation invariant proper

polyhedral cone.

5.2 Rearrangement cones

In this section, we describe some permutation invariant convex cones in Rn. Given

any nonempty set S in Rn,

Q := cone (Σn(S)),

the convex cone generated by Σn(S) := {σ(u) | u ∈ S, σ ∈ Σn}, is a permutation

invariant convex cone. A rearrangement cone Qn
p is a particular example of a permu-

tation invariant cone which is proper and polyhedral. Recall that, for any u ∈ Rn, u↑

denotes the vector obtained by rearranging the components of u in increasing order.

In other words, u↑ is the rearrangement of u satisfying the following inequalities

u↑1 ≤ u↑2 ≤ u↑3 ≤ · · · ≤ u↑n.

Given 1 ≤ p ≤ n, define the rearrangement cone [20]

Qn
p =

{
u ∈ Rn

∣∣∣ u↑1 + u↑2 + · · ·+ u↑p ≥ 0
}
.
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Note that

Qn
1 =

{
u ∈ Rn

∣∣∣ u↑1 ≥ 0
}

= {u ∈ Rn | ui ≥ 0 for all i = 1, 2, . . . , n} ,

Qn
n =

{
u ∈ Rn

∣∣∣ u↑1 + u↑2 + · · ·+ u↑n ≥ 0
}

= {u ∈ Rn | u1 + u2 + · · ·+ un ≥ 0} .

Hence, Qn
1 = Rn

+ and Qn
n is a half-space of Rn. Thus, we are interested in Qn

p when

2 ≤ p ≤ n− 1. We start with some basic properties of Qn
p .

Proposition 5.2.1 The following statements hold:

(a) Qn
p is a permutation invariant polyhedral (closed convex) solid cone; it is pointed

when 1 ≤ p ≤ n− 1.

(b) Qn
1 ⊆ Qn

2 ⊆ · · · ⊆ Qn
n.

(c) Qn
p is isomorphic to Qn

n−p for 1 ≤ p ≤ n− 1.

Proof.

(a) For any nonempty index set I ⊆ {1, 2, . . . , n}, let |I| denote the cardinality of

I and eI be the vector with (eI)i = 1 for i ∈ I and (eI)i = 0 otherwise. Then,

u↑1 + u↑2 + · · ·+ u↑p = min
|I|=p
〈u, eI〉 ,

hence, we get

Qn
p = {u ∈ Rn : u↑1 + u↑2 + · · ·+ u↑p ≥ 0}

=

{
u ∈ Rn

∣∣∣∣ min
|I|=p
〈u, ei〉 ≥ 0

}

63



= {u ∈ Rn | 〈u, eI〉 ≥ 0 for every eI with |I| = p} .

Since Qn
p is now the intersection of a finite number of closed half-spaces, it is

a polyhedral closed convex cone. Since σ(u)↑ = u↑ for any permutation matrix

σ ∈ Σn, we see that Qn
p is permutation invariant. That Qn

p has nonempty

interior follows from the inclusion Rn
+ ⊆ Qn

p . Now let 1 ≤ p ≤ n − 1. To

see the pointedness, suppose both u and −u are in Qn
p . Then, the inequalities

min|I|=p 〈u, eI〉 ≥ 0 and min|I|=p 〈−u, eI〉 ≥ 0 imply that 〈u, eI〉 = 0 whenever

|I| = p. This means that sum of any p entries of u is zero. Hence, as p ≤ n− 1,

all entries of u are equal, and so, u = 0. Thus, Qn
p is pointed when 1 ≤ p ≤ n−1.

(b) Let 1 ≤ p ≤ n− 1. If u ∈ Qn
p , then u↑1 + u↑2 + · · ·+ u↑p ≥ 0. Since 0 ≤ u↑p ≤ u↑p+1,

we get u↑1 + u↑2 + · · ·+ u↑p + u↑p+1 ≥ 0. Thus, u ∈ Qn
p+1.

(c) We let 1 ≤ p ≤ n − 1. Let 1 denote the vector in Rn with all entries one,

E := 1 1T (the n × n matrix with all entries one), and I denote the identity

matrix. Defining

Mp :=
1

p
E − I, (5.3)

we easily verify that MpMn−p = I; hence Mp is invertible. Now, let u ∈ Qn
n−p;

this means that the sum of n − p smallest entries of u is nonnegative, that

is,
∑n

p+1 u
↓
i ≥ 0. Then, from Mpu =

tr(u)

p
1 − u and (−u)↑ = −u↓ we have

(Mpu)↑ =
tr(u)

p
1− u↓. Hence,

p∑
i=1

(Mpu)↑i = tr(u)−
p∑
1

u↓i =
n∑
p+1

u↓i ≥ 0.

64



Thus Mpu ∈ Qn
p , and so Mp(Q

n
n−p) ⊆ Qn

p . Similarly, Mn−p(Q
n
p ) ⊆ Qn

n−p. Hence,

Mp(Q
n
n−p) = Qn

p .

5.2.1 The Lyapunov rank of a rearrangement cone

Now, fix p ∈ {2, 3, . . . , n − 1} and consider the rearrangement cone Qn
p . The main

part of this section is to find the set of extreme vectors and compute the Lyapunov

rank of Qn
p . Since Qn

p is a proper polyhedral cone, it contains finitely many extreme

vectors and by using these vectors, we may compute the Lyapunov rank of Qn
p . In

order to find the set of all extreme vectors of Qn
p , we start with a lemma.

Lemma 5.2.2 Let u = (u1, u2, . . . , un)T be a vector in Rn. If there exist p ∈

{1, 2, . . . , n− 1} and α ∈ R such that 〈u, eI〉 = α for all I satisfying |I| = p, then

u1 = u2 = · · · = un = α/p.

Proof. In the case of |I| = 1, we clearly have u1 = · · · = un = α. Thus, suppose

p ∈ {2, . . . , n− 1} and consider the sums

u1 + u2 + · · ·+ up = α

u2 + · · ·+ up + uk = α, for k = p+ 1, . . . , n.

Thus, we get u1 = uk for all k = p+ 1, . . . , n. Similarly, we can show that ul = uk

for all k = 1, . . . , p. This implies that u1 = u2 = · · · = un = α/p.

Theorem 5.2.3 For a proper cone Qn
p , p = 2, 3, . . . , n − 1, let dpj ∈ Rn, for

j = 1, . . . , n, denote a vector in Rn such that its jth entry is 1 − p and other
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entries are 1’s. Then, for 2 ≤ p ≤ n− 2,

ext(Qn
p ) = {e1, e2, . . . , en, dp1 , dp2 , . . . , dpn}.

When p = 1 or p = n− 1, we respectively have

ext(Qn
1 ) = {e1, e2, . . . , en},

ext(Qn
n−1) = {d(n−1)1 , d(n−1)2 , . . . , d(n−1)n}.

Proof. Since Qn
1 = Rn

+, it is clear that ext(Qn
1 ) = {e1, e2, . . . , en}. Note that Qn

1

is isomorphic to Qn
n−1 with an isomorphism Mn−1 given in (5.3). Since

(n− 1)Mn−1ej = [E − (n− 1)I]ej = 1− (n− 1)ej = d(n−1)j ,

for all j, it follows that ext(Qn
n−1) = {d(n−1)1 , d(n−1)2 , . . . , d(n−1)n}.

Now, fix 2 ≤ p ≤ n− 2. First, we show {dp1 , dp2 , . . . , dpn} ⊆ ext(Qn
p ). Consider the

case of dp1 only as proofs of the other cases will be similar. Suppose we have vectors

u = (u1, u2, . . . , un)T and v = (v1, v2, . . . , vn)T in Qn
p such that dp1 = u + v. We

show that u and v are nonnegative scalar multiples of dp−1. Write u = (u1, ū)T,

v = (v1, v̄)T, where ū, v̄ ∈ Rn−1. Note that u1 + v1 = 1− p and ū + v̄ = 1, where

1 ∈ Rn−1. Since u, v ∈ Qn
p , we have u1 + 〈eI , ū〉 ≥ 0 and v1 + 〈eI , v̄〉 ≥ 0 for all

eI ∈ Rn−1 satisfying |I| = p− 1. Hence we get,

0 ≤ v1 + 〈eI , v̄〉 = (1− p− u1) + 〈eI , 1− ū〉 = −u1 − 〈eI , ū〉 .

This implies u1+〈eI , ū〉 ≤ 0, and hence u1+〈eI , ū〉 = 0 or 〈eI , ū〉 = −u1. Applying

Lemma 5.2.2, we get u2 = · · · = un = u1/(1− p). Hence, u = αdp1 for some α and
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dp1 ∈ ext(Qn
p ).

Now, we show {e1, e2, . . . , en} ⊆ ext(Qn
p ). Suppose that vectors u = (u1, u2, . . . , un)T

and v = (v1, v2, . . . , vn)T in Qn
p with e1 = u + v. We show that u = αe1 for some

α ≥ 0 or, equivalently, ū = 0 where u = (u1, ū)T. Since ū + v̄ = 0 and u, v ∈ Qn
p ,

we have 〈eI , ū〉 ≥ 0 and 〈eI , v̄〉 ≥ 0, where eI ∈ Rn−1 with |I| = p− 1. Hence,

0 ≤ 〈eI , v̄〉 = 〈eI , −ū〉 = −〈eI , ū〉 .

Thus, we get 〈eI , ū〉 ≤ 0, and hence 〈eI , ū〉 = 0. This implies ū = 0 by Lemma

5.2.2. We can similarly prove that ei ∈ ext(Qn
p ) for all i.

We now show cone{e1, e2, . . . , en, dp1 , dp2 , . . . , dpn} = Qn
p . Pick a vector u =

(u1, u2, . . . , un)T ∈ Qn
p . Without loss of generality, assume u = u↑. If u has non-

negative entries only, then u can be represented as a nonnegative linear combination

of {e1, e2, . . . , en}. Otherwise, if ui < 0 for 1 ≤ i ≤ p and ui ≥ 0 for p+ 1 ≤ i ≤ n,

define

ud = (u1, u2, . . . , up, up, . . . , up)
T, ue = u− ud.

Note that u = ud + ue and ue has nonnegative entries only. Then ue can be

represented as a nonnegative linear combination of {e1, e2, . . . , en}.

We now show ud can be represented as a {dp1 , dp2 , . . . , dpn}. Consider an n × n

matrix M whose ith column is dpi . Note that M = pMp, so the inverse of M exists

and M−1 = 1
p
Mn−p. Then the problem is converted to showing u := M−1ud =

1
p
Mn−pu

d ≥ 0. Indeed, we can show uj ≥ 0 for all j = 1, 2, · · · , n by direct

calculation. Finally, the given vector u ∈ Qn
p can be represented a nonnegative
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linear combination,

u = ud + ue = α1dp1 + · · ·+ αndpn + β1e1 + · · ·+ βnen.

Hence, cone{e1, e2, . . . , en, dp1 , dp2 , . . . , dpn} = Qn
p .

Finally, we now compute the Lyapunov rank of cone Qn
p as a corollary.

Corollary 5.2.4 β(Qn
p ) = 1 when p = 2, 3, . . . , n − 2 and β(Qn

p ) = n when p =

1, n− 1.

Proof. When p = 1, we have Qn
1 = Rn

+, in which case, β(Qn
1 ) = 1. When p = n−1,

Qn
n−1 is isomorphic to Qn

1 by Proposition 5.2.1; hence β(Qn
n−1) = n.

We now suppose p ∈ {2, 3, . . . , n−2} and let L be a Lyapunov-like transformation

on Qn
p . Since Qn

p is a proper polyhedral cone, every extreme vector of Qn
p is an

eigenvector of a Lyapunov-like transformation L, see [16]. As Qn
p has extreme

vectors {e1, e2, . . . , en}, L is a diagonal matrix, say L = diag(a11, a22, . . . , ann).

Now, assume that λ is an eigenvalue of L corresponding to dp1 . Then we get,

(1− p)a11 = λ(1− p), a22 = λ, a33 = λ, . . . , ann = λ.

Hence, L = diag(a11, a22, . . . , ann) = λI. Thus every Lyapunov-like transforma-

tion is a multiple of I. Hence, β(Qn
p ) = 1 completing the proof.
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5.3 The Lyapunov rank of PIPP cone

It has been shown that the Lyapunov rank of a proper polyhedral cone in Rn can

only take a value between 1 to n except n − 1, see [16]. Motivated by this, we deal

with the Lyapunov rank of permutation invariant proper polyhedral cone. (In short,

a PIPP cone)

Lemma 5.3.1 Suppose a proper cone Q is reducible, so Q = Q1⊕Q2 where Q1, Q2

are non-empty and non-zero cones and span(Q1) ∩ span(Q2) = {0}. Then, ext(Q)

is the union of disjoint set ext(Q1) and ext(Q2). In other words,

ext(Q1) ∪ ext(Q2) = ext(Q) and ext(Q1) ∩ ext(Q2) = ∅.

Proof. First, we show ext(Q) ⊆ ext(Q1) ∪ ext(Q2). Suppose d ∈ ext(Q) and

d = u + v where u ∈ Q1 and v ∈ Q2. Since span(Q1) ∩ span(Q2) = {0}, either u

or v is 0 and so either d ∈ Q1 or d ∈ Q2. Assuming d ∈ Q1, we easily verify that

d ∈ ext(Q1).

Now, we show ext(Q1) ∪ ext(Q2) ⊆ ext(Q). Without loss of generality, let d be

nonzero in ext(Q1). If there exist u, v ∈ Q such that d = u+ v, then we have three

possible cases:

Case 1. Suppose u and v are both in Q1. Since d is an extreme vector of Q1, u

and v are multiple of d. Thus, d ∈ ext(Q).

Case 2. Suppose u and v are both in Q2. As d = u + v are both in Q1 and Q2,

span(Q1) ∪ span(Q2) 6= {0} leading a contradiction.
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Case 3. Suppose, without loss of generality, that u ∈ Q1 and v ∈ Q2. From

d = u+ v, we get d− u = v are both in Q1 and Q2. This contradicts the fact that

span(Q1) ∩ span(Q2) = {0}.

Considering all possible cases, we conclude that d ∈ ext(Q).

Finally, it is clear that ext(Q1)∩ext(Q2) = ∅ as span(Q1)∩span(Q2) = {0}. Hence,

ext(Q1) and ext(Q2) must be disjoint.

Remark. Note that this lemma can be generalized to the sum of finite number of

subcones, that is, if Q = Q1 ⊕Q2 ⊕ · · · ⊕Qr for some r, then

ext(Q) =
r⋃
i=1

ext(Qi),

where all sets ext(Qi) are mutually disjoint.

Theorem 5.3.2 Let Q be a permutation invariant proper polyhedral cone in Rn.

Then β(Q) divides n.

Proof. In the case that Q is irreducible, β(Q) = 1 because Q is a polyhedral cone,

see [16]. Suppose Q is reducible so that

Q = Q1 ⊕Q2 ⊕ · · · ⊕Qr.

Here, each Qi is irreducible, Qi 6= {0}, and span(M) ∩ span(N) = {0}, where

M is the direct sum of some Qi’s and N is the direct sum of the rest. Since

Q is polyhedral, from the above remark, each Qi has a finite number of extreme

vectors. So, each Qi is polyhedral as well as irreducible implying that β(Qi) = 1

for all i = 1, 2, . . . , r. Since β(Q) is the sum of the Lyapunov ranks of its subcones
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and each subcone has Lyapunov rank 1, we get β(Q) = r. Note that 1 < r ≤ n.

Now, let ext(Q1) = {v1, v2, . . . , vm} and take σ ∈ Σn. As σ is an automorphism

of Rn, σ(Q1) is irreducible. Assume that σ(v1) ∈ Qi for some i. Then we claim

that σ(ext(Q1)) ⊆ Qi and hence σ(Q1) ⊆ Qi. To see this, define

C1 = cone
(
σ
(

ext(Q1)
)
∩Qi

)
and C2 = cone

(
σ
(

ext(Q1)
)
∩
(⋃
j 6=i

Qj

))
,

where C2 6= {0} if possible. Note that C1 ∩ C2 = {0} as C1 is in Qi while C2 is in

the span of other subcones, and C1 ⊕ C2 ⊆ σ(Q1). However, any v ∈ Q1 can be

expressed as

v = λ1v1 + λ2v2 + · · ·+ λmvm.

Multiplying both sides by σ, we get

σ(v) = λ1σ(v1) + λ2σ(v2) + · · ·+ λmσ(vm) ⊆ C1 ⊕ C2.

This implies σ(Q1) ⊆ C1 ⊕ C2. Thus, we have σ(Q1) = C1 ⊕ C2 implying that

σ(Q1) is reducible and so is Q1. As this is a contradiction, we must have C2 = {0}

and hence σ(ext(Q1)) ⊆ Qi for some i.

In a similar way, we may assume that σ−1(Qi) ⊆ Qj for some j. Then we get

Q1 ⊆ σ−1(Qi) ⊆ Qj. As Q1 and Qj intersect only at {0}, we have either Q1 = {0}

(which is not the case) or Q1 = Qj. Thus, we get σ(Q1) = Qi so Q1 is isomorphic

to Qi with the isomorphism σ.

Now, a similar statement can be repeated for Q2, . . . , Qr. This argument shows

that each σ ∈ Σn maps every Qm to some Ql. Grouping (permutation) isomorphic
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cones together, we may write

Q = E1 ⊕ E2 ⊕ · · · ⊕ Es,

where each Ei is a direct sum of such (permutation) isomorphic cones. We now

claim that each Ei is permutation invariant. Without loss of generality, consider

E1 = Q1 ⊕Q2 ⊕ · · · ⊕Qr1 . (5.4)

As {σ(Q1), . . . , σ(Qr1)} ⊆ {Q1, . . . Qr1} for any σ ∈ Σn, we see that σ(E1) ⊆ E1

for any σ ∈ Σn.

Note that Q is pointed because it is proper. Thus, without loss of generality, we

may assume that σu > 0 for all u 6= 0 in Q and 1 ∈ Q by Lemma 4.4.2. As

E1, . . . , Es are pointed (being contained in Q) and permutation invariant, again

by Lemma 4.4.2, we get 1 ∈ Ei for all i = 1, 2, . . . , s. However, since the spans

of Ei’s have only zero as their common element, we conclude that s = 1. Then

Q = E1 = Q1 ⊕ · · · ⊕Qr1 by (5.4), i.e., r1 = r. Hence,

Q = Q1 ⊕Q2 ⊕ · · · ⊕Qr,

where all Qi are irreducible cones which are isomorphic to each other.

Lastly, since all Qi’s are isomorphic to each other, we have dim(Qi) = dim(Qj) for

every i, j ∈ {1, 2, . . . , r}. Since n = dim(Q) =
∑r

i=1 dim(Qi) = r dim(Q1), we

conclude that r divides n.

Corollary 5.3.3 Let Q be a permutation invariant proper polyhedral cone in Rn,

where n is a prime number. Then β(Q) = 1 or n.
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Chapter 6

Spectral Functions in Euclidean Jordan Al-

gebras

6.1 Introduction

This chapter deals with spectral and weakly spectral functions on Euclidean Jordan

algebra. Let V be a Euclidean Jordan algebra of rank k. A function F : V → R

is spectral if there exists a permutation invariant function f : Rn → R such that

F = f ◦ λ. It is weakly spectral if F (x) = F (φ(x)) for all x ∈ V and φ ∈ Aut(V).

The spectrality is a generalization of similar a concept that has been extensively

studied in the setting of Rn (where the concepts reduce to permutation invariant

functions) and in Sn (Hn), the space of all n × n real (respectively, complex) Her-

mitian matrices. In the case of Sn (Hn), spectral functions are precisely those that

are invariant under linear transformations of the form X → UXU∗, where U is an

orthogonal (respectively, unitary) matrix. By realizing that the map X → UXU∗ is

an algebra automorphism on Sn (Hn), we see that spectrality and weak spectrality

coincide when V = Rn, Sn, or Hn. However, this is no longer true when V is not

essentially simple.

There are a few works that deal with spectral functions on general Euclidean Jordan
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algebras. Baes [1] discusses some properties of f that get transferred to F (such as

convexity and differentiability). Sun and Sun [47] deal with the transferability of the

semismoothness properties of f to F . Ramirez, Seeger, and Sossa [39] and Sossa [46]

deal with a commutation principle and a number of applications.

We show that every convex spectral function on V is Schur-convex and provide some

applications.

We organize this chapter as follows:

• Section 2 focuses on a characterization of spectral functions and a connection

between spectral and weakly spectral functions.

• In Section 3, we study the Schur-convexity of spectral functions.

6.2 Spectral functions on Euclidean Jordan algebras

Definition 6.2.1 A function F : V → R is a spectral function if there exists

a permutation invariant function f : Rn → R such that F = f ◦ λ. F is weakly

spectral if it is invariant under algebra automorphisms, i.e., F (x) = F (φ(x)) for all

x ∈ V and φ ∈ Aut(V).

By way of an example, we observe that F (x) = λmax(x) (the maximum of eigenvalues

of x) is a spectral function on V as it corresponds to f(u) = max ui on Rn.

Theorem 6.2.2 Let E be a nonempty set in V and F : V → R be a function.

Then, the following hold:
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(1) E is a spectral set in V if and only if χE, the characteristic function of E, is a

spectral function.

(2) F is a spectral function if and only if for each α ∈ R, the level set F−1({α}) is

a spectral set in V .

Proof.

(1) Suppose E is a spectral set, say E = λ−1(Q), where Q is permutation invariant

set in Rn. Then χE = χQ◦λ. As χQ is a permutation invariant, χE is a spectral

function.

Conversely, if χE = f ◦ λ is a spectral function, then define Q as the set where

f takes the value one. It is obvious that Q is a permutation invariant set. We

now we show that E = λ−1(Q). Suppose x ∈ E. Then 1 = χE(x) = f(λ(x)),

which implies λ(x) ∈ Q by our construction. Thus, x ∈ λ−1(Q). For the reverse

implication, suppose x ∈ λ−1(Q). As λ(x) ∈ Q, we get χE(x) = f(λ(x)) = 1,

and so x ∈ E.

(2) Suppose F is a spectral function, say F = f ◦ λ, where f : Rn → R is a

permutation invariant function. For any α ∈ Rn, F−1({α}) = λ−1(f−1({α}).

As f is a permutation invariant function, Q := f−1({α}) is a permutation

invariant set in Rn. Thus, F−1({α}) = λ−1(Q) is a spectral set.

For the converse, suppose F−1({α}) is a spectral set for all a. Then, for each a,

we have F−1({α}) = λ−1(Qa) for some permutation invariant set Qa. Note that⋃
aQa = V andQa′∩Qa′′ = ∅ whenever a′ 6= a′′. Put f =

∑
a aχa; the function f

is well-defined. Now, take u ∈ Rn and suppose f(u) = a. This implies u ∈ Qa.
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As Qa is permutation invariant, π(u) ∈ Qa and hence f(π(u)) = a for any

permutation matrix π ∈ Σn showing f is permutation invariant. Now, we show

F = f ◦ λ. Take any x ∈ V with F (x) = a. Then, x ∈ F−1({α}) = λ−1(Qa).

Thus, λ(x) ∈ Qa or f(λ(x)) = a.

Before characterizing spectral functions in V , we first describe a duality relation

between permutation invariant functions in Rn and spectral functions in V .

Definition 6.2.3 Given a function f : Rn → R, we define f♦ : V → R by

f♦(x) := f(λ(x)) for x ∈ V . (6.1)

Fix a Jordan frame {e1, . . . , en} in V . Then, given a function F : V → R, we

define F♦ : Rn → R by

F♦(u) := F

( n∑
i=1

u↓i ei

)
where u = (u1, . . . , un)T ∈ Rn. (6.2)

For simplicity, we write f♦♦ in place of (f♦)♦, etc. In the result below, F♦ and (f♦)♦

are defined as in (6.2) with respect to a (fixed) Jordan frame {e1, . . . , en}.

Proposition 6.2.4 The following statements hold:

(1) For any permutation invariant function f : Rn → R, f♦ is a spectral function

and f♦♦ = f .

(2) For any function F : V → R, F♦ is permutation invariant.

Proof.
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(1) When f is permutation invariant, by definition, f♦ is a spectral function. Now,

define (f♦)♦ as in (6.2). Then, for any u ∈ Rn, we have

f♦♦(u) = f♦
( n∑

i=1

u↓i ei

)
= f

(
λ

( n∑
i=1

u↓i ei

))
= f(u↓) = f(u).

Since u is arbitrary, f♦♦ = f .

(2) Take u ∈ Rn and σ ∈ Σn. As u↓ = σ(u)↓, we get

F♦(σ(u)) = F

( n∑
i=1

σ(u)↓i ei

)
= F

( n∑
i=1

u↓i ei

)
= F♦(u).

Hence, F♦ is permutation invariant.

Example 6.2.5 For the equality f♦♦ = f in Item (i) above, it is essential to have

f invariant under permutations. To see this, take V = S2 and define f : R2 → R

by f(u1, u2) = u1. Then, for any x ∈ S2, f♦(x) = f(λ(x)) = λ1(x). Hence, for any

u ∈ R2,

f♦♦(u) = f♦
( 2∑

i=1

u↓i ei

)
= f(u↓) = max{u1, u2}.

This proves that f♦♦ 6= f .

We now characterize spectral functions.

Theorem 6.2.6 The following are equivalent for a function F : V → R:

(a) F is a spectral function.

(b) F is constant on each equivalence class of ∼.
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(c) F♦♦ = F .

Proof. (a) ⇒ (b): Suppose F is a spectral function and x ∼ y. Put α := F (x).

Then by Theorem 6.2.2, we see that F−1({α}) is a spectral set and x ∈ F−1({α});

hence, by Theorem 3.2.6, y ∈ F−1({α}). This implies F (y) = α. It follows that

F (x) = F (y) whenever x ∼ y.

(b) ⇒ (c): Let x ∈ V with its spectral decomposition x =
∑n

1 λi(x)ei. Define

y =
∑n

1 λi(x)ēi. Then, x ∼ y and by (c), F (x) = F (y). This implies,

F♦♦(x) = F♦(λ(x)) = F

( n∑
i=1

λi(x)ei

)
= F (y) = F (x).

Hence, F♦♦ = F .

(c)⇒ (a): Let F♦♦ = F . Then, f := F♦ is permutation invariant, by Item (ii) in

Proposition 6.2.4. Hence, F = f♦ is spectral.

Theorem 6.2.7 Every spectral function is weakly spectral. Converse holds when

V is essentially simple.

Proof. Suppose F = f ◦ λ for some permutation invariant function f . Note that

λ(x) = λ(φ(x)) for every x ∈ V and φ ∈ Aut(V). Thus, F (φ(x)) = f(λ(φ(x))) =

f(λ(x)) = F (x). This shows that F is weakly spectral.

For the converse, let F be weakly spectral and V be essentially simple. If x ∼ y,

then by Proposition 2.1.15, there exists φ ∈ Aut(V) such that x = φ(y). This

implies that F (x) = F (y). We now use Item (c) in Theorem 6.2.6 to see that F is

spectral.
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Example 6.2.8 The converse in Theorem 6.2.8 may not hold in general. To see

this, take V = R× S2 and let F : V → R be defined by

F ((a, A)) = tr(A), ∀ a ∈ R, A ∈ S2.

Since we know the (explicit) description of automorphisms of V (via Proposition

2.1.10), we easily see that F is automorphism invariant. However, for x and y of

Example 3.2.8, λ(x) = λ(y) and so x ∼ y. One can easily check that F (x) =

0 6= 1 = F (y). As F violates condition (c) in Theorem 6.2.6, F is not a spectral

function.

A celebrated result of Davis [10] says that a unitarily invariant function on Hn is

convex if and only if its restriction to diagonal matrices is convex. This result has

numerous applications in various fields. A generalization of this result for Euclidean

Jordan algebras has already been observed by Baes [1]. In what follows, we consider

equivalent formulations of this generalization and give some applications.

Theorem 6.2.9 Let E be a convex spectral set in V so that E = λ−1(Q) with Q

convex and permutation invariant in Rn. Let F : E → R. Consider the following

statements:

(a) F = f ◦ λ, where f : Q→ R is convex and permutation invariant.

(b) F is convex, and x ≺ y implies F (x) ≤ F (y).

(c) F is convex, and x ∼ y implies F (x) = F (y).

(d) F is convex and F ◦ φ = F for all φ ∈ Aut(V).
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Then (a)⇔ (b)⇔ (c) and (c)⇒ (d). Moreover, all these statements are equivalent

when V is essentially simple.

Proof. (a) ⇒ (b): The convexity of F has already been proved in Theorem 41,

[1]. Capturing its essence, we present our proof based on Proposition 2.3.8. For

t ∈ [0, 1] and x, y ∈ E, we write λ(tx+ (1− t)y) = t Aλ(x) + (1− t)Bλ(y), where A

and B are doubly stochastic matrices. As these matrices are convex combinations

of permutation matrices, by permutation invariance and convexity of f on Q, we

see that f(Aλ(x)) ≤ f(λ(x)) and f(Bλ(y)) ≤ f(λ(y)). Thus,

F (tx+ (1− t)y) = f(tAλ(x) + (1− t)Bλ(y))

≤ tf(Aλ(x)) + (1− t)f(Bλ(y))

≤ tf(λ(x)) + (1− t)f(λ(y))

= tF (x) + (1− t)F (y).

Now for the second part of (b), suppose x, y ∈ E with x ≺ y. Writing u = λ(x)

and v = λ(y), we get u ≺ v in Q and hence (from Propositions 2.3.2, 2.3.3)

u =
∑

j αjσj(v) for some αj > 0 with
∑

j αj = 1 and permutation matrices σj ∈ Σn.

As f is convex and permutation invariant,

f(u) = f
(∑

αjσj(v)
)
≤
∑

αjf(σj(v)) =
∑

αjf(v) = f(v).

Since F = f ◦ λ, we get F (x) = f(λ(x)) = f(u) ≤ f(v) = f(λ(y)) = F (y).

(b)⇒ (c): This is obvious as x ∼ y implies x ≺ y.

(c)⇒ (a): Given F satisfying (c), we define f : Q→ R as follows. For any u ∈ Q,
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there exists x ∈ E such that λ(x) = u↓. We let f(u) := F (x). This is well defined:

if there is a y ∈ E with λ(y) = u↓, then x ∼ y and so by (c), F (x) = F (y). Now,

for any permutation σ, u↓ = σ(u)↓; hence, f(σ(u)) = F (x) = f(u), proving the

permutation invariance of f . We also see F (x) = f(u) = f(u↓) = f(λ(x)). Note

that these (relations) hold if we start with an x ∈ E and let u = λ(x). Thus we

have F = f ◦ λ.

We now show that f is convex. Let u, v ∈ Q and t ∈ [0, 1]. As w := tu+(1−t)v ∈ Q,

there exists z ∈ E such that λ(z) = w↓. Let
∑n

1 wi ei be the spectral decomposition

of z. Define x =
∑n

1 ui ei and y =
∑n

1 vi ei. Note that λ(x) = u↓ ∈ Q and

λ(y) = v↓ ∈ Q; hence, x, y ∈ E with z = tx + (1− t)y. Then, as f is permutation

invariant and F is convex, we get

f(tu+ (1− t)v) = f(w) = f(w↓) = F (z)

= F (tx+ (1− t)y)

≤ tF (x)) + (1− t)F (y)

= tf(u) + (1− t)f(v).

Hence, f is convex.

(c)⇒ (d): Let φ be an automorphism. For x ∈ V , λ(φ(x)) = λ(x) and so φ(x) ∼ x.

Then, by (c), we must have F (φ(x)) = F (x).

Now, we prove (d) ⇒ (c) when V is essentially simple. Suppose x, y ∈ E such

that x ∼ y. By Proposition 2.1.15, there exists an automorphism φ such that

x = φ(y). Then, from (d), F (x) = F (φ(y)) = F (y). Thus, condition (c) holds.
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This completes the proof.

Remarks. In the case of a general V , (d) may not imply other statements. This can

be seen by taking V and F as in Example 6.2.8. Clearly, this F is automorphism

invariant and convex (indeed, linear). However, as seen in Example 6.2.8, F is not a

spectral function.

We now provide two applications of the above theorem.

Example 6.2.10 For p ∈ [1, ∞], let F (x) = ‖x‖sp, p := ||λ(x)||p, where ||u||p

denotes the pth-norm of a vector u in Rn. Then, F is a convex spectral function

which is also positive homogeneous. Since F (x) = 0 implies x = 0, we see that

|| · ||sp, p is a norm on V.

This fact has already been observed in [48], where it is proved via Thompson’s

triangle inequality, majorization techniques, and case-by-case analysis.

Example 6.2.11 A Golden-Thompson type inequality.

The Golden-Thompson inequality ([3], p.261) says that for A, B ∈ Hn,

tr
(

exp(A+B)
)
≤ tr

(
exp(A) exp(B)

)
.

It is not known if an analogous result holds in Euclidean Jordan algebras. The

Golden-Thompson inequality easily implies the (weaker) inequality

tr
(

exp(A+B)
)
≤ tr

(
exp(A)

)
tr
(

exp(B)
)
.

Rivin [40], based on a result of Davis [10], gives a simple proof of this. A modifi-
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cation of this proof, given below, leads to the following generalization:

For any two elements x, y in a Euclidean Jordan algebra V ,

tr
(

exp(x+ y)
)
≤ tr

(
exp(x)

)
tr
(

exp(y)
)
, (6.3)

where exp(x) is defined by exp(x) :=
∑n

1 exp(λi(x)) ei when x has the spectral

decomposition x =
∑n

1 λi(x)ei.

We prove (6.3) as follows. For u ∈ Rn with components u1, . . . , un, let f(u) =

ln(
∑n

1 exp(ui)), which is known to be convex [40]. Since f is also permutation

invariant, F := f ◦ λ is convex by the above theorem. It follows that

F

(
x+ y

2

)
≤ F (x) + F (y)

2
,

for all x, y ∈ V . As F (x) = ln
(

tr
(

exp(x)
))

, this leads to

[
tr
(

exp
(x+ y

2

))]2

≤ tr
(

exp(x)
)

tr
(

exp(y)
)
.

This, with the observation tr
(

exp(2z)
)
≤
[

tr
(

exp(z)
)]2

for any z ∈ V , yields

(6.3).

6.3 Schur-convex functions

Definition 6.3.1 A function F : V → R is said to be Schur-convex if

x ≺ y =⇒ F (x) ≤ F (y).

Theorem 6.2.9 (together with Proposition 2.3.7) immediately yields the following.

Theorem 6.3.2 Every convex spectral function on V is Schur-convex. In particular,
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for any doubly stochastic transformation Ψ on V , and for any convex spectral

function F on V , we have

F (Ψ(x)) ≤ F (x) for all x ∈ V .

We illustrate the above result with a number of examples.

Example 6.3.3 For p ∈ [1, ∞], as in Example 6.2.10, consider F (x) = ‖x‖sp, p :=

||λ(x)||p. Then, F is a convex spectral function and hence, for any doubly stochastic

transformation Ψ on V ,

‖Ψ(x)‖sp, p ≤ ‖x‖sp, p .

This extends Proposition 2 in [18], where it is shown that ||Ψ(x)||sp, 2 ≤ ||x||sp, 2 for

all x in a simple Euclidean Jordan algebra.

Example 6.3.4 Consider an idempotent c (6= 0, e) in V and the corresponding

orthogonal decomposition [11]

V = V(c, 1) + V(c, 1
2
) + V(c, 0),

where V(c, γ) = {x ∈ V : x ◦ c = γ x}, γ ∈ {0, 1
2
, 1}. For each x ∈ V , we write

x = u+ v + w where u ∈ V(c, 1), v ∈ V(c, 1
2
), w ∈ V(c, 0).

For any a ∈ V , let Pa denote the corresponding quadratic representation defined by

Pa(x) = 2a◦ (a◦x)−a2 ◦x. Then for ε = 2c−e, one verifies that Pε(x) = u−v+w

and (Pε+I
2

)(x) = u+w. As ε2 = e, Pε is an automorphism of V ([11], Prop. II.4.4).
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Thus, Pε and Pε+I
2

are doubly stochastic on V . Then, for any convex spectral

function F on V ,

F (u− v + w) ≤ F (x) and F (u+ w) ≤ F (x).

We note that the process of going from x = w + v + w to u + w is a ‘pinching’

process; in the context of block matrices, this ‘pinching’ is obtained by setting the

off-diagonal blocks to zero.

Example 6.3.5 Let A be an n×n real symmetric positive semidefinite matrix with

each diagonal entry one. In V , we fix a Jordan frame {e1, e2, . . . , en} and consider

the corresponding Peirce decomposition of any x ∈ V (as in Proposition 2.1.11):

x =
∑

i≤j xij =
∑n

i=1 xiei +
∑

i<j xij. Then the transformation

Ψ(x) := A • x =
∑
i≤j

aijxij

is doubly stochastic, see [18]. It follows that when F is a convex spectral function

on V ,

F (A • x) ≤ F (x).

By taking A to be the identity matrix, this inequality reduces to

F

( n∑
i=1

xiei

)
≤ F (x).

Example 6.3.6 Let g : R → R be any function. Then the corresponding Löewner

mapping Lg : V → V [47] is defined as follows: For any x ∈ V with spectral
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decomposition x =
∑
λi(x)ei,

Lg(x) :=
n∑
i=1

g(λi(x)) ei.

Clearly, F (x) := tr(Lg(x)) =
∑
g(λi(x)) = f ◦λ, where f(u1, . . . , un) =

∑
g(ui), is

a spectral function. Thus, when g is convex, F is a convex spectral function. Hence,

the function x 7→ tr(Lg(x)) is Schur-convex for any convex function g : R → R.

The second part of Theorem 6.3.2 says that a doubly stochastic transformation de-

creases the value of a convex spectral function. Below, we present a converse to this

statement:

Theorem 6.3.7 The following statements hold:

(1) If x, y ∈ V with F (x) ≤ F (y) for all convex spectral functions F on V , then

x ≺ y.

(2) If x, y ∈ V with F (x) = F (y) for all convex spectral functions F on V , then

x ∼ y.

(3) If Ψ is a linear transformation on V such that F (Ψ(x)) ≤ F (x) for all x ∈ V and

for all convex spectral functions F , then Ψ is a doubly stochastic transformation

on V .

This result is based on two lemmas. The first lemma (noted on page 159 in [36]) is a

consequence of a result of Hardy, Littlewood, and Pólya.

Lemma 6.3.8 Suppose u, v ∈ Rn with the property that f(u) ≤ f(v) for all convex

permutation invariant functions f : Rn → R. Then, u ≺ v.
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Our second lemma is a generalization of a a well-known result: An n× n matrix A is

doubly stochastic if and only if Ax ≺ x for all x ∈ Rn, see Theorem A.4 in [36].

Lemma 6.3.9 A linear transformation Ψ : V → V is doubly stochastic if and only

if Ψ(x) ≺ x for all x ∈ V .

Proof. First, suppose Ψ is doubly stochastic. Then by Proposition 2.3.7, we have

Ψ(x) ≺ x. To prove the converse, suppose Ψ(x) ≺ x for all x ∈ V . First, let

x ∈ V+. Then all the eigenvalues of x are nonnegative. Now, Ψ(x) ≺ x implies,

from the inequalities (2.2) in Section 2.3.2, λn(Ψ(x)) ≥ λn(x) ≥ 0. As λn(Ψ(x))

is the smallest of the eigenvalues of Ψ(x), we see that all eigenvalues of Ψ(x) are

nonnegative; hence Ψ(x) ∈ V+. Thus, Ψ(V+) ⊆ V+.

Next, we show that Ψ(e) = e. As Ψ(e) ≺ e and every eigenvalue of e is one, from the

inequalities (2.2) again, the smallest and largest eigenvalues of Ψ(e) coincide with

1. Thus, all eigenvalues of Ψ(e) are equal to one. By the spectral decomposition of

e, we see that Ψ(e) = e.

We now show Ψ is trace-preserving: For any Jordan frame {e1, . . . , en}, we have

Ψ(ei) ≺ ei, so tr(Ψ(ei)) = tr(ei) = 1. Thus for x ∈ V with (spectral decomposition)

x =
∑

i xiei,

tr(Ψ(x)) = tr

(
Ψ

( n∑
i=1

xiei

))
=

n∑
i=1

xi tr(Ψ(ei)) =
n∑
i=1

xi = tr(x).

Thus, Ψ is doubly stochastic on V .

We now come to the proof the theorem.
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Proof of the Theorem.

(1) Suppose x, y ∈ V with F (x) ≤ F (y) for all convex spectral functions F on

V . Then, for any f that is convex and permutation invariant on Rn, we let

F = f ◦ λ and get f(λ(x)) ≤ f(λ(y)). Now from Lemma 6.3.8, λ(x) ≺ λ(y).

This means that x ≺ y.

(2) From the proof of Item (i), λ(x) ≺ λ(y) and λ(y) ≺ λ(x). Since λ(x) and λ(y)

have decreasing order, defining (majorization) inequalities give λ(x) = λ(y).

Thus, x ∼ y.

(3) Now suppose that Ψ is linear and F (Ψ(x)) ≤ F (x) for all x ∈ V and all convex

spectral functions F on V . By (i), Ψ(x) ≺ x for all x. By Lemma 6.3.9, Ψ is

doubly stochastic.

It has been observed before that automorphisms preserve eigenvalues. The following

result shows that in the setting of essentially simple algebras, automorphisms are the

only linear transformations that preserve eigenvalues.

Corollary 6.3.10 Suppose V is essentially simple and φ : V → V is linear. If

φ(x) ∼ x for all x ∈ V , then φ ∈ Aut(V).

Proof. Suppose that φ(x) ∼ x for all x ∈ V . Then, φ is invertible: If φ(x) = 0

for some x, then 0 ∼ x and so x = 0. Now, take any convex spectral function F

on V . As φ(x) ∼ x, we have F (x) = F (φ(x)). From Theorem 6.3.7, we see that

φ and φ−1 are doubly stochastic on V . Recall, by definition, these are positive
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transformations, that is, φ(V+) ⊆ V+ and φ−1(V+) ⊆ V+. Hence, φ(V+) = V+, that

is, φ belongs to Aut(V+). Since V is essentially simple, from Theorem 8 in [18] we

have

Aut(V+) ∩DS(V) = Aut(V),

where DS(V) denotes the set of all doubly stochastic transformations on V . This

proves that φ ∈ Aut(V).
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