

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

1

Cyber-All-Intel: An AI for Security related Threat
Intelligence

Sudip Mittal, Anupam Joshi and Tim Finin
University of Maryland, Baltimore County, Baltimore, MD 21250, USA

Email: {smittal1,joshi,finin}@umbc.edu

Abstract—Keeping up with threat intelligence is a must for a
security analyst today. There is a volume of information present
in ‘the wild’ that affects an organization. We need to develop an
artificial intelligence system that scours the intelligence sources,
to keep the analyst updated about various threats that pose a
risk to her organization. A security analyst who is better ‘tapped
in’ can be more effective.

In this paper we present, Cyber-All-Intel an artificial intel-
ligence system to aid a security analyst. It is a system for
knowledge extraction, representation and analytics in an end-to-
end pipeline grounded in the cybersecurity informatics domain.
It uses multiple knowledge representations like, vector spaces
and knowledge graphs in a ‘VKG structure’ to store incoming
intelligence. The system also uses neural network models to pro-
actively improve its knowledge. We have also created a query
engine and an alert system that can be used by an analyst to
find actionable cybersecurity insights.

Index Terms—Cybersecurity, Artificial Intelligence, Knowledge
Representation, Threat Intelligence, Intelligence Gathering

I. INTRODUCTION

In the broad domain of security, analysts and policy makers
need knowledge about the state of the world to make critical
operational/tactical as well as strategic decisions. One such
source of knowledge is threat intelligence. It plays a vital role
in helping a security analyst mount a defense and is nearly
always dependent on global events; for example, consider the
following timeline:
• Microsoft publishes exploit details and issues patches on

March 14, 2017 for a critical vulnerability which allows
remote code execution if an attacker sends specially
crafted messages to a Microsoft Server Message Block
1.0 (SMBv1) server [29].

• An exploit named ETERNALBLUE is leaked by the
‘Shadow Brokers’ hacker group on April 14, 2017 affect-
ing various versions of the Microsoft Windows operating
system [7]. It uses the same vulnerability mentioned
above.

• ETERNALBLUE was used during the WannaCry ran-
somware attack on May 12, 2017 [60].

• It was also exploited to carry out the NotPetya cyberattack
on June 27, 2017 [38].

When we consider this example from the security analyst
point of view, she may not be aware of recent ‘intelligence’
available in ‘the wild’ and/or may be lazy/slow in updating
her security configurations. What we need is an artificial
intelligence based system that aids the security analyst. Such

an AI should strive to keep the analyst updated and also issue
timely alerts. The work in this paper, aims to prototype a
system that can scour OSINT sources for such information
and make them accessible to an analyst. The better “tapped
in” the analyst is to the potential threat landscape, the better
they are able to detect attacks.

In modern enterprises, security analysts monitor threats in
a security operations center (SoC) by watchstanding, akin to
a lookout on a ship watching the environs for danger. Screens
typically show warnings and alerts from individual products
and detectors that the enterprise has installed. Watchstanding
permits a highly trained security analyst to look at all the
disparate pieces of information, and see if they ‘click together’
to form some pattern which might indicate an attack.

The detection efficacy of a security analyst depends on
her operational and strategic knowledge about current security
landscape and the associated intelligence. This enables her to
better interpret the data from the Security Information and
Event Management (SIEM) systems in the SoC. Specifically,
the analyst is aided by her background knowledge regarding
the context of the system (e.g., what kinds of applications are
installed on their system, what the systems normal behavior
pattern is, what potential vulnerabilities might exist, what
information might an adversary be after?), and the external
world (e.g., “intelligence” about what new attacks that exist
in the wild or are being discussed as possibilities, hacktivists
discussing attacking a particular country or organization, etc.).
Unfortunately, the knowledge about these security vulnerabil-
ities and planned attacks is scattered on the dark web vulner-
ability markets, user/product forums, social media services,
blogs, etc. However, even the best of SIEM systems today
do not effectively reason on “intelligence” about the state of
the cyberworld, such as an analyst might obtain by talking to
peers or by looking, for instance, at dark web updates, security
blogs, etc.

In this paper we present, a cyber security informatics system
- ‘Cyber-All-Intel’. The system takes as input cybersecurity
related text data from various unstructured sources like Dark
Web, blogs, social media, National Vulnerability Databases
(NVDs), newspaper articles, etc. and represent the extracted
knowledge in the ‘VKG structure’. We extract, represent and
integrate the knowledge present in a variety of Open Source
Intelligence (OSINT) web fora as entities, then use the re-
sulting knowledge graph and embeddings to obtain actionable
cybersecurity information for the analyst.

The system is built using the VKG structure – a hybrid

ar
X

iv
:1

90
5.

02
89

5v
1

 [
cs

.A
I]

 7
 M

ay
 2

01
9

2

structure that combines knowledge graph and embeddings in
a vector space. The structure creates a new representation for
relations and entities of interest. In the VKG structure, the
knowledge graph includes explicit information about various
entities and their relations to each other grounded in an
ontology1. The vector embeddings, on the other hand, include
implicit information found in context where these entities
occur in a corpus. The base ontology is enhanced to have
relations that describe the vector embeddings associated with
terms in the ontology.

The Cyber-All-Intel system also pro-actively tries to im-
prove the underlying cybersecurity knowledge. The vector part
of the VKG structure is used to improve the knowledge graph
part and vice versa. We utilize powerful deep neural networks
to automatically update the underlying knowledge. Such an
ability allows the system to be more accurate and best assist
the security analyst in her tasks.

We have also included two applications in the Cyber-All-
Intel system, namely, an alert recommender and a query
processing engine that leverage the advantages provided by
the VKG structure. The security analyst can ask the Cyber-All-
Intel system to issue alerts based on an organization’s ‘system
profile’. She can dig deeper into an alert by asking complex
queries like, ‘Raise an alert if, a vulnerability similar to denial
of service is listed in MySQL’ and get an answer from the
system.

Major contributions presented in this paper include:

• Populating unstructured cybersecurity knowledge in Vec-
torized Knowledge Graphs (VKG) and creating the
Cyber-All-Intel system.

• Cybersecurity Knowledge Representation Improvement:
We aim to use the vector space to improve the knowledge
graph representation and the knowledge graph to improve
the vector space representation (See Section IV).

• Actionable Cybersecurity Insights from Vectorized
Knowledge Graphs: we will create agents that fully utilize
the advantages provided by VKGs (Section III-C2) for
query processing (Section V-A), generating alerts for
threats (Section V-B), and finding similar attacks.

The rest of the paper is as follows – In Section II, we discuss
the related work and some background on knowledge repre-
sentation. We describe the Cyber-All-Intel system architecture
and pipeline in Section III. Section III-C gives various details
about the VKG structure. We discuss cybersecurity knowledge
improvement in Section IV. The query processing and alert
generation applications have been discussed in Section V. We
present our evaluation in Section VII, we conclude in Section
VIII.

II. BACKGROUND & RELATED WORK

In this section we present some background and related
work in the field of knowledge graphs, vector space models,
text extraction, and knowledge representation in cybersecurity.

1https://www.w3.org/standards/semanticweb/ontology

A. Knowledge Representation for Cybersecurity

Knowledge graphs have been used in cybersecurity to
combine data and information from multiple sources. Un-
dercofer et al. created an ontology by combining various
taxonomies for intrusion detection [56]. Kandefer et al. [22]
created a data repository of system vulnerabilities and with
the help of a systems analyst, trained a system to identify
and prevent system intrusion. Takahashi et al. [54], [53] built
an ontology for cybersecurity information based on actual
cybersecurity operations focused on cloud computing-based
services. Rutkowski et al. [43] created a cybersecurity informa-
tion exchange framework, known as CYBEX. The framework
describes how cybersecurity information is exchanged between
cybersecurity entities on a global scale and how implementa-
tion of this framework will eventually minimize the disparate
availability of cybersecurity information. Another insightful
work by Xie et al. [61] discusses uncertainty modeling for
cyber security centered around near real-time security analysis
such as intrusion response. In this paper the authors use
Bayesian networks to model uncertainty in enhanced security
analysis.

In our previous work, Syed et al. [52] created the Uni-
fied Cybersecurity Ontology (UCO) that supports information
integration and cyber situational awareness in cybersecurity
systems. The ontology incorporates and integrates heteroge-
neous data and knowledge schema from different cybersecurity
systems and most commonly-used cybersecurity standards for
information sharing and exchange such as STIX [6] and
CYBEX [43]. The UCO ontology has also been mapped
to a number of existing cybersecurity ontologies as well as
concepts in the Linked Open Data cloud.

B. Text Extraction for Cybersecurity

In our various preliminary systems [21], [32] we demon-
strate the feasibility of automatically generating RDF linked
data from vulnerability descriptions collected from the Na-
tional Vulnerability Database [37], Twitter [55], etc. Joshi et
al. [21] extract information on cybersecurity-related entities,
concepts and relations which is then represented using custom
ontologies for the cybersecurity domain and mapped to objects
in the DBpedia knowledge base [5] using DBpedia Spotlight
[28]. CyberTwitter [32], a framework to automatically issue
cybersecurity vulnerability alerts to users. CyberTwitter con-
verts vulnerability intelligence from tweets to RDF. It uses
the UCO ontology (Unified Cybersecurity Ontology) [52] to
provide their system with cybersecurity domain information.

C. Vector Space Models & Knowledge Graphs

Extracting data from unstructured text (web) data sources,
representing it, and reasoning over the representation to extract
knowledge and information is one of the central challenges in
the field of Artificial Intelligence. In addition to information
extraction, it involves designing representations that capture
the extracted information and that can be used to analyze
it. There is an inherent information loss while representing
knowledge through different methods. Consider two represen-
tations that are heavily used in literature – Knowledge Graphs

3

and Vector Space Embeddings. By representing knowledge as
vector embeddings, we lose the explicit declarative character
of the information. Knowledge graphs on the other hand are
adept at asserting declarative information, but miss important
contextual information around the entity or are restricted by
the expressibility of the baseline ontology used to represent
the knowledge [12].

It is important to highlight that both of the knowledge
representation techniques provide applications built on these
technologies certain advantages. Embeddings provide an easy
way to search their neighborhood for similar concepts and can
be used to create powerful deep learning systems for specific
complex tasks. Knowledge graphs provide access to versatile
reasoning techniques. Knowledge graphs also excel at creating
rule-based systems where domain expertise can be leveraged.
To overcome limitations of both and take advantage of their
complementary strengths, we propose the VKG structure that
is part knowledge graph and part vector embeddings (Section
III-C). VKG is more than the sum of these parts and can
be used to develop powerful inference methods and a better
semantic search.

Word embeddings are used to represent words in a con-
tinuous vector space. Two popular methods to generate these
embeddings based on ‘Relational Concurrence Assumption’
are word2vec [30], [31] and GloVe [39]. The main idea behind
generating embeddings for words is to say that vectors close
together are semantically related. Word embeddings have been
used in various applications like machine translation [50],
improving local and global context [18], etc.

Modern knowledge graphs assert facts in the form of
(Subject, Predicate, Object) triples, where Subject and
Object are modeled as graph nodes and the edge between
them (Predicate) model the relation between the two. DBpe-
dia [5], YAGO (Yet Another Great Ontology) [49], YAGO2
[16], Google Knowledge Graph [45], etc. are some of the
examples of popular knowledge graphs.

An important task on both vector space models and knowl-
edge graphs is searching for similar entities, given an input
entity. In vector spaces, embeddings close together are se-
mantically related and various neighborhood search algorithms
[14], [23] have been suggested. On the other hand semantic
similarity on knowledge graphs using ontology matching,
ontology alignment, schema matching, instance matching,
similarity search, etc. remains a challenge [44], [13], [63].
In this paper we use the VKG structure, in which we link the
knowledge graph nodes to their embeddings in a vector space
(see Section III-C).

Yang et al. [62] argued that a fast top-k search in knowledge
graphs is challenging as both graph traversal and similarity
search are expensive. The problem will get compounded
as knowledge graphs increase in size. Their work proposes
STAR, a top-k knowledge graph search framework to find
top matches to a given input. Damljanovic et al. [11] have
suggested using Random Indexing (RI) to generate a semantic
index to an RDF graph [3]. These factors combined have led
to an increased interest in semantic search, so as to access
RDF data using Information Retrieval methods. We argue that
vector embeddings can be used to search, as well as index

entities in a knowledge graph. We have built a query engine
on top of the VKG structure that removes the need to search
on the knowledge graph and uses entity vector embeddings
instead (see Section III-C and VII). However, queries that
involve listing declarative knowledge and reasoning are done
on the knowledge graph part of the VKG structure.

Vectorized knowledge graphs have also been created, sys-
tems like HOLE (holographic embeddings) [36] and TransE
[59] learn compositional vector space representations of entire
knowledge graphs by translating them to different hyperplanes.
Our work is different from these models as we keep the
knowledge graph part of the VKG structure as a traditional
knowledge graph so as to fully utilize mature reasoning capa-
bilities and incorporate the dynamic nature of the underlining
corpus for our cybersecurity use-case. Vectorizing the entire
knowledge graph part for a system like Cyber-All-Intel will
have significant computational overhead because of the ever-
changing nature of vulnerability relations and velocity of new
input threat intelligence.

In another work thread different from ours, vector models
have also been used for knowledge graph completion. Various
authors have come up with models and intelligent systems to
predict if certain nodes in the knowledge graphs should have a
relation between them. The research task here is to complete a
knowledge graph by finding out missing facts and using them
to answer path queries [25], [34], [47], [15].

VKG
Structure

Fig. 1. Cyber-All-Intel System Architecture.

4

III. CYBER-ALL-INTEL SYSTEM

In this section we discuss the overarching design and system
architecture for Cyber-All-Intel (Figure 1). We first discuss
various intelligence sources that serve as input to Cyber-All-
Intel; then we go through the architecture and the rationale
behind our design decisions. Later we explain the knowledge
representation techniques (VKG structure) used in our system
along with its advantages. We also discuss a few agents that
can leverage these representation techniques to provide value
to a security analyst.

A. Cybersecurity Sources

OSINT is intelligence gathered from publicly-available
overt sources such as newspapers, magazines, social-
networking sites, video sharing sites, wikis, blogs, etc. In cy-
bersecurity domain, information available through OSINT can
compliment data obtained through traditional security systems
and monitoring tools like Intrusion Detection and Prevention
Systems (IDPS) [33]. Cybersecurity information sources can
be divided into two abstract groups, formal sources such as
NIST’s National Vulnerability Database (NVD), United States
Computer Emergency Readiness Team (US-CERT), etc. and
various informal sources such as blogs, developer forums, chat
rooms and social media platforms like Twitter, Reddit [41]
and Stackoverflow [48], these provide information related to
security vulnerabilities, threats and attacks. A lot of informa-
tion is published on these sources on a daily basis making
it nearly impossible for a human analyst to manually comb
through, extract relevant information, and then understand
various contextual scenarios in which an attack might take
place. A manual approach even with a large number of human
analysts would neither be efficient nor scalable. Automatically
extracting relevant information from OSINT sources thus has
received attention from the research community [35], [40],
[26].

An organization may also have access to various forms of
propriety or covert data sources. These data sources can also
be added as modules, to our Cyber-All-Intel system. However,
in this paper we only describe open data sources.

B. System Pipeline & Architecture

Our system pipeline includes a data collection engine that
pushes new data into the system from a multitude of data
sources. The Cyber-All-Intel system (Figure 1) automatically
accesses data from some of these sources like NIST’s National
Vulnerability Database, Twitter, Reddit, Security blogs, dark
web markets [9], etc. The system begins by collecting data
in a modular fashion from these sources. Followed by a data
pre-processing stage where we remove stop words, perform
stemming, noun chunking, etc. The data is then stored in a
cybersecurity corpus.

After creating a cybersecurity corpus we use a Security Vul-
nerability Concept Extractor (SVCE) which extracts security
related entities and understands their relationships. Our current
SVCE [24], [20], trained using various natural language pro-
cessing techniques, enables us to extract cybersecurity related

terms from text, which can then be stored in our knowledge
graph. The data is then tagged and vectorized. The tagged
entities are then converted to their vector embeddings. These
embeddings are then included in the knowledge graph. For
more details on the VKG structure see Section III-C.

The data is asserted in RDF using the Unified Cybersecurity
Ontology (UCO) [52]. Ontologies like UCO, Intelligence
[32], DBpedia [5], YAGO [49] have been used to provide
cybersecurity domain knowledge. The vector part on the other
hand was created using a vector generation algorithm (Section
IV-B). An example is shown in Figure 3, where we create the
VKG structure for the textual input:

Microsoft Internet Explorer allows remote attackers to ex-
ecute arbitrary code or cause a denial of service (memory
corruption) via a crafted web site, aka “Internet Explorer
Memory Corruption Vulnerability.”

Triples generated for the above mentioned input text are
shown in the Figure 2.

The knowledge part of the VKG structure is completed
once the triples are added to the system. We used Apache
Jena [1] to store our knowledge graph. For example, in Figure
3, once added the nodes are linked to the vector embeddings
for ‘Microsoft Internet Explorer’, ‘remote attackers’,
‘execute arbitrary code’, ‘denial of service’, and
‘crafted web site’. For our system, we retrain the vector
model every two weeks to incorporate the changes in the
corpus. We give various details about system execution and
evaluation in Section VI and Section VII respectively.

C. The VKG Structure

Here we describe our VKG structure, which leverages both
vector spaces and knowledge graphs. In the VKG structure,
an entity is represented as a node in a knowledge graph and
is linked to its representation in a vector space. In an example
(Figure 3), entity nodes are linked to each other using explicit
relations, as in a knowledge graph and are also linked to their
word embeddings in a vector space. The assertions from Figure
2 have been linked using the ‘hasVector’ relation, to their
embeddings.

Now we discuss VKG population and various advantages it
offers:

1) Populating the VKG Structure: In order to create the
VKG structure, the structure population system requires as
input, a text corpus. The aim of the system is to create the
VKG structure for the concepts and entities present in the
input corpus which requires us to create the knowledge graph
and the vector parts separately and then linking the two.

1) Creating semantic triples: An information extraction
pipeline extracts a knowledge graph from a collection of
text documents. The first step applies components from
Stanford CoreNLP components [27] trained to recognize
entities and relations in the cybersecurity domain to
produce a knowledge graph for each document. The
resulting knowledge graph is then materialized as an
RDF graph.

2) Training vectors: For the vector part of the VKG struc-
ture, we can generate entity embeddings using any of

5

@prefix uco: <http://accl.umbc.edu/ns/ontology/uco#> .
@prefix intel: <http://accl.umbc.edu/ns/ontology/intelligence#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dbp: <http://dbpedia.org/resource#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

<Int3482758232> a intel:Intelligence ;
intel:hasVulnerability <execute arbitrary code> ;
intel:hasVulnerability <denial of service> .

<crafted web site> a uco:Means .

<remote attackers> a uco:Attacker .

<Microsoft Internet Explorer> a uco:Product ;
uco:hasVulnerability <execute arbitrary code> ;
uco:hasVulnerability <denial of service> ;
owl:sameAs dbp:Internet Explorer .

<execute arbitrary code> a uco:Vulnerability ;
uco:affectsProduct <Microsoft Internet Explorer> ;
uco:hasAttacker <remote attackers> ;
uco:hasMeans <crafted web site> ;
owl:sameAs dbp:Arbitrary code execution .

<denial of service> a uco:Vulnerability ;
uco:affectsProduct <Microsoft Internet Explorer> ;
uco:hasAttacker <remote attackers> ;
uco:hasMeans <crafted web site> ;
owl:sameAs dbp:Denial-of-service attack .
Fig. 2. RDF for textual input “Microsoft Internet Explorer allows remote
attackers to execute arbitrary code or cause a denial of service (memory
corruption) via a crafted web site, aka Internet Explorer Memory Corruption
Vulnerability”. Also, owl : sameAs property has been used to augment the
data using an external source ‘DBpedia’.

a number of vectorization algorithms (Section IV-B).
For text, many of these are based on the ‘Relational
Concurrence Assumption’ principle [30], [31], [39],
[18].

3) Creating links between entity vectors and nodes: We link
knowledge graph nodes to their corresponding words
in the vector space vocabulary using the hasV ector
relationship (as shown in Figure 3). Keeping the lexical
tokens in the knowledge graph part allows us to update
vector embeddings, if there is a need to refresh a stale
vector model. Linking is initiated after the RDF triples
are generated.

2) Advantages and Agents: The VKG structure helps us
unify knowledge graphs and vector representation of entities,
and allows us to develop powerful inference methods that
combine their complementary strengths.

The vector representation we use, enable us to encode ‘local
contextual knowledge’. These are based on the ‘Relational
Concurrence Assumption’ highlighted in [30], [31], [10]. Word
embeddings are able to capture different degrees of similarity
between words. However, they are severely constrained while
creating complex dependency relations and other logic based
operations that are a forte of various semantic web based
applications [12], [8].

Knowledge graphs, on the other hand, are able to use
powerful reasoning techniques to infer and materialize facts
as explicit ‘global knowledge’. Those based on description
logic representation frameworks like OWL, for example, can
exploit axioms implicit in the graphs to compute logical
relations like consistency, concept satisfiability, disjointness,
and subsumption. As a result, they are generally much slower
while handling operations like, ontology alignment, instance
matching, and semantic search [44], [19]. Knowledge graphs
provide many reasoning tools including query languages like
SPARQL [4], rule languages like SWRL [17], and description
logic reasoners.

Potential applications that will work on our VKG structure,
need to be designed to take advantages provided by integrating
vector space models with a knowledge graph. In a general
efficient use-case for our VKG structure, ‘fast’ top-k search
should be done on the vector space part aided by the knowl-
edge graph, and the ‘slow’ reasoning based computations
should be performed on just the knowledge graph part. An
input query can be decomposed into sub-queries which run
on respective parts of the VKG structure (see V-A).

Domain specific knowledge graphs are built using a schema
that is generally curated by domain experts. When we link the
nodes and embeddings we can use the explicit information
present in these ontologies to provide domain understanding
to embeddings in vector space. Adding domain knowledge to
vector embeddings can further improve various applications
built upon the structure. The vector embeddings can be used
to train machine learning models for various tasks.

Knowledge graph nodes in the VKG structure can be used to
add information from other sources like, DBpedia, YAGO, and
Freebase. This helps integrate information that is not present in
the input corpus. For example, in Figure 3 we can link using
the ‘owl : sameAs’ property, ‘Microsoft Internet Explorer’
to its DBpedia equivalent ‘dbp:Internet Explorer’ [2]. Assert-
ing this relation adds information like Internet Explorer is a
product from Microsoft. This information may not have been
present in the input cybersecurity corpus but is present in
DBpedia.

Another advantage provided by integrating vector spaces
and knowledge graphs is that we can use both of them to
improve the results provided by either of the parts alone. For
example (in Figure 3), we can use the explicit information
provided in the knowledge graph to aid the similarity search
in vector space. If we are searching the vector space for entities
similar to ‘denial of service’, we can further improve our
results by ensuring the entities returned belong to class ‘Vul-
nerability’. This information is available from the knowledge
graph. This technique of knowledge graph aided vector space
similarity search (VKG Search, See Section V-A) is used in our
query engine. We execute similarity search on the embeddings
and then filter out entities using the knowledge graph.

In Section V, we discuss applications we have created for
the Cyber-All-Intel in detail.

IV. CYBERSECURITY KNOWLEDGE IMPROVEMENT

An added benefit of using multiple knowledge representa-
tion in the VKG structure is that we can use one represen-

6

Arrow Relation

IsA

hasVector

Int3482758232	

Vector	Embedding

intel:Intelligence

execute	arbitrary	code	

denial	of	service	

Microsoft	Internet	Explorer	

remote	attackers	
crafted	web	site	

uco:Product

uco:Attacker

uco:Means

uco:hasAttacker

uco:Vulnerability

Vector	Embedding

Vector	Embedding

Vector	Embedding

Vector	Embedding

Fig. 3. In the VKG structure for “Microsoft Internet Explorer allows remote attackers to execute arbitrary code or cause a denial of service (memory
corruption) via a crafted web site, aka “Internet Explorer Memory Corruption Vulnerability.” the knowledge graph part asserted using UCO includes the
information that a product ‘Microsoft Internet Explorer’ has vulnerabilities ‘execute arbitrary code’ and ‘denial of service’ that can be exploited by ‘remote
attackers’ using the means ‘crafted web site’. The knowledge graph entities are linked to their vector embeddings using the relation ‘hasVector’.

tation to improve the other. Improving representation in turn
improves the quality of applications that depend on them. In
this section we will discuss how we can leverage the vector
part of the VKG structure to improve the knowledge graph
part and vice versa.

A. Improving the Knowledge Graph using Vector Embeddings

The vector representation of different entities can be used
by a learning system to enhance the knowledge graph by
predicting new relationships between entities. We have created
a neural network that takes as input the vector representation
of two entities and outputs the relation between them.

This task will help in improving the knowledge graph as
in when new data is added. An example task for this agent
will be to predict the relation between the entities ‘android’
and ‘buffer overflow’, given data from a corpus that have both
words. The triple can then be added to the knowledge graph
along with their embeddings.

Neural networks can be used to model nonlinear relations
between inputs and outputs. We show the different layers of the
neural network in Figure 4. The figure shows an input layer,
multiple hidden layers and an output layer. The neural network
has an input layer for embeddings followed by a convolutional
layer. After this an activation function (ReLU layer) is added
to introduce non-linearity, then a max-pooling layer for down-
sampling, followed by a fully connected layer with dropout
and softmax output.

Training this network is a supervised learning task. The
training set (TS) includes:

TS = {(v1,1, v1,2, R1), (v2,1, v2,3, R2), ..., (vn,k, vn,l, Rm)}

where,
R1, R2, ..., Rm ∈ R

ReLU

Convolutional
Layer

Max-Pooling
layer

Fully connected
layer with

dropout and
Softmax Output.

Output
Relation

Vn,k

Vn,l

Fig. 4. Neural network structure to improve knowledge graph using embed-
dings.

k, l ∈ E

vn,k, vn,l ∈ V & k 6= l

Here R is the set of relations from the UCO ontology
[51] from which the output is predicted. R = [hasProd-
uct, hasAttacker, hasMeans, hasConsequences, hasWeakness,
isUnderAttack, hasVulnerability, ...]. V is the set of vector
embeddings. E is the set of entity classes. We ensure that
input vectors are from different entity classes, i.e. k, l are not
same.

Training this network involves minimizing the mean squared
error function between the predicted value and the actual
relation value.

The triple generated using the two entities and the predicted
relation is then added to the knowledge graph part of Cyber-
All-Intel. We discuss the performance evaluations for this
neural network in Section VII.

7

B. Improving Vector Embeddings using the Knowledge Graph

In this section we will discuss how we use the knowl-
edge graph part of the VKG structure to improve the vector
embeddings. The motivation for this task stems from the
need to encode global context present as assertions in the
knowledge graph, along with local co-occurring context in
vector embeddings. Including the fact that ‘Samsung’ and
‘Apple’ are both mobile phone manufacturers in their vector
embeddings will help bring these entities closer in the vector
space. This will help improve various applications built upon
the structure. The vector embeddings can be used to train
machine learning models which will leverage the explicit
assertions present in the knowledge graph part.

Current vector generation techniques proposed in [31], [39]
provide a method to encode the relational concurrence in a
vector space. However, these representations fail to include
a global context. Ristoski et al. [42] created RDF2Vec, where
they adapt neural language models for RDF graph embeddings.
They transform the RDF graph data into sequences of entities,
which are then considered as sentences. Using these sentences,
they train the neural language models to represent each entity
in the RDF graph as a vectors.

In our approach, we created a feedforward neural network
which takes as input the relational context of an entity, along
with the RDF2Vec vector for that entity created using the
knowledge graph part of the VKG structure. All the contextual
words and the RDF2Vec vector get projected into the same
position (as a result of vectors getting averaged). The training
criterion is to correctly classify the current entity (i.e. the
middle word). The output generated serves as the vector
encoding for the entity. Figure 5 shows the architecture of
the neural network. We evaluate these vectors in Section VII.

W(t)

W(t - 1)

W(t + 1)

W(t + n)

W(t - n)

RDF2Vec(W)

Projection
(Averaged) Output

Input

Fig. 5. Architecture for creating embeddings for W (t) (Here, t is the
position of the word). Local context is provided by using co-occurring words
W (t− n),...W (t− 1), W (t+ 1),...W (t+ n); n is a hyper-parameter used
for context window size. Global context is provided by the RDF2V ec(W)
vector created using the knowledge graph part.

V. APPLICATIONS

In this section we present two applications built using the
VKG structure. The first one, allows a security analyst to issue
complex query the VKG structure. The second one, generates
alerts for the security analyst based on a ‘system profile’.

A. A Query Processing Engine

An application running on the VKG structure described
in, Section III and populated via steps mentioned in Section
III-C1, can handle some specific type of queries. The applica-
tion can ask a backend query processing engine to list declared
entities or relations, search for semantically similar concepts,
and compute an output by reasoning over the stored data. This
gives us three types of queries, search, list, and infer. These
three are some of the basic tasks that an application running
on the VKG structure will require, using which we derive our
set of query commands (C):

C = {search, list, infer}

A complex query posed by the application can be a union
of some of these basic commands. An example query, to the
Cyber-All-Intel security informatics system built on our VKG
structure can be ‘list vulnerabilities in products similar to
Google Chrome’; In this query we first have to search for
similar products to Google Chrome and then list vulnerabili-
ties found in these products.

In the query mentioned above, search queries, for the top-
k nearest neighborhood search should be performed using the
embeddings, and the list, infer queries on the knowledge
graph part. Domain experts can incorporate various reason-
ing and inference based techniques in the ontology for the
knowledge graph part of the VKG structure. Mittal et al. in
their system, CyberTwitter [32] have showcased the use of an
inference system to create threat alerts for cybersecurity using
Twitter data. Such inference and reasoning tasks can be run
on the knowledge graph part of the VKG structure.

For the Cyber-All-Intel system described in Section III,
some other example queries to the vector part can be, ‘Find
products similar to Google Chrome.’, ‘List vulnerabilities
similar to buffer overflow’, etc. We evaluate the performance
of these queries on different parts in Section VII.

Adding to SPARQL: Our query processing engine aims
at extending SPARQL. In SPARQL, users are able to write
‘key-value’ queries to a database that is a set of ‘subject-
predicate-object’ triples. Possible set of queries to SPARQL
are, Select, Construct, Ask, Describe, and various forms
of Update queries. We create a layer above SPARQL to help
integrate vector embeddings using our VKG structure. Our
query processing engine sends search queries to the vector
part of the structure, the list query to the SPARQL engine for
the knowledge graph, and the infer query to the Apache Jena
inference engine. Next, we go into the details of our backend
query processing system.

1) Query processing system: Let a query proposed by an
application to the backend system on the VKG structure be
represented by QV KG. The task of the query processing engine
is to run the input query, QV KG, as efficiently as possible.
We evaluate this claim of efficiency in Section VII. We do not
discuss a query execution plan as multiple expert plans can be
generated by domain experts depending on the needs of the
application.

As per our need, in the backend system, a query that runs
only on the knowledge graph part and only the vector part

8

of the structure are represented as Qkg and Qv respectively.
An input query QV KG can be decomposed to multiple com-
ponents that can run on different parts namely the knowledge
graph and the vector part:

QV KG → Qkg ∪Qv

An input application query QV KG can have multiple com-
ponents that can run on the same part, for example, an input
query can have three components, two of which run on the
knowledge graph part and the remaining one runs on the vector
part. Such a query can be represented as:

QV KG → Qv ∪Qkg
1 ∪Qkg

2 (1)

Where, Qkg
1 and Qkg

2 are the two components that run on
the knowledge graph part and Qv component which runs on
the vector part.

It is the responsibility of the query processing system to
execute these subqueries on different parts and combine their
output to compute the answer to the original input query
QV KG. We describe the query execution process using an
example.

2) Example query: For the Cyber-All-Intel system an ex-
ample query issued by the application: ‘Raise an alert if, a
vulnerability similar to denial of service is listed in MySQL’,
can be considered as three sub-queries which need to be
executed on different parts of the VKG structure.

The input query can be considered to be of the type (1),
Where the subqueries are:

1) Finding similar vulnerabilities (set - V) to denial of
service that will run on the vector embeddings (Qv).

2) Listing known existing vulnerabilities (set - K) in
MySQL (Qkg

1).
3) Inferring if an alert should be raised if a vulnerability

(from set V) is found in the product MySQL. This sub-
query will run on the knowledge graph part (Qkg

2).
The query can be represented as:

QV KG = {{search, ‘denial of service′, V } ∪
{list, vulnerability, ‘MySQL′, K} ∪

{infer, V,K, ‘MySQL′, alert}} (Query 1)

The query execution plan for (Query 1) is to first run Qv

and Qkg
1 simultaneously and compute the sets V and K. After

computing the sets the engine is supposed to run Qkg
2 .

The first part of the input query (Query 1), is of the form
Qv and will run on the vector part of the VKG structure. Its
representation is:

Qv = {search, ‘denial of service′, V }

The output generated is a set V (Figure 6) and contains vul-
nerabilities similar to ‘denial of service’. We used the VKG
search to compute this set and filter out all non vulnerabilities.
The set V will be utilized by other subqueries (Qkg

2) to
generate it’s output.

The second part of the input query (Query 1) is the first
sub-query to run on the knowledge graph part of the VKG
structure.

Qkg
1 = {list, vulnerability, ‘MySQL′, K}

The goal of this query is to list all vulnerabilities (Figure
6) present in ‘MySQL’ that are explicitly mentioned in the
knowledge graph (set - K).

Output	for	Set	
K

Output	for	Set	
V

• sql_injection
• denial_of_service
• gain_privileges
• overflow

• dos
• execute_arbitrary_code
• ddos
• sql_injection

Fig. 6. The output of the sub-queries Qv and Qkg
1 when run on the Cyber-

All-Intel System. As there is some overlap between the sets V and K the
output for the subquery Qkg

2 will be ‘Alert = Yes’

The third part of the input query (Query 1) is the second
subquery to run on the knowledge graph part of the VKG
structure.

Qkg
2 = {infer, V,K, ‘MySQL′, alert}

Here, the output is to reason whether to raise an ‘alert’
if some overlap is found between the sets V & K. Query
Qkg

2 requires an inference engine to output an alert based on
some logic provided by domain experts or system security
administrators. In Figure 6 as there is overlap between the
sets V and K an alert will be raised.

B. Knowledge Augmentation and Alerts

In the field of cybersecurity a security analysts need to
be aware of all possible threats and vulnerabilities to their
cyber-infrastructure. We have created an intelligence alert
system on top of the VKG structure, which briefs an analyst
about various threats relevant to the software and hardware
components present in an enterprise, when intelligence from
multiple sources is analyzed and aggregated.

In the past we created, CyberTwitter [32] to issue alerts
about vulnerabilities found in various products used by an
organization. The CyberTwitter system uses a knowledge
graph where reasoning was done by adding SWRL rules. In the
Cyber-All-Intel system, the SWRL rules have been extended
and we also investigate similar products using the vector space
to issue alerts based on an organization’s ‘system profile’.

In this section we discuss two things, firstly, how we aug-
ment the knowledge graph with other sources of information
and secondly, how we generate alerts.

1) Knowledge Augmentation: Many a times a query can
come in that requires more knowledge for the answer to be
computed than what is present in the text corpus used for
training the VKG structure. An example query like “What
products similar to Internet Explorer are produced by Google
Inc.?” Such a query needs to first compute the set of possible
products similar to ‘Internet Explorer’ and then filter out the
ones that are not produced by the entity ‘Google Inc.’.

Knowledge graph nodes in the VKG structure can be used
to add information from other sources like DBpedia [5],
YAGO [49], etc. This helps integrate information that is not
present in the input corpus. Along with these sources we

9

can add more information gathered from local organizational
structure like network activity, shared library dependencies of
a program executable, etc. This knowledge helps in adding
local organizational knowledge to the system.

For our system to handle these type of queries we used
the information present in existing knowledge graphs that
were populated using other textual sources and techniques.
As a proof of concept we integrated our Cyber-All-Intel VKG
structure’s knowledge graph part with DBpedia [5]. During
this process of integration we asserted various products and
vulnerabilities with their counterparts in the DBpedia knowl-
edge graph. Figure 2 shows an example where the property
owl : sameAs is used to assert counterparts for VKG instances
of ‘Microsoft Internet Explorer’, ‘Arbitrary code execution’,
and ‘Denial-of- service attack’.

To include some local knowledge from the system that
needs to be protected, we add shared library dependencies
of programs installed. This information was collected using
an Ubuntu system using the ‘objdump’ tool2 and filtering out
library dependencies using the ‘NEEDED’ flag. The dependen-
cies for installed software were then asserted in a knowledge
graph.

Adding both global and local information to the knowledge
graph helps us in improving the quality of alerts and recom-
mendations.

2) Generating Alerts: For our alert system we create vector
embeddings (for the VKG structure) using the augmented
knowledge graph (with DBpedia and library dependencies
of programs installed) discussed in Section V-B1, and the
generation method mentioned in Section IV-B. We extend the
SWRL rules included in the CyberTwitter [32] system.

We also ask the security analyst to provide the recommender
system a ‘system profile’. The profile contains information
about the operating system, various installed softwares and
their version information. We use the profile information as
part of our rules to generate alerts.

We created a VKG based alert system that has two logical
parts:

1) Vulnerability Alerts using factual data: We created a rule
based system to issue alerts using the knowledge graph
part of the VKG structure which includes factual data
like, collected intelligence, DBpedia, library dependen-
cies of installed programs, etc.
We utilized SWRL rules to include a reasoning engine
analogous to a deductive based approach that a security
analyst might take to figure out threats to her system.
SWRL rules contain two parts, antecedent part (body),
and a consequent (head). Informally, a rule may be read
as meaning that if the antecedent holds (is “true”), then
the consequent must also hold.
We have modified and generalized CyberTwitter’s
SWRL based recommendation engine [32], where we
first compute if an intelligence is ‘valid and current’ and
in the second part we use a valid intelligence to raise
an alert if its in the analyst’s system profile.

2https://sourceware.org/binutils/docs/binutils/objdump.html

2) Vulnerability Alerts for similar products: It is also
necessary for the system to look for similar products
that might also be at risk (The analyst can choose
whether she wants these alerts). To keep a security
analyst updated we also have to consider possible vul-
nerabilities that may exist in products that share library
dependencies and/or developed by similar companies.
For example, in case of products like Mozilla Firefox
and Thunderbird, which are developed by the same
company and have a considerable overlap in library
dependencies; an alert generated for one, warrants an
investigation into the other.
So as to create such alerts we leverage the vector part
of the VKG structure. When we get an alert about a
vulnerability in a product from the factual data using
the SWRL rules mentioned above, we look into possible
intelligence obtained for products in the neighborhood
of the vulnerable product and re-reason the SWRL rules
with added information. We factor in the number of
shared library dependencies, developing companies, etc
in the SWRL rules. This vector neighborhood was cre-
ated using the augmented knowledge graph mentioned
in Section V-B1.

After looking at the alerts generated using the factual data
and by investigating similar products, we then push these alerts
to the analyst depending on the organizations ‘system profile.
We evaluate our recommender and alert system in Section VII.

VI. DATASET AND EXPERIMENTAL SETUP

For Cyber-All-Intel system, we created a Cybersecurity
corpus as discussed in Section III and shown in Figure 1. Data
for the corpus is collected from many sources, including chat
rooms, dark web, blogs, RSS feeds, social media, and vulner-
ability databases. The current corpus has 85,190 common vul-
nerabilities and exposures from the NVD dataset maintained
by the MITRE corporation, 351,004 cleaned Tweets collected
through the Twitter API, 25,146 Reddit and blog posts from
sub-reddits like, r/cybersecurity/, r/netsec/, etc. and a few dark
web posts [9].

For the vector space models, we created embeddings by
setting vector dimensions as: 500, 1000, 1500, 1800, 2500 and
term frequency as: 1, 2, 5, 8, 10 for each of the dimensions.
The context window was set at 7. The knowledge graph
part was created using the the steps mentioned in Section
III and the VKG structure was generated by linking the
knowledge graph nodes with their equivalents in the vector
model vocabulary (see Section III-C1).

In order to conduct various evaluations, we first created
an annotated test set. We selected some data from the cy-
bersecurity corpus and had it annotated by a group of five
graduate students familiar with cybersecurity concepts. The
annotators were asked to go through the corpus and mark
the following entity classes: Address, Attack / Incident, At-
tacker, Campaign, Attacker, CVE, Exploit, ExploitTarget, File,
Hardware, Malware, Means, Consequence, NetworkState, Ob-
servable, Process, Product, Software, Source, System, Vulner-
ability, Weakness, and VersionNumber. They were also asked

10

to annotate various relations including hasAffectedSoftware,
hasAttacker, hasMeans, hasWeakness, isUnderAttack, hasSoft-
ware, has CVE ID, and hasVulnerability. These classes and
relations correspond to various classes and properties listed
in the Unified Cybersecurity Ontology and the Intelligence
Ontology [32]. For the annotation experiment, we computed
the inter-annotator agreement score using the Cohen’s Kappa
[46]. Only the annotations above the agreement score of 0.7
were kept.

The annotators were also tasked to create sets of similar
products and vulnerabilities so as to test various aspects of
the Cyber-All-Intel system. The most difficult task while
designing various experiments and annotation tasks was to
define the meaning of the word ‘similar’. Should similar
products have the same vulnerabilities, or same use? In case
of our cybersecurity corpus we found that the two sets, same
vulnerabilities and same use were co-related. For example,
if two products have SQL injection vulnerability we can say
with certain confidence that they use some form of a database
technology and may have similar features and use. If they
have Cross-Site Request Forgery (CSRF) vulnerability they
may generally belong to the product class of browsers.

Annotators manually created certain groups of products
like, operating systems, browsers, databases, etc. OWASP3

maintains groups of similar vulnerabilities4 and attacks5. We
created 14 groups of similar vulnerabilities, 11 groups of
similar attacks, 31 groups of similar products. A point to note
here is that, in many cases certain entities are sometimes pop-
ularly referred by their abbreviations, we manually included
abbreviations in these 56 groups. For example, we included
DOS and CSRF which are popular abbreviations for Denial Of
Service and Cross-Site Request Forgery respectively in various
groups.

VII. EVALUATIONS

Cyber-All-Intel is a threat intelligence system which aims to
provide tactical and operational support to the security analyst.
The goal of the system is to add value to the analyst’s work
flow and enable her to make efficient security policy decisions.
The system aims to reduce the ‘cognitive load’ on the security
analyst. To ensure that Cyber-All-Intel is able to sufficiently
aid the analyst, we first evaluate the system by questioning
it’s core utilities. What is the quality of the information that
is being provided by the system? Such an information can be
about an attack or a vulnerability.

The second method to evaluate our system is to measure
how it can help a security analyst keep an updated policy
for her organization. The system can provide the analyst with
various similarities and differences between various variants
of attacks. For example, the system can provide the analyst
with the differences between ‘WannaCry’ and ‘notPetya’. This
information can then allow an analyst to create specific policy
updates that help protect the organization.

We also evaluate the knowledge improvement, query pro-
cessing engine, alert generation capabilities of Cyber-All-Intel.

3https://www.owasp.org/index.php/Main Page
4https://www.owasp.org/index.php/Category:Vulnerability
5https://www.owasp.org/index.php/Category:Attack

A. Evaluating core capabilities

So as to evaluate the core capabilities of the system we
focus on two features, first, the quality of new intelligence
obtained or updates made to existing intelligences. Second, to
evaluate if the system is able to highlight the similarities and
differences between various attacks and vulnerabilities.

For the first one, we leverage the annotators mentioned
in Section VI. We provided them with the VKG structure
generated along with the text that was used to generate it. For
example, we provide an annotator with the VKG structure of
‘WannaCry’ along with the text from our cybersecurity corpus
that relates to WannaCry. The annotators were then asked to
check if the VKG structure created was correct. We gave the
annotators 60 such attacks, 49 of these were marked correct.
Each attack was annotated by at least 2 annotators.

In the second one, we provided the annotators with pairs
of attacks and vulnerabilities which are similar, as measured
by comparing their VKG embeddings. We also gave them a
policy to prevent one of the attacks. Their task was to modify
the given policy so that it is able to protect an organization
from both. For example, we provided our annotators with the
VKG structure for ‘WannaCry’ and ‘notPetya’, along with a
policy to prevent WannaCry. The annotators were then tasked
to change the policy so that it can prevent both WannaCry
and notPetya. We ran this experiment for 22 such pairs, along
with the policies to prevent one of the attacks present in the
pair. Each pair was annotated by at least 2 annotators. Of the
given 22 pairs, the annotators were able to correctly modify
18 policies.

Such capabilities add value to the analyst workflow. Provid-
ing this information can help the analyst make informed policy
level changes. We would also like to bring to notice a possible
feature, where an AI system will automatically suggest policy
level changes to the security analyst. Research on this feature
is ongoing but such a capability will be built using the core
capabilities of the Cyber-All-Intel system.

What is missing in existing proprietary SIEMs like Lo-
gRhythm, Splunk, IBM QRadar, and AlienVault, etc. is the
integration of threat intelligence from disparate sources fol-
lowed by efficient interpretation and reasoning on data using
known intelligence [57], [58]. This can reduce false positives
and improve the current state of the art in this domain. Also, it
reduces the cognitive load on the analyst, because the system
can fuse threat intelligence with observed data to detect attacks
early, ideally left of exploit.

B. Evaluating knowledge improvement

In Cyber-All-Intel we leverage different knowledge repre-
sentations in our VKG structure. The knowledge graph part
is designed to hold more global context. The vector space
embeddings on the other hand have been created using the
local context around the entity. In section IV, we discuss our
methodology to leverage the different parts of the VKG to
improve each other.

In the knowledge graph improvement task discussed in
Section IV-A we classify the relation between two entities
using a deep learning model. The model was trained on the

11

true positive relations explicitly declared in 60,000 CVEs6.
30,000 were used as test set. Our model has an accuracy of
81.5%.

To evaluate the quality vector embeddings generated in
Section IV-B we use the sets of ‘similar’ products and vul-
nerabilities discussed in Section VI. The task was to evaluate
if similar real-word products and vulnerabilities are present in
the same neighborhood in the vector space. For the task, we
query the embeddings on one of the elements in the similar
annotated sets and then compare the entities of the set returned
(We compare products only to products, vulnerability only to
vulnerability,...). For the vector space with dimensionality of
1500 and term frequency 2, we get a precision of 0.84 and
recall of 0.24.

C. Evaluating the query processing engine

Using the data and annotation test sets mentioned in Section
VI, we evaluate our query processing engine. In Section V-A,
we describe our query processing engine and its three query
commands: search, list, and infer. Here we evaluate search
and list query but not the infer queries as they depend on
the reasoning logic provided in the ontology and can vary with
application.

1) Evaluating the search query: An input query to the
VKG structure to find similar concepts can either run on the
vector space using various neighborhood search algorithms
[14], [23] or the knowledge graph using ontology matching,
ontology alignment, schema matching, instance matching,
similarity search, etc. [44], [13], [63]. To evaluate the vector
embeddings part of the VKG structure we used the ‘similar’
sets created by the annotators. We trained various vector
space models with vector dimension, 500, 1000, 1500, 1800,
2500 and term frequency, 1, 2, 5, 8, 10. Increasing the
value of dimensionality and decreasing the term frequency
almost exponentially increases the time to generate the vector
space models. We first find the combination of parameters
for which the Mean Average Precision (MAP) is highest, so
as to use it in comparing the performance of vector space
models with knowledge graphs and graph aided vectors in the
VKG structure, in finding similar vulnerabilities, attacks, and
products. For the 56 similar groups the vector model with
dimensionality of 1500 and term frequency 2, had the highest
MAP of 0.69 (Figure 7). Models with higher dimensions and
word frequency performed better.

To compare the performance of the search query over
vector space and its counterpart from the knowledge graph
side we used the vector embedding model with dimensionality
of 1500 and term frequency 2. To compute instance matching
on knowledge graphs, we used an implementation of ASMOV
(Automated Semantic Matching of Ontologies with Verifica-
tion) [19].

On computing the MAP for both vector embeddings and
the knowledge graphs we found that embeddings constantly
outperformed the knowledge graphs. Figure 8, shows that
the MAP value for vector embeddings was higher 47 times
out of 56 similarity groups considered. The knowledge graph

6There were about 95,000 CVEs when this article was published.

performed significantly bad for vulnerabilities and attacks
as the structural schema for both attacks and vulnerabilities
was quite dense with high number of edges to different
entities. This significantly affected the performance of schema
matching.

To test the advantages of our VKG structure we evaluate
the VKG search (see Section V-A) against the vector space
model. The VKG search on vector space achieved a MAP
of 0.8, which was significantly better than the MAP score
(0.69) achieved by using just the vector model. The reason
for higher quality results obtained by using the VKG search
is due to the fact that we can filter out entities by using class
type declarations present in the knowledge graph.

Model Graphs Vectors VKG Search
MAP 0.43 0.69 0.80

TABLE I
BEST MEAN AVERAGE PRECISION FOR KNOWLEDGE GRAPHS, VECTOR

SPACE MODELS, AND VKG STRUCTURE.

Fig. 7. Mean Average Precision for different dimensions and word frequency.
Models with higher dimensions and word frequency performed better.

2) Evaluating the list query: Since the declarative asser-
tions are made in the VKG’s knowledge graph, to evaluate
the list query we evaluate the quality of the knowledge graph
part. The list query can not be executed on the vector space
as there is no declarative information in embeddings.

To check the quality of the knowledge graph triples gener-
ated from the raw text we asked the same set of annotators to
manually evaluate the triples created and compare them with
the original text. The annotators were given three options, cor-
rect, partially correct, and wrong. From 250 randomly selected
text samples from the cybersecurity data, the annotators agreed
that 83% were marked correct, 9% were partially correct, and
8% were marked wrong.

D. Evaluating the alert system

In Section V-B we discussed our alert system. In our system
we first generate alerts using the factual data obtained by

12

Fig. 8. The number of times the MAP score was higher for the two knowledge
representation techniques for the 56 similar groups. Vector embeddings
performed better than knowledge graphs. Embeddings performed better in
8 attacks, 26 products, and 13 vulnerabilities.

augmenting incoming intelligence with shared library depen-
dencies and DBpedia linkages. This data is then used by a
rule based system to generate alerts. Once we get an alert
about a product, we also investigate other products in it’s
vector neighborhood created using the augmented knowledge
graph. Alerts are then pushed to the analyst depending on the
organization’s ‘system profile’.

To evaluate the quality of these alerts we conducted a
small user study where we asked five assessors to judge the
usefulness of alerts (options: useful, maybe, useless) given
the set of sources responsible for the alert. Out of 55 alerts
generated 43 were marked as useful, 3 were marked useless,
and the remaining 9 were marked as maybe.

VIII. CONCLUSION & FUTURE WORK

This paper presents Cyber-All-Intel a system for knowl-
edge extraction, representation and analytics in an end-to-end
pipeline grounded in the cybersecurity informatics domain.
The system creates a cybersecurity corpus by collecting threat
and vulnerability intelligence from various textual sources like,
national vulnerability databases, dark web vulnerability mar-
kets, social networks, blogs, etc. which are then represented
as instances of our VKG structure.

The Cyber-All-Intel system also pro-actively tries to im-
prove the underlying cybersecurity knowledge. We have cre-
ated neural network models, that take the vector part of the
VKG structure and improves the knowledge graph. The knowl-
edge graph part serves as the input to the vector generating
part, adding more global knowledge to these embeddings.

We use the system to answer complex cybersecurity infor-
matics queries and issue alerts to the system analyst. Some
other applications that can be added in the future are: sugges-
tions for policy updates, linking an organization’s in-network
and endpoint sensors to create a robust Intrusion Detection and

Prevention System (IDPS), etc. These extensions and planned
future work, brings us closer to our main aim - creating an
artificial intelligence system to aid the security analyst.

ACKNOWLEDGEMENT

The research was partially supported by a gift from IBM
Research, Department of Defense (U.S.A), and MITRE.

REFERENCES

[1] Jena apache fuseki: serving rdf data over http,. http://jena.apache.org/
documentation/serving data/index.html.

[2] Owl web ontology language. http://www.w3.org/TR/owl-features/.
[3] Resource description framework (rdf). http://www.w3.org/RDF/.
[4] Sparql protocol and rdf query language 1.1 overview. http://www.w3.

org/TR/sparql11-overview/.
[5] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard

Cyganiak, and Zachary Ives. DBpedia: A Nucleus for a Web of Open
Data. Springer, 2007.

[6] Sean Barnum. Standardizing cyber threat intelligence information
with the structured threat information expression (stixTM). MITRE
Corporation, July, 2012.

[7] BBC. ’NSA malware’ released by Shadow Brokers hacker group. http:
//www.bbc.com/news/technology-39553241, 2017. [Online; accessed 2-
March-2018].

[8] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
The Scientific American, 2001.

[9] Gwern Branwen, Nicolas Christin, David Dcary-Htu, Rasmus Munks-
gaard Andersen, StExo, El Presidente, Anonymous, Daryl Lau, Sohhlz,
Delyan Kratunov, Vince Cakic, Van Buskirk, and Whom. Dark net
market archives, 2011-2015. https://www.gwern.net/DNM%20archives,
July 2015.

[10] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost)
from scratch. Journal of Machine Learning Research, 12(Aug):2493–
2537, 2011.

[11] Danica Damljanovic, Johann Petrak, Mihai Lupu, Hamish Cunningham,
Mats Carlsson, Gunnar Engstrom, and Bo Andersson. Random indexing
for finding similar nodes within large rdf graphs. In Extended Semantic
Web Conference, pages 156–171. Springer, 2011.

[12] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowl-
edge representation? AI magazine, 14(1):17, 1993.

[13] Roberto De Virgilio, Antonio Maccioni, and Riccardo Torlone. A sim-
ilarity measure for approximate querying over rdf data. In Proceedings
of the Joint EDBT/ICDT 2013 Workshops, EDBT ’13, pages 205–213,
New York, NY, USA, 2013. ACM.

[14] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search
in high dimensions via hashing. In VLDB, volume 99, pages 518–529,
1999.

[15] Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs
in vector space. arXiv preprint arXiv:1506.01094, 2015.

[16] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard
Weikum. Yago2: A spatially and temporally enhanced knowledge base
from wikipedia. Artificial Intelligence, 194:28–61, 2013.

[17] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet,
Benjamin Grosof, and Mike Dean. Swrl: A semantic web rule language
combining owl and ruleml, May 2004.

[18] Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y
Ng. Improving word representations via global context and multiple
word prototypes. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long Papers-Volume 1,
pages 873–882. Association for Computational Linguistics, 2012.

[19] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka.
Ontology matching with semantic verification. Web semantics, 7 3:235–
251, 2009.

[20] Arnav Joshi. A linked data resource for software security concepts
and vulnerability descriptions. Master’s thesis, University of Maryland,
Baltimore County, August 2013.

[21] Arnav Joshi, Ravendar Lal, Tim Finin, and Anupam Joshi. Extracting
cybersecurity related linked data from text. In Proceedings of the 7th
IEEE International Conference on Semantic Computing. IEEE Computer
Society Press, September 2013.

[22] Michael Kandefer, S Shapiro, Adam Stotz, and Moises Sudit. Symbolic
reasoning in the cyber security domain. 2007.

13

[23] Saar Kuzi, Anna Shtok, and Oren Kurland. Query expansion using
word embeddings. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, CIKM ’16,
pages 1929–1932, New York, NY, USA, 2016. ACM.

[24] Ravendar Lal. Information Extraction of Security related entities and
concepts from unstructured text. Master’s thesis, University of Maryland,
Baltimore County, May 2013.

[25] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu.
Learning entity and relation embeddings for knowledge graph comple-
tion. In AAAI, pages 2181–2187, 2015.

[26] Przemyslaw Maciolek and Grzegorz Dobrowolski. Cluo: Web-scale text
mining system for open source intelligence purposes. Computer Science
(AGH), 14:45–62, 2013.

[27] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven
Bethard, and David McClosky. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual meeting of the
association for computational linguistics: system demonstrations, pages
55–60, 2014.

[28] Pablo N. Mendes, Max Jakob, Andrés Garcı́a-Silva, and Christian Bizer.
DBpedia spotlight: shedding light on the web of documents. In 7th Int.
Conf. on Semantic Systems, pages 1–8. ACM, 2011.

[29] Microsoft. Microsoft Security Bulletin MS17-010 - Critical-Security
Update for Microsoft Windows SMB Server (4013389). https://docs.
microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010,
2017. [Online; accessed 2-March-2018].

[30] T Mikolov and J Dean. Distributed representations of words and phrases
and their compositionality. Advances in neural information processing
systems, 2013.

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[32] Sudip Mittal, Prajit Kumar Das, Varish Mulwad, Anupam Joshi, and Tim
Finin. Cybertwitter: Using twitter to generate alerts for cybersecurity
threats and vulnerabilities. In Advances in Social Networks Analysis
and Mining (ASONAM), 2016 IEEE/ACM International Conference on,
pages 860–867. IEEE, 2016.

[33] Sagar More, Mark Matthews, Akanksha Joshi, and Tim Finin. A
knowledge-based approach to intrusion detection modeling. In Security
and Privacy Workshops (SPW), 2012 IEEE Symposium on, pages 75–81.
IEEE, 2012.

[34] Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. Com-
positional vector space models for knowledge base completion. arXiv
preprint arXiv:1504.06662, 2015.

[35] Federico Neri and Paolo Geraci. Mining textual data to boost in-
formation access in osint. In Information Visualisation, 2009 13th
International Conference, pages 427–432. IEEE, 2009.

[36] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. Holo-
graphic embeddings of knowledge graphs. CoRR, abs/1510.04935, 2015.

[37] National vulnerability database. http://nvd.nist.gov.
[38] NYTimes. Cyberattack Hits Ukraine Then Spreads Internationally

. https://www.nytimes.com/2017/06/27/technology/ransomware-hackers.
html, 2017. [Online; accessed 2-March-2018].

[39] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In EMNLP, volume 14, pages
1532–43, 2014.

[40] Line C. Pouchard, Jonathan D. Dobson, and Joseph P. Trien. A
framework for the systematic collection of open source intelligence. In
AAAISS, 2009.

[41] Reddit. https://www.reddit.com/r/cybersecurity/.
[42] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph embeddings for

data mining. In International Semantic Web Conference, pages 498–514.
Springer, 2016.

[43] Anthony Rutkowski, Youki Kadobayashi, Inette Furey, Damir Rajnovic,
Robert Martin, Takeshi Takahashi, Craig Schultz, Gavin Reid, Gregg
Schudel, Mike Hird, et al. Cybex: the cybersecurity information
exchange framework (x. 1500). ACM SIGCOMM Computer Commu-
nication Review, 40(5):59–64, 2010.

[44] Pavel Shvaiko and Jérôme Euzenat. Ontology matching: state of the
art and future challenges. IEEE Transactions on knowledge and data
engineering, 25(1):158–176, 2013.

[45] Amit Singhal. Introducing the knowledge graph: things, not strings,
May 2012.

[46] Nigel C. Smeeton. Early history of the kappa statistic. Biometrics,
41(3):795–795, 1985.

[47] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng.
Reasoning with neural tensor networks for knowledge base completion.

In Advances in Neural Information Processing Systems, pages 926–934,
2013.

[48] Stackoverflow. http://stackoverflow.com/.
[49] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a

core of semantic knowledge. In Proceedings of the 16th international
conference on World Wide Web, pages 697–706. ACM, 2007.

[50] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information
processing systems, pages 3104–3112, 2014.

[51] Zareen Syed, Tim Finin, Ankur Padia, and M. Lisa Mathews. Supporting
Situationally Aware Cybersecurity Systems. Technical report, University
of Maryland Baltimore County, September 2015.

[52] Zareen Syed, Ankur Padia, M. Lisa Mathews, Tim Finin, and Anupam
Joshi. UCO: A unified cybersecurity ontology. In Proceedings of the
AAAI Workshop on Artificial Intelligence for Cyber Security, pages 14–
21. AAAI Press, 2015.

[53] Takeshi Takahashi, Hiroyuki Fujiwara, and Youki Kadobayashi. Building
ontology of cybersecurity operational information. In Proceedings of the
Sixth Annual Workshop on Cyber Security and Information Intelligence
Research, page 79. ACM, 2010.

[54] Takeshi Takahashi, Youki Kadobayashi, and Hiroyuki Fujiwara. Onto-
logical approach toward cybersecurity in cloud computing. In Proceed-
ings of the 3rd international conference on Security of information and
networks, pages 100–109. ACM, 2010.

[55] Twitter. https://twitter.com/hashtag/cybersecurity?lang=en.
[56] Jeffrey Undercofer, Anupam Joshi, and John Pinkston. Modeling

Computer Attacks: An Ontology for Intrusion Detection. In Proc. 6th
Int. Symposium on Recent Advances in Intrusion Detection. Springer,
September 2003.

[57] Alex Vovk. How to Overcome SIEM Limitations. https://blog.netwrix.
com/2016/03/21/how-to-overcome-siem-limitations/, 2016. [Online; ac-
cessed 2-March-2018].

[58] Alex Vovk. Infographics: Common Drawbacks of SIEM So-
lutions. https://blog.netwrix.com/2016/03/15/infographics-common-\
-drawbacks-of-siem-solutions/, 2016. [Online; accessed 2-March-2018].

[59] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge
graph embedding by translating on hyperplanes. In AAAI, pages 1112–
1119. Citeseer, 2014.

[60] Wired. The ransomware meltdown experts warned about is here. https:
//www.wired.com/2017/05/ransomware-meltdown-experts-warned/,
2017. [Online; accessed 2-March-2018].

[61] Peng Xie, Jason H Li, Xinming Ou, Peng Liu, and Renato Levy. Using
bayesian networks for cyber security analysis. In Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International Conference on,
pages 211–220. IEEE, 2010.

[62] Shengqi Yang, Fangqiu Han, Yinghui Wu, and Xifeng Yan. Fast top-k
search in knowledge graphs. In Data Engineering (ICDE), 2016 IEEE
32nd International Conference on, pages 990–1001. IEEE, 2016.

[63] Weiguo Zheng, Lei Zou, Wei Peng, Xifeng Yan, Shaoxu Song, and
Dongyan Zhao. Semantic sparql similarity search over rdf knowledge
graphs. Proceedings of the VLDB Endowment, 9(11):840–851, 2016.

	Coverletter_basic
	1905.02895

