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Abstract 

 

TOWARDS EFFICIENT AND SECURED INTELLIGENT 

TRANSPORTATION SYSTEM (ITS) 

Nnanna N. Ekedebe 

According to the National Highway Traffic Safety Administration (NHTSA), in the U.S., 

road traffic congestions, and accidents are responsible for over $80 billion economic loss, 

and over 32,800 deaths per year. Intelligent transportation system (ITS)/vehicular ad hoc 

networks (VANETs), however, promises improved mobility/traffic efficiency, safety, 

security, and greener transportation, etc. using vehicle-to-vehicle (V2V), and/or vehicle-

to-infrastructure (V2I) communication. However, in light of the aforementioned 

challenges, these proclaimed levels of improvements have not fully/comprehensively been 

critically evaluated/examined especially in a realistic setting i.e. using real-world data, and 

road networks as corroborated by several authors/authorities in the ITS/VANET domain 

[1-14]; as a result, one of the major goals of this dissertation is to fill this pertinent gap. 

Consequently, in this dissertation research, using both real-world road traffic data 

consisting of a total of 6 months traffic data of the Maryland (MD)/Washington DC and 

Virginia (VA) areas from July 1st, to December 31st, 2012 – of which 6 weeks of this was 

used as a representative sample after a comprehensive/exhaustive data analysis – and real-

world road networks, we first evaluate the performance of two popular vehicular routing 

algorithms namely: A* (Astar), and Dijkstra’s routing algorithms respecting travel time 
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performance in our developed generic real-world ITS test-bed using both small, and large 

road networks. Next, using the two major VANET architectures – V2V, and V2I 

communication architectures – we evaluate their performance respecting safety and traffic 

efficiency. In order to do this, we developed a mobile application we called Incident 

Warning Application (IWA) of which IWA-equipped vehicles utilize this application to 

evade a compound road accident consisting of a blocking of the entire roadway lanes, 

presence of slippery/frozen ice, and reduced speed limit as a result of fog. Vehicles (classic 

vehicles) unequipped with this mobile application are unaware of this congested condition 

– they, therefore, drive heedlessly unto the congested road and eventually suffer the 

consequences in the form of delayed arrival time/increased travel time. In addition, we 

analyze the performance of V2V and V2I communication in the presence of a type of denial 

of service (DoS) attack – jamming attack – with the view of ascertaining which is most 

resilient/effective when part of the system is under attack or is being compromised also 

respecting the evaluation metrics of traffic efficiency, and safety. Also, using our real-

world data, and road network, we evaluated the performance of over 24 supervised machine 

learning classification, and regression algorithms with respect to the evaluation metrics of 

predictive accuracy, and prediction speed with the view of having a comprehensive, and 

comparative reference manual i.e. a taxonomy. Finally, we examine the influence of driver 

distractions/attentiveness on traffic efficiency, and safety performances with our developed 

Driver Notification Application (DNA) using two popular driver models/age groups – 

young drivers (ages 16 – 25 years), and middle-age drivers (ages 30 – 45 years) respectively 

employing ad hoc/decentralized communication. 
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Overall, our results show that no significant difference respecting travel time performance 

was observed between Dijkstra and A* (Astar) algorithms in both small, and large road 

networks. Next, V2I communication outperformed V2V communication respecting traffic 

efficiency, and safety performances before, and during the execution of the jamming 

(availability) attack. Also, classification tree (Ctree), and regression tree (Rtree) gave the 

best performances respecting predictive accuracy and prediction speed amongst all the 

algorithms examined/evaluated. In general, with respect to all other evaluated supervised 

machine learning algorithms, a tradeoff between speed, and accuracy is imperative and will 

be largely dependent on the scenario in question i.e. this tradeoff must be determined on 

an individual/case-by-case basis. Lastly, our results lucidly shows that middle-age drivers 

outperformed younger drivers respecting their ability to maintain their 

attention/concentration levels for longer time periods while in transit; thereby resulting in 

better safety, and traffic efficiency performances. 
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Chapter 1 

Introduction 

This chapter presents the background and motivation for pursuing this research work, 

existing challenges, current mitigation approaches in intelligent transportation system 

(ITS)/vehicular ad hoc networks (VANETs), and their drawbacks; it also highlights the 

research overview; overall research aim, and specific research objectives. Lastly, it 

presents the main contributions, significance/value, and organization of this dissertation 

research. 

Motivation and Background 

In the U.S., the following transportation problems/challenges requiring immediate/urgent 

attention have been identified by the National Highway Traffic Safety Administration 

(NHTSA), and other imperative stakeholders:- 

Safety challenges: According to the National Highway Traffic Safety Administration 

(NHTSA), roadway fatal accidents have an average cost of $977,000 with about $2 million 

used to resuscitate the critically/severely injured who, eventually, survive. Besides, the 

current state of transportation has resulted in over: 32,800 deaths per year, 5.7 million 

yearly crashes, $230 billion direct cost to the economy – approximately 2.3% of the total 

gross domestic product (GDP) or $820 average cost per individual resident in the U.S., and 

leading cause of death between the age bracket of 4 – 34 years [15] [16] [17] [18] [19] [20] 

[21] [22]. 
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Mobility/Environmental challenges: Traffic congestion results in the loss of $87.2 – $100 

billion accruable to the U.S. economy i.e. over $750 per traveler in the U.S., 4.2 – 4.8 

billion waste of productive hours – approximately one complete work/vacation week per 

traveler/commuter, and 1.9 billion gallons wastages with respect to fuel/gas per year; 32% 

of the carbon dioxide emissions in the environment is attributable to road 

transportation/vehicles. In other words, lost productivity, resources, time, gas, and others 

are some of the many undesirable consequences of road traffic congestions. Besides, 

inefficient routing also exacerbates congestions which subsequently pervades to other 

neighboring roadways if left unchecked  [15] [18] [23] [17] [24] [25] [26] [16] [19] [8, 27, 

28] [20] [21] [22]. 

Traffic Prediction challenges: Accurate and timely dissemination of congestion 

information, and other pertinent traffic-related information is invaluable in improving 

traffic mobility/efficiency, and safety, etc. This is especially true because with the 

deluge/gamut of both streaming/real-time/dynamic, and historical/static traffic data, and 

processing algorithms, efficient and effective synthesis is imperative in timely, and reliable 

decision making. The criticality of efficient, and effective message dissemination using 

artificial intelligence (AI)/machine learning algorithms is further heightened respecting 

safety/life-critical messages having little, or no tolerance for errors/delays/latencies. 

Coupled with all these is the seeming unavailability/scarcity of real-world datasets as has 

been widely reported by various authors/authorities [1-14]. 

Human Factors challenges: In 2010, NHTSA reported that 3,092 deaths, and 417,000 

injuries resulted from distracted driving [15]. Similarly, according to the results of the 
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analysis of the National Motor Vehicle Crash Causation Survey (NMVCCS) database 

between 2005 and 2007, 11% of crashes were attributed to distractions as a causative agent. 

Drilling further down to the details, the following lists the levels of distractions and their 

causative agents/activities: 0.2% - use of cell phones, 0.9% - use of radios and similar 

devices, and 12% - talking with other passengers, or use of cell phones. The age distribution 

of drivers most prone to engage in an in-vehicle distracting activity was recorded at 

between 16 to 25 years with the highest distraction propensity of 6.6% [15] [20] [21]. It is 

also noteworthy that the strongest/best security, privacy, traffic efficiency, and safety 

measures/applications can only be as strong/effective as the human driver – hence the name 

human-in-the-loop problem. All types of distracted driving such as cognitive, visual, and 

manual distractions militates against the realization of the lofty goals of ITS – hence 

measures that maintain the drivers attention/focus/concentration while driving are highly 

demanded. 

Security challenges: Because of the predominant reliance on wireless communication 

technologies with respect to vehicle-to-vehicle (V2V)/inter-vehicle communication (IVC), 

and vehicle-to-infrastructure (V2I) communication (V2X communication), they are more 

susceptible to security, and privacy attacks manifesting in the form of V2X message delay, 

forgery, modification, replay, and suppression, etc. [29, 30] [29] [31]. Also, resulting from 

the uniqueness of the vehicular ad hoc network (VANET) ecosystem some of which 

consists of high speed nodes/vehicles with short connection times, and constantly changing 

network topology, etc., conventional security mechanisms that are designed to satisfy the 

confidentiality, integrity, and availability (CIA) security goals/requirements cannot be 
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directly used to address the gamut of threats respecting VANETs; hence some 

adaptation/contextualization is necessary. In addition, in ITS, safety supersedes security, 

and all other requirements; hence all security requirements/countermeasures must not, in 

any way, compromise safety [20]. This is true because security requirements that 

compromise/vitiate safety cannot be realistically adopted/implemented. Besides, because 

of the safety/life-critical nature of VANETs, security compromises are usually 

unacceptable and could result in fatalities – consequently, little or no tolerance for errors 

is strictly mandated in the ITS/VANET ecosystem [29, 30] [29] [31]. 

From the aforesaid, it is self-evident that these numbers/problems are unacceptably high 

and demand immediate reduction/mitigation – this is one of the primary/pivotal goals of 

this work [15] [26]. 

Mitigating Transportation Challenges 

According to the U.S. Federal Highway Administration (FHWA) [32], improving the 

current traffic efficiency, building new roads and infrastructure, and encouraging 

alternative modes of transportation (e.g. carpooling, taking the bus or train, etc. instead of 

driving alone) are some of the major congestion mitigation techniques. However, of all the 

aforementioned road traffic congestion mitigation/alleviation techniques, the use of 

dynamic/adaptive routing mechanisms that optimally utilize the existing road capacity is, 

generally, the most cost-efficient and effective technique [33]. Consequently, to overcome 

some of these aforementioned challenges, there is an urgent need to dynamically (re)route 

traffic via more efficient routes [8]. By taking the best/most optimal route from source to 

destination – the fastest route – which can be distance-based, or time-based, several factors 
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respecting roadway conditions such as road constructions, presence of tolls, and others, all 

contribute to the decision making process, leading to the shortest-path problem [34]. 

As previously stated, intelligent transportation system (ITS)/vehicular ad hoc network 

(VANET) applications provide a more efficient/low latency, effective, reliable, greener 

transportation, and safe driving experience that minimizes congestion resulting in better 

traffic flow management [4, 6, 10, 35-38]. However, to achieve this, all ITS applications 

using V2V/IVC, and V2I communications – collectively referred to as V2X 

communications – such as situational awareness, dynamic traffic control signals, hard-

breaking signals, and others must work synergistically or cooperatively [7, 39]. For 

example, using IntelliDrive applications, drivers can receive notifications on the 

probability of other vehicle drivers running a red light, the presence of unforeseen road 

conditions, including sharp/dangerous road bends, and others [14, 15] [20]. Also, adaptive 

cruise control (ACC), advanced driver-assistance systems (ADASs), variable speed limits 

(VSLs), ramp metering, and dynamic cruise control (DCC), etc. are additional mechanisms 

used to improve safety, traffic efficiency, and effective utilization of vehicle gas/fuel, as 

main goals of ITS [7, 9, 28, 35, 37, 38, 40-42]. By constantly monitoring variations in 

traffic parameters such as densities, speeds, and queues, variable speed limits (VSLs) and 

ramp metering can be adaptively controlled in real-time to minimize congestions. Note that 

VSLs are primarily used to ameliorate congestions because, as aforesaid by the FHWA, it 

is not feasible to keep constructing new roadways to meet the ever-growing traffic volume 

densities. The reason is that resources are finite and less expensive alternatives need to be 

developed [9, 41, 42] [32, 33]. 
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In order to ensure safety in ITS, interconnected vehicles constantly exchange information 

such as their location/position, speed, direction, etc. amongst one another [29]. The 

exchange of information in a timely and accurate fashion is critical to accident 

prevention/safety because, prior knowledge of future collisions in as little as one-half 

second before actual impact can reduce road traffic collisions/accidents by as much as 60% 

[43]. Safety messages, and other messages received by the driver have an impact on the 

driver’s reaction time – 100ms is the minimum required latency for safety message 

dissemination to all stakeholders prior to an accident [44]. Besides, with respect to 

VANETs, safety-related applications must maintain a certain quality-of-service (QoS), 

latency, security, and error rate levels, etc. [44]. As reported by NHTSA, 8% of unimpaired 

driver accidents/crashes can be avoided using V2V and V2I communication [15]; in 

addition, 71% of unimpaired driver crashes involving heavy duty trucks/vehicles can be 

reduced/eliminated using V2V communication applications [15]. In the same vein, 12% of 

crashes not addressed by V2V communication are addressed using V2I communication; in 

other words, V2I communications serves as a complement/supplement to V2V 

communication [15] [16] [17] [18] [19] [20] [21]. 

Overview of Dissertation Research 

With respect to the foregoing problems, this dissertation research has as its primary 

aim/goal of carrying out the investigation/evaluation/analysis, and implementation of 

efficient and effective solutions, which ameliorate the adaptive routing, knowledge 

discovery, security challenges, human factors challenges, and environmental 

impacts/problems of ITS. 
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Specifically, respecting the ITS/VANET ecosystem/environment, this dissertation research 

seeks to satisfy the following critical objectives: 

 Identify and evaluate critically the most efficient, and effective VANET routing 

algorithm that minimizes congestions resulting in better traffic flow management. 

 With respect to a given road network, determine the safety, and traffic efficiency 

challenges/environmental impacts of ITS/VANET architectures. 

 Analyze critically how the knowledge of previous, historical traffic volume 

patterns/data/information can be efficiently, and effectively utilized to accurately predict 

future patterns/conditions, leading to valuable, and timely decisions. 

 Explore the influence of a drivers motor, perceptual, and cognitive abilities/skills 

(distraction/attention level) on the traffic efficiency, and safety benefits attributable to ITS. 

 Examine and assess the effects/impacts of security attacks/beaches in ITS, and how 

can they be effectively mitigated in a realistic scenario. 

 Formulate recommendations for ameliorating the adaptive/dynamic routing, safety, 

traffic efficiency/environmental impacts, security, knowledge discovery, and human 

factors challenges of ITS/VANETs. 

Main Contributions of Research 

In order to satisfy/ameliorate the aforementioned research goals/objectives, and 

transportation challenges, using our real-world data and real-world road networks, we 

developed a mobile application we called Incident Warning Application (IWA), together 

with a generic, and realistic ITS test-bed, on which we evaluated the performance of two 



8 

 

 

 

popular VANET routing algorithms in both small, and large road networks. Vehicles 

equipped with this mobile application utilize it to evade a compound road accident 

consisting of reduced speed limit as a result of fog, slippery roadway conditions as a result 

of frozen ice, and the blocking of all 3-lanes of our reference roadway – Constitution 

Avenue NW; on the other hand, classic/unequipped vehicles suffer the consequences of 

this congested condition in the form of delayed/increased travel time. In addition, using the 

aforementioned test-bed, we investigated the impact of a radio/wireless communication 

channel jamming attack – a type of denial-of-service (DoS) attack – against the availability 

security requirement/goal using both V2V, and V2I communications. Next, using over 24 

supervised machine learning classification, and regression algorithms taxonomy, we 

determine their prediction accuracy, and speed/efficiency in a realistic setting. Lastly, we 

examined the influence of a driver’s level of distraction/attentiveness i.e. the human factors 

challenge, with our developed in-vehicle Driver Notification Application (DNA) using two 

age groups/driver models – young drivers (ages 16 – 25 years), and middle-age drivers 

(ages 30 – 45 years) respectively. 

Our empirical results show that of the two popular VANET routing algorithms evaluated 

– Dijkstra, and A* (Astar) – both algorithms showed no significant differences with respect 

to traffic efficiency (total trip/travel time) performances in both small, and large road 

networks. Next, respecting the efficiency, and effectiveness of V2V/IVC, and V2I 

communication architectures, V2I communication outperformed V2V communication 

manifesting in better safety, and traffic efficiency performances. Also, with respect to 

accurate traffic pattern prediction, and prediction speed/efficiency of all classification and 
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regression machine learning algorithms taxonomy evaluated, classification trees (Ctree), 

and regression trees (Rtree) gave the best performances respecting both prediction 

accuracy, and prediction speed. Next, using middle-age drivers, increasing a driver’s 

distraction level had the least amount of negative impact on both traffic efficiency, and 

safety over young drivers. In other words, a driver’s attention level is directly proportional 

to his safety, and traffic efficiency performances, and vice versa. Finally, regarding security 

attacks/compromises in VANETs, V2I communication showed more resilience over V2V 

communication respecting jamming of its radio/communication channel as a result of 

congestions. 

Significance of Research 

Our work is important in many respects. Predominantly, but not exhaustively, because of 

our use of real-world data, and realistic road networks, our work can be directly, and 

reliably utilized by transportation agencies/authorities/planners, traffic engineers, public 

authorities, road users/operators, and other stakeholders (direct, or indirect) in the 

Maryland (MD)/Washington DC and Virginia (VA) areas to better understand the 

multifarious ramifications of the deployment of the ITS/VANET technology in a cost-

effective, secure, and efficient simulation setting first, before actual, expensive – and often 

wasteful – real-world ventures/endeavors. Besides this, as is normal protocol/practice, real-

world studies are usually preceded by simulation studies because of the expensive nature 

of the former. Also, we encountered a lot of significant difficulties in securing our real-

world traffic data and generating/preparing our realistic road networks – this experience is 

not alien to those reported by many authors/authorities in the VANET/ITS research 
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domain; as a result, most of the existing literature/studies we evaluated also concur with 

the importance of our work [1-14]. In addition, to the best of our knowledge, our work is 

the first that has evaluated a taxonomy of several machine learning algorithms in the same 

setting – as most of the works we evaluated utilized at most 3 – 4 algorithms for either 

classification, or regression problems, but not both; this can be attributable to the extreme 

difficulty we encountered, and the enormous perseverance required to accurately fine-tune 

all their parameters to ensure maximum performance respecting prediction accuracy, and 

prediction speed/efficiency. One of the imperative goals of this taxonomy is to develop a 

comprehensive, and comparative work that will serve as a reference manual for 

ascertaining which machine learning algorithm best suites the speed, and accuracy 

requirements of real-time driving decisions together with their attendant tradeoffs.  

Besides, the performance of our algorithms was evaluated using a multi-metric comparison 

method/approach which, on its own, is a unique feat/achievement; this multi-metric 

comparison approach was adopted/employed in order to satisfy the biases of all concerned 

stakeholders – real, or unreal/perceived/otherwise – favoring the use of one or more metrics 

as more accurate/reliable over others/another. It is important to note that this subject alone 

has precipitated a lot of vigorous debate/discuss in literature with some authors arguing 

for, or against the use of one superior metric – mostly/predominantly the root mean square 

error (RMSE) – over/against another/others [37] [45]. Also, in relation to our jamming 

security attack scenario and its influence on traffic efficiency, and safety performances, 

again, to the best of our knowledge, our work is the first to give actual 

empirical/experimental implementations of this in a realistic setting using both V2V, and 

V2I communication architectures in the same setting. In the same vein, most research 
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studies respecting the ITS/VANET goals of improved mobility/traffic efficiency, and 

safety do not consider the varying/often subjective human driver behavior modeling 

challenges especially in a realistic setting – hence the name driver-in-the-loop 

problem/human factors challenges. Besides, from our extensive/comprehensive review of 

literature in the field [1-14] [46], we can unequivocally, and confidently assert that many 

studies reviewed – over 99%  – are either void of real-world data, real-world road networks, 

or both [1-14]. Specifically, many authors such as Ahmed Helmy [47]  has been looking 

for real-world traffic data for over 3 years and counting in order to further their research 

endeavors/efforts/studies, but to no avail. Consequently, because of their lack of 

reliability/veracity of representativeness of chosen/evaluated scenarios, they are rendered, 

from the beginning, ineligible/severely flawed for use in the real-world considerations of 

the safety, traffic efficiency, security, traffic prediction, and human factors challenges, etc. 

of ITS/VANETs. Finally, our work has also been vetted/juried/peer-reviewed and 

published in reputable/prestigious conferences across the globe because of its immense 

value and contribution to existing knowledge. 

Organization of Dissertation Research 

The rest of this dissertation research is organized as follows: in Chapter 2, we review the 

related works buttressing the importance of this research. In Chapter 3, 4, 5, 6, and 7 we 

present our research tasks in detail dealing with routing – traffic efficiency, and safety, 

traffic forecasting/prognosis, human factors challenges, and security in ITS. Finally, we 

again reexamine/reiterate/highlight the main contributions of this dissertation research, 

together with some recommendations for future research in Chapter 8. 
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Chapter Outline 

The structure of this dissertation is here summarized as follows: 

Chapter 1: Introduction 

This chapter introduces our research topic, and the motivation for embarking on this 

research; the research objectives, contributions, significance/value, and organization are 

also presented. 

Chapter 2: Issues and Review of Related Literature 

This chapter critically presents and evaluates the most recent and pertinent research studies 

in the ITS/VANET domain that seeks to address its adaptive/dynamic routing, traffic 

efficiency, safety, traffic forecasting, human factors, and security challenges towards 

promulgating our overall research aim and specific research objectives. 

Chapter 3: Need for Adaptive/Dynamic Routing 

This chapter addresses the need for optimal/dynamic/adaptive routing in ITS; it further 

uses this to realistically compare the performance of two popular vehicular routing 

algorithms – A*(Astar), and Dijkstra – with a view of improving traffic 

efficiency/mobility. 

Chapter 4: VANET Architectures 

Using our generic and realistic ITS test-bed and our developed Incident Warning 

Application (IWA), the traffic efficiency and safety performances of two popular VANET 
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architectures – vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) 

communications – are compared in this chapter. The V2X Simulation Runtime 

Infrastructure (VSimRTI) framework used in implementing these architectures is also 

presented in detail – together with its constituent parts/components. The evaluation of these 

two architectures are compared in relation to the traffic efficiency, and safety/life-critical 

nature of road transportation which requires little or no tolerance for 

errors/failures/latencies. 

Chapter 5: Efficient and Effective Traffic Prognosis 

In this chapter, we identify the need for efficient (fast/timely) and effective (accurate) 

traffic pattern prognosis towards congestion alleviation. Thus, using a taxonomy of over 

24 classification, and regression supervised machine learning algorithms, we evaluated 

their prediction efficiency/speed, and prediction accuracy respectively. The major metric 

used for our performance evaluation is the root mean square error (RMSE); some of the 

algorithms evaluated/considered include, but are not limited to: Artificial Neural Networks 

(ANN), Discriminant Analysis (DA), Naïve Bayes, and Support Vector Machines (SVM), 

etc. 

Chapter 6: Distracted Driving Human Factors Challenges 

This chapter addresses the human factors challenges of ITS using the V2X Simulation 

Runtime Infrastructure (VSimRTI) Behavior simulator, and developed in-vehicle Driver 

Notification Application (DNA). The safety and traffic efficiency performances of two 

popular human driver models: young, and middle-age drivers were modeled using the 
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VSimRTI behavior module coupled with the following simulators: SUMO traffic 

simulator, application simulator, and OMNeT++ network/communication simulator with a 

view of determining the impact of distracted driving on our chosen driver models. 

Chapter 7: Compromising Security in VANETs 

This chapter critically examines the current security and privacy issues in transportation 

cyber-physical systems (CPS), requirements, challenges, and countermeasures – 

prevention, and detection techniques. In addition, our simulation test-bed for carrying out 

our Denial-of-Service (DoS) attack – jamming – is also presented. Using our V2X 

simulation framework/infrastructure, the following coupled simulators are presented and 

used for evaluating the impact of a jamming attack against the availability security 

requirement on V2V, and V2I communication architectures: SUMO traffic simulator, 

JiST/SWANS network/communication simulator, event simulator, and environment 

simulator. Also, both architectures are compared based on their respective safety, and 

traffic efficiency performances. 

Chapter 8: Conclusions 

This chapter again summarizes/highlights the importance, main contributions, and findings 

of our research effort; it again identifies, and reiterates our primary research objectives 

towards satisfying our overall research aims/goals. Here, we also present some of our 

research limitations, and recommendations for further future research to 

compatriots/fellow colleagues/researchers. 
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Chapter 2 

Issues and Review of Related Literature 

In this section, we examine some of the most recent and pertinent works that have sort to 

address safety, traffic efficiency, need for realistic traffic prediction, human factors 

challenges, and security/privacy attacks in ITS/VANETs relevant to justifying, situating, 

promulgating, and fostering our research objectives. 

1. Improving Safety and Traffic Efficiency 

1.1 Ameliorating Road Traffic Congestions 

The main objectives of QoS routing is to: (1) find the path/route that satisfies the minimum 

QoS constraints, and (2) fully and efficiently utilize such routes [48]. Intelligently and 

dynamically routing vehicles away from a congested roadway caused by an accident or 

incident is both efficient and effective in congestion prevention, detection, and control [42]; 

more than one path can be taken from source to destination in a realistic environment [8]. 

In order to minimize or avoid delays, real-time (re)routing based on current, and 

predicted/anticipated traffic volume patterns, with respect to time are pertinent in 

redistributing traffic, thus ensuring that roadways are maximally utilized in an efficient, 

and effective manner [8, 42, 45, 48]. Inter-vehicle communications (IVC) is used as a 

congestion avoidance mechanism in distributed/decentralized routing [8]. Static controls, 

and dynamic controls are some of congestion control/mitigation approaches [42] [49]. 

Because of the constant flux in traffic volumes/densities at different times (peak, or non-

peak), and days (weekdays or weekends), static traffic control techniques (foreseen and 
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predictable) are not effective in ameliorating congestion as they cannot dynamically adapt 

to these and other unforeseen circumstances/situations in real-time, or at best, near real-

time. Hence, there is the need for dynamic traffic control strategies, which can be 

unforeseen and unpredictable [42]. The hybrid approach to congestion control combines 

the pros and cons of fixed/static, and dynamic signaling in order to ensure smooth, 

dynamic, and adaptive traffic flow during peak/congested/saturated conditions and non-

peak/uncongested/unsaturated time periods and conditions [39]. For safety-critical 

applications/technologies such as IVC in ITS, the delivery rate, and latency must be 

optimal in order to ensure that safety and efficiency are satisfied and sustained [50]. 

1.2 Intelligent Transportation System (ITS) Routing Architectures 

There are two types of architectures in ITS: (1) Centralized/infrastructure-based routing 

architecture: In this scheme, a traffic control center guides the vehicle path based on the 

most efficient and effective path with respect to the current traffic conditions (the path that 

is currently available). (2) Decentralized/infrastructure-less routing architecture: This 

scheme uses vehicle-to-vehicle (V2V)/inter-vehicle communication (IVC) for situational 

awareness and information exchanges from source to destination [51] [8, 9]. For example, 

with respect to the average trip time, Leontiadis et al. [8] asserted that local traffic 

information is best disseminated in an ad hoc and distributed manner. Information 

exchange overhead between vehicles and telecommunications equipment is reduced by 

decentralized routing [8, 9]. With respect to misbehaving/faulty/malfunctioning nodes, the 

decentralized approach has better average trip time performance in comparison with the 

centralized approach because of the presence of IVC; note that only vehicle-to-
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infrastructure (V2I) communication is used in the centralized approach [8]. The centralized 

traffic control approach is not realistic especially in complex driving scenarios with lots of 

vehicular traffic density because average trip time and computation time increases with 

increase in traffic volume [41] [8] [52]. 

V2V/IVC decentralized routing is more flexible and less expensive because traditional 

road-side units (RSUs) are costly, and limited in roadway coverage; they also result in 

better/improved (reduced) average trip time [53] [12] [8]. Decentralized routing also has 

better, and realistic performance in congestion avoidance/management compared with 

centralized routing [8]. For example, IntelliDrive applications – previously referred to as 

vehicle-infrastructure applications – enable V2V, and V2I communications using a 

decentralized approach, where probe vehicles serve as communication paths/relays for 

traffic condition information (single-hop, and/or multi-hop communication scope). 

Bidirectional inter, and intra cluster communication is used for multi-hop propagation of 

traffic information along highways [12] [54] [50] [20]. During the process of IVC (multi-

hop, or single-hop), each vehicle/node maintains a table containing the position, 

speed/velocity, and direction of neighboring vehicles/nodes [28, 50]. The centralized 

storage of traffic information in an infrastructure-based probing approach/method/scenario 

results in more timely and accurate information exchange to vehicles. However, the 

timeliness and accuracy of the infrastructure-less/decentralized probing method/approach 

is diminished because of the delay/time taken to disseminate such information to other 

vehicles [6] [8]. Security, privacy, safety, and reliability (trust) of disseminated information 



18 

 

 

 

is a very important area of research not dealt with in this dissertation, but is an interesting 

area of research [8]. 

1.3 Intelligent Transportation System (ITS) Routing Algorithms 

Similar to routing architectures, ITS routing algorithms can be centralized, decentralized, 

or a combination of both – hybrid [41]. With respect to the type of addressing used (fixed, 

or geographic), routing algorithms have been categorized as: unicast, and multicast; 

flooding, non-flooding, and directed flooding based [50]; ad hoc, cluster, broadcast, 

position, and geocast based; geocast, and broadcast; receiver-based, or sender-based [50]. 

Based on the routing metric in question, VANET routing algorithms can be classified as 

the following: geographic location, mobility, connectivity, infrastructure, and probability 

model based [50]. According to Taysi and Yavuz [50], in contrast with sender-based 

routing algorithms, receiver-based routing algorithms generate lower overhead, making 

them better suited for high density networks in major cities. Routing protocols have 

unidirectional, or bidirectional path support with their corresponding advantages and 

disadvantages [50, 55]. Routing (link, and path selection) is constrained by any of, or a 

combination of the following metrics/requirements: bandwidth, delay, and cost [48]. 

Similarly, QoS is constrained by bandwidth, cost, and delay. Closely related to these QoS 

metrics, bandwidth-constrained routing algorithms, cost-constrained routing algorithms, 

and delay-constrained routing algorithms [56] [5, 48] were developed. Based on how the 

network state information is maintained/updated, and how the best path from many 

potential/possible/feasible paths are chosen, three routing strategies have been identified: 

source routing, distributed routing, and hierarchical routing [48]. 
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Multipath routing is important in order to enable efficient rerouting upon failure of a 

primary/current path [57]. The decision to route traffic through a given path rather than the 

other depends on the path utilization level, level of successful completion, and whether it 

lies on the shortest path [58]. Resource contention (accidents and congestions in VANETs) 

cause the rerouting of traffic often through a longer path, which is not the shortest one [48]. 

The selected shortest path does not necessarily imply that such a path has the shortest 

time/distance to the destination. This is true because determining the shortest path is a 

tradeoff between distance and time with respect to the current traffic levels, i.e., the 

dynamic nature of the traffic volume and congestion on a given roadway determines 

whether the shortest time/distance, at a particular point in time, is actually the shortest path 

at a later time [51]. In addition, the shortest path can be a path with the least delay, and not 

solely the path with the fastest time, or shortest distance in the presence of a road traffic 

jam/congestion [51]. 

1.3.1 Performance Metrics 

The performance of routing algorithms, including regression and Kalman filters [59], 

online traffic prediction algorithm [4] [60], model predictive control (MPC) algorithm [41], 

binary-partition-assisted broadcast (BPAB) [2], flooding algorithm, ticket-based probing 

algorithm (TBP), and shortest-path algorithm [56], Travel Run Intersection Passing Time 

Identification (TRIPTI), Ticket-based routing algorithms [5], adaptive fine-tuning 

algorithm (AFT) [61], online nearest neighbor clustering (NNC) algorithm [13], and others 

have been evaluated with respect to the scalability (suitability to small, or large road 

networks), accuracy of traffic pattern/volume prediction (as prediction window/interval 
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increases/varies), and travel time/duration efficiency, and others [11, 34, 56]. Particularly, 

Shigang and Nahrstedt compared the performance of three dynamic ad hoc-based routing 

algorithms namely the Shortest Path (SR), flooding, and Ticket Based Probing (TBP) with 

respect to the metrics of: success ratio, message overhead, and average path cost resulting 

in varied performances depending on the particular metric in focus [56]. 

The existing investigated performance metrics such as number of stops, length of queue, 

delays at intersections, (average) speed, and travel times/delays have also been used in 

adaptive traffic control [5] [61]. Some other metrics used to compare the performance of 

these VANET routing algorithms include, but is not limited to: time overhead, 

computation/processing complexity, network state imprecision, delay (link, propagation, 

processing, jitter, and delays, etc.), bandwidth, cost (number of hops), 

scalability/extensibility as network size and complexity grows, latency, and others [48] [1] 

[5]. An inverse relationship exists between latency and network congestion, i.e., increase 

in congestion will reduce the amount of relayed messages, leading to increasing latency 

[1]. The higher the flow rates, the greater the probability/propensity/tendency for road 

traffic congestion [11]. Several studies have evaluated one or more of the following 

performance metrics in a test/simulation environment, and/or field-test: speed/velocity, 

acceleration, (average) travel/trip time, accuracy, efficiency, distance, deceleration, 

traffic/vehicle density, cost, emission levels/environmental impacts, fuel consumption, 

delay: end-to-end delay, end-to-end QoS, bandwidth, delay cost, bandwidth, traffic flow 

rate, and others [5, 6, 11, 36, 39, 41, 48, 50, 51, 56, 62] [8, 34, 53] [1, 9, 28, 37]. For 

example, Khabbaz et al. [53] evaluated the performance of their traffic models based on 
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mean/average queuing delay, mean/average transit delay, and mean/average end-to-end 

delay against vehicle density. They defined Mean/average end-to-end delay as the sum of 

mean/average queuing delay and mean/average transit delay [53]. Vehicular Density is 

defined as the number of vehicles/length of roadway [12], or vehicle/meter [38, 53] [63]. 

Three perceived QoS performance metrics used/evaluated by Yung-Cheng and Nen-Fu 

[12] include knowledge acquisition rate (KAR), effective propagation rate (EPR), and 

safety-distance information rate (SDIR). In addition, vehicle speed, traffic density, and 

propagation protocols are additional perceived QoS (PQoS) metrics evaluated [12]. In 

addition, Caceres et al. [64] defined Vehicle intensity factor as the ratio of Average/mean 

vehicle counts per hour over Average/mean counts per total estimation/measurement 

period. 

1.4 Dijkstra and A*(Astar) Algorithms 

End-to-end QoS is maintained by adaptively and dynamically rerouting and redistributing 

resources accordingly. Non-reservable resources perform best-effort delivery even for real-

time jobs. A dynamic, adaptive routing algorithm ensures full resource utilization through 

resource redistribution among interconnected nodes in real-time/near real-time. The 

routing algorithm also ensures that the final path chosen has the highest probability of 

successfully establishing and completing the connection [58]. Adaptive traffic control aims 

at dynamically regulating traffic in order to prevent (or at least minimize to the barest 

extent) congestions, and other inefficiencies/delays on roadways [5]. In VANETs, 

congestion information is sent from the source/primary vehicle/node to others, so that they 

can adaptively reroute traffic through uncongested roadways using Dijkstra’s shortest path 
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algorithm; while re-computing their travel times in order to accommodate the effects of a 

traffic incident. When the roadway becomes clear again, the same process is used to inform 

other vehicles of this condition/information [6]. 

In order to forward packets to achieve the most minimum delay possible, each node/vehicle 

has to know the speed limits of each possible roadway through which the packet can be 

routed through – the shortest path (with respect to time, or distance) [50]. In a multipath 

scenario, where data can be transmitted through one of many paths, the selected path (after 

load-balancing) is the path with the minimal congestion level to the destination as 

determined by the adaptive feedback loop messages from interconnecting nodes to the 

destination [58] [10]. The algorithm proposed by S. Qing and Xiaofan [34] demonstrated 

better efficiency (i.e., how fast they can preprocess, and compute the shortest/best path 

from source to destination) with acceptable accuracy levels (i.e., how valid/reliable the 

results are). Dijkstra’s algorithm, a widely used shortest path algorithm that is very efficient 

when used in small road networks, becomes inefficient when used in large road networks 

(like the A* (Astar) algorithm also); hence, the need for variations to this algorithm in order 

to reduce/completely eliminate this inefficiency [34] [50]. With respect to traffic estimation 

and dynamic routing a modified version of Dijkstra’s algorithm is used by CATE for 

making vehicle routing decisions [8]. 

1.5 Improving the Scalability of Algorithms 

The increase in the size of the network results in a scalability problem that leads to an 

increase in network state imprecision. Clustering, a process of aggregating/grouping nodes 

into clusters that share information with other clusters, is an attempt to minimize the 
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problems of scalability, and network state imprecision as the size of the network increases 

[28, 36, 48]. Some advantages of clustering are fair channel use, contention reduction, 

easier management, and control of network topology [36, 38]. Nevertheless, clustering 

introduces the overhead of choosing a cluster head and maintaining nodes within a cluster 

in a dynamic VANET with constantly changing node topology [36]. Besides being better 

suited for small road networks, most algorithms for computing the shortest path have 

inefficient preprocessing, computing, and storage costs associated with them. 

Consequently, S. Qing and Xiaofan proposed a hierarchical routing algorithm, which is 

suitable for efficient route computations on large road networks (like New York) and 

compared its performance with two other well-known and previously employed 

algorithms: SPAH algorithm, and A* algorithm (using Euclidean distance as cost function) 

[34]. This hierarchical routing is an efficient routing algorithm that is used to compute the 

shortest path form source to destination, which consist of two possible alternatives: within-

community routing (WICR) and between-community routing (BCR), based on whether the 

source and destination nodes are within, or outside the community [34]. The metrics of 

accuracy, and computation time/efficiency were used to evaluate the performance/validity 

of the hierarchical routing algorithm in both within-community (WICR), and between-

community routing (BCR) [34]. The algorithm proposed by the authors showed better 

efficiency with acceptable accuracy levels [34]. 

1.6 Evaluating Performance 

Bidirectional coupling of networks, and road traffic simulators exhibits better performance 

when compared with uncoupled/trace-based simulation. The drivers respond positively to 
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IVC messages/information while driving in order to choose the best/shortest route to their 

destinations [6]. Sommer et al. [6] developed a hybrid simulation tool – Veins (Vehicles 

in Network Simulation) [65] for bidirectional coupling of network simulator (OMNeT++) 

[66], and road traffic microsimulator (SUMO) [67] in analyzing inter-vehicle 

communication (IVC) over two different protocols: TCP (centralized), and UDP 

(decentralized). With Veins, OMNeT++ controls the inter-vehicle communication (IVC) 

protocols, while SUMO is responsible for vehicle/node movements using accurate street 

maps of a particular place/city [6]. A model for CO2 emission can also be 

coupled/integrated with veins to measure environmental impacts [6]. OMNeT++ is 

responsible for adding nodes, deleting nodes (nodes that have reached their destination), or 

moving nodes around. IVC determines their speed, and routes in relation to different 

environmental conditions [6]. Like other tools: MobiDense (traffic simulator), and QualNet 

(network simulator) used by Leontiadis et al. [8], Veins provides for real-time exchange of 

information between the network and traffic simulators i.e. while the simulation is still 

ongoing, active results can be collected [6]. Simulation experiments were carried out in the 

scenarios where IVC was enabled and was not enabled. Although the simulation runtime 

increases with bidirectional coupling, its pros far outweigh cons [55]. In addition, the need 

for more realistic simulation with real-world topology/map using MobiDense (vehicle 

traffic simulator) and QualNet (network simulator) with real-time exchange of information 

between both simulators was also buttressed by Leontiadis et al. [8] as essential/needed. 

This is because most studies simulate driving scenarios that are too simplistic and do not 

reflect actual/complex and heterogeneous real-world driving scenarios/conditions [7] [1] 

[11] [12] [13] [2] [14] [7]. Leontiadis et al. asserted that their work was the first to evaluate 
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the performance of distributed vehicular communication using a real-world city 

map/topology, vehicle mobility simulators, and network simulators [8]. As a future work, 

Yung-Cheng and Nen-Fu will try to incorporate real world maps in their study [12]. 

1.7 Environmental Impacts 

Respecting vehicular emission levels and their environmental impacts, in a study by 

Sommer et al. [6], the average speed of vehicles (in free flowing traffic) with and without 

congestion was measured together with the emission levels utilized – environmental 

impacts; the results show that all vehicles, on the average, emitted 63kg of CO2. By 

integrating OMNeT++ mobility model with the EMIT model, the level of CO2 emission 

can be roughly ascertained by considering factors, such as vehicle speed, acceleration, and 

individual/unique vehicle features like mass/weight, engine, and installed catalytic 

converter [6]. In order to minimize CO2 emissions, travel times, and average speeds must 

be optimized in whatever model is chosen [28]. 

Using the throttle level of a vehicle operated by a driver as input, the following vehicle 

performance metrics/parameters can be measured/determined: speed, acceleration, type of 

transmission (automatic, or manual), fuel consumption, engine torque, and power, and 

others [62] [9]. The model developed by  Rakha et al. can be used by/coupled with existing 

traffic simulators such as SUMO, fuel consumption, and emission models used in vehicular 

transportation [62]. The type of driver (aggressive vs. defensive) and other driver behaviors 

also can be estimated/determined from the throttle level as input [62]. Driver behavior or 

throttle level, engine speed, fuel consumption levels, and others can be obtained from on-

board diagnostic (OBD) readers [62]. Depending on the air speed, vehicle mass, vehicle 
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speed, and grading of the roadway, and others, the level of resistance experienced by a 

vehicle (e.g., aerodynamic resistance, grade resistance, and rolling resistance) affects the 

amount of power utilized, the level of fuel consumption, and others [62]. Given a vehicles 

acceleration, its speed and position values can easily be derived from it [62]. In the study 

by also by Rakha et al. [62], the test model was validated with respect to model power 

generated, and fuel consumption levels in a cruise controlled vehicle (with speed set a 

104km/h or 65mi/h) over a 22km roadway in a real-world/field scenario [62]. The Virginia 

Tech Comprehensive Power-based Fuel Model (VT-CPFM) was used for modeling the 

fuel consumed by vehicles because of its ease of use and because it is freely/publicly 

available – it has specific fuel economy data [62]. Besides, the acceleration, position, fuel 

consumption, and speed estimates produced by the model correspond with field generated 

results [62]. 

It is important to note that more greenhouse gas (GHG) emissions/fuel is utilized by 

stationary, idling, or vehicles traveling at a reduced speed limit resulting from traffic 

congestions in relation to their counterparts in free flowing traffic i.e. traveling at/over the 

stipulated/actual speed limit as shown in Figure 1 [15]. 
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Figure 1: Overview of greenhouse gases and their percentage distributions emitted as a 

result of road transportation [25]. 

 

Figure 2: Carbon dioxide emissions in the U.S. by Source [24]. 

Besides the electricity sector (32%), the second largest culprit responsible for the emission 

of greenhouse gas emissions to the environment in the tune of 28% in 2012 is the 

transportation sector as shown in Figure 3 [15] [18] [68]. Similarly, next to the electric 

sector (38%), the transportation sector (32%) is a major contributor – the second largest 
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contributor – to the total amount of carbon dioxide emitted into the environment as shown 

by Figure 2. 

 

 

Figure 3: Aggregate U.S. greenhouse gas emissions contributed by each sector of the 

economy in 2012 [69] [15]. 

1.8 Intelligent Transportation System (ITS) Applications 

Enhancing Safety Using V2V Communication: According to the National Highway Traffic 

Safety Administration (NHTSA), 71% of unimpaired driver crashes using heavy duty 

trucks/vehicles can be reduced/eliminated using V2V communication applications [15]. 

The following list of V2V safety application warnings can aid the driver in evading 

potential crashes/accidents: emergency electronic break lights warning, forward collision 

warning, do not pass warning, blind spot warning, loss of control warning, changing lane 

warning, and bus driver/transit vehicle warning. The transit/bus driver warning emanates/is 
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seen from a scenario where a vehicle wants to turn right in front of a bus also trying to 

make a right turn [15]. Other additional safety applications of ITS (V2V/V2I 

communication) include, but are not limited to: curve speed warning, pedestrian warning, 

red light warning, and movement assistance at intersections [15]. Enhancing Safety Using 

V2I communications: It is noteworthy that 12% of crashes not addressed by V2V 

communication are addressed using V2I communication; in other words, V2I 

communications serves as a complement/supplement to V2V communication [15]. Using 

traffic signal change and timing (SPaT), improvements in safety, and traffic 

efficiency/mobility can be attained/enhanced [15]. Some of the possible/potential V2I 

communications safety applications include, but are not limited to: emergency vehicle 

priority assignment, vehicle speed management, intersection safety, rail crossing safety, 

transit vehicle safety, commercial vehicle safety, and roadway departure safety/prevention 

[15]. Other additional possible applications of V2I communication safety applications 

include: stop sign gap assist (SSGA), curve speed warning (CSW), and red light violation 

warning (RLVW) [15]. Building redundancy into sensors and other ITS 

equipment/technology can be used to ensure fail-safe/resilient operations [15]. 

Because of these and other challenges, the need for realistic simulation and field studies 

are pertinent in furthering our understanding on the efficiency and effectiveness of VANET 

routing algorithms, architectures, safety, and mobility applications. 
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2. Future Traffic Pattern Prediction 

There are a number of research efforts for carrying out future traffic pattern 

prediction/prognosis. For example, the online traffic prediction algorithm is only able to 

accurately predict/prognosticate traffic volume patterns 10 minutes ahead [4]. COMAC 

(clustering and OFDMA-based MAC) is a fuzzy logic inference system for VANETs, 

which is adaptive to driver behavior and can predict future vehicle speed and position, 

while exchanging cluster heads based on stability [36]. Using a centralized model 

predictive control (MPC), the total time spent (TTS) by drivers while waiting for prediction 

is lower vis-à-vis the decentralized approach, but requires a longer computation time; in 

order to minimize this computation time, the computation power (resources) must be 

increased i.e. it is not very scalable unless computation power is also increased [41] [70]. 

Using Monte Carlo Simulation, the stochastic model reliably estimates/predicts traffic flow 

patterns, and travel time/duration [11]. 

Dong and Mahmassani analyzed 7 month weekday traffic data and discovered 227 

congestions most prevalent in the morning and evening rush-hours [11]. Tchrakian et al. 

evaluated the accuracy of the algorithm they developed for day-time, weekday traffic flow 

estimation/prediction [45]. In their study, every 15 minutes, 1 hour 15 minutes traffic 

pattern was predicted by the algorithm [45]. They also showed that with the appropriate 

forecasting window of 1 hour 15 minutes, prediction accuracy using spectral analysis is 

obtained [45]. The comparison of the predicted vs. actual traffic flow/volume on a given 

Friday used a 5 day historical traffic flow data pattern of previous Friday’s based on data 

collected from loop detectors [45]. 5 – 6 days (5 days was used in this paper) of historical 
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traffic data proved optimal for a more accurate prediction; reducing this number introduced 

errors in aggregation, and increasing it did affect the results obtained [45]. They also found 

that predicting traffic flow/volume at larger time horizons/intervals (1 hour 15 minutes 

instead of 15 minutes), introduces errors leading to inaccuracies [45]. Because of a decrease 

in root mean square (RMS) error, moving horizontal averaging was shown to be effective 

in its predictions [45]. The accuracy of the spectral analysis technique is comparable with 

those of previously studied techniques using Neural Networks, time-series, and Mean 

Absolute Percentage Error (MAPE) because of its adaptability to real-time scenarios [45]. 

In the future, this spectral analysis technique can also be effective when used with a signal 

control scheme [45]. The performance of the experiment for evaluating traffic information 

accuracy by Leontiadis et al. was evaluated based on three algorithms: Bayes, Bayes with 

aging, and most recent estimate [8]. Up to a certain percentage (greater than 10%) of 

misbehaving/faulty nodes are required to negatively affect (increase) the average trip time. 

Algorithms such as Bayes tends to show more resilience/better performance as the number 

of faulty nodes increase because its computations are based on averaging sample values 

such that more accurate approximations/predictions can be made [8]. 

Y. Qing et al. proposed a means to more accurately predict/forecast traffic conditions 

(speed, volume, and others) from irregular/intermittent data sources by introducing 

acceleration, which is used to help in more reliable and accurate forecasting of speed, and 

volume [14]. Time series, genetic algorithms, and neural networks have been used in short-

term traffic state forecasting to accurately predict travel times/speeds [14]. The study used 

the naïve method, and neural networks (used for results aggregation from other methods) 
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and others [14]. Neural networks, in combination with the use of acceleration, and adjacent 

segments produced the best results from all the algorithms/methods used [14]. With respect 

to lane changes, and other driving maneuvers, decision trees were used in both lateral 

guidance, and longitudinal guidance to ensure that they are efficiently, effectively, and 

safely done [35]. Regression and Kalman filters, and neural network methods are some 

attempt to more accurately predict traffic patterns. However, they cannot produce very 

accurate results and are often only useful at particular periods/scenarios [4]. Using 

Artificial Neural Networks (ANNs) and Support Vector Regression (SVR), Yongchang et 

al. evaluated the travel time prediction accuracy of these artificial intelligence (AI) 

schemes given the current travel time, flow and density of vehicles equipped with vehicle 

infrastructure integration (VII) [37]. With respect to travel time prediction accuracy, the 

results show that vehicle infrastructure integration with Support Vector Regression (VII-

SVR) barely outperformed that of vehicle infrastructure integration with Artificial Neural 

Networks (VII-ANN). In addition, both AI schemes showed good performances with 

irregular congestion conditions, which is currently a challenge to traditional sensor-based 

road-side units (RSUs) [37]. 

Using several machine learning techniques namely Support Vector Machine (SVM), K-

Nearest Neighbor (K-NN), and several tree-based methods, Jahangiri and Rakha [71] set 

out to build/develop classifiers that can be used to accurately predict/identify different 

transportation modes such as walk, run, bike, car, and bus using data obtained/sourced from 

smartphone sensors and a customized data acquisition system [71]. The authors also 

identified several important features using the Mean Decrease Accuracy, and Mean 
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Decrease Gini [71]. Minimum redundancy maximum relevance (mRMR) was used as 

feature selection criterion, while out-of-bag error, and five-fold cross-validation were used 

as model selection criteria [71]. The following lists the overall detection accuracy of the 

supervised machine learning algorithms/techniques evaluated in descending order i.e. from 

most accurate to least accurate: Random Forest (RF) – 95.1%, Support Vector Machine 

(SVM) – 94.62%, Bag – 94.4%, Decision Tree (DT) – 87.27%, and K-Nearest Neighbor 

(KNN) – 91.2% [71]. 

In summary, accurate knowledge of the current traffic condition/pattern is invaluable in 

congestion avoidance and amelioration. Consequently, we evaluated the prediction 

accuracy of our data using several machine learning algorithms. The results will provide 

reliable forecasts of future traffic volume patterns/conditions for reliable decision making. 

3. Human Factors Challenges in Intelligent Transportation System (ITS) 

As hitherto aforesaid, the ITS research domain is a multifaceted, interconnected, and 

interactive area with different wireless devices, infrastructures, vehicles, humans, 

environment, etc. compositions as shown in Figure 4 [72] [73]. In other words, different 

interacting entities make up the ITS discipline/domain; some of these entities include, 

but are not limited to: drivers – which can be completely automated, semi-automated, 

or manual i.e. human driven; cyber-physical systems – consisting of sensing, 

communication, and networking components, etc.; and transportation system – 

consisting of mechanisms for traffic control management [74]. 
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Figure 4: Different interacting entities/artifacts that make up the ITS research domain [75]. 

 

 

Figure 5: Some goals/advantages/promises of ITS [76] [77] [78]. 
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In agreement with other authors/authorities, safety, and security are two major ITS goals 

identified by the U.S. DOT. Other goals include: mobility, greener 

transportation/reduction in the emission of greenhouse gases (GHG), etc. as shown in 

Figure 5 [15]. Consequently, rerouting vehicles away from congested and precarious 

routes (Figure 7, and Figure 8), trip rescheduling, using public transportation/carpooling, 

etc. are some of the many ways of enhancing fuel-efficient, safe, and eco-friendly 

navigation/travel [15] [18] [23] [17]. In addition, traffic mobility can be improved by 

effectively aggregating, distributing, and utilizing/synthesizing streaming/real-time data to 

end/road users [15]. For example, intelligent road (iRoad), one of many realistic 

applications of the ITS technology, is particularly useful in the following applications: 

intelligent fuel efficient vehicles, online best route queries, dynamic bandwidth allocation, 

real-time dynamic traffic maps, remote assessment of accidents, and dynamic traffic signal 

collaboration/coordination. Put together, all of these will result in the optimization of 

transportation monitoring and design [79]. Also, distributed cyber-physical systems will 

result in distributed collaboration for safety and collision avoidance in ITS [80]. However, 

before fact-based evidence can be obtained by actual field tests, preliminary evidence 

using simulation studies is imperative in order to effectuate later real-world/field 

operational tests/studies (FOTs) [15] [18] [23] [17]. In a simulation environment/virtual 

test-bed, the coupling of various types of simulators such as traffic, driving, and 

network/communication simulators – as shown in Figure 6 is essential to adequately 

investigate the human factors ITS research domain. 



36 

 

 

 

 

Figure 6: Other ITS simulator tools [22]. 

Situational awareness while driving is critical to safety [7]. Consequently, in the bid to 

improve road safety, advanced driver-assistance systems (ADASs), and other built-

in/external devices have been incorporated into the vehicle [7]. Besides, ubiquitous smart 

phones can also be used to monitor roadway conditions, and driving behaviors of drivers 

by providing the driver with proper feedback to make safe, and intelligent driving decisions 

[7]. Also, in order to improve safety, and minimize congestions, quality (efficient – fast 

and selective/discrete without causing distractions, and effective – useful for decision 

making) traffic information dissemination to drivers is essential [12]. This is especially true 

because instead of aiding in congestion reduction, too much information 

exchange/dissemination can also worsen the distraction problem if not selectively, and 

efficiently disseminated [12]. As a result, bidirectionally coupled simulators (Figure 6) 

enable real-time coupling/collaboration of network, and road traffic simulators such that 

things such as: accidents, road congestions, and other roadway incidents are communicated 

to the driver for timely and accurate decision making i.e. these information influence the 

drivers behavior [55]. 
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Figure 7: Using V2X navigation to optimize traffic efficiency by avoiding congested routes 

[81] [82]. 

 

Figure 8: Using V2X applications to circumnavigate a precarious road condition [81] [82]. 

Having a uniformly interoperable, and secure communication platform between vehicle-

to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communications is a major 

requirement for effective traffic flow management, and collision avoidance. Vehicle-to-
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vehicle (V2V), and vehicle-to-infrastructure (V2I) interaction/integration models are not 

very efficient and effective in handling real-time decision making because current traffic 

models take a homogenously simplistic approach. In other words, current models have the 

limitation of not incorporating the unique characteristics/behaviors of the individual driver 

such as whether or not the driver is an: aggressive, or defensive driver; expert, or novice 

driver, etc. However, individual drivers are different with respect to their experience, age, 

and other internal and external distractions experienced in the course of driving. Besides, 

in the real-world, driving is a complex and heterogeneous activity that can be affected by 

several factors such as accidents, weather, together with other man-made and 

natural/environmental conditions/stimuli – hence the need to develop a more extensive and 

inclusive heterogeneous model that is capable of handling these and many other dynamic, 

real-time scenarios [83]. This is especially true because most ITS research has focused on 

interactions among V2V, and V2I, but few have incorporated the human factors challenge 

such as driver behavior, and cognitive overload, etc. into the research [84] [22] [75]. Put 

differently, the need to develop a model that can handle/support human to vehicle 

interactions and vice versa; human to environment/infrastructure interactions and vice 

versa; and vehicle to environment/infrastructure interactions and vice versa is most 

imperative. 

Respecting the human actor, sensory inputs form the environment, and the vehicle are 

modeled by the brain and used to make decisions (anticipate, predict, or plan the next 

response/move).  Some human factors research concerns/focus in ITS are shown pictorially 

in Figure 9; from this figure, some of measurable parameters here include, but is not limited 
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to: information/cognitive overload, levels of task, time, performance, and 

satisfaction/utility, etc. [85]. 

 

 

Figure 9: Some human factors research focus/evaluation metrics [22]. 

As partially depicted in Figure 10, and Figure 11, the choice of communication modes, 

interface design, gender, ethnicity, age, vehicle type, etc. are also some of the human 

factors challenges that must be considered during ITS human factors modeling and design. 

In general, it is advised not to change the traditional way people do things in order not to 

make it more difficult for them – make interface designs as easy to use as possible with 

little or no learning curve. 
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Figure 10: Human factors challenges in ITS [22]. 

 

Figure 11: Some pertinent factors that should be considered when modeling the human 

driver profile in order to overcome some of the human factors challenges in ITS [75] [22]. 
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In determining the users’ level of perception and satisfaction with ITS technology the 

following observations are useful and should be recorded as shown in Figure 11:  cognitive 

overload, level of task performance, and satisfaction derived – usability – for users with 

varying perceptual, motor, and other forms of impairments/challenges, etc. [83]. 

A number of research efforts respecting the human factors challenge in ITS have been 

carried out. The Hybrid-State System (HSS) incorporates driving collaboration among 

various entities such as the human driver, completely autonomous driver, and semi-

autonomous driver as shown in Figure 12. The simulation used data sets generated from 

virtual sensors and objects, besides video data in the test-bed [84]. 

 

Figure 12: Automated, human, and shared/hybrid control scenarios while driving [86]. 

Analysis of human behavior, especially in the course of driving, and other pertinent metrics 

are some of the human factors research focus in ITS as depicted in Figure 13. In order to 

efficiently and effectively monitor and control the driver behavior – perceptual, motor, and 

cognitive stimulus/response, etc. – vehicles are equipped with onboard units (OBU) 
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consisting of: cameras, antennas, sensors, etc. Both onboard, and roadside smart sensors 

serve as data sources for real-time information that is useful for real-time dynamic 

 traffic  flow  management  that minimizes congestion – while also improving 

road traffic safety conditions; these sensors have varying transmission ranges, latencies, 

reliability, and security specifications, etc. [85]. 

In order to promulgate improved safety, and traffic efficiency/mobility via human behavior 

monitoring, Gerla [21] advocates four driver reaction models that consists of: compliance 

models – measures a drivers compliance to instructions or otherwise while driving; 

physical condition models – detects/predicts a drivers distraction level e.g. as a result of 

tiredness/sleepiness; reaction time models – measures a drivers reaction to unforeseen 

traffic incidents; and autonomous care drive models – forecasts the duration/time lag in 

restoring a distracted drivers attention [21]. In order to build a driver behavior model, 

several in-vehicle devices such as video cameras/monitors, sensors, etc. are used to collect 

pertinent information respecting  driver behavior; besides, external traffic conditions 

respecting the traffic parameters of other vehicles on the road such as heading, speed, 

position, etc. are also imperative. Finally, machine learning algorithms/techniques can be 

used to build/predict/forecast/prognosticate a human/automated vehicle driver model by 

emulating a human drivers behavior [21]. In a completely/semi-automated vehicle driver 

scenario, the human driver model can be used to make decisions such as whether to awaken 

a sleepy driver, or to bypass the driver and stop a vehicles movement in order to 

obviate/avoid an accident [21]. 
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Figure 13: Human factors research focus in ITS [22]. 

In determining the human driver performance, a human factors (perceptual, motor, and 
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based on bad weather, traffic congestion levels, motor control for various disabilities, and 
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[87]. This demographics/human driver participants profile is further elaborated upon in 

Figure 14. 

 

 

Figure 14: Some selection criteria for user participation in the study [87]. 

The experimental setup consists of driving speed limit intervals of 25mph, 45mph, and 

65mph in a driving scenario consisting of no traffic lights, no road signs, no pedestrians, 

and a two lane highway without other vehicles present. Acceleration and deceleration were 

the two independent variables measured. Both acceleration and deceleration have the 

following as common attributes: gas pedal angle (degree), acceleration (ft/s2), and speed 

(ft/s); deceleration, however, has the brake pedal angle (degree) as a unique attribute [87]. 

Also, situations that might cause a driver to exceed the speed limit and the resulting 

consequence – a speeding ticket – can be determined in real-life applications of this driving 

simulation [87]. 
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A particular criticism/limitation of his study rests upon the fact that in the real-world, 

driving is not a homogeneously simplistic activity; in other words, driving with no traffic 

lights, no road signs, and no pedestrians is in contrast to what is obtainable in the real-

world. 

In another study by Ishihara and Gera [88] various factors such as driver model: sleepy vs.  

normal, old vs. young, distracted vs.  not distracted, etc.; vehicle model: cars, trucks, 

motorcycles, bikes, etc.; road model: highway, rural, urban, intersection, etc.; and 

communication model: V2V, V2I, hybrid, etc., can be varied in order to improve traffic 

efficiency, and safety by monitoring the drivers behavior [88]. The interactions of V2V, 

and V2I communication can be used to obviate road traffic accidents emanating from a 

distracted/sleepy driver. The authors also noted that the type of feedback/notification mode 

(audio, visual, haptic, or a combination of some/all) plays a significant role in ameliorating 

some of the negative consequences of distracted driving [88]. 

It is imperative to note that ad hoc/vehicle-to-vehicle (V2V) communication requires no 

additional infrastructure cost while mainly employing/possessing a direct, efficient inter-

vehicle communication; broadcast communication using IEEE 802.11p; and dedicated 

frequency used specifically for vehicular communication [89]. Cellular/vehicle-to-

infrastructure (V2I) communication, on the other hand, requires an additional infrastructure 

cost while mainly possessing or employing higher transmission ranges, shared 

communication medium/frequency, higher latencies, and unicast communication 

compared with V2V/ad hoc communication [89]. Besides, at low V2X penetration rates, 

multi-hop routing/communication/propagation cannot be effective owing to the 
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insufficiency/limited number of conveyors/relays from source to destination [89]. At 

higher V2X penetration rates, however, network/radio channel congestion/saturation as a 

result of high V2X message transmission/reception (exchanges) results in message 

suppression [89]. 

Respecting the effects/influence of mobile phone use on driving performance, the 

following metrics can be measured/observed as reported by Thakur [46]: visual distraction 

i.e. loss of eye focus – for example as a result of a ringing phone; cognitive distraction: for 

example, changes in emotions, thinking; physical distraction: frequent breaking, and 

leaving the steering wheel [46]. The experimental setup consists of a total of 49 participants 

(both male, and female) belonging to three different age groups namely: young (18 – 25 

years) – consisting of 9 males, and 9 females; middle (30 – 45 years) consisting of 9 males, 

and 8 females; and older (50 – 60 years) consisting of 8 males, and 6 females [46]. 

As severally aforesaid, vehicular cyber-physical systems (VCPS), also known as vehicular 

ad hoc networks (VANET), promises enhanced driver, and pedestrian security [90]. 

Consequently, Wagh et al. [90], modeled a human vehicle driver profile in their study with 

a view of determining the effect of traffic warning related message dissemination 

respecting the efficiency, effectiveness, and utility on the human drivers 

reaction/performance [90]. 

In an attempt to improve, and quantify the human factors research challenges in ITS, Wagh 

et al., [90] also evaluated the following metrics/parameters in their study: driver 

response/reaction to timely, and late warning/notification messages using an on-board data 
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fusion algorithm by measuring/observing reaction time, message type, hazard severity, 

response/reaction type, driver’s individual preference, as well as information overload on 

levels of driver distractions, confusions, and frustrations as elaborated pictorially in Figure 

15 - Figure 17 [90]. To the best of the knowledge of the authors, this study is the 

first/pioneer study that integrates/incorporates human factor challenges/perspectives with 

the data fusion problem to improve VCPS safety, efficiency, and reliability [90]. 

 

Figure 15: Some performance metrics evaluated by Wagh et al. [90] that was used to 

interpret/quantify human factors challenges. 

 

Human driver

Driver profiles

Evaluation 
metrics

Utility i.e. of 
notifications

Efficient/effective 
notifications



48 

 

 

 

 

Figure 16: Human factor (HF) challenges observed by Wagh et al. [90]. 

 

 

Figure 17: Driver profile and different message notification formats/metrics 

observed/evaluated [90]. 

The experimental setup consists of STISIM as driving simulator; test drivers with steering 
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video interface. An 89,000 feet long four-lane road (two lanes in opposite directions) 

consisting of a total of 29 intersections (9 of which with violating traffic vehicles) were 

used for the simulation  [90]. Some of the factors that influence a drivers reaction/response 

time include, but is not limited to: type of message, delivery mode, message frequency, 

hazard severity with respect to vehicle location, response/reaction time, and rate of current 

warning message with respect to the previous one  [90]. 

Respecting the implications of a given type of message, the authors discovered that the 

more a particular type of message is repeated, the more it is stored in long-term memory, 

and the better the response time obtained/utility/satisfaction derived [90]. Total utility is 

computed as the sum of the utilities derived from the message type, location of hazard, 

communication mode, and notification range (NR)/delay [90]. As reported by the authors, 

the greater the distance between the driver and the hazard (notification range), the more the 

utility derived; in addition, the more accurate the drivers response/reaction will be i.e. he 

will respond with greater accuracy and with fewer errors  [90]. Besides, different 

notification modes have different reaction times; the notification time depends on the 

amount of time taken to decode/comprehend and respond to the message. The influence of 

in-vehicle displays, smartphone applications, and other types of notification modes/devices 

relative to the notification time(s), and frequency is imperative in effectively mitigating the 

various undesirable consequences of distracted driving. Other metrics that can be 

measured/observed include, but are not limited to driving behavior, reaction, and 

preferences, etc. [91] [77] [76]. 
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An imperative limitation/criticism we noted in this study is that the authors did not 

explicitly state the number of drivers involved in the experiment/simulation, so that one 

does not know if this number is representative of the conclusions they draw on the 

efficiency and effectiveness of the data fusion algorithm they advocate/propose. 

As a means of ameliorating the negative effects of distractions while driving, Hafeez et al. 

[36], proposed a MAC protocol namely clustering and OFDMA-based MAC (COMAC) 

protocol where nodes dynamically/seamlessly arrange themselves into clusters with inter-

cluster communication that is adaptive to the human drivers behavior, achieves a minimum 

delay for safety message exchange, and predicts future vehicle speed and position while 

avoiding the hidden terminal problem [36]. Vehicles within a given cluster range exchange 

their speed, position, acceleration, and direction amongst themselves which allows the 

driver to drive safer because he has access to this vehicle/traffic information beyond his 

normal purview/awareness [36]. In addition, fuzzy logic (using IF-THEN conditions) is 

used to estimate/predict drivers future behavior based on his past behavior because the 

drivers behavior under any given set of circumstances is subjective, and cannot be readily 

measured objectively [36]. Some advantages of clustering are: fair channel use, contention 

reduction, management, and control of network topology [36]. However, clustering 

introduces the overhead of choosing a cluster head and maintaining nodes within a cluster 

in a dynamic VANET with constantly changing node topology [36]; the head cluster is 

chosen as the cluster with the highest stability/weighted stability factor and this varies with 

time  [36]. As aforementioned, the COMAC protocol improves reliability, stability, and 

minimizes the time delay of communications in VANETs required by real-time/safety-
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critical applications [36]. However, as  the number of vehicles increase (vehicle density), 

reliability decreases and vice versa – given a specified communication range [36]. Also, as 

the vehicle density decreases, emergency message travel time increases because of the 

difficulty of finding neighboring cluster heads to propagate the message forward [36]. 

As reported by Sommer et al.  [6], driver behavior is affected positively by vehicle-to-

vehicle (V2V)/inter-vehicle communication (IVC) and vice versa [6]. Also, using the 

simple vehicle powertrain model for intelligent vehicle applications, the steering wheel is 

controlled by the driver who determines the vehicles position and heading [62]. In addition, 

the type of driver: aggressive vs. defensive, and other driver behaviors can be 

estimated/determined from the throttle level as input [62]. Driver behavior or throttle level, 

engine speed, fuel consumption levels, etc. can be obtained from the onboard diagnostic 

(OBD) readers [62]. 

As previously stated/alluded to, most CPS research do not consider human 

cognition/behavior. For this reason, an investigation into the effectiveness of ITS models 

with respect to human factors research and driving behavior is an important area of 

research that needs more exploration [22] [84] [92]. Also, an evaluation into the most 

effective communication feedback/response/control methodology mainly based on 

usability, and accessibility while driving is very imperative – especially in a complex and 

heterogeneous driving environment. For example, in a situation where we have the 

capability of both automated and human control, which one should be allowed control and 

in what circumstances/situations/scenarios? In addition, what will happen when a fully 

automated vehicle loses communication/control (V2V, V2I, etc.), and in what ways can 
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this undesirable situation be reliably mitigated/avoided? This is especially true because 

sensor malfunctions/errors/inaccuracies/improper positioning’s, etc. can compromise 

safety in a fully (100%) automated driving [35] [20]. These and other hitherto 

ignored/neglected/unanticipated questions/concerns needs to be absolutely and adequately 

addressed before ubiquitous use of the several promising ITS applications can be 

unequivocally and reliably promulgated/accepted by all concerned stakeholders. 

Evidently, from the above extensive review of literature, more realistic studies 

incorporating the human factors challenge of ITS while using real-world scenarios (road 

network topology and field data) that mimic the complex and heterogeneous real-world 

traffic conditions have been evinced to be most needed/desirable – as most studies are void 

of one or more of these; to this end, we attempt to make our own unique, realistic, and 

imperative contribution. 

4. Security and Privacy: Challenges and Countermeasures in Intelligent 

Transportation System (ITS) 

In many developed countries such as USA, Japan, UK, and Australia, road traffic 

congestions are responsible for many economic losses to the tone of  billions of dollars 

[44]. Specifically, in the U.S., road accidents are responsible for over 2.7 million 

(2,780,000) injuries, and 40,000 deaths per year. Over $380 billion/year is lost by the U.S. 

economy as a result of wasted vehicle fuel/gas, and lost productive hours resulting from 

congestions. According to the world health organization (WHO), road traffic accidents will 

become the third highest contribution to the mortality rate resulting from injuries sustained 

therefrom [83]. Intelligent transportation system (ITS)/vehicular ad hoc networks 
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(VANETs), however, engenders improved safety – via reductions in accidents, 

comfort/infotainment/entertainment, and traffic efficiency, etc. [30] [29] [31, 93] [94]  [95] 

[96] [97, 98] [99] [100] [99] [101] [90]. 

VANETs (V2X communication) consist of vehicle-to-vehicle (V2V) communication (used 

for conveying/disseminating non-safety messages – single and/or multi-hop) and vehicle-

to-infrastructure (V2I) communication (used for conveying safety-related messages – 

single-hop) architectures. Using V2V communication, vehicle speeds, direction, 

location/position, real-time road event conditions, etc. are constantly exchanged among 

vehicles employing single, or multi-hop propagation every 100-1000 milliseconds. With 

respect to V2X communication in VANETs, vehicles (OBUs) are highly mobile/dynamic 

while infrastructure (RSUs) are immobile/fixed [50] [1] [29] [55]. Dedicated short range 

communication (DSRC) messages such as decentralized environmental notification 

messages (DENM), cooperative awareness message (CAM), and signal phase and timing 

(SPaT) are used to ensure situational awareness, safety, and traffic efficiency [97]. Besides, 

DSRC has been identified by the U.S. DOT, and  other researchers as the only technology 

currently available that meets the safety, latency, reliability, interoperability, security, 

privacy, message prioritization, and accuracy requirements of ITS [15] [102] [20] [21]. 

Safety is critical with VANETs, hence the need to verify the accuracy, 

correctness/truthfulness of V2V and V2I communication/messages together with 

authentication and authorization; in other words, because of the safety-critical nature of 

ITS, false-data injection (message insertion, deletion/modification) attacks in VANETs can 

be fatal. 
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VANET applications and other value-added services such as infotainment – which require 

storage and processing – are potential targets for security, privacy, and safety 

compromising related attacks [31]. For example, replay attacks occupy bandwidth 

preventing real-time digital signature verification especially for safety-critical messages. 

These critical messages get eventually dropped from the queue because the bandwidth is 

saturated [29]. Message falsification/alteration involves modifying a message/information 

passing through a node that is intended for a receiver via single, or multi-hop 

communication thereby negating the integrity property. This attack can be mitigated if the 

same message passes through other non-compromised nodes in order to verify the validity 

of the information. It is normally carried out by an inside node and it can be malicious or 

rational; it is also active in nature  [97]. Message deletion, modification, 

forgery/counterfeit, and replay attacks can be mitigated by real-time digital signature 

signing and verification [29]. Using PKI’s in VANETs as a security mechanism involves 

the use of certificate authorities (CAs) – responsible for granting/issuing credentials 

(containing both private and public key pair) and revoking certificates (using the 

certification revocation list) [31] [103]. In other words, a secure ITS V2V, and V2I (V2X) 

communication/network must ensure: device(s) authentication and validation, message 

integrity, and message confidentiality [73]. 

4.1 Security and Privacy 

Without some form of adaptation(s)/modification(s), not all generic IT security 

models/requirements/goals and countermeasures can be directly transposed to 

practical/realistic ITS applications/usages in the real world [29]. Authentication/non-
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repudiation and the desire to remain anonymous (anonymity) are the major security 

requirements in ITS [29]. The desire to remain anonymous - privacy (which can be 

enforced/satisfied by using pseudonyms) and still maintain user authentication/non-

repudiation are two diametrically opposite/antithetical requirements requiring a kind of 

tradeoff in order to balance their uneven/inverse relationship [29]. Several works in ITS 

security have focused on the metrics of message authenticity and integrity/non-repudiation. 

These can be ensured using public key infrastructure (PKI) and certificate authorities 

(CA's) who validate that every connected node/vehicle is actually who they say/claim they 

are [29]. 

Identity and location privacy can be preserved by the use of anonymous public keys [104] 

[105]. In other words, anonymous key pairs are used to prevent vehicle/vehicle driver 

identity tracking [104]. Also, in order to enhance anonymity in VANETs, all vehicle IP, 

and MAC addresses must change with time [104]. As a privacy preserving approach, Raya 

et al. [106] proposed the use of dynamic/frequently changing, anonymous, and preloaded 

keys that vacillate/change according to a vehicles travel speed. These preloaded keys are 

housed by the vehicles tamper-proof device (TPD) and are renewed/changed regularly – 

after a year or a specific duration. Authorized personnel – after a judicial approval from a 

judge – can, however, circumvent a vehicle drivers anonymity by reconstructing key 

information using the uniquely identifiable electronic license plate (ELP) in order to 

establish/prove liability i.e. the system only provides conditional/resolvable anonymity 

[106] [107] [105] [108] [109]. 
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Although the use of pseudonyms enhances privacy, a complementary privacy preserving 

measure is to only reveal/give enough information to other nodes as absolutely necessary 

to prevent tracking, inference/identity linking [107] [105]. 

4.2 Agez Security Simulator 

The reliability of ITS/VANET communication applications and services research are still 

at their early/nascent/infant stages and are predominantly theoretical in nature [110]. 

Because of the limited/inadequate communication security simulation research in the 

VANET domain, most message integrity and origin/sender authentication mechanisms are 

not realistic – they are too optimistic [110]. Most research focus on traffic efficiency and 

safety, but not security; most security research in VANETs are theoretical in nature i.e. 

they are mainly in the form of survey/review papers with very few/limited 

empirical/experimental, and realistic studies [110]. Consequently,  Lobach and Radusch 

[110] presented a comprehensive security simulator named Agez towards network and 

application security evaluations in VANETs using the V2X simulation runtime 

environment (VSimRTI) [110]. In other words, because of the gap in research respecting 

security simulations, the authors evaluated the impact of inculcating communication 

security metrics in relation to vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) 

communication security [110] – Agez was used as a means of adding security 

metrics/measures to messages before disseminating them to connected vehicles [110]. The 

Agez security simulator possess features such as: strong cryptography in message 

encryption and decryption as it is based on the Trusted Communication Test-bed (TCT), 

message signing and verification, and variations in short-term identifiers of vehicles – used 
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to preserve drivers privacy [110] [111] [112]. The simulation setup consists of Agez 

coupled with VSimRTI together with other simulators. The simulation results show that 

signing and verifying every message is very expensive respecting simulation processing 

time [110]. Specifically, message verification increased the simulation time by a factor of 

34 times without any form of optimization. After several optimizations were done in Agez, 

however, the number of security operations were reduced resulting  in only a 9% increase 

in processing time [110]. Besides, by applying Verify on Demand (VOD), the processing 

time of messages was significantly reduced while plausibility checks were used to 

supplement for missing checks. Although VOD significantly impacts communication 

security by not verifying each and every single message, plausibility checks on only 

received message adequately compensated for the deficits. The authors also reiterated the 

importance of having security at different layers of the communication stack especially the 

network, and application layers [110]. 

Raya and Hubaux [93] identified three major areas/classifications of security 

threats/attacks in VANETs namely: safety application, payment-based application, and 

attacks on privacy [93]. With respect to VANET safety applications, because of the safety-

critical nature of VANETs, they are normally accompanied by high levels of liability [93]. 

With respect to privacy, because of V2V and V2I (V2X) communication, it is easier to 

track vehicles and/or their drivers [93]. 

Using the V2X simulation runtime infrastructure (VSimRTI), Bißmeyer et al. [98] 

executed both single, and multi-lane roadway attacks in order to ascertain its effect on 

traffic efficiency while measuring the drivers behavior [98]. The results show that traffic 
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efficiency was negatively affected in all the three evaluated attack scenarios: single-lane, 

multi-lane, and Sybil attacks evidenced by both temporal, and permanent reductions in 

travel speed [98]. The choice of a single-lane, urban roadway (over other types of roadways 

such as a multi-lane highway) by an attacker can be used in order to inflict the most 

detriment to traffic efficiency and other performance metrics [98]. 

Raya et al. [106] identified some security threats/vulnerabilities to the adoption of 

vehicular communications (VC) [106]. They also proposed a security 

framework/architecture that maintains authentication, authorization, and accounting 

(AAA) via hardware security of onboard units (OBU) which consists of the event data 

recorder (EDR): serves as the black box – synonymous to an airplane – that keeps a log 

(time, location/position, speed, direction, etc.) of all vehicle activities; and tamper-proof 

device (TPD): ensures that the integrity of uniquely identifiable cryptographic keys are 

maintained by securing them. All these must work together in order to accurately attribute 

liability to the offending/liable party/parties  – in the case of an accident/any other 

emergency [106] [105]. This security architecture is also resilient against attacks – ensures 

continuous operations (availability) while under attack [106]. 

Although the use of PKI for VANETs offers some advantages, a prominent drawback is 

seen respecting certificate revocation of compromised/malfunctioning nodes whose keys 

should be ignored and invalidated by receiving nodes [106]. Although the distribution of 

the most recently revoked certificates is the most common certificate revocation method, 

the use of certificate revocation lists (CRLs) alone suffers from the following challenges: 

1) The efficient, and effective use of CRLs is contingent on the ubiquity of infrastructure 
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– which is impractical especially at the early stages of ITS deployment owing to high costs 

[106]. (2) Keys can be automatically revoked using short-lived certificates, but the 

gap/window between when these keys are identified as candidates for revocation to when 

they are actually done introduces a vulnerability window [106]. (3) CRLs are quite long 

because of the transient and high mobility nature of interacting vehicles/nodes in ITS 

resulting in the accumulation of data while in transit [106] [107] [105]. In order to 

ameliorate these and other drawbacks of the use of CRLs in ITS, Raya et al. [106] proposed 

a number of revocation protocols namely: Distributed Revocation Protocol (DRP), 

Revocation Protocol of the Tamper-Proof Device (RTPD), and Revocation protocol using 

Compressed Certificate Revocation Lists (RCCRL) [106]. 

Some attacker models already envisioned in the VANET domain consists of four categories 

namely: Insider vs. Outsider, Malicious vs. Rational, Active vs. Passive, and Local vs. 

Extended [104]. Consequently, from the above attacker model, attackers in the VANET 

ecosystem can be identified/characterized respecting there: Membership 

(Outsider/Insider), Motivation (Malicious/Rational), Method (Passive/Active), and Scope 

(Local/Extended). The above characterization gives rise to the syntax: 

Membership.Motivation.Method.Scope [104] [113]. 

The use of digital signatures for message authentication against all other existing 

authentication mechanisms/methods has been identified by Raya and Hubaux as the 

simplest and most efficient [104]. The use of public key cryptography in wireless 

communication networks such as VANETs has, however, been identified to introduce 

some level of overhead that adversely degrades/reduces overall performance because each 
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message consists of the digital signature of the sender and the certificate of the certificate 

authority (CA). In order to improve this situation, Elliptic Curve Cryptography (ECC) 

came to the rescue with a smaller signature size, and a better/faster execution time – mainly 

seen respecting its efficient signature verification time [104]. According to the authors, 

although the use of digital signatures with attached certificates as a means of ensuring 

security creates some level of overhead, the overhead thus created still does not 

diminish/invalidate its superiority over other alternative symmetric authentication 

approaches/mechanisms such as the use of group keys, and pairwise keys [104]. 

Comparing the authentication mechanisms evaluated by the authors, the use of pairwise 

keys resulted in greater message overhead over the use of ECC [104]. About 54% message 

overhead is saved by using group keys over pairwise keys [104]. In summary, despite the 

perceived high overhead of using digital signatures for authentication in VANETs, they 

outperformed the symmetric pairwise, and group keys method evaluated by the authors 

[104]. 

One criticism of this study is that the authors indicated that because they primarily did an 

analytical study instead of an empirical one, the conclusions they draw may be thus biased. 

This is true because representative conclusions can only be drawn based on an 

empirical/experimental evaluation that is repeatable, robust, and reliable [104]. 

Fuentes et al.[107] identified and examined several current, generic, and peculiar – e.g. 

data trust – security and privacy issues/challenges facing VANETs; they also analyzed 

some security models and requirements, security attacks, and their countermeasures 

necessary to ensure the satisfaction of the confidentiality, integrity/non-repudiation, data 
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trust, and availability security goals of VANETs/ITS. Besides, they asserted that more 

research work is needed especially in the nascent, and emerging field/area of VANET 

security [107]. Specifically, confidentiality, integrity/non-repudiation, availability, data 

trust, identification, and authentication (both entity, an attribute), etc. are some of the 

VANET security requirements identified by the authors [107]. They also classified 

VANET attacks as: attacks on identification and authentication manifesting as Sybil, and 

impersonation attacks; attacks on non-repudiation; attacks on confidentiality; attacks on 

availability; attacks on privacy; and attacks on data trust [107] [109]. 

Isaac et al. [105] examined some of the security threats, and security attacks militating 

against the widespread deployment of VANETs and their corresponding countermeasures 

[105]. Specifically, the security challenges/issues of: key management, secure location, 

reputation preservation, and privacy/anonymity were the focus of the authors 

survey/evaluation [105]. They also evaluated the following list of security attacks 

respecting VANETs and provided some current/existing countermeasures for them:  

malicious vehicle, brute force, traffic analysis, illusion, Sybil and position 

falsification/cheating, and node misbehavior attacks [105]. 

Inefficiency, and inadequate scalability are some of the major drawbacks militating against 

the adoption of symmetric authentication in VANETs [108]. Because the VANET 

technology domain is still evolving, many open challenges/questions have not been 

adequately addressed [108]. Consequently,  Caballero-Gil et al. [108] provided insight into 

some VANET services, characteristics, security/privacy challenges, and countermeasures 

in order to mitigate them [108]. The authors proposed group formation, and management 
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as a security measure towards minimizing communication overheads in VANETs while 

improving privacy, integrity, and authenticity [108] [114]. 

According to Hussain and Oh [109], a VANET-based cloud must satisfy the following 

requirements and thus were evaluated by the authors: confidentiality, integrity, 

authentication, timeliness, privacy, conditional anonymity, and non-frameability [109]. 

The authors assert that, to the best of their knowledge, their work pioneered the transfer of 

traffic information, and warning message dissemination from the traditional VANET to the 

cloud [109]. Consequently, they focused on cooperative driving amongst vehicles hence 

the name Cooperation as a Service (CaaS). CaaS consist of three different types of services 

namely: Infotainment as a Service (IfaaS), Traffic Information as a Service (TIaaS), and 

Warning as a Service (WaaS) [109]. Specifically, in this paper, the authors focused their 

work on TIaaS, and WaaS and will consider IfaaS in a later work [109]. 

4.3 Mitigating Availability Attacks 

Attacks on availability manifests in the form of: Denial of Service attack (DoS): Here, high 

frequency signals can be used to jam the communication channel in order to overwhelm it 

or deplete other network resources [115] [116] [117] [118] [119]. Distributed Denial of 

Service attack (DDoS): This is a severe/escalated/exacerbated case of a DoS attack that 

decentralizes the attacks to spring up from multiple locations – often at different time 

slots/intervals – in order to cause more devastations resulting in complete network paralysis 

[115] [119]. Broadcast tampering attack: Broadcast safety messages for example can be 

falsified in order to create a false sense/illusion of an accident when there is none [115]. 

Malware attack: Here, an attacker can maliciously infect a node or entity with worms, 
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viruses, and spywares with the intent of causing malfunctions that can even lead to loss of 

lives [115]. Spamming attack: Attackers can disseminate unsolicited spam messages – 

often just advertisements – through the network with a view of saturating available useful 

bandwidth thereby increasing the latency of legitimate messages across the network until 

the network eventually becomes unavailable [115]. Blackhole attack: This attack can be 

perpetrated by either completely refusing to serve as a router for neighboring nodes, or 

after commencing to do so, a node/entity drops out from the communication thereby 

starving/precluding the transmission of messages from one part of the network – 

originator/source to the other – destination [115]. Sybil attacks: A Sybil attack has the effect 

of consuming precious and unused bandwidth thereby compromising the availability 

security requirement/goal [105]. 

Attacks against availability – jamming attack for example – can be mitigated by 

periodically switching/varying the communication channel, and/or the communication 

technology used [104]. In order to ensure continuous operation while all or part of the 

system/network is under attack – DoS resilience – frequency hopping techniques are 

inadequate and have their own limitations. Consequently, Raya et al. [106] proposed the 

use of many transceivers at varying frequency bands as a feasible complement [106]. 

Besides, as an additional mitigation approach, both communication channel switching, 

and/or communication technology switching can be used. For example, if DSRC is down, 

other supporting technologies such as Bluetooth – for very short range communications, 

and other wireless/cellular communication technologies can be activated to counterbalance 

this. When no fallback mechanism is available/possible, the driver must be notified in a 
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timely manner such that he may not rely on VANET safety, and traffic efficiency 

applications that are nonexistent [104]. 

According to Sumra et al. [115], attacks (e.g. DoS attacks) that severely impact the network 

functions – availability attacks – are more consequential/have more priority over other 

attacks on the remaining security goals of integrity, and confidentiality [115]. They further 

elaborate that attacks on integrity precedes/supersedes confidentiality attacks because 

whereas confidentiality attacks are mostly passive in nature e.g. network 

eavesdropping/monitoring, integrity attacks such as message (safety/non-safety) 

alterations/modifications have higher priority since they can be safety/life-critical in nature. 

They argue that availability, as a security goal, is more consequential compared to integrity, 

or confidentiality because even when all users/nodes are properly authenticated with all 

other security mechanisms and countermeasures employed/implemented, they still cannot 

communicate because the network is unavailable/down. Consequently, availability, as a 

security requirement/goal, is most  important because without it, having the others – 

integrity, and confidentiality – will be futile [115]. As a result, in increasing order of 

priority, the following threat levels were given/accorded to each security goal thus: 

confidentiality (threat level 1 – least important), integrity (threat level 2 – moderately 

important), and availability (threat level 3 – most important/consequential). In other words, 

availability attacks/compromises have more consequences of failure than integrity, or 

confidentiality attacks [115]. 

On the one hand, I agree with the authors’ judgment on the preeminence of availability as 

a security goal over integrity, and confidentiality because the latter’s are based/contingent 
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on the preexistence of a stable/available network. However, on the other hand, one can also 

argue in favor of integrity, or confidentiality as being superior because, if what is 

sent/transmitted is not the same as what is received, and/or sensitive information can be 

disclosed to unauthorized parties, solely having an always available network is 

insufficient/inadequate and will not engender the widespread adoption of the VANET 

technology. 

Network availability, and the desire to route traffic through the shortest-path has been the 

focus of many previous algorithms, but not Quality of Service (QoS) [56]. The primary 

path to the destination is the least cost path; all other paths are secondary paths which are 

only utilized when the primary path is out of service/unavailable/fails [56]. Consequently, 

because of transmission range limitations, non-adjacent nodes employ multi-hop 

communications to send messages/talk to target/destination nodes [56]. 

In a shared link/communication medium, CPU time, bandwidth, buffer space, main 

memory, disk space, etc. are constantly under contention because resources (non-

reservable) that are scarce have to be contended with [58]. Consequently, Quality of 

Service (QoS) routing in a dynamic ad hoc network is difficult and unpredictable because 

of changes in network topology and inaccurate network state information i.e. the state of 

the network and its nodes are not definitely known because of constantly joining, exiting, 

and moving/changing nodes from one location to another [56]. In other words, the more 

the nodes are constantly moving, the more the degradation in QoS – as QoS depends on 

some nodes remaining stationary/unchanged/immovable [56]. As a result, 

flooding/broadcasting occupies limited bandwidth/resource and this is a major drawback 
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of using it for vehicle-to-vehicle (V2V)/inter-vehicle/distributed communication (IVC)  

[36] [6] [50]. 

As aforesaid, QoS overhead is higher in ad hoc networks than in the wired counterpart or 

other best-effort routing algorithms because of the dynamic and unpredictable data 

transmission paths [56]. Consequently, as a mitigation against availability attacks, the 

ticket-based probing algorithm (TBP) provides for dynamic path maintenance, self-

healing/reconfiguration together with other fault-tolerant features that provide for 

path/network redundancy, and repairs – coupled with the fact that the topology, and 

routes/nodes of ad hoc networks are in a constant state of flux [56] [50]. 

Path redundancy is an attempt to mitigate or ameliorate the negative effects of dynamic 

changes in topology while path repair tends to resuscitate/re-establish broken paths [56]. 

In other words, on the one hand, a multipath redundancy approach is used to ameliorate 

the loss/decrease in QoS as a result of broken/failed routes/paths. On the other hand, path 

repairing tries to fix broken paths at the exact point of failure – path reconfiguration – by 

rerouting traffic through the nearest available neighboring node that satisfies the cost, 

delay, and bandwidth requirements of the connection without having to completely reroute 

traffic through a completely different/new path [56] [51]. 

As aforesaid, just as in the healthcare system/domain – and other safety/life-critical 

systems – the ITS domain must have little or no tolerance for risks/failures. Consequently, 

in order to ensure the ability to commercialize this technology, real life tests must be 

carried out in both managed/simulated, and unmanaged environments/scenarios [120]. 
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This is especially true because, left on its own, simulation is incomprehensive, and 

insufficient in determining faults as some faults can only be determined when actual road 

tests are conducted [80, 121]. However, simulation is an important first step because not 

every possible scenario can be covered within the boundaries of limited scope, time, and 

budget [122]. Interoperability between and among various ITS vendors/suppliers 

including legacy systems, however, is a major challenge. This is true because current 

automotive software development is limited and not standardized because most 

components are integrated from multiple vendors [123]. Also, the proactive determination 

– rather than reactive – of ITS failure points and mitigation techniques is a major challenge 

– besides the need for more energy efficient/low power, wireless, secure, and highly 

available sensors [122]. 

As a further elaboration, and in summary, it is important to reiterate that vehicles equipped 

with various types of connectivity for infotainment, safety, traffic efficiency/mobility, and 

security applications/equipment, etc. expose themselves to more possibilities for attacks as 

a result of their wireless connectivity [29] [93]. In addition, because of the unique features 

of VANETs such as high node mobility, short connection times, etc. 

conventional/traditional security mechanisms are somewhat inadequate/impotent in 

dealing with all the possible gamut of threats that exist in the ITS/VANET ecosystem [30]. 

As aforesaid, security can be compromised between V2V, V2I (e.g. RSUs, servers, etc.), 

or V2X communication pathways/mediums [29]. For example, V2V/V2X communication 

message exchanges can be deleted, modified, forged/counterfeited, or replayed (after 

message recording) when attacked/compromised by an adversary [29]. In ITS, however, 
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safety trumps security (i.e. confidentiality, integrity, and availability [CIA]); hence all 

security countermeasures/mitigation techniques must be developed and evaluated in light 

of this [29]. Besides, because of the safety/life-critical nature of VANETs, security 

compromises are usually unacceptable and could result in fatalities. Consequently, little or 

no tolerance for errors is strictly mandated in the VANET ecosystem. 

It is pertinent to note that owing to the relatively new and constantly evolving field/domain 

of ITS/VANETs, most of the existing research efforts are predominantly theoretical in 

nature. Consequently, more empirical, and realistic privacy/security research are needed – 

this is one major gap we attempt to fill in this dissertation research. 

Research Tasks 

This section presents a more detailed exposition of our research tasks respecting 

adaptive/dynamic routing, safety, traffic efficiency, forecasting, human factors, and 

security challenges in intelligent transportation system (ITS)/vehicular ad hoc networks 

(VANETs). 
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Chapter 3 

Routing in Intelligent Transportation System (ITS) 

1. Overview 

Intelligent transportation system (ITS) applications are expected to provide a more 

efficient, effective, reliable, and safe driving experience, which can minimize road traffic 

congestion resulting in a better traffic flow management. To efficiently manage traffic 

flows, in this chapter, we compare the effectiveness of two well-known vehicle routing 

algorithms: the Dijkstra's shortest path algorithm and the A* (Astar) algorithm in terms of 

the total travel time and the travel distance. To this end, we built a generic ITS test-bed and 

created several real-world driving scenarios using field and simulation data to evaluate the 

performance of these two routing algorithms. The dataset used in our simulation consist of 

six weeks traffic volume data from 08/01/2012 to 09/12/2012 in the Maryland 

(MD)/Washington DC and Virginia (VA) area. Our simulation data shows that an increase 

in network size results in scalability problems as the efficiency and effectiveness of these 

algorithms diminishes in larger road networks with greater traffic volume densities, flow 

rates, and congested conditions. In addition, the imprecision of the road network increases 

as the network size and the traffic volume density increases. Our study shows that the 

ability of these vehicular routing algorithms to adaptively route traffic depends on the size 

and type of road networks, and the current roadway conditions. 
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2. Motivation 

As aforesaid, in the U.S., about $78.2 billion is annually wasted as a result of road traffic 

congestion [8, 27, 28, 124]. Lost productivity, resources, time, gas, etc., are some examples 

of the many undesirable consequences of road traffic congestion. To address these issues, 

there is an urgent need to dynamically route traffic to less congested roadways [8]. By 

taking the best or the most optimal/fastest route from source to destination – that can be 

either distance-based or time-based – road conditions including road constructions, 

presence of tolls, and others, all contribute to the decision making process, leading to the 

shortest-path problem in terms of travel experiences [34]. 

Intelligent transportation system (ITS) applications can provide a more efficient, effective, 

reliable, and safe driving experience, which can minimize congestion with a better 

management  of traffic flow [4, 6, 10, 35-38]. Nonetheless, to achieve this, all ITS 

applications such as vehicle-to-vehicle (V2V)/inter-vehicle communications (IVC), 

vehicle-to-infrastructure (V2I) communications – V2X communications – situational 

awareness, dynamic traffic control signals, and hard-breaking signals for collision or crash 

avoidance, etc. must work synergistically or cooperatively [7, 39]. For example, using 

IntelliDrive applications, drivers can receive notifications on the probability of other 

vehicle drivers running a red light, the presence of unforeseen road conditions, including 

sharp and/or dangerous road bends, etc. [14, 15]. Adaptive cruise control (ACC), advanced 

driver-assistance systems (ADASs), variable speed limits (VSLs)/variable speed signs 

(VSSs), ramp metering, and dynamic cruise control (DCC), etc., are the existing 

mechanisms used to ensure safety, efficiency, and effective utilization of vehicle gas, as 
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the main goals of ITS [7, 9, 28, 35, 37, 38, 40-42] [20]. Static traffic controls (foreseen and 

predictable) and dynamic traffic controls (unforeseen and unpredictable) are congestion 

control mechanisms currently in use [42]. By constantly monitoring variations in traffic 

parameters such as densities, speeds, and queues, VSLs and ramp metering can be 

adaptively controlled in real-time to minimize congestions. It is worth noting that VSLs 

are primarily used to ameliorate congestions because it is not feasible to keep constructing 

new roadways to meet the ever-growing traffic volume densities. The reason is that 

resources are finite and less expensive alternatives need to be developed/employed [9, 41, 

42]. 

The need to dynamically route traffic from one location to another in order to minimize 

congestion resulting in better traffic flow management has been expressed and buttressed 

by a number of existing research efforts [4-10]. Nonetheless, most existing studies simulate 

driving scenarios, which are too simplistic and do not reflect actual, complex and 

heterogeneous real-world driving conditions [1, 2, 7, 11-14]. A distinguishing 

characteristic of our research effort is that, unlike other studies that are void of real-world 

data and road networks in their simulation, our study uses the actual real-life traffic volume 

data and road network topologies in our simulation studies and field analysis. Evidently, 

this makes our work more representative and conclusions we draw more accurate to reflect 

real-world practice. 

With respect to the foregoing problems, this research has as its primary objective of 

conducting an investigation and implementation of efficient and effective solutions, which 

ameliorate the congestion problems of ITS, using adaptive routing, leading to an efficient 
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traffic flow management. Specifically, two vehicular traffic routing algorithms namely, the 

Dijkstra, and the A* algorithms, are evaluated based on their effects on total travel time 

(TT) and total travel distance (TD) using both real-world and simulation data. Using the 

following scenarios, the efficiency, and effectiveness of both algorithms are determined by 

measuring their effect on the following scenarios: 

 Scenario 1: Increasing the traffic volumes by up to five times (5X) more than the 

normal traffic rate. 

 Scenario 2: Blocking a given roadway by simulating an accident that triggers 

rerouting. 

 Scenario 3: Dynamically reducing the variable speed signs (VSS) at different time 

intervals by up to five times less. 

 Scenario 4: Combination of the above three scenarios. 

Our results show that the efficiency and effectiveness of both algorithms are determined 

by the size of the road network used and the amount of traffic on the evaluated routes. In 

theory, the A* algorithm is better suited for use in larger road networks as the Dijkstra’s 

algorithms performance, i.e. in terms of its efficiency and effectiveness, degrades because 

it suffers from scalability issues. Nonetheless, our evaluation results show that no 

significant difference was observed using both algorithms in both small and large road 

networks. One possible reason for this is that the real-world traffic volume data, used as 

input to the traffic simulator, needs to be further increased and more scenarios needs to be 

included in order to observe significant differences. In addition, some differences may be 
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observed by further increasing the size of the road networks that was used in the 

performance evaluation. 

The rest of this chapter is organized as follows: in Section 3, we examine some of the latest 

related works in the research field. In Section 4, we introduce the vehicular routing 

algorithms in detail. In Section 5, we present our research methods used to achieve our 

research objectives and describe the structure of our real-world data, table relationships, 

and experimental setup. In Section 6, we present the results of our simulation experiments. 

Finally, in Section 7, we draw conclusions based on the results of our study. 

3. Need for Adaptive Routing 

In this section, we briefly review the latest research efforts that have examined the need for 

adaptive routing to minimize congestion, resulting in a better traffic flow management, the 

advantages and disadvantages of some of the existing routing algorithms, and existing 

performance metrics used to evaluate them. 

The need for more realistic traffic simulation has been buttressed by several research efforts 

as necessary [1, 2, 7, 11-14]. For example, Leontiadis et al. asserted that their work was 

the first to evaluate the performance of distributed vehicular communication using a real-

world city map as the topology, vehicle mobility simulators, and network simulators [8]. 

Yung-Cheng and Nen-Fu will try to incorporate real-world road networks in their future 

study in order to make their results more germane [12]. 

The performance of routing algorithms, including regression and Kalman filters [59], 

online traffic prediction algorithm [4, 60], model predictive control (MPC) algorithm [41], 
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binary-partition-assisted broadcast (BPAB) [2], flooding algorithm, ticket-based probing 

algorithm (TBP), and shortest-path algorithm [56], Travel Run Intersection Passing Time 

Identification (TRIPTI), Ticket-based routing algorithms [5], adaptive fine-tuning 

algorithm (AFT) [61], online nearest neighbor clustering (NNC) algorithm [13], etc. have 

been evaluated with respect to the scalability (suitability to small or large road networks), 

the accuracy of traffic pattern and volume prediction (as prediction window or interval 

increases), the efficiency of travel time, and others [11, 34, 56]. For example, Shigang and 

Nahrstedt compared the performance of three dynamic ad hoc-based routing algorithms 

namely the shortest path, flooding, and Ticket Based Probing (TBP) with respect to the 

metrics: success ratio, message overhead, and average path cost [56]. 

The existing investigated performance metrics that have been used in adaptive traffic 

control, include number of stops, length of queue, delays at intersections, (average) speed, 

and travel times/delays [5, 61]. Some metrics used to compare the performance of these 

VANET routing algorithms include, but are not limited to time overhead, computation or 

processing complexity, network state imprecision, delay (link, propagation, processing, 

jitter, delays, and others), bandwidth, cost (the number of hops), scalability or extensibility 

as the network size and complexity grows, latency, and others [1, 5, 48]. An inverse 

relationship exists between latency and network congestion, i.e. increase in congestion will 

reduce the amount of relayed messages, leading to increasing latency [1]. The higher the 

flow rates, the greater the probability for road traffic congestion [11]. Several studies have 

evaluated one or more of the following performance metrics in a test or simulation 

environment, and/or field-test, including speed/velocity, acceleration, (average) travel/trip 
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time, accuracy, efficiency, distance, deceleration, traffic/vehicle density, cost, emission 

levels/environmental impacts, fuel consumption, Quality of Service (QoS) (e.g. end-to-end 

delay, bandwidth, delay cost, bandwidth, traffic flow rate, and others) [1, 5, 6, 8, 9, 11, 28, 

34, 36, 37, 39, 41, 48, 50, 51, 53, 56, 62]. For example, Khabbaz et al. [53] evaluated the 

performance of their traffic models based on the average queuing delay, the average transit 

delay, and the average end-to-end delay against vehicle density. They defined the average 

end-to-end delay as the sum of the average queuing delay and the average transit delay 

[53]. Vehicular density is defined as the number of vehicles per a given length of roadway 

[12] or vehicles per meter (vehicles/meter) [38, 53, 63]. Three perceived QoS performance 

metrics evaluated by Yung-Cheng and Nen-Fu [12] include the knowledge acquisition rate 

(KAR), the effective propagation rate (EPR), and the safety-distance information rate 

(SDIR). Vehicle speed, traffic density, and propagation protocols are additionally 

perceived QoS (PQoS) metrics that are evaluated [12]. In addition, Caceres et al. [64] 

defined the vehicle intensity factor as the ratio of the average vehicle counts per hour over 

the average counts per the total measurement period. 

From the above related literature survey the majority of authors agree that there is a need 

for realistic field, and simulation studies, which can evaluate the efficiency and 

effectiveness of vehicular routing algorithms; this is what we seek to answer in this 

chapter/section. 

4. Background 

In this section, we review the Dijkstra, and A* vehicular routing algorithms which are 

widely used in the traffic management. 



76 

 

 

 

4.4 Dijkstra Algorithm 

Generally speaking, the Dijkstra algorithm is used for a single-source shortest-path 

problem computation, given vertices/nodes (V) and non-negative edges/roadways/streets 

(E) in a directed graph (G), i.e. G = (V, E) [125, 126]. 

Assumptions 

1. Edge weights: w(a,b) ≥ 0;    // applies only to non-negative edge weights [w] 

2. (a,b) Є  E; 

3. a, and b  are sets of adjacent vertices with edge weights or costs [w]; 

4. With a Є SV (where SV is a set of known vertices set) [125]. 

DIJKSTRA (G, w, sa) 

INITIALIZE SINGLE-SOURCE (G, sa) 

1. SV = 0 

2. Qp = V[G] 

3. while Qp ≠ 0 

4. do a = SELECT-MIN (QP) 

5. SV = SV U {a} 

6. for each vertex  a  Є Adjacent [b] 

7. do RELAX (a,b,w)       [126]. 
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The pseudo code above selects a vertex with the minimum edge or road weight (w) or 

distance (d) from a given source (sa) to a given destination (da) and adds it to the set of 

vertices (Sv) stored in a priority queue (Qp). This process continues until all the intermediate 

edges (i.e. roadways or street) from source to destination are exhausted. Dijkstra’s 

algorithm uses the greedy strategy because only the most adjacent edges are chosen to be 

stored in the priority queue (Qp) containing a set (SV) of non-negative edges. With 

Dijkstra’s algorithm, the shortest-path from a given source to a given destination is 

independent of the level of congestion or roadway conditions, i.e., it is solely based on the 

shortest distance between two points. The running time complexity of Dijkstra’s algorithm 

worsens as the size of the network increases – this is where the A* algorithm becomes 

pertinent [8, 34, 50, 124-127]. 

4.5 A* (Astar) Algorithm 

The A* algorithm is a hybrid of heuristics-based algorithms such as best-first-search and 

algorithms such as Dijkstra. It is mostly popular for route finding because of its flexibility 

and its applicability to a wide variety of scenarios. A unique feature peculiar to A*, not 

used by other similar greedy best-first-search algorithms like Dijkstra, is that previously 

traveled distances from the source are taken into account in future route selections. By 

choosing vertices that are closest to the starting point (used by Dijkstra’s algorithm) and 

vertices that are closest to the goal (used by best-first-search), the A* algorithm’s 

performance is significantly enhanced. Using a sorted priority queue, the least-cost route 

from source to destination is determined using best-first-search, which considers the least 

amount of nodes [124, 128-130]. 
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We now explain the basic principle of A*. Let g(a) = cost from source to sink of vertex a, 

and h(a) = estimated distance or cost of the vertex a to the destination. Going through 

different iterations, the choice of a path, f(a), depends on that with the lowest: f(a) = g(a) 

+ h(a) [129, 130]. The value of the heuristic h(a) determines how accurate and how fast 

the A* algorithm determines the best path from source to sink/destination [124, 129, 131]. 

5. Main Contributions: A Generic ITS Test-Bed 

In this section, we first describe our evaluation setup used in our evaluation of the two 

vehicular routing algorithms introduced in Section 4 and then present the real-world 

dataset, followed by the evaluation scenarios, and performance metrics. 

5.1 Test-bed Setup 

In order to achieve an efficient traffic flow management that will ameliorate the congestion 

problems of ITS, we built a generic ITS test-bed to evaluate the performance of different 

routing algorithms. In this chapter, the two well-known routing algorithms: Dijkstra 

algorithm and A* (Astar) algorithm, which were introduced in Section 4, were used to 

carry out the performance evaluation. We used a DELL PRECISION T5600 desktop 

configured with Intel® Xeon(R) CPU E5-2609 @ 2.40GHz, 64GB of memory, and 2TB 

hard disk drive (HDD), running Windows 7, 64 bits to implement the ITS test-bed. We 

used software such as MATLAB R2013a, Weka 3.6.9, and Microsoft’s Excel 2013 to assist 

with data processing. 
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Data processing comprises the following steps: data collection, cleaning and preprocessing, 

selection and categorization, analysis, visualization, and interpretation as shown in Figure 

18. 

 Step 1 -- Data Collection: In total, over 15GB of 6 months traffic data from July 

2012 to December 2012 of the Maryland (MD)/Washington DC and Virginia (VA) area 

was used in this study. 

 Step 2 -- Data Cleaning and Preprocessing: Here, missing or erroneous fields or 

records, together with other outliers, were identified and were not used in our final selection 

criteria. 

 Step 3 -- Data Selection and Categorization: Out of the total dataset or population, 

a representative sample of 6 weeks traffic data from 08/01/2012 to 09/12/2012, was chosen 

with the covered area shown in Figure 20. 

 Step 4 -- Data Analysis: The average speeds, traffic volume patterns, and other 

measures of central tendency or deviations were used to better understand the data 

distribution. 

 Step 5 -- Data Visualization and Interpretation: Finally, we identified the 

interesting patterns such as congestion prone areas and times when congestions are most 

prevalent, etc. using Microsoft’s Excel 2013 and MATLAB R2013a. 
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Figure 18: Data processing steps. 
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We implemented and evaluated the traffic simulation scenarios using the Simulation for 

Urban Mobility (SUMO) traffic simulator [132]. Before inputting data into the SUMO 

traffic simulator, we imported the network topology from openstreetmap.org, while 

ensuring that the number of lanes, traffic lights, road junctions, etc. represents the actual 

real-world driving conditions. Specifically, Osmfilter was used to remove unwanted 

entities such as buildings, parks, and other non-traffic related entities or artifacts. This 

greatly reduced the file size of the road network, thus ensuring that traffic simulation can 

be more efficiently and effectively performed. We cleaned and preprocessed data using 

Java openstreetmap editor (JOSM), and Merkaartor 0.17.2, which are two very popular 

Openstreetmap editors used to identify and fix unconnected road segments, junctions and 

other bugs in the road network. From these editors, our real-world road network in its 

entirety consists of the following entities/artifacts: 238,207 

vertices/nodes/junctions/intersections, 12,009 ways/streets, and 2,361 relations/group of 

streets. As a general rule, most road networks are quite dirty as they are crowd-sourced 

from multiple users that predispose them to inaccuracies because verification and 

validation for accuracy and correctness are not strictly incentivized and mandated. Finally, 

the SUMO netconvert.exe tool was used to remove unwanted edges (i.e. streets or 

roadways) and routes were generated by the SUMO duarouter.exe tool. 

Besides the prohibitive nature of the cost associated with real-world studies, it can be 

more efficient (and possibly more effective) to first try out different ambiguous problems 

in a simulation environment before proceeding to field validation [1-14, 41, 52-54]. 

SUMO is responsible for vehicle or node movements using accurate street maps of the 
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Maryland (MD)/Washington D.C and Virginia (VA) areas. The choice of one route 

against another is determined by a number of factors such as roadway speeds, traffic 

conditions, different environmental conditions, and the shortest distance or time to the 

destination, etc. [6]. Figure 19 shows our entire data coverage area in Google Maps while 

Figure 20 illustrates our selected study area in the Google map (left) and the 

Openstreetmap (right). 

 

Figure 19: Entire field data coverage area. 



83 

 

 

 

 

Figure 20: Selected study area in Google map (left) and Openstreetmap (right). 

5.2 Real-world Dataset 

Owing to the fact that most studies [1, 2, 7, 8, 11-14] simulate unrealistic or randomly 

generated traffic data and road networks as input, in the entirety of this dissertation, we 

used the real-world traffic dataset from the Maryland (MD), Washington D.C, and Virginia 

(VA) areas as inputs, which consist of lanes data and traffic data. The sample lanes data 

and traffic data are shown in Tables 1, and 2, respectively. From the lanes data, the 

evaluation area shown in Figure 20 can be divided into different zones. The lane ID is 

assigned to uniquely identify the number of lanes in a zone. The lane type consists of 

normal, on/off ramp, express, bus, toll, and unknown types. Road-side detectors, which 

consist of microware, acoustic, RTMS, and unknown, are deployed along the road and are 

used to record the real-world traffic volume patterns plus other traffic-related parameters. 

For example, the lane ID 8978 belongs to zone 3193, which is a one-lane road. The detector 

for lane 8978 is deployed in I-95 at 0.71 mile north of I-695. For the traffic data, shown in 

Table 2, the microwave detector records the traffic parameters for each lane every 1 minute. 
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The useful traffic information mainly includes the vehicle speed, vehicle/traffic volume, 

and occupancy. For example, at time 00:00:48 on 09/01/2012, the average traffic travel 

speed on lane 8978 is 58.8 km/hour; in addition, over the last minute, four vehicles passed 

through the lane with ID 8978. The occupancy refers to the number of vehicles within a 

given duration/estimation period through a given road/lane. 

 

 

Similar to the research done by Caceres et al. [64], six weeks, weekday traffic volume 

counts (Wednesday and Thursday) (excluding days prior to, and after a holiday/weekend) 

was used in this study. In order to ensure consistent results, we also made sure that the days 

chosen did not fall into a holiday. One hour traffic volume counts, between 5:00 a.m. and 

9:00 a.m., were aggregated together and compared. One of our chosen roadways (I-270 @ 

MD 109), showed remarkably higher levels of congestion between these times (5:00 a.m. 

– 9:00 a.m.); which are non-existent during the weekends [54, 64]. This is quite normal 

because most traffic congestions are experienced during the morning (8:00 a.m. – 10:00 

a.m.), and evening (4:00 p.m. – 7:00 p.m.) rush-hours [14, 53, 64]. Because of the distinct 

Table 1: Sample lanes meta-data. 

 

Table 2: Sample lanes traffic data. 

 
 



85 

 

 

 

difference between traffic volume on weekdays compared to that on weekends, they are 

usually analyzed and treated differently [4, 5, 11, 45]. 

5.3 Evaluation Scenarios 

The following scenarios were used in determining the efficiency and effectiveness of the 

Dijkstra and A* algorithms as shown in Figure 20: 

 Scenario A: Increasing the normal traffic volume through a given route or roadway 

by as much as five times (5X) more than its actual volume. 

 Scenario B: Rerouting traffic by simulating an accident which blocks a given travel 

roadway or route, thereby triggering adaptive rerouting to the same destination through 

other roadways. 

 Scenario C: Dynamically reducing the variable speed signs (VSS) by five times 

less than the actual speed limit and measuring the effects of possible congestions on travel 

time. 

 Scenario D: Combining scenarios A – C. 

Scenario A: Scalability 

Scenario A: Road traffic congestions are normally experienced between 5:00 a.m. and 9:00 

a.m. weekdays through Routes A (i.e. vehicles traveling from point 1 [source] to point 2 

[destination]) and B (i.e. vehicles traveling in the opposite direction) having a normal 

maximum traffic volume of 144 vehicles every 5 minutes as shown in Figure 22 (left). Five 

times this number (720 vehicles) was used as an input to the SUMO traffic simulator in 
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order to further exacerbate the congestion already experienced along these roadways, while 

measuring the effects of both algorithms in ameliorating it. 

Scenario B: Adaptive Routing 

Scenario B: From the small road network shown in Figure 22 (left), labels AX, AY, AZ; 

and BX, BY, BZ indicate the positions in both Routes A and B where we simulated a road 

traffic incident, blockade or closure that caused vehicles traveling through these routes to 

dynamically seek alternative routes upon becoming aware of the current roadway situation 

ahead. Each of these three accidents that led to road closure or blockade was simulated to 

last for 600 second (10 minute) intervals. This scenario has the effect of simulating 

unforeseen accidents and events that are typically experienced in a real-world driving 

situation requiring some dynamic/instantaneous response from the vehicle’s driver were a 

decision is normally made to reroute through alternative routes. 

Scenario C: Variable Speed Sign (VSS) 

Scenario C: Reducing the variable speed sign (VSS), by up to five times the actual speed 

limits has a negative effect of promoting further congestion as vehicles now travel at lower 

speeds under the stipulated roadway speed limits. The normal speed limits for Routes A 

and B are 27.78 m/s, and 11.18 m/s, respectively. Consequently, reducing this speed limit 

to five times less the normal speed limit results in vehicles traveling at 5.56 m/s, and 2.24 

m/s speeds, respectively. The stepwise decrease in roadway speeds was dynamically 

simulated to again last for 600 second (10 minute) intervals. 
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Scenario D: A Hybrid Combination of Scenarios A – C 

Scenario D: Combining Scenarios A – C means that vehicles can be rerouted through less 

congested roadways especially when vehicles travel at five times less than actual roadway 

speed limits. In this scenario, special care was taken to ensure that the vehicles rerouting 

time intervals did not overlap with those of decreasing variable speed signs (VSS) in 

scenario C. Hence, the synergy of scenarios A – C and their effects on road traffic 

congestion can be better observed. 
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Figure 21: Evaluation Scenarios used to determine the efficiency and effectiveness of the 

Dijkstra and A* algorithms. 
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Again, a hybrid of simulation and field data analysis were used to evaluate the efficiency 

and effectiveness of both aforementioned algorithms. 

 

Figure 22: A small road network (top) and a large road network (bottom) showing vehicle 

routes (both bidirectional, and unidirectional) from various sources to various destinations 

and positions (Labels AX, AY, AZ; and BX, BY, BZ indicate where rerouting, as a result 

of an accident/closed road, is triggered). 

5.4 Performance Evaluation Metrics 

In general, algorithms are evaluated based on their correctness (effectiveness and 

accuracy), robustness (scalability), and execution time (efficiency) [125, 126]. Similarly, 
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we evaluated the performance of our algorithms based on the shortest travel time (TT), and 

travel distance (TD) from a given source to a given destination. The TT for a vehicle, 

traveling through a predefined route, represents the travel duration from when a vehicle 

enters and exits the simulation. It is measured in seconds for each vehicle emitted into the 

SUMO traffic simulator. Similarly, the TD, measured in meters, represents the total travel 

length of a route on which vehicles travel when going from a given source to a given 

destination. 

6. Performance Evaluation Results of Routing Algorithms 

In this section, we evaluate the performance of Dijkstra and A* routing algorithms with 

respect to the effects of rerouting, decrease in variable speed signs (VSS), increase in traffic 

volume, and a hybrid approach on total travel time (TT), and travel distance (TD) 

computations. 

Figure 23, and Figure 24 show the total travel time (TT), and total travel distance (TD) 

through different vehicle routes from various sources to various destinations using Dijkstra, 

and A* routing algorithms with normal traffic volume patterns in the small road network 

as depicted in Figure 22. These vehicle routes: A, B, C, D, E, F, G, H, I, and J correspond 

to vehicles traveling from one point  (source) to another (destination): 1 – 2; 2 – 1; 3 – 4; 

4 – 3; 5 – 6; 9 – 10; 11 – 3; 6 – 5; 7 – 8; and 5 – 6 as shown in Figure 22. 
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Figure 23: Total travel time (TT) for different routes in small road 

network using actual/normal traffic volume patterns. 

       

 

 

Figure 24: Total travel distance (TD) for different routes in 

small road network using actual/normal traffic volume 

patterns. 
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Figure 25, and Figure 26 show the results of our simulations with respect to the total travel 

time (TT), and total travel distance (TD) through different vehicle routes from source (1) 

to destination (2) – Route A, and vice versa – Route B  using Dijkstra, and A* routing 

 

Figure 25: Total travel time (TT) for Routes A and B in large 

(labels: a – d), and small (labels: e – h) road networks using 

five times (5X) the actual/normal traffic volume patterns. 

 

      

 

 

Figure 26: Total travel distance (TD) for Routes A and B 

in large (labels: a – d) and small (labels: e – h) road 

networks using five times (5X) the actual/normal traffic 

volume patterns. 
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algorithms with five times (5X) the normal traffic volume patterns in both large (labels a – 

d), and small (labels e – h) road networks as shown in Figure 22. 

We analyze the effect of the use of large and small road networks on total travel time (TT) 

and total travel distance (TD). From Figure 25, and Figure 26, labels a – d refers to 

Scenarios A, B, C, and D applied with respect to the large road network through Routes A 

and B. In the same vein, labels e – h equally refers to Scenarios A, B, C, and D with respect 

to the small road network, also through Routes A, and B. 

With respect to both the large road network (Figure 22 [right], Figure 25, and Figure 26), 

and the small road network (Figure 22 [left], Figure 23, and Figure 24), as a general rule, 

an increase in the normal traffic volume of up to five times (5X) increases the total travel 

time (TT), and total travel distance (TD) for both Routes A and B in the large road network 

as seen by comparing Figure 25, and Figure 26 with Figure 23, and Figure 24. Specifically, 

Scenario C (the use of decreasing VSS), with label c, as shown in both Figure 25, and 

Figure 26,  gives the best reduction in TT by 192 seconds and 124 seconds for Routes A, 

and B, respectively. The TD of all scenarios for both Routes A and B remained almost 

constant at 48,736.09 meters and 50,013.15 meters, respectively as shown in Figure 26 

(labels a – d). 

With respect to the small road network as shown in Figure 23, an increase in the normal 

traffic volume by up to 5 times results in an increase in TT by up to 4.56 times (i.e. 5,703 

seconds), and 5.27 times (i.e. 6,992 seconds) of the normal TT for Routes A and B, 

respectively as seen by comparing Figure 25 (labels e – f) and Figure 23 (Routes A, & B). 
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The TD for Route A remains constant with Route B, showing a slight increase of 5.1 

meters. From Figure 25, using rerouting alone (Scenario B, label f) has the best 

performance in terms of the reduction of TT by 1,628 seconds and 57 seconds for Routes 

A and B, respectively. In addition, the TD of all scenarios for both Routes A and B remain 

almost constant at 48,548.11 meters and 48,376.65 meters, respectively as shown in Figure 

26 (labels e – h). 

In addition, when comparing Figure 25, the performance of the use of both large road 

network - decreasing VSS (Scenario C, label c), and the small road network – 

implementing rerouting (Scenario B, label f), Scenario B (label f) gives the best TT 

performance by reducing the TT by 1,212 seconds (16.63%) and 4,485 seconds (52.1%) 

for Routes A and B, respectively. In addition, Scenario B, label f also performed better than 

Scenario C, label c with respect to TD by reducing it by 187.98 meters (3.9%), and 1,636.5 

meters (3.3%) for Routes A and B, respectively as shown in Figure 26. Evidently, for all 

the scenarios evaluated using both large, and small road networks, implementing rerouting, 

and the use of decreasing VSS have the positive effect of reducing TT while TD remains 

constant – which is good for fuel economy, travel time efficiency, and is environmentally 

friendly, etc. Because resources for continuously constructing new roadways to ameliorate 

congestions are limited, these congestion mitigation approaches have proven to be more 

efficient and effective solutions. 
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As we can see, both algorithms – Dijkstra, and A*, tend to show the same performance 

with respect to travel time (TT) and travel distance (TD) in both small and large road 

networks. One reason for this observation is that the size of the network and the traffic 

volumes need to be further increased in order to show significant differences. This is 

because the A* algorithm is widely known to be an improvement over the Dijkstra’s 

algorithm especially when large road networks are considered, i.e. the performance of the 

Dijkstra’s algorithm degrades as the size of the road network increases. Our next tasks will 

be to further increase the size of the network, while varying other network parameters, and 

taking note of where differences in the total travel times (TT) and the total travel distance 

(TD) exist between the two algorithms in both large and small road networks. 

We also examine the total number of rerouted vehicles in both large and small road 

networks through Routes A and B, respectively. As shown in Figure 27, in the large road 

network, out of a total of 720 emitted vehicles through Route A, the A* algorithm rerouted 

148 vehicles. A total of 56 vehicles, out of 720 emitted vehicles was also rerouted using 

 

Figure 27: Number of rerouted vehicles through routes A and B 

for small and large road networks. 
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the A* algorithm through Route B. The Dijkstra algorithm did not reroute any vehicles in 

both Routes A and B. With respect to the small road network, 198 vehicles each were 

rerouted by both the A* and Dijkstra algorithms through Route A from the total of 720 

emitted vehicles. No vehicle was rerouted by both algorithms through Route B. A possible 

reason for this could be that the routes, on which rerouting was implemented, was avoided 

by the vehicles while traversing from the source to the destination. 

7. Remarks 

The motivation behind the development of an efficient and effective vehicle routing 

algorithm cannot be over emphasized. This is consequent upon the fact that congested 

roadways eventually propagate to other neighboring roadways, leading to time, gas, and 

other resource wastage together with inefficiencies in traffic flow management – hence the 

need for realistic simulation studies and field studies. Using real-world data and simulation 

studies, in this chapter, we evaluated the performance of two vehicle routing algorithms, 

namely Dijkstra’s algorithm, and A* algorithm respecting traffic efficiency. The 

simulation experiments were conducted using the SUMO traffic simulator; the evaluation 

metrics we used are total travel time (TT), and total travel distance (TD). In addition, the 

scalability, accuracy, and reliability of these algorithms, with respect to large and small 

road networks, effects of variable speed signs (VSS), rerouting, increase in total traffic 

volume (individually, and in combination) together with other performance tradeoffs were 

evaluated. 
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Chapter 4 

Connected Vehicles Technology

1. Overview

Traffic efficiency and safety are major hallmarks of Intelligent Transportation System 

(ITS). To accurately validate, and investigate the effectiveness of traffic efficiency and 

safety application to ITS, realistic studies are highly demanded [12]. Consequently, in this 

chapter, using real-world traffic and simulation data, we developed a realistic ITS test-bed 

and a mobile application known as Incident Warning Application (IWA) with the view of 

answering the question: what are the traffic efficiency and safety benefits of vehicle-to-

vehicle (V2V), and vehicle-to-infrastructure (V2I) communications in a realistic ITS 

environment? Our real-world dataset consists of six weeks road traffic data in the Maryland 

(MD)/Washington DC and Virginia (VA) areas from August 1st, 2012 to September 12th, 

2012. With respect to classic/unequipped vehicles, our evaluation results show that 

vehicles running our IWA showed improvements in almost all the performance metrics 

evaluated. Specifically, our data shows that improvements in travel time (139.89%), fuel 

consumption (11.77%), and environmental emissions – carbon dioxide [CO2] (11.77%), 

etc. can be achieved through V2I communication at 100% IWA-equipped vehicles. 

Similarly, with respect to V2V communication, the following improvements were 

observed at 5% IWA-equipped vehicles: travel time (126.78%), fuel consumption (8.05%), 

and environmental emissions – carbon dioxide [CO2] (8.05%), etc. 
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Comparing the performance of V2I communication with V2V communication on IWA-

equipped vehicles, our results show that V2I communication outperformed V2V 

communication respecting both traffic efficiency, and safety at specific IWA-enabled ratio. 

Most significantly, at 35% IWA-equipped vehicles, V2I communication outperformed 

V2V communication respecting travel time (55.2%), fuel consumption (6.1%), and 

environmental emissions – carbon dioxide [CO2] (6.1%), etc. 

2. Motivation 

The need to adaptively/dynamically route traffic from one point/place/location to another 

in order to minimize congestion resulting in better traffic flow management has been 

expressed and buttressed by several existing research efforts as a necessity [1, 2, 4-14]. 

According to the U.S. Federal Highway Administration (FHWA) [32], improving the 

current traffic efficiency, building new roads and infrastructure, and encouraging 

alternative modes of transportation (e.g. carpooling, taking the bus or train, etc. instead of 

driving alone) are some of the major congestion mitigation techniques. However, of all the 

aforementioned road traffic congestion mitigation/alleviation techniques, the use of 

dynamic/adaptive routing mechanisms that optimally utilize the existing road capacity is, 

generally, the most cost-efficient and effective technique [33]. 

Inefficient routing leads to greater environmental pollution, fuel/gas/energy wastages, and 

others, which are deleterious to the environment. In order to dynamically control traffic to 

minimize these undesirable consequences, mechanisms such as variable speed limits and 

ramp metering are used in ITS applications [28, 42, 63]. Inter-vehicle communication 

(IVC)/ vehicle-to-vehicle (V2V) communication  ameliorate congestion, resulting in 
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improved safety and travel times because traffic is rerouted through the most effective route 

to evade congestions [36, 133, 134] [34] [12] [35]. Although IVC is capable of providing 

better safety and average trip time, it can lead to negative environmental impacts because 

vehicles usually take longer routes to avoid congestion. In addition, if the source of the 

congestion is not contained in a timely manner, these alternative routes will become 

congested because more and more vehicles are routed through the same finite capacity 

roadway [2, 6, 8]. Consequently, more CO2 is emitted (given the same distance) without 

IVC than with IVC – while neglecting the fact that rerouting normally takes a longer path 

[6]. It is worth noting that vehicle-to-infrastructure (V2I) communication has the 

disadvantage of leading to future congestions of the alternative roadway(s) because all 

vehicles try to use them in order to avoid congestions on the primary roadway without 

having prior knowledge of the congested conditions on these alternative routes [33]. 

Some ITS safety applications include, but are not limited to: hard-breaking signals 

alert/emergency break warning used in crash or collision avoidance, possible red-light 

violation warning by other vehicles, future precarious road bends warnings, hazardous 

traffic maneuvering warnings or blind spot warning, and speed advisories, etc. Similarly, 

traffic light assistant, traffic pattern forecasting, optimal route guidance, traffic situational 

awareness, and Green-Light Optimal Speed Advisory (GLOSA), etc. are some of the traffic 

efficiency applications in ITS [7, 15, 39, 135]. 

In general, and from the aforesaid, vehicle-to-x (V2X) communication leads to improved 

traffic efficiency and safety with equipped vehicles constantly exchanging their positions, 

directions, speeds, (situational awareness) etc. to their neighbors to ensure optimal routing. 
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In order to better understand the problem domain of ITS safety and traffic efficiency, 

simulation experiments should normally be conducted first before actual field tests because 

of the expensive nature of the latter [33, 136, 137]. 

Consequently, in this chapter, we address the issue of evaluating the safety and traffic 

efficiency applications of ITS using real-world dataset. Particularly, we developed a test-

bed based on our real-world traffic trace data and simulated a traffic incident. The 

simulated traffic incident resulted in vehicles equipped with our developed mobile Incident 

Warning Application (IWA) taking alternative routes, though longer, to the destination in 

order to avoid a traffic incident on its primary/original route. The vehicles without IWA, 

on the other hand, get delayed by the incident. 

Our results clearly show that V2I communication, evidently, resulted in both more 

significant safety and traffic efficiency improvements over V2V communication especially 

prevalent at specific IWA-enabled ratio; we defined this ratio as the average/ratio of IWA-

equipped vehicles that responded positively to the change route directive by rerouting to 

the total number of IWA-equipped vehicles emitted in the simulation. It is worth noting 

that the use of real-world traffic data, along with real-world road network topologies, 

makes our work have unique contributions. 

The rest of this chapter is organized as follows: in Section 3, we review some of existing, 

and most recent research efforts related to ITS traffic efficiency and safety applications. In 

Section 4, we present our test bed setup in detail. In Section 5, we present the results of our 

experimental evaluations. Finally, we conclude this chapter in Section 6. 
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3. Background 

In this section, we review some of existing research efforts with respect to safety and traffic 

efficiency in ITS. 

As aforesaid, because of the expensive nature of field tests/studies, simulation studies are 

normally done first [98]. Consequently, using the V2X Simulation Runtime Infrastructure 

(VSimRTI), Schunemann et al. [33] obtained better travel time (TT) performance (a metric 

to evaluate traffic efficiency) by dynamically rerouting vehicles through alternate routes to 

avoid congestion. As the number of V2X enabled vehicles increase, more vehicles take 

alternate routes to avoid the congestion on the main route. Their results showed that when 

80% vehicles were V2X enabled, close to 50% travel time is attained. 

Decentralized routing has been found to reduce vehicular travel time through congestion 

avoidance [6, 9, 28, 62]. It achieves this goal by dynamically routing equipped vehicles 

away from congested roadways, resulting in a 6.5% reduction in travel time with 25% V2X 

enabled vehicles [138] [33]. Vehicle-to-vehicle (V2V) communication was used to achieve 

better travel time in comparison with centralized approaches especially by increasing the 

ratio of V2X enabled vehicles [33]. A noted disadvantage of centralized routing is that its 

accuracy (in disseminating current traffic information) is mainly determined by the optimal 

placement of road-side units (RSUs) and other infrastructure components; besides its 

expensive nature emanating from additional infrastructure costs. Notably, travel times can 

be negatively affected by having 10% or more of faulty or misbehaving nodes (e.g. RSUs) 

on a given roadway. 
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Other factors that can lead to decreased efficiency  and effectiveness of decentralized 

routing include, but are not limited to: sparseness of V2V vehicles, natural or 

environmental factors (e.g. rain, fog, ice, etc.), interference with respect to rural versus 

urban roadways, high buildings or obstacles, transmission power, bandwidth, and 

communication range limitations, together with other natural, and man-made events, etc. 

[8, 64]. 

In order to create a congested scenario towards the evaluation of V2X traffic efficiency, 

Schunemann et al. [33] made vehicles prefer using alternate routes more than the primary 

route by reducing the maximum speed limit of the main route to 50 km/h; thereby, giving 

the alternate routes more priority because, at any point congestion is sensed, V2X vehicles 

chose the route(s) with the least/best travel time (TT) to the destination. Congestions were 

also created by prolonging the duration of the red light at traffic light junctions while 

reducing the duration of the green light. Primarily, vehicle speed rather than travel time 

(popularly used especially by the Dijkstra’s algorithm) was used as the primary weighting 

factor in determining the presence of congestions and selecting alternative routes because 

of its better accuracy in predicting congestion. This is true because the use of travel time 

does not consider factors such as the dynamic nature of traffic congestions, effects of 

inefficient traffic light transitions/timings, and unforeseen road incidents, etc. [33] [134]. 

Besides, at varying traffic densities of low (50 vehicles), medium (100 vehicles), and high 

(150 vehicles), 3.3%, 16.6%, and 17.3% improvements/benefits in average fuel 

consumption levels were obtained using the adaptive route change algorithm (ARC) [139]. 

Vehicles running ARC, and in general, other V2X applications are rerouted from a 
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congested route to alternative routes without subsequently overwhelming these alternate 

routes. The reason ARC does not congest alternative routes is that because it uses vehicle-

to-vehicle (V2V) communication, it has prior knowledge of their congested 

states/conditions [134, 140]. At 100% V2X penetration rate, the performance benefits of 

ARC equipped vehicles diminished from that recorded at 60 - 70% (the most optimal 

penetration rate) because all vehicles are routed from the primary roadway to alternative 

roadway(s) – which may probably become congested  especially if using vehicle-to-

infrastructure (V2I) communication because it, mainly, does not take into account the 

congested condition of alternative routes [8, 45]. Consequently, setting the maximum 

limit/threshold of ARC equipped vehicles that should/should not reroute can be used to 

proactively arrest/prevent this undesirable condition [140]. In the same vein, Katsaros et 

al. [140] recorded improvements with respect to traffic efficiency metrics of: fuel 

consumption (17.3% reduction), trip time (26.5% reduction), stop times/waits at traffic 

lights, average queue size (32.5% reduction), and maximum queue size at the most optimal 

V2X penetration rates of 60 – 70% (and not at 100%) using Green Light Optimized Speed 

Advisory (GLOSA), and Adaptive Route Change (ARC) algorithm [140]. Evidently, 

besides improvements in trip time, adaptive routing also resulted in reduced fuel 

consumptions and environmental emissions [140]. GLOSA minimizes fuel consumption 

by preventing frequent braking/stoppages and subsequent recommencements/accelerations 

at intersections which equally translates into improved trip time, and lower environmental 

emissions, etc. [141]. With GLOSA, CO2 emission, and fuel consumption levels were 

found to be equal [141] [140]. Although this and many other studies utilized a real-world 

road network topology, they are normally void of realistic traffic data – the authors also 
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acknowledged its importance and its possible biasing effect on the results obtained and will 

endeavor to use realistic data in their next study. 

Queck et al. evaluated a vehicle-to-x (V2X) scenario where leading vehicles detect a 

slippery road and broadcasts this information to trailing vehicles who try to look for 

alternative routes to circumvent/avoid this precarious/perilous road condition – to ensure 

route optimization and safety. Congestion was triggered in the roadway with a slippery/ice 

condition because vehicles reduce their speeds while traversing the affected area; on 

receiving the warning, vehicles further down the road try to use alternative routes in order 

to avoid the congested condition, and not further exacerbate/aggravate it [142]. With 

respect to traffic efficiency applications, using the driving/travel times (TT) of each vehicle 

that enters and exits the simulation, Queck et al. calculated the mean/average travel times 

of each vehicle category/class: classic, equipped, and application-supported  [142]. Some 

marginal improvement in trip/travel time (TT) was observed when the penetration rate of 

application-supported vehicles increased to between 5% - 7% [142]. The results clearly 

show that application-supported vehicles, at penetration rates of 8% and above, attained a 

remarkably noticeable decrease in TT which is good for traffic efficiency, and the 

environment [142] [138] [33]. 

In summary, increase in V2X penetration rates/number of application-equipped vehicles is 

directly proportional to improvements in safety, and traffic efficiency e.g. trip time, fuel 

efficiency/economy, etc. [140, 141]. In reality, however, increases in V2X penetration rates 

usually reach a saturation point of safety, and traffic efficiency improvements before they 

start to decline. 
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From extensively reviewing literature, the need for more realistic studies with respect to 

traffic efficiency, and safety applications using V2V, and V2I communication in ITS has 

been shown to be very imperative. Most existing studies were not based on real-world data, 

and/or road network required for accurate, unbiased, and realistic simulation results [1, 2] 

[3] [4-10] [7] [1] [11] [12] [13] [2] [14] [7] [47]. To this end, we endeavor to fill this 

integral gap. 

4. Main Contributions: Simulation Setup 

In this section, we present a detailed description of the inputs to our simulation test-bed, 

and our evaluation scenarios. 

4.1 V2X Simulation Framework: VSimRTI Architecture 

Using the V2X Simulation Runtime Infrastructure (VSimRTI), the problems of flexibly 

coupling simulators together, synchronizing them, and enabling them to interact with each 

other/one another has been solved without requiring changes to the underlying 

infrastructure – which is a major downside of fixed coupling approaches [137]. Deriving 

from the Institute of Electrical and Electronics Engineers (IEEE) standard for Modeling 

and Simulation (M&S) High Level Architecture (HLA), the V2X Simulation Runtime 

Infrastructure (VSimRTI) is used for evaluating various types of V2X scenarios [133, 134, 

137, 140-146]. It enables flexible/loose coupling of various simulators such as traffic, 

network/communication, and environment, etc. that can be easily modified based on the 

simulation goal/objective [134, 142, 144, 146]. Several traffic (SUMO, and VISSIM), 

communication/network (JIST/SWANS, OMNeT++, ns-3), and application 
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(VSimRTI_App) simulators, besides other data visualization/analysis, and development 

tools have been successfully coupled with VSimRTI as shown in Figure 30 [133, 134, 137, 

140, 141, 146-149]. Upon starting a federate/simulator e.g. the SUMO traffic simulator, a 

bidirectional communication is established between the Federates ambassador, and the 

V2X simulation runtime infrastructure (VSimRTI). VSimRTI consists of components 

responsible for federation, vehicle data, time/synchronization, and 

interaction/communication managements [133, 137, 142, 144, 145]. Figure 28 and Figure 

29 show the VSimRTI architecture together with its interacting federates. 

Similar to VSimRTI, other frameworks have attempted to enable/establish bidirectional 

coupling of traffic, and communications simulators mostly in a fixed manner attended by 

their pros and cons. Some of these frameworks include, but are not limited to: TraNS 

couples the open source SUMO traffic simulator with ns-2 [137, 141, 142, 150]; the 

Multiple Simulator Interlinking Environment for C2CC in VANETs (MSIECV) couples 

the commercial traffic simulator VISSIM and the ns-2 network simulator with 

Matlab/Simulink responsible for application level simulation [142, 150]; iTETRIS couples 

SUMO traffic simulator, and ns-3 network simulator – it is particularly suited for large-

scale simulation scenarios; veins couples SUMO with OMNeT++ network simulator  [6, 

8, 65-67, 149]; and Paramics & ns-2, which as the name indicates, couples the Paramics 

traffic simulator with the ns-2 network simulator. At the minimum, traffic, application, and 

communication/network simulator interactions/couplings are required for successful V2X 

communication using most V2X frameworks/infrastructure such as iTETRIS – this is also 

true with VSimRTI [6, 133, 134, 137, 142, 145, 148, 150]. 
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Figure 28: High-level VSimRTI architecture with coupled federates [151] [91] [81] [76] 

[77] [152]. 

 

Figure 29: Basic federates necessary for successful V2X simulation [151] [103] [152]. 
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Figure 30: Various types of simulation tools so far coupled to VSimRTI [153] [76] [77]. 

4.2 Simulation Input and Parameters 

We used the V2X simulation runtime infrastructure (VSimRTI) platform for the purposes 

of our study. The vehicle movements were carried out using the SUMO traffic simulator 

with its traffic control interface (TraCI) used to control the simulation at runtime. The 

SUMO vehicle movements were used as input to the VSimRTI cellular simulator – used 

for V2I communication, and the Java in simulation time/scalable wireless ad hoc network 

simulator (JiST/SWANS) – used for V2V communication; eWorld 

(http://eworld.sourceforge.net/) was used to generate slippery ice and fog events on our 

road network topology imported from OpenStreetMap (http://www.openstreetmap.org) – 

as shown in Figure 31, before subsequently feeding it into SUMO as inputs [33]. The 

VSimRTI cellular and network simulators are responsible for adding nodes, deleting nodes 
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(nodes that have reached their destination), or moving nodes around. V2I, and V2V/IVC 

determines their speeds, and routes in relation to different environmental conditions [6]. 

 

Figure 31: Importing our road network from OpenStreetMap. 

A more detailed exposition at the VSimRTI framework and its coupled 

federates/simulators requisite for successful V2X simulation thus ensues: 

4.2.1 Traffic Simulator (SUMO) 

We used the open source microscopic simulation for urban mobility (SUMO)1 traffic 

simulator as our traffic simulator. Some of its features include, but is not limited to: support 

for lane changing, overtaking, simulating vehicles individually, modeling of driver 

imperfections, collision-free vehicle movements, multi, and single-lane roadway support, 

                                                           
1 http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/ 
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etc. Road networks (streets/edges), and navigation routes were generated in SUMO using 

the netconvert.exe, and duarouter.exe tools [132]  [98] [142]. 

4.2.2 Network Simulator (JiST/SWANS) 

The Java in simulation time (JiST)2, a virtual machine based simulator, was used together 

with its scalable wireless ad hoc network simulator (SWANS) adjunct as our chosen 

network simulator. With JiST/SWANS, cooperative awareness messages (CAM) are used 

to identify nodes (vehicles, RSUs, or traffic lights) transmission timestamp, and position 

(latitude and longitude), speed, direction/heading, etc. In the same vein, decentralized 

environmental notification message (DENM) messages are used for event notifications that 

can trigger rerouting to all vehicles/nodes within its communication range via single-

hop/centralized (broadcast), or multi-hop/decentralized (ad hoc) communication [98]. 

Some of the features of the JiST/SWANS network/communication simulator includes, but 

is not limited to: specifications for transmission range, transmission power, bandwidth, 

receiver sensitivity, and geographic routing protocol, etc. A major advantage of the 

JiST/SWANS communication simulator is that it is highly scalable with increasing 

network size. Its network layer supports IPv4 and the transport layer supports both UDP, 

and TCP [154, 155] [156, 157] [142]. 

4.2.3 Network Simulator (VSimRTI Cellular Simulator) 

The built-in VSimRTI cellular simulator allows for the simulation of cell phone/cellular 

communication technologies such as universal mobile telecommunications system 

                                                           
2 http://vanet.info/jist-swans 
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(UMTS), and long term evolution (LTE), etc. Previously before now, it required exclusive 

usage i.e. it could not be used together with any other network simulator such as 

JiST/SWANS. However, with the latest release of VSimRTI (VSimRTI version 0.13.5), 

the VSimRTI cellular simulator can now be used to complement/supplement the network 

simulator [152]. In order to use the VSimRTI cellular simulator, the network, regions, and 

geoserver configuration files must be present [152]. Using the cellular simulator, 

metrics/parameters such as bandwidth (bits/sec), throughput (bits/sec), and packet delivery 

ratio (pdr), etc. can be configured/varied/modified [152] [158]. Besides modifying the 

application in order to use the cellular simulator, the scenario must also be altered [152] 

[158]. It also supports customized delays with respect to some special regions such as areas 

having a high population density or are susceptible to poor signal reception quality as a 

result of the difficult terrain [152]. Respecting the supported transmission/propagation 

modes, V2X messages can be transmitted/propagated via unicast (unidirected to a single 

node), broadcast (sent to every node), or geocast (sent to every node within a given region) 

[152]. Specifically, in our scenario, the decentralized environment notification message 

(DENM) from the cellular simulator is used to trigger rerouting using geocast 

communication i.e. only nodes/vehicles within the geocast radius/communication range 

(300m) receive and are expected to respond to reroute/change route directives [158] [152]. 

4.2.4 Application Simulator (VSimRTI_App) 

Using the application simulator/federate, applications can be implemented that  control 

nodes (vehicles, RSUs, and traffic lights) in a simulation [98] [145]. Specifically, we 

developed/implemented an application called incident warning application (IWA) with 
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code snippet/sample shown in Appendix A; vehicles running this application are able to 

use it to bypass identified traffic incidents with the propensity/proclivity of leading to 

traffic congestions, and other precarious driving conditions. This application can be 

configured to either support decentralized/vehicle-to-vehicle (V2V)/inter-vehicle 

communication (IVC) using the JiST/SWANS network/communication simulator, or 

centralized/vehicle-to-infrastructure (V2I) communication using the VSimRTI cellular 

simulator, but not both; our next task is to enable it to support both i.e. hybrid/vehicle-to-

vehicle-to-infrastructure (V2V2I) communication [142]. 

4.2.5 Event Simulator (eWorld) 

The eWorld framework allows for the importation of OpenStreetMap files – both online, 

and offline – on which environmental events such as traffic jams, presence of fogs, 

icy/slippery street, rains, road works/constructions, etc. can be incorporated into the map. 

The environmental events enriched map can subsequently be either exported to the SUMO 

traffic simulator as input, databases, or saved within eWorld’s file format. Other eWorld 

environmental events that can be added to the road networks include, but are not limited 

to: glazed frost, snow, ozone, smog, CO2, and temperature variations. Also, the duration of 

these events relative to the entire simulation runtime can also be configured. After adding 

environmental events to a map, eWorld can export it directly into SUMO specific file 

formats which consists of SUMO network, edge/street, node, route, event definitions, 

traffic light definitions, variable speed sign definitions, rerouter definitions, and 

configuration definition files. In addition, traffic lights, vehicle routes, and points of 

interests (PoIs) can be added and modified using eWorld. Besides, SUMO dump 
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files/simulation outputs/results can also be imported into eWorld in order to 

compute/analyze some simulation statistics/parameters such as total travel time, vehicular 

density, occupancy, and average speed, etc. Simulation results can also be visualized within 

eWorld with capabilities of high occupancy lane/street colorings, and width visualizations 

[142] [159]. Figure 32 shows a slipper and frozen ice event being added to our reference 

study area – Constitution Avenue NW using eWorld. 

 

 

Figure 32: Slippery ice event added to Constitution Avenue NW using eWorld. 

As shown in Table 3, the following major, but incomplete list of parameters were used in 

our simulation setup: communication range (300m), maximum node bandwidth 

(100Mbps), throughput (350Mbps), and Packet Delivery Ratio (PDR) – 1.0 [142] [137] 

[133], etc. Our simulation was run 21 times with the ratio of IWA-equipped vehicles in 

relation to IWA-unequipped/classic vehicles increased from 0% to 100% at 5% increments 
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for the entire duration of our simulation (7000 seconds). Also, the user datagram protocol 

(UDP), IEEE 802.11p, and network layer single-hop broadcasting – used for V2I 

communication – are some other simulation parameters/configurations/setups used. In 

addition, a total of 144 vehicles, representing the highest traffic volume recorded every 5 

minutes by the road-side detectors placed on our reference study area, were mostly 

prevalent during the morning (5 a.m. – 10 a.m.), and evening rush-hours (4 p.m. – 7 p.m.) 

on weekdays. For the purposes of our simulation, we selected the morning rush-hours 

traffic as our primary focus. In Chapter 3, Section 5.2, Tables 1 and 2 shows a partial view 

of our real-world traffic data with its records and attributes used in this study. 

Table 3: Some of the (a) media access control (MAC), and (b) physical (PHY) layer 

parameters used in our simulation [160] [147] [146] [89]. 

MAC Parameter Value 

PHY_Hdr_Length 8 µs 

basicBitrate 4 Mbps 

Bitrate 7 Mbps 

slotTime 17 µs 

cwMinBroadcast 16 

cwMinData 16 

 (a) 
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PHY Parameter Value 

carrierFrequency 5.9 GHz 

rxSensitivity -91 dbm 

rxThreshold -81 dbm 

txAntennagain 0 db 

antennaHeight 1.5 – 10.0 m 

txPower 15 dbm 

noisePower -95 dbm 

Maximum Node Bandwidth 100 Mbps 

Throughput 100 – 350 Mbps 

Minimal CAM/DENM Length 1500 bytes 

Other Parameters Value 

Simulation Duration 7000 seconds 

Simulation Area 77000 * 67000 meters 

Packet Delivery Ratio (PDR) 1.0 

Vehicle Number/Count 144 

   (b) 

4.3 Evaluation Scenarios 

In order to ascertain the traffic efficiency and safety benefits of V2V, and V2I 

communications, we developed the following scenarios as depicted in  

Figure 35: 
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Scenario 1: Here, we evaluated the traffic efficiency of V2V, and V2I communications. In 

order to do this, we simulated a road traffic incident on Constitution Avenue, which 

consists of a road accident, slippery road segment caused by ice, and reduced speed as a 

result of poor roadway visibility caused by fog as shown in Figure 33 (red line/route), and 

Figure 34. Unequipped (classic) vehicles suffer the consequences of the aforementioned 

incident, while our IWA-equipped vehicles bypass the incident through H. Street NW – 

Figure 33 (blue line/route) – because they positively responded to the change route 

directive received on getting to 9th Street. Our simulated vehicles emanated from John 

Hanson Hwy (source) to Dulles Toll Road (destination). The normal speed limit of 

Constitution Avenue, where an accident was simulated, is 50 km/h. Following the complete 

stoppage of vehicles for 40 minutes because of the road accident that blocked all 3 lanes, 

all affected vehicles later resumed their journey at a reduced speed of 20 km/h for another 

50 minutes because of the  perilous icy and slippery road condition coupled with low 

visibility deriving from the presence of fog until they completely traversed away from this 

affected street after traveling a distance of 82.32 meters [146]. Using the Handbook 

Emission Factors for Road Transport (HBEFA) version 3.1 database [60, 161], which is 

similar to the Passenger car and Heavy duty vehicle Emission Model (PHEM), we modeled 

the pollutant/emission levels of our simulation by coupling its database to our simulation 

with the SUMO traffic simulator [60, 132] – specifying the passenger and light 

duty/delivery category (HBEFA3/PC_G_EU4) as emission class. Besides passenger cars 

(PC), light commercial vehicles (LCV), and Heavy Duty Vehicles (HDV) are some other 

vehicle categories that can be modeled with HBEFA [60, 67, 132, 162-164]. The following 

six major pollutants were considered for the purposes of our study: CO2 (carbon dioxide), 
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CO (carbon monoxide), HC – hydrocarbons (consisting of CH4 [methane], NMHC [non-

methane hydrocarbons], benzene, toluene, and xylene), NOx – Nitrogen oxides (consisting 

of NO2 [nitrogen dioxide], NO [nitrogen monoxide]), PMx (particulate matters/particulate 

mass value), and fuel consumption (FC) [132, 161, 164, 165]. 

Scenario 2: Here, we determine the safety rate of V2V, and V2I communications by 

computing the ratio of all IWA-equipped vehicles, which actually rerouted against all 

vehicles that received the reroute/change route directive. Consequently, if all IWA-

equipped vehicles that received the reroute directive to evade the deleterious road incident 

on Constitutional Avenue NW actually rerouted, we have a 100% safety rate and vice 

versa. 
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Figure 33: Congested route (red line) taken by classic/IWA-unequipped vehicles, and 

alternative route (blue line) taken by IWA-equipped vehicles in order to circumnavigate 

the congested route [152]. 
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Figure 34: Real-world view of traffic congestions experienced on Constitutional Avenue 

NW during typical rush-hours traffic on Google Map. 
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Figure 35: Connected vehicles simulation workflow [76] [166]. 
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5. Evaluation Results and Discussion 

In this section, we present and compare the results of our realistic simulation studies using 

two popular vehicular ad hoc network (VANET)/intelligent transportation system (ITS) 

architectures – vehicle-to-infrastructure (V2I), and vehicle-to-vehicle (V2V)/inter-vehicle 

communication (IVC). In this section, respecting traffic efficiency, the suffixes _app, 

_noapp, and _ref in Figure 36 refers to vehicles equipped with our developed IWA (_app), 

IWA-unequipped (classic) vehicles (_noapp), and reference vehicle performances (_ref) 

with no simulated incident on Constitution Avenue NW. Similarly, respecting safety, we 

denoted IWA-equipped vehicles that rerouted with (rerouted_yes), and those that did not 

reroute with (rerouted_no) in response to the change route directive; the sum of both 

vehicles is represented with (total). 

5.1 Vehicle-to-Infrastructure (V2I) Communication for Safety and Traffic 

Efficiency 

Figure 37 shows a visualization of our simulation results in the VSimRTI integrated test 

and evaluation framework (ITEF) using vehicle-to-infrastructure (V2I) communication at 

100% IWA-enabled ratio [152]. Respecting V2I communication, Figure 36 [a – d] shows 

the result of our traffic efficiency evaluation, while Figure 36 [e – f] shows the result of 

our traffic safety evaluation. Generally speaking, and in corroboration with existing 

studies, we found that V2I communication has the effect of improving safety and traffic 
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efficiency and the number of rerouted vehicles is also almost directly proportional to the 

ratio of IWA-equipped vehicles emitted. 

In particular, respecting traffic efficiency in Figure 36 [a – d], our results show that on the 

one hand, the following average highest benefit was obtained at 100% IWA-enabled rate 

as a result of V2I communication: travel time [TT]: (139.89%) – 2311.4 seconds, average 

speed (58.51%) – 62.04 km/h, CO (2.20%) – 3.01g/m, CO2 (11.7%) – 0.79g/km, NOx 

(4.68%) – 0.69g, HC (23.71%) – 0.52g, and fuel consumed (11.77%) – 0.31 liters. On the 

other hand, the following losses were recorded at the same 100% IWA-enabled rate: PMx 

(0.99%) – 6.36mg, and travel distance (0.49%) – 240.58 meters. 

In the worst case scenario (i.e. at 95% IWA-enabled rate), the following benefits were still 

obtained: travel time [TT]: (115.87%) – 1915.4 seconds, average speed (53.90%) – 

57.13km/h, CO (0.33%) – 0.45g/m, CO2 (8.45%) – 0.56g/km, NOx (2.47%) – 0.36g, HC 

(18.14%) – 0.4g, and fuel consumed (8.45%) – 0.22 liters. Similarly, the following losses 

were recorded at the same 95% IWA-enabled rate: travel distance (0.49%) – 240.58 meters, 

and PMx (2.44%) – 15.62mg. 

 

With respect to safety, Figure 36 [e – f], at 50% IWA-enabled rate for example, out of the 

72 emitted IWA-equipped vehicles, all 72 (100%) rerouted and thereby avoided the traffic 

incident detected on Constitution Avenue. 

Overall, because almost all IWA-equipped vehicles that received the change route request 

actually heeded it (except at 65% IWA-enabled ratio and above where only one vehicle 

each failed to reroute in subsequent simulation steps as shown in  Figure 38, V2I 
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communication resulted in 100% safety performance below 65% IWA-enabled rate. 

Nonetheless, it is worthy to note that, overall, V2I communication can provide 98.9% and 

above safety performance, which is commendable, although it still cannot be reliably used 

for safety/life-critical scenarios at 65% IWA rates and above where 100% performance is 

still mandated.
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Figure 36: Performance of some evaluated metrics in relation to increasing IWA-enabled ratio. 
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Figure 37: Visualizing our simulation in the VSimRTI ITEF using V2I communication on 

Google Map [152]. 

Figure 38 shows a single congested vehicle on Constitution Avenue NW at 100% IWA-

enabled ratio that failed to heed the change route request/reroute directive using V2I 



126 

 

 

 

communication.

 

Figure 38: One congested vehicle on Constitution Avenue NW using V2I Communication 

[152]. 

Figure 39 shows the average speed performance at 100% IWA-enabled vehicles while 

employing V2I communication [152]. 
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Figure 39: Travel Speed against time of 100% IWA-enabled vehicles using V2I 

communication [152]. 

5.2 Vehicle-to-Vehicle (V2V) Communication for Safety and Traffic Efficiency 

Figure 41 shows a visualization of our simulation results in the VSimRTI integrated test 

and evaluation framework (ITEF) using vehicle-to-vehicle (V2V)/inter-vehicle 

communication (IVC) [152]. The overall average best case safety, and traffic efficiency 

performances of V2V communication were recorded at 5% incident warning application 

(IWA)-equipped vehicles ratio/penetration rate as shown in Figure 40 [a – d]. Conversely, 

the mean worst-case safety, and traffic efficiency performances were recorded at 35% 

IWA-equipped vehicles enabled ratio.       Specifically, with respect to safety (Figure 40 [e 

– f]), all vehicles running our IWA made use of them to reroute away from the congested 
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route and this was observed at between 5% to 10% IWA-penetration rates; hence a 100% 

safety performance was recorded. The worst-case safety performance was recorded at 35% 

IWA penetration rates because only 28 out of a total of 51 IWA-equipped vehicles actually 

made use of it to avoid the precarious combination of road accident, icy streets, and fog; as 

a result, only about 54.9% safety level was attained. Consequently, our results show that 

the use of V2V communication is not desirable in disseminating safety-related/critical 

messages where 100% accuracy is demanded with little or no tolerance for errors – 

especially above 5 – 10% IWA enabled ratio. 

Besides, with respect to traffic efficiency (Figure 40 [a – d]), our results show that on the 

one hand, the following average best case improvements were obtained at the most optimal 

enabled ratio of 5% incident warning application (IWA)-equipped vehicles as a result of 

V2V communication: travel time [TT]: (126.78%) – 2078.8 seconds, average speed 

(56.12%) – 59.94 km/h, CO2 (8.05%) – 0.54 g/km, NOx (2.12%) – 0.31g, HC (16.86%) – 

0.7g, fuel consumed (8.05%) – 0.21 liters. Fuel consumption and CO2 emission levels gave 

the same performance result [141] [140]. On the other hand, the following losses were 

recorded/incurred by exacerbating/aggravating the evaluated performance metrics as a 

result of V2V communication at the same 5% IWA-equipped vehicles penetration rate: 

travel distance [TD]: (0.49%) – 242.26 meters, CO (0.61%) – 0.84g, and PMx (2.22%) – 

17.02mg. Whereas our IWA-equipped vehicles took a longer route in order to avoid this 

congested scenario as evidenced by their longer travel distances, their travel time (TT) is 

quite optimal. Obviously, an inverse relationship exists between average travel speed and 

average travel time. 
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Similarly, at 35% IWA-equipped vehicle enabled ratio, on the one hand, the following 

average worst-case improvements were recorded: trip/travel time [TT]: (44.14%) – 

1123.43 seconds, average speed (30.81%) – 21.2 km/h, CO2 (2.8%) – 0.2g/km, and HC 

(6.88%) – 168.92mg. On the other hand, the following average losses were recorded: travel 

distance [TD]: (0.27%) – 133 meters, PMx (3.27%) – 21.3mg, CO (1.68%) – 2.35g, and 

NOx (0.3%) – 47.36mg. Classic/unequipped vehicles travelled at an average speed of 47.52 

km/h from source to destination while IWA supported/equipped vehicles maintained an 

average speed of (81.36 km/h). Consequently, because non-equipped/classic vehicles 

travelled at lower and less uniform speeds owing to congestion, more fuel was utilized than 

with IWA supported vehicles. 
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Figure 40: Performance of some evaluated metrics in relation to increasing IWA-enabled ratio. 
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Figure 41: Visualizing our simulation in the VSimRTI ITEF using V2V communication on 

Google Map [152]. 

Figure 42 shows some congested vehicles on Constitution Avenue NW at 100% IWA-

enabled ratio that failed to heed the change route/reroute request using V2V 

communication. 
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Figure 42: Congested vehicles on Constitution Avenue NW using V2V Communication 

[152]. 

Figure 43 shows the average speed performance at 100% IWA-enabled vehicles while 

employing V2V communication [152]. 
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Figure 43: Travel speed against time of 100% IWA-enabled vehicles using V2V 

communication with respect to some evaluated metrics [152]. 

The overall poor performance (with respect to the evaluated metrics) of V2V 

communication is attributable to the fact that not all IWA-equipped vehicles that received 

the reroute directive actually heeded them. Possible reasons why these reroute/change route 

directives were not heeded by IWA equipped vehicles could be because they got the 

message a little bit too late in order to enable them to utilize it to bypass the incident on 

time before it became too late. It is also evident that as the penetration rate of IWA 

equipped/V2X vehicles increase, the number of vehicles that responded to the change route 

request to reroute also increased. This is true because unlike V2I communication which is 

primarily single-hop communication, V2V communication relies on multi-hop 
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communication with leading vehicles transmitting messages such as road 

conditions/congested states to trailing or following vehicles. In a situation where more 

classic vehicles outnumber V2X vehicles, these safety-critical messages may stop midway 

as there are not enough relays/equipped vehicles that can convey these messages beyond 

their communication range. This is one reason why safety-critical messages are best 

disseminated via single-hop (V2I communication) rather than multi-hop (V2V 

communication) [12]. Also, because of high V2X message exchanges, especially at high 

IWA-equipped vehicles enabled ratio and increased travel speeds (especially in a highway 

scenario), packet/message collisions can result in packet/message drops, corruption, and/or 

delays sequel to bandwidth saturation, etc. It is also noteworthy that another possible reason 

why V2V communication did not perform better as expected could be because of man-

made, and natural interferences. Man-made interferences such as presence of obstacles, 

high-rise buildings, etc. and natural interferences such as fogs, heavy rains, tornadoes, etc., 

diminish the efficiency, and effectiveness/accuracy of V2V communications. This is 

especially true because V2V communication simulations performed on highway scenarios 

tend to produce more effective and predictable results than those done in other rural/city 

scenarios because of the frequent interferences from high-rise buildings and other obstacles 

that limit/interfere with the V2V multi-hop communication path. This is why, often times, 

V2V communication is complemented with V2I communication as a hybrid – hence the 

name V2X/V2V2I communication [8]. Besides rerouting vehicles away from the primary 

roadway to the secondary/alternative one in order to avoid congestion, our IWA-equipped 

vehicles also have prior knowledge of the congested states of these alternative/secondary 
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routes such that vehicles are not blindly rerouted from one congested roadway to another 

– this is true when using V2V communication, but not V2I communication [13] [5]. 

5.3 V2V versus V2I Communications: A Comparison 

Respecting traffic efficiency (Figure 44 [a – d]), the following best case performance of 

V2I communication over V2V communication was obtained at 35% IWA penetration 

rate/enabled ratio with the following improvements: travel time [TT]: (55.2%) – 15.08 

minutes, average speed (35.1%) – 38.16km/h, PMx (1.93%) – 0.01g, CO (2.78%) – 0.003 

g/km, CO2 (6.1%) – 0.41g/km, NOx (3.68%) – 0.54g, HC (10.66%) – 0.23g, and fuel 

consumed (6.1%) – 0.16 liters. On the other hand, the following loss was observed with 

respect to V2I communication: travel distance (0.22%) – 0.1 meters. 

In the worst case, the following improvements/benefits of V2I communication over V2V 

communication were still recorded at 10% IWA-equipped vehicles: travel time [TT]: 

(0.0081%) – 0.0022 minutes, speed (0.0081%) – 0.0086km/h, PMx (0.46%) – 0.0029g, 

CO (0.5%) – 0.00068g/km, CO2 (0.4%) – 0.026g/km, NOx (0.42%) – 0.064g, HC (0.46%) 

– 0.01g, and fuel (0.4%) – 0.01 liters. 

With respect to safety (Figure 44 [e – f]), both V2V and V2I communication were equal 

with each having a 100% safety rate at 10% IWA-equipped vehicles. In the same vein, a 

45.09% V2I communication average best case safety benefit over V2V communication 

was obtained at the best IWA-equipped vehicles ratio of 35%. This is so because at 35% 

IWA-equipped vehicles, only 23 V2V out of a total of 51 V2Vss vehicles rerouted in 

response to the reroute directive. In other words, at 35% IWA-equipped vehicles ratio, all 
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equipped vehicles heeded the change route/reroute directive using V2I communication, but 

not all equipped vehicles did same using V2V communication. 

 

 

 

 

 

 

 

 

 

Figure 44: Performance of some evaluated metrics in relation to increasing IWA-enabled ratio.  
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Overall, with respect to travel time and other evaluated performance metrics, V2I 

communication, surprisingly outperformed V2V communication because it showed more 

resilience to both external/natural, and man-made interferences resulting in better traffic 

efficiency, and safety performances. 

These benefits are attributable to the fact that IWA-equipped vehicles avoided the traffic 

incident and spent less time on the roads before reaching their final destination (Dulles Toll 

Road) although at a greater travel distance. Consequently, the classic vehicles travelled, on 

the average, at below half (48 km/h) the average speed of IWA-equipped vehicles (106 

km/h). Besides, as aforesaid/alluded to, the following factors affect the amount of power 

utilized/the fuel consumption levels of vehicles in transit: air speed, vehicle mass, vehicle 

speed, grading of the roadway, and the level of resistance experienced by a vehicle (e.g. 

aerodynamic resistance, grade resistance, and rolling resistance), etc. [62]. Another 

plausible reason why V2I communication performed as well as it did could also be as a 

result of the fact that it uses broadcast or single-hop communication to inform equipped 

vehicles of the traffic incident that triggered rerouting. In other words, IWA-equipped 

vehicles received the reroute directive within an activation distance of 300m, which was 

sufficient enough for them to make the timely decision to bypass the traffic incident on 

Constitution Avenue NW. Also, in most research literature/studies, it has been severally 

noted that safety/life-critical messages are best disseminated using 

V2I/centralized/broadcast/single-hop communication over V2V/decentralized/ad 

hoc/multi-hop communication because of the susceptibility of the later to external 
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interferences (natural/man-made) together with the negative effects of message 

propagation via flooding/multi-hop communication. Evidently, external interferences 

(natural and/or man-made) such as rainfall, high-rise buildings, and other obstacles showed 

little or no adverse effects on V2I communication compared to V2V communication. 

Nevertheless, in a realistic scenario, however, not all vehicle drivers that receive a 

reroute/change route directive actually respond to it. This can be due to several factors such 

as the efficiency and effectiveness of the notification mode, driver agility/attentiveness 

while driving, together with other internal and external factors, etc. [167]. 

As aforesaid, the centralized storage of traffic information in an infrastructure-based 

probing approach/method/scenario results in more timely and accurate information 

exchange to vehicles; however, the timeliness and accuracy of the infrastructure-

less/decentralized probing method/approach is diminished because of the delay/time taken 

to disseminate such information to other vehicles using single, and/or multi-hop 

communication/propagation [8]. In other words, information dissemination delay is present 

in the decentralized approach, but not in the centralized approach – as all the vehicles need 

to do is to access it from one central location [8]. Besides, on the one hand, using vehicle-

to-vehicle (V2V) communication is more cost effective than using vehicle-to-infrastructure 

(V2I) communication because it eliminates the need for additional infrastructure costs 

[168] [82]. On the other hand, infrastructure-based/centralized routing results in an increase 

in average trip time when compared to the decentralized approach because of its limited 

road monitoring coverage and its inflexibility [8]. In other words, accurate traffic 
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volume/density information depends on the time and location; the accuracy of information 

obtained from a roadway depends on the number of road-side units (RSUs)/detectors and 

their even distribution [36]. Decentralized/probe-vehicle based dissemination improves 

(decreases) average trip time because of route flexibility and more information being 

available where traditional RSUs have not yet been installed using V2V or IVC  [8] [12]. 

The efficiency (travel time benefit) of V2I communication diminishes when all vehicles 

heed the alternative path/route it suggests because of the lack of the knowledge of the 

congested state of the alternative routes owing to V2I communication – this is typical of 

traditional/conventional centralized traffic management approaches [82]. However, unlike 

V2I communication, V2V communication has foreknowledge on the congested 

situation/condition of alternative routes. Its accuracy is heightened when lower speeds, 

rather than the conventional travel time method is used for congestion 

determination/prediction [82]. Also, in general, lower CO2 emissions and fuel consumption 

levels are used by IWA-equipped vehicles that avoided the road traffic congestion on 

Constitution Avenue NW. Also, the results produced by both metrics are 

synonymous/similar [82]. 

However, contrary to our results, some authors assert that V2V communication 

outperformed V2I communication with respect to traffic efficiency and safety by rerouting 

vehicles better [168] [82]. For example, Leontiadis, et al. [8], asserts that decentralized 

traffic flow management showed better realistic performance in congestion 

avoidance/management than the traditional ones (centralized), where RSUs are used to 
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collect data to a central traffic management center before dissemination to vehicles that 

need it to efficiently avoid routing through congested roadways [8]. The overhead in the 

exchange of information between vehicles and telecommunication equipment is also 

reduced by the decentralized approach [8]. 

This seemingly contrary result goes to show that the effectiveness of the communication 

mode chosen is largely influenced by the type of roadway in question, together with other 

external/environmental influences (man-made, and/or natural); and not 

necessarily/essentially the communication mode chosen. 

6. Remarks 

In chapter/section, we addressed the issue of evaluating the safety and traffic efficiency 

applications of ITS using real-world dataset. We developed a test-bed based on our real-

world traffic trace data and simulated a traffic incident. Our evaluation results have 

conclusively shown that significant benefits can be derivable using V2V communication, 

and V2I communication in a realistic environment. 

Specifically, using V2I communication – with respect to some of our evaluated metrics – 

our results gave: 139.89%, 2.2%, 11.7%, 23.71%, 4.68%, 58.51%, and 11.7% 

improvements in travel time (TT), CO, CO2, HC, NOx, average speed, and fuel 

consumption at 100% IWA-equipped ratio. In addition, with respect to safety, our data also 

showed that below 65% IWA-enabled ratio, 100% safety performance was observed. Our 

results clearly demonstrated that tangible improvements, especially with respect to traffic 
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efficiency and safety, were obtained using V2I communication in our realistic simulation 

test bed. 

Similarly, using V2V communication – with respect to some of our evaluated metrics – 

our results gave: 126.78%, 8.05%, 16.86 %, 2.12 %, 56.12 %, and 8.05% improvements in 

travel time (TT), CO2, HC, NOx, average speed, and fuel consumption at 5% IWA-

equipped ratio. In addition, with respect to safety, our data also showed that at between 5% 

– 10% IWA-enabled ratio, our best case safety performance of 100% safety performance 

was observed. Our results clearly demonstrated that tangible improvements, especially 

with respect to traffic efficiency and safety, were obtained using V2V communication in 

our realistic simulation test bed. 

Finally, comparing the performance of V2V communication with V2I communication, our 

results show that V2I communication outperformed V2V communication respecting the 

evaluation metrics of safety, and traffic efficiency. Specifically, with respect to some of 

our evaluated metrics, V2I communication showed the following improvements over V2V 

communication: 55.2%, 2.78%, 6.1%, 10.66%, 3.68%, 5.1%, and 6.1% improvements in 

travel time (TT), CO, CO2, HC, NOx, average speed, and fuel consumption. With respect 

to safety, both V2V and V2I communication were equal with each having a 100% safety 

rate at between 5% – 10% IWA equipped vehicles. In the same vein, a 45.09% V2I 

communication average best case safety benefit over V2V communication was obtained at 

35% IWA enabled ratio because only 23 V2V out of a total of 51 V2I vehicles rerouted in 

response to the reroute directive. Our results clearly demonstrated that tangible 
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improvements, especially with respect to traffic efficiency and safety, were obtained using 

V2I communication over V2V communication in our realistic simulation test bed. 

Summarily, our results concur with existing studies that assert that safety-critical messages 

are best disseminated using single-hop communication especially in a complex, 

heterogeneous driving environment having a mixture of classic and V2X vehicles in equal 

or unequal proportions. As evidently shown by the results, V2X communication, indeed, 

results in improved safety, and traffic efficiency; however, these improvements are mostly 

dependent on factors which can be man-made (internal), natural (external), or a 

combination of both. Overall, as the penetration rate/volume of the incident warning 

application (IWA) equipped vehicles increase, performance with respect to travel time 

(TT), safety, and other performance metrics also increase [13] [140, 141]. Besides, our 

results quantitatively identifies the advantages and disadvantages of the various evaluated 

VANET routing architectures with respect to their emission levels/pollution levels, gas and 

fuel utilization levels and their overall impact on the environment. Based on our results, 

recommendations for ensuring greener transportation can also be ascertained/proffered 

respecting the type of VANET architecture chosen; surprisingly, however, V2I 

communication performed better than V2V communication with respect to all evaluated 

performance metrics  contrary to the results/assertions of some authors [8, 9, 41, 52] [12, 

53]. 

. 
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Chapter 5 

Realistic Traffic Pattern Prediction in Intelligent Transportation System (ITS) 

1. Overview 

As the saying goes, accurate and timely knowledge is power; this is especially true in real-

time/dynamic, and adaptive congestion amelioration/avoidance in intelligent transportation 

system (ITS) leading to improved traffic flow management. Besides, the past is a good 

predictor of the future as traffic patterns normally follow a predictable pattern with respect 

to time of day, and day of week. Consequently, in this chapter/section, we evaluated the 

predictive accuracy, and prediction speed of several supervised machine learning 

algorithms (thirteen regression, and twelve classification) respecting traffic volume, and 

average speed – towards congestion identification – using six weeks real-world traffic data 

from August 1st, 2012 to September 12th, 2012 in the Maryland/Washington DC, and 

Virginia area. Our entire dataset consists of six months traffic data pattern from July 2012 

to December 2012, of which 6 weeks was used as a representative sample for the purposes 

of this study on our reference roadway – I-270 [8, 45, 169]. 

With respect to regression, regression tree (Rtree) gave the best predictive accuracy with a 

root mean-square error (RMSE) of 0.38, and the best prediction speed of 0.15 seconds 

amongst all the evaluated regression algorithms. Similarly, with respect to classification, 

classification tree (Ctree) gave the best predictive accuracy with an RMSE of zero (0), and 

prediction speed/time/efficiency of 0.34 seconds. It is pertinent to note that variations exist 
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respecting prediction accuracy, and prediction speed; hence, a tradeoff is often necessary 

respecting the priority/criticality of the application area/domain in question. It is also 

imperative to note from the outset that, algorithm design and calibration are important 

factors in determining their effectiveness. 

2. Motivation 

Prior knowledge of future traffic patterns immensely aid in congestion 

prevention/avoidance, and control resulting in better traffic flow management, and less 

negative environmental impacts [9]. This is true because past and current traffic data are 

used to attempt to predict future traffic patterns [4, 8, 45]. Traffic congestion conditions 

can be caused by a variety of factors, including natural incidents (e.g., fogs/poor visibility, 

rainstorms, adverse weather conditions, etc.), and man-made incidents (e.g., accidents, 

drivers behavior, road works/constructions, presence of tolls, etc.), or a combination of 

both [11, 34, 53]. Traffic volume/congestion levels vary with time (time-variant), and day 

of week (weekdays vs. weekends) as a road that is congested at 9 a.m. may become free an 

hour or so later and vice versa [4]; hence they are analyzed differently [11] [5]. Traffic 

volume/density, not only, depends on the time, but also on the location/roadway in question 

[36]. Higher traffic volumes/densities are mostly recorded during morning and evening 

rush hours e.g. 8 a.m.  – 10 a.m., and 4 p.m. – 7 p.m. [14, 53, 64]. Traffic volume patterns 

also depends on the type of roadway in question because of the differences in traffic 

volume, roadway capacity, number of intersections, speed limits, number of red/traffic 

lights, etc. between arterial/rural and freeway/highway traffic patterns – as variations exists 
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in the results observed in both types of roadways [8, 54]. Real-time/dynamic, and adaptive 

travel time estimation has also been expressed by many drivers as needed; this is because 

knowing the real-time current traffic condition(s) greatly influences the drivers choice of 

route(s), and departure times [37]. Historical/current travel times obtained from traditional 

road-side units (RSUs), automatic vehicle identification (AVI) systems, cell phones, and 

other smart mobile devices, etc. are some of the existing methods of predicting travel times; 

these methods of travel time prediction become quite unreliable especially in the presence 

of congestions/traffic incidents [37]. 

Spatio-temporal data analysis is important for online/dynamic traffic density and 

congestion estimations, etc. because of the constantly changing nature of traffic patterns, 

thereby making static traffic data analysis ineffective especially in ensuring safety, 

efficiency, and effectiveness in intelligent transportation system (ITS) [12, 13]. Vehicle 

occupancy volume patterns also varies by time of day with morning patterns having more 

consistent volumes (when many people are on their way to work) than at any other time 

(afternoons, or returning from work in the evenings) [64] – this statement also corroborates 

with our preliminary results. 

Variations in vehicle travel times – especially more than 10km/h below the official speed 

limit, and/or for more than 15 consecutive minutes – are very good indications of the 

presence of congestion [11] [45] [37]. Besides, congestion is also determined by 

comparing/dividing the actual average speed of individual vehicles plying a roadway on a 

given time of day with the maximum speed limit of the same roadway. The closer this 
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division is greater than or equal to one (1), the lower the propensity to congestion and vice 

versa [4-6, 8, 170]. Congested road points also have high traffic volumes that 

influence/tend to lead to the congestion of neighboring road points and vice versa. Without 

efficient routing, roads closer to a congested road point are more influenced/impacted 

by/prone to congestion than other roads further from it [4, 8]. 

As previously stated/alluded to, accurate knowledge of the current traffic condition/pattern 

is invaluable in congestion avoidance and amelioration. Consequently, in this 

chapter/section, we evaluated the prediction accuracy, and speed of several machine 

learning algorithms using our real-world traffic data under varying heterogeneous traffic 

conditions. In more details, we also: 

 Evaluated the efficiency, and effectiveness of a taxonomy of thirteen regression, 

and twelve classification supervised machine learning algorithms respecting full day traffic 

volume pattern prognosis/forecast. 

 Identified the effect of variation of forecasting window on the prediction accuracy 

of algorithms. 

 Determined the relationship (if any) between congestions, time of day, model fitting 

time/speed, prediction speed, and prediction accuracy of algorithms. 

Our results provide reliable forecasts/prognosis of future traffic volume patterns, and of the 

presence/absence of congestions for reliable decision making – especially with respect to 

real-time safety/life-critical scenarios. To the best of our knowledge, using our unique field 

data, our work is the first to evaluate the prediction accuracy, and efficiency of a 
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gamut/plethora/taxonomy of supervised machine learning algorithms (both classification, 

and regression) respecting time-variant traffic patterns in a heterogeneous driving 

environment in the same work. This is true because all our evaluated/reviewed 

literature/related works examined only at most three or four algorithms largely because of 

the difficulty in writing, and recalibrating/fine-tuning these algorithms to ensure optimum 

performance results.  Besides, a by-product of our research is the evaluation of different 

machine learning models/methods/algorithms with the aim of determining which one is 

best suited to more efficient, and accurate traffic pattern prediction and why. Consequently, 

our results can be directly used by transportation authorities/agencies, and other concerned 

stakeholders road users/operators, and traffic engineers/personnel’s, etc. as a reliable 

reference guide/manual to more fully understand the most efficient, and effective 

supervised classification, and regression machine learning algorithm in a realistic scenario 

especially respecting real-time safety/life-critical applications that have little or no 

tolerance for errors/mistakes. 

In brief, our results show that with respect to accurate traffic volume pattern prediction 

(regression), regression tree (Rtree) gave the best performance respecting prediction speed, 

and prediction accuracy. Similarly, classification tree (Ctree) gave the best prediction 

accuracy and prediction speed with respect to identifying the presence/absence of 

congestions (classification) on our reference highway. 

The rest of this chapter is organized as follows: Section 3 presents some background 

material and some of the latest research work in our domain respecting the importance, 
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requirements, and challenges of accurate, and timely traffic condition prediction/prognosis, 

and Section 4 introduces the various evaluated regression and classification algorithms in 

detail. Section 5 presents our experimental setup, and Section 6 examines and elaborates 

on the results of our empirical/experimental evaluation. Finally, Section 7 summarizes our 

major findings based on our evaluation results. 

3. Background 

In this section, we provide some background material respecting traffic patterns, review 

some of the existing, and most prominent research efforts that have examined the need for 

reliable traffic pattern predictions/forecasting towards congestion amelioration in order to 

foster better traffic flow management in ITS. 

As aforesaid/alluded to, prior knowledge of future traffic patterns immensely aid in 

congestion prevention/avoidance, and control resulting in better traffic flow management, 

and less negative environmental impacts [9]. Traffic congestion conditions can be caused 

by a variety of factors, including natural incidents (e.g., fogs/poor visibility, rainstorms, 

adverse weather conditions, etc.), and man-made incidents (e.g., accidents, drivers 

behavior, road works/constructions, presence of tolls, etc.), or a combination of both [11, 

34, 53]. Traffic volume/congestion levels vary with time (time-variant), and day of week 

(weekdays vs. weekends) as a road that is congested at 9 a.m. may become free an hour or 

so later and vice versa [4]; hence they are analyzed differently [11] [5] as shown in Figure 

45 and Figure 46. Traffic volume/density, not only, depends on the time, but also on the 

location/roadway in question [36]. Higher traffic volumes/densities are mostly recorded 
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during morning and evening rush hours e.g. 8 – 10 a.m., and 4 – 7 p.m. [14, 53, 64]. Traffic 

volume patterns is contingent on the type of roadway in question because of the differences 

in traffic volume, roadway capacity, number of intersections, speed limits, number of 

red/traffic lights, etc. between arterial and freeway traffic patterns – as variations exists in 

the results observed in both types of roadways [8, 54]. 

 

Figure 45: Variations of traffic volume with time on I-270. 
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Figure 46: Real-world view of time-variant traffic patterns on I-270. 

Past and current traffic data are used to attempt to predict the future traffic patterns [4, 8, 

45]. Using an unsupervised technique in cluster analysis, the online nearest neighbor 

clustering (NNC) algorithm evaluated by Linda and Manic can dynamically identify 

current, and predict future traffic density areas [13]. Spatio-temporal data analysis is 

important for online/dynamic traffic density and congestion estimations, etc. because of 

the constantly changing nature of traffic patterns, thereby making static traffic data analysis 

ineffective especially in ensuring safety, traffic efficiency, and effectiveness in ITS [12, 

13]. Vehicle occupancy volume patterns also varies by time of day with morning patterns 

having more consistent volumes (when people are on their way to work) than at any other 

time (afternoons, or returning from work in the evenings) [64]. This statement corroborates 
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with our preliminary results as shown in Figure 47. According to Junping et al. [171], 

combining data from multiple detector sources complement one another thereby ensuring 

that better quality traffic data is generated for effective analysis [171]. 

 

 

Figure 47: Variation of vehicle occupancy with time more data recorded in the mornings 

than at any other times on our reference roadway – I-270. 

Variations in vehicle travel times – especially more than 10km/h below the official speed 

limit , and/or more than 15 consecutive minutes – are very good indications of the presence 

of congestion [11] [45] [37]. Besides, traffic speed, occupancy, and flow (rates) are mostly 

used to determine traffic conditions/patterns relative to congestions [171]. Figure 48 shows 

a scenario were the actual speed of vehicles falls below the default speed limit form more 

than 15 consecutive minutes on I-270; this is indicative of possible road traffic 
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congestion/incident. Besides, congestion is also determined by comparing/dividing the 

actual average speed limit/travel time of a given roadway with the maximum speed 

limit/travel time of individual vehicles plying that road. The closer this division is greater 

than or equal to 1, the less the propensity to congestion and vice versa [4-6, 8, 170]. As a 

general rule, congested road points have high traffic volumes that influence/tend to lead to 

the congestion of neighboring road points and vice versa as shown in Figure 45. As a result, 

without efficient routing, roads closer to a congested road point are more 

influenced/impacted by/prone to congestion than roads further from it [4, 8]. 

 

Figure 48: Actual vehicle speeds falling below the default speed limit – indicative of 

possible congestion on I-270. 
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some type of equipment/device failure, etc.), historical information is used instead [8]. The 

performance (with respect to trip time) of traditional static sensors (video cameras, 

induction loops, etc.) and distributed VANETs – where each vehicle serves as a node and 

dynamically routes traffic based on the information exchanged (speed/velocity, travel time, 

and location/position)  to, and from other vehicles – was evaluated by Leontiadis et al. [8] 

in both real-world and simulation environments with the later performing better. They also 

discovered that having 10% or more of misbehaving/faulty nodes is required to negatively 

affect (increase) the average trip time as a result of erroneous computations [8]. Besides, 

traditional road-side units (RSUs)/sensors tend to over-count/overestimate vehicular traffic 

volumes (by counting traffic flow in other adjacent/neighboring lanes), and/or under-

count/underestimate such by less than 10% – leading to erroneous traffic volume 

counts/computations [64]. 

Smart/Cell phones provide a complementary, and less expensive source of traffic volume 

information separate from the traditional road side sensors (RSUs) e.g. induction loops, 

video cameras, etc. because traditional RSUs have coverage limitations especially when 

you consider less busy, and rural roadways [64]. However, used alone, cell phone probe 

vehicle traffic volume data is insufficient for real-time traffic volume estimation, for e.g. 

in emergency incident response scenarios, but can be used in conjunction with existing 

traditional means [64]. Although they produce inconsistent/incomplete data because not all 

drivers carry/use, or leave their cell phones on while driving, they can, however, 

complement other data sourcing techniques as one more avenue for multi-data 
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sourcing/collection [171]. This is true because traditional RSUs like loop detectors have 

high installation and maintenance costs associated with them [171]. 

In order to obtain more representative, and accurate results, traffic volume measurement 

intervals/time has been found to be most effective when set between 5 – 15 minutes. 

Erroneous results/fluctuations in traffic volume patterns are introduced when traffic 

volume is sampled/measured above, or below this range/interval [64] [4] [45] [11] [54]. 

Also, 5 – 6 days of repeated/same day historical traffic data proved optimal for a more 

accurate prediction; reducing this number introduced errors in aggregation, and increasing 

it did affect the results obtained [45]. It is noteworthy that the forecasting window is 

inversely proportional to the prediction accuracy of the algorithm i.e. as the forecasting 

window increases, the prediction accuracy decreases and vice versa [45]. Besides, other 

studies have segmented daily traffic volume patterns into different categories of varying 

weekday times (peak and non-peak), and non-weekday/weekend times (morning, 

afternoon, and evening) as an aid to efficient, and effective analysis [5]. 

Travel time prediction is a very popular metric for ascertaining the prediction accuracy of 

several artificial intelligence (AI) algorithms. Consequently, using Artificial Neural 

Networks (ANNs) and Support Vector Regression (SVR), Yongchang et al. evaluated the 

travel time prediction accuracy of these AI schemes given the current travel time, flow and 

density of vehicles equipped with vehicle infrastructure integration (VII) [37]. The study 

area consist of a total of about 11 miles of freeway traffic with the highest traffic volume 

patterns observed between 4:30 p.m. and 6:30 p.m. [37]. Specifically, traffic values, queue 
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length, and travel time are inputs to the simulation setup that was used to generate a total 

of 4 weeks traffic data used as training (two weeks), and test sets (the other 2 weeks) – both 

randomly selected [37]. The following metrics were used to ascertain the prediction 

accuracy of the evaluated algorithms: mean relative error (MRE), standard deviation of 

relative error (SRE), root mean square error proportional (RMSEP), and mean absolute 

relative error (MARE) [37]. With respect to travel time prediction accuracy, the results 

show that vehicle infrastructure integration with Support Vector Regression (VII-SVR) 

barely/slightly outperformed that of vehicle infrastructure integration with Artificial 

Neural Networks (VII-ANN); both VII-SVR, and VII-ANN, however, outperformed the 

instantaneous travel time prediction algorithm used as a baseline. The results also showed 

that given 20% of VII-enabled vehicles, while using MARE as performance metrics, VII-

ANN and VII-SVR algorithms showed one of the best results/performances reported in 

literature [37]. In addition, both AI schemes showed good performances with irregular 

congestion conditions, which is currently a challenge to traditional sensor-based RSUs. 

VII-SVR performed better than VII-ANN, and lastly instantaneous algorithm because SVR 

is adaptable to both recurrent/normal (uncongested) and non-recurrent (congested) traffic 

scenarios because it can use real-time traffic data to make decisions without the need for 

training dataset; because of this, VII-SVR, however, seems to overestimate the travel time 

[37]. The accuracy of the instantaneous algorithm/model diminishes because of its 

assumption that travel time remains unchanged over short time intervals (with or without 

congestion present) – this is, however, not true especially in congested conditions. 

Although this study utilized real-world traffic data of the Greenville, SC highway/freeway 
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network [37], a limitation of this study is that it only considered morning traffic patterns 

rather than a more comprehensive view of whole day traffic patterns [37]. 

From our extensive review of literature, it is lucidly evident that there is need for more 

comprehensive evaluation of more whole day – as most studies evaluated utilized less than 

whole day intervals/durations – supervised machine learning algorithms (both 

classification and regression) i.e. a taxonomy using real-world traffic data and real-world 

road networks in a heterogeneous driving environment for both traditional transportation, 

and intelligent transportation systems (ITS). To this end, in this chapter, we endeavor to 

fill this gap. 

4. A Taxonomy of Machine Learning Algorithms 

In this section, we present an overview of the types of machine learning algorithms together 

with a detailed exposition of the supervised (classification, and regression) machine 

learning algorithms evaluated in this chapter. 

1.1 Machine Learning Overview 

The various types of machine learning algorithms can be classified under two major/broad 

nomenclature/headings: supervised learning algorithms, and unsupervised learning 

algorithms. These two machine learning algorithms are further divided into various 

categories as depicted in Figure 49. 
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Learning

Clustering

Classification
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Supervised Learning

Machine Learning

No training data

Uses training data

Produces categorical output

Produces categorical output

Produces numeric output
 

Figure 49: Machine learning overview [172]. 3,4 

1.2 Unsupervised Learning 

Unsupervised machine learning uses only input data to group and interpret data [172]. 

Examples of unsupervised machine learning algorithms include: hidden markov models, 

self-organizing maps, k-Means clustering, hierarchical clustering, and Gaussian mixture 

models [172]. For example, cluster analysis – an unsupervised machine learning 

algorithm/technique – is used in the data exploration stage in order to discover hidden 

                                                           
3 http://www.financialit.net/blog/get-smart---the-financial-services-industry-embraces-machine-
learning/183 
4 https://machinelearningmastery.com/applied-machine-learning-process/ 
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patterns (feature/attribute relationships) or groupings (clusters) in data in order to 

improve/aid data analysis/interpretation/understanding [172]. 

1.3 Supervised Learning 

As the name suggests, supervised learning, in contrast to unsupervised learning, takes 

known data, and known responses (serving as a teacher) as input and produces a model as 

output. This model is now used with new/unknown data to ascertain the accuracy of the 

model based on its predicted responses/targets as shown in  

Figure 51. In other words, supervised machine learning uses both input and output data to 

produce predictive models [172] [172] [169] [71]. It is important to note from the outset 

that, algorithm design and calibration are important factors in determining their 

effectiveness. Supervised learning algorithms can be classified into two major categories: 

classification, and regression. 
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Figure 50: An illustration of the supervised learning process5 [172] [173]. 

1.3.1 Supervised Learning Classification 

Classification is used for discrete/categorical response values derivable/present in data; in 

other words, it only applies to nominal, and not ordinal responses. Nominal responses can 

be binary responses (consists of only two responses), or polytomous responses (consists of 

more than two responses) [173]. In other words, these nominal responses must have limited 

values/possibilities such as ‘True’ versus ‘False’ [172]. 

 

                                                           
5 http://www.mathworks.com/help/stats/supervised-learning-machine-learning-workflow-and-
algorithms.html 
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1.3.2 Supervised Learning Regression 

Regression is used for indiscrete/continuous response values. Regression is particularly 

suited for real number responses such as speed of a vehicle in km/h  i.e. it is the process of 

fitting models with numerical responses [172] [173] e.g. Nonlinear regression model, 

multivariate regression, mixed effects models, nonlinear  mixed-effect models, 

regularization, multiple linear regression with multiple predictor variables, and model 

assessment for plotting and diagnostic statistics, etc. are some examples of regression 

algorithms/applications [172] [172] [174]. 

1.3.3 Supervised Learning Steps 

The following steps make up the supervised learning design steps/process as shown in  

Figure 51: (1) Data preparation, (2) Algorithm selection: The performance of algorithms 

are usually evaluated based on the following features/criteria: training speed; amount of 

memory used; accuracy of fittings, and predictions  on network data; and ease of 

interpretation of justifications/reasons for prediction results [173], (3) Model fittings 

selection, (4) Validation method selection: Resubstitution, out-of-bag, and cross-validation 

errors are the three prominent ways of evaluating the accuracy of a fitted model [173]. (5) 

Fit model until desired accuracy level: You can change a validated model with a 

new/improved one in order to ensure/enhance improvements such as: reduced memory 
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usage/footprint, improve speed, and obtain more accurate predictions, etc. [173] (6) Use 

fitted model for subsequent predictions [172] [173] [175]. 
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Figure 51: Supervised learning design steps [172] [173]. 
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1.4 Regression Algorithms 

In this chapter, the following regression algorithms were evaluated in order to 

determine/forecast/prognosticate the traffic volume pattern on our selected/reference 

roadway (I-270) [175] [172]. 

1.4.1 Regression Ensemble (Boosted and Bagged Decision Trees) 

Both boosted decision tree, and bagged decision tree are regression ensembles/non-linear 

regression models having a variety of visualization capabilities. We used the regression 

ensemble to predict the traffic volume on I-270 given the speed, occupancy, time, and 

quality measures [173]. A disadvantage/downside of using ensembles is that they tend to 

overtrain [173]. 

1.4.2 Linear Regression 

Linear regression is a parametric regression technique, while regression trees is an example 

of a non-parametric regression technique  [172]. Regression models display the 

relationship between dependent/response variable (Y), and 

independent/predictor/explanatory variable(s) (X) [173]. Linear and nonlinear regression 

techniques are particularly used when the model structure is known beforehand. A linear 

model assumes a linear/direct relationship/dependence of features/predictors [176]. 

1.4.3 Stepwise Regression 
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Stepwise regression does multiple linear regression using fewer/a subset of predictors as 

compared to linear regression. This allows you to determine the optimal/most relevant 

number of predictors that can be used to attain the best prediction accuracy/precision at 

minimal overhead [172] [173] [177]. 

1.4.4 Robust Regression 

This algorithm is, primarily, used to reduce the effects of outliers. Unlike the 

ordinary/standard least square fit, RobustOpts produces a model that is resistant to outlier 

effects in the data i.e. its model is less sensitive to major/huge changes in minute parts of a 

dataset [178]. 

1.4.5 Neural Networks 

The MATLAB neural network toolbox supports both supervised, and unsupervised 

learning. Supervised learning is made possible with dynamic radial basis and feed-forward 

networks; unsupervised learning is made possible with competitive layers, and self-

organizing maps (SOMs) [169]. The neural network toolbox can be used in the following 

application domains/tasks: fitting data/functions, pattern recognition, dynamic system 

monitoring and control, and clustering [169]. 

1.4.5.1 Applications 

Some of the industrial/business application areas were neural network toolbox has been 

utilized include, but is not limited to: transportation, securities, medicine, oil and gas, 

robotics, insurance, finance, banking, automotive, manufacturing, and defense, etc. [169]. 
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1.4.5.2 Design Steps 

The seven neural network design steps/workflow are: data collection, network creation, 

network configuration, weights and biases initialization, network training, network 

validation, and network utilization [169] [179]. 

1.4.5.3 Neural Network Fitting 

The neural network fitting tool is a non-linear regression model used for estimating future 

values given present values [169]. The fitting function consist of two-layer feed-forward 

network [169]. The Levenberg-Marquadt training algorithm (trainlm) was used in our 

scenario; other training algorithms that can be used to improve accuracy with support for 

large, and noisy datasets include the Bayesian Regularization (trainbr), and Scaled 

Conjugate Gradient (trainscg) training algorithms [169]. In the study by Yongchang et al. 

[37], multilayer feedforward (MLF) neural network with back propagation was used for 

vehicle infrastructure integration with Artificial Neural Networks (VII-ANN) development 

with the following parameters: learning rate (0.01), input layer (1), hidden layer (2), and 

output layer (1) [37]. Increasing the number of hidden neurons, training vectors, input 

values, and varying the initial weights and biases of the network followed by subsequent 

retraining are some of the steps that can be employed in order to improve the accuracy of 

predicted results (outputs, or targets/feedback) [169]. Retraining a neural network several 

times can also be used to, conclusively, determine/establish the accuracy of the model and 

its predictions [169]. 
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Figure 52: Regression plots for training, validation, test, and composite of all using neural 

network fitting regression tool in Matlab [169]. 

1.4.5.4 Neural Network Time Series 

Dynamic neural networks are particularly suited for time series prediction [169]. Neural 

network time series prediction and modeling are especially suited for highly nonlinear 
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systems [169]. Predicting the future value of bonds, stocks, and the future condition of a 

new engine installation/equipment, etc. are some of the many areas/domains where time 

series predictions are requisite [169]. In order to predict future traffic volume given 

past/historical data, the nonlinear autoregressive with exogenous (external) input (NARX) 

time series prediction problem was used in this dissertation research because of its better 

prediction accuracy resulting from its use of additional information from input data [169]. 

The standard/typical NARX network is a two-layer feed-forward network which consists 

of a hidden layer with a sigmoid transfer function, and an output layer with a linear transfer 

function [169]. A default of 10 hidden neurons, and a value of 4 delays (updated from its 

default of 2 in order to obtain more accurate predictions) was used for training as shown in 

Figure 53 [169]. The Levenberg-Marquardt training algorithm was also used [169]; the 

computations of the R values, training, validation, and testing steps were done using open 

loop/series-parallel architecture [169]. To improve the network performance after training, 

the value of the hidden neurons and/or delays can also be edited [169]. Overfitting occurs 

when training set performance is much better than test set performance; it can be 

ameliorated by reducing the number of neurons used in training – the opposite is also true 

[169]. On the one hand, overfitting, and more computations are the results of excessively 

increasing the number of neurons and delays. On the other hand, however, increasing the 

number of neurons, and delays enables the network to solve more complex/complicated 

problems more efficiently – hence a balance is imperative [169]. 
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Figure 53: Adjusting the network architecture parameters to improve prediction accuracy 

using the neural network time series regression tool in Matlab [169]. 

1.5 Classification Algorithms 

The following classification/regression algorithms were also evaluated to 

determine/prognosticate the presence/absence of possible roadway congestion on our 

reference roadway (I-270). 
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1.5.1 Discriminant Analysis 

This is a classification method where different classes produce data that is based on 

different Gaussian distributions  [173]. Discriminant  analysis is an example of a parametric 

method, while classification and regression trees are examples of nonparametric methods 

[173]. Another name for linear discriminant analysis is Fisher discriminant analysis  [173] 

[180]. 

1.5.2 Naïve Bayes 

It is mainly used when the features of a class are independent of one another; however, 

they can also be used when the features are dependent  [173]. It is used to predict/estimate 

the probability/probability density of a test sets features given the training data as class  

[180] [181] [179]. Naïve Bayes classification gives more accurate classifications than other 

classifiers while using less training data to determine the optimal features required for more 

accurate predictions because of its class independence characteristics. Because of this, it is 

particularly suited for datasets with many predictors/features [173]. Different distributions 

such as kernel, Gaussian (normal), multinomial, and multivariate multinomial 

distributions, etc. can be used with/is supported by the Naïve Bayes classification object 

[173]; using kernel distributions and large datasets, the Naïve Bayes prediction speed and 

memory usage levels suffers adversely as opposed to using simple distribution  [175] [172]. 

It can be used for both classification and regression. 
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1.5.3 K-Nearest Neighbor (KNN) 

Nearest neighbor classifies new data points using the training set; it can be used to 

find/search for the K-nearest/closest point to another point. It has some of its 

applications/uses in bioinformatics, computer vision, and analysis of marketing data [173]. 

It supports several distance metrics such as: correlation, hamming, mahalonobis, 

Euclidean, and any custom distance metric that can be created by the user  [180] [176]. 

Using nearest neighbor with high dimensional data diminishes its prediction accuracy in 

contrast to using it with low dimensional data. When used for/applied to kd-trees, fitting is 

done by nearest neighbor in contrast to when used for/applied to linear search  [175] [172]. 

It can be used for both classification and regression;  in other words, it can be used for 

either categorical, or continuous predictors/features at any one time, but not both  [175] 

[172] – with the resubstitution loss giving the percentage of data that are/can be 

misclassified based on the prediction results of an algorithm [173] [182]. 

1.5.4 Decision Trees 

Decision Trees are of two types: classification trees – give nominal/discrete/categorical 

responses e.g. true versus false (i.e. it supports categorical predictors) [175] [172], and 

regression trees – give numeric/continuous responses e.g. traffic volume patterns on a 

given roadway overtime. They can be used to forecast/prognosticate/predict responses to 

data by traversing from the root/source node to the leaf nodes where the responses are 

located/situated  [180] [173] [182]. 
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1.5.5 RobustBoost 

Even with the presence of noise in the training data, RobustBoost still produces good 

classification prediction results. Like many other algorithms, tuning the RobustBoost 

algorithm will ensure that its predictive accuracy is further improved [173]. 

1.5.6 Bagging/Bootstrap Aggregation 

This is a type of ensemble learning that trains learners using data that has been resampled; 

it can be used for both classification and regression [173]. With respect to classification, it 

can be used for creating a classification ensemble using bagged decision tree or bootstrap 

aggregation; you can also create a classification ensemble using LSBOOST. Bagging is 

important because, using it, you get to know the best predictor that has the most influence 

on the response/target [173] [176]. 

1.5.7 Support Vector Machines (SVM) 

SVM is used when your data consist of exactly two classes that can be separated in order 

to obtain the best hyperplane i.e. the one with the greatest margin between the two classes; 

it can be used for both binary classification, and regression. It gives better memory usage 

and prediction efficiency/speed results when used with few support vectors as opposed to 

many support vectors. Although the default linear function used by SVM makes it easier 

to interpret how data classifications are done, using a kernel function instead makes this 

interpretation much more difficult  [175] [172]. Like with other algorithms, 
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selecting/determining the optimal parameters for the SVM algorithm is a very important 

step to its effectiveness [37]  [172] [173] [183] [182] [176] [71]. 

1.5.8 Artificial Neural Network (ANN) 

Artificial neural network supports both supervised learning (using dynamic, feed-forward, 

and radial basis networks), and unsupervised learning (using competitive layers and self-

organizing maps [SOMs]); it also supports classification and regression algorithms [180] 

[183]. 

1.5.8.1 Neural Network Pattern Recognition 

Neural network pattern recognition can only be used for classification problems. Neural 

networks can be used for pattern identification, and classification/association such as 

classifying a tumor as either of two targets: benign or malignant [169]. Simply put, 

respecting pattern recognition problems, neural networks are used to classify inputs into 

corresponding finite categories of targets/target categories [169]. In this research, 10 

hidden neurons, and two output neurons/target categories, or elements were used [169]. 

The network training in order to classify inputs to corresponding targets was done using 

scaled conjugate gradient backpropagation. It is important to note that neural network 

fitting, and time series can be used for both classification and regression problems [169] 

[179]. 
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1.5.9 Ensemble Learning – TreeBagger 

Treebagger can be used for both classification and regression predictions. Using bagging 

(which stands for bootstrap aggregation ensemble technique), several weak learners are 

aggregated to produce a strong learner  [180]. 

1.5.10 Generalized Linear Model 

The generalized linear model is a special type of nonlinear models that employs linear 

methods [173]. The distribution of the generalized linear model’s response can be 

binomial, Poisson, gamma, inverse Gaussian, and normal distributions. It can be used for 

both classification, and regression [180] [184] [185] [186] [187] [188] [189] [190] [191] 

[192] [193] [194] [195] [196] [197] [198] [199] [200] [201]. 

1.6 Evaluating Performance 

Some of the several performance measures, and plots/graphs that have been used to 

ascertain the predictive accuracy of machine learning algorithms include, but are not 

limited to: 

1.6.1 Residuals 

Residuals are used to estimate the quality of a model produced by training data, and 

subsequently used for testing data. In order to discover correlations, outliers, or errors in a 

model or data, a histogram plot, and probability plots can be used [173]. The closer the 

value of the residuals is to zero, the better the prediction accuracy of an algorithm and vice 

versa. In other words, 
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Errors/residuals = target – output 

1.6.2 Mean-Square Error (MSE) 

The mean-square error (MSE) is defined as the average/mean squared difference between 

output vectors and target vectors. The lower the MSE, the better the performance of an 

algorithm/lower the prediction/forecasting errors. Therefore, a MSE of zero means that no 

errors were produced [169]. Also, the MSE is roughly the square root of the resubstitution 

error [173]. 

1.6.3 Root Mean Squared Error (RMSE) 

The root mean square error (RMSE) shows the standard deviation of the error distribution. 

It is the square root of the mean-squared error (MSE). Consequently, like the MSE, the 

lower this number, the better the predictive accuracy of an algorithm [173] [183] [176] 

[202] [203] [179]. 

As earlier stated: 𝐸𝑟𝑟𝑜𝑟𝑠/𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = ∑ [𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡] 
𝑛

𝑘=0
 

𝑋 = ∑
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

𝑛

𝑘=0

 

MSE = X2 

RMSE = √𝑀𝑆𝐸      
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1.6.4 Regression Value (R Value) 

R-squared (coefficient of determination), and adjusted R-squared (adjusted coefficient of 

determination) shows the predictive accuracy of a model with respect to a new 

response/target variable. The regression plot (plotregression) is a linear plot between the 

network outputs and intended targets/responses [169]; like the error histogram plot, the 

regression plot is used to validate/ascertain network performance [169]. Its value 

determines whether any relationship exists between outputs and targets. If R=1, a close 

relationship exists; if R=0, a random relationship exist [169].For example, an R value of 

0.752 means that a model has an accuracy of about 75% in predicting a new test 

set/response data [173] [178]. In other words, the closer the regression (R) value of a 

regression plot is to one (1), e.g. 0.93, the better the performance and vice versa. A perfect 

fit is obtained when all the network outputs and targets lie along the 45 degree line of the 

regression plot i.e. R = 1[169] [172]. 

1.6.5 Confusion Matrix 

Confusion matrices can be used to evaluate the performance of trained network models 

such as a trained pattern recognition network model [169].  

Confusion matrix, C, is defined thus =  TP   FN 

      FP   TN 

Where TP = True positive value/number of true positives, TN = Number of true negatives, 

FN = Number of false negatives, and FP = Number of false positives. Respecting confusion 
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matrices, any value above or below/outside its diagonal (highlighted in red) is misclassified 

[173] [182]. Other metrics derivable from the confusion matrix include, but are not limited 

to: Positive predictive value (PPV) = TP/(TP + FP) [173]; Positive instances, P = TP + FN 

(i.e. the horizontal/row of the confusion matrix) [173]; Negative instances, N = FP + TN, 

etc. [173] [204] [71]. These and other metrics were used to evaluate the predictive accuracy 

and prediction speed of our evaluated algorithms are further elaborated upon in Appendix 

B. 

1.6.6 Receiver Operating Characteristics (ROC) 

The Receiver Operating Characteristic (ROC) curve can be used to evaluate the 

performance of a classification ensemble  [180]. It is a plot of true positive (TP) rate 

(sensitivity) versus false positive (FP) rate (1 – specificity) at different classification 

outputs. With respect to the ROC curve, the higher this curve is towards the upper left hand 

corner of the true positive rate (sensitivity) axis i.e. heading towards 100% sensitivity, and 

specificity respectively, the better/greater the accuracy/performance [169] [169] [173] 

[183] [181] [179]. 

1.6.7 Additional Metrics and Plots 

Other metrics/plots that can be used to evaluate the performance of algorithms include, but 

are not limited to: Percent Error (%E) shows the misclassified samples; a value of 0 (zero) 

means no/zero misclassifications while a value of 100 means maximum/complete 

misclassifications [169]. The performance plot (plotperf) shows the plots of the training, 

test, and validation errors [169]. The Error Autocorrelation plot, besides other plots, can 
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be used to validate network performance; it shows the relationship between prediction 

errors over time. A perfect prediction model has only one nonzero value at zero lag – this 

represents the mean-squared error (MSE) [169]. The input-error cross-correlation 

function/plot shows the relationship between errors and input sequences. A perfect 

prediction model has all correlations equal to zero; prediction accuracy can be improved if 

correlations exist between the input and the error [169]. Perfcurve, cross-entropy, 

classification error, or exponential loss are some other additional means of ascertaining 

the predictive accuracy (performance) of a classifier on test data after training [173] [169] 

[169] [173] [183] [181] [179]. 

In summary, confusion matrices, regression plots, and receiver operating characteristics 

(ROC) curves, plus other performance metrics/plots employed for training, testing, and 

validation – together with a combination of all three can be used to ascertain/validate the 

predictive performance/quality of network outputs relative to targets [169] [173] [183] 

[181] [179]. 

2. Main Contributions: Experimental Setup 

In this section, we describe our experimental setup, real-world dataset, evaluation scenarios 

towards to attainment of our research goals and objectives, and the performance metrics 

used for evaluating our results. 
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2.1 Experimental Equipment 

In seeking to determine the efficiency, and effectiveness of several supervised machine 

learning algorithms, we used the same equipment, and machine configuration used for our 

test-bed setup in earlier sections i.e. Chapter 3, Section 5.1. 

2.2 Real-world Dataset 

As shown in Table 1, and Table 2 (Chapter 3, Section 5.2), with respect to classification 

and regression using neural networks, our dataset consists of 1330 samples with five 

features/predictors as input vectors namely: zone_id, speed, date/time, occupancy, and 

quality, and one target vector element – congested – with two possible 

categories/outcomes: yes = 1 (for speed less than the default speed limit of the roadway – 

65km/h – indicating the presence of congestion on the roadway [I-270]), or no = 0 (for 

speed greater than or equal to  65km/h – indicating the absence of congestion on I-270) as 

shown in Figure 62 and Figure 64 respectively i.e. with respect to classification. Similarly, 

traffic volume pattern is used as the sole target vector respecting regression [169] [205] 

[206] [207] [208] [179] [209]. Figure 54 show a pictorial representation of our dataset in 

Google Maps with our reference roadway (I-270) highlighted. 
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Figure 54: Selected study area with reference roadway (I-270) highlighted. 

Out of the entire 1330 input samples/timesteps, 900 samples (70%), 200 samples (15%), 

and 200 samples (15%) were used for training, validation, and testing respectively [169] 

[169]. 

2.3 Evaluation Scenarios and Evaluation Metrics 

Using our training set with five predictors as shown in Table 2, the performance of several 

machine learning algorithms/techniques was evaluated and visualized. After training our 6 

weeks traffic dataset (predictors) from August 1st, 2012 to September 12th, 2012, we 

compared it with one week test set (response) i.e. September 19th, 2012, in order to obtain 
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a predicted result/output. This predicted result was then compared/validated with the 

actual/target values in order to determine the prediction accuracy, and prediction speed of 

the machine learning algorithm/technique used [180]. 

The following scenarios were used in our performance evaluation: 

2.4 Scenario A (Prediction Accuracy) 

In this chapter, we determine the predictive accuracy of our algorithms, primarily, with 

respect to their root mean-square error (RMSE) values. As previously noted, the lower the 

RMSE value, the better its predictive accuracy, and vice versa. Regression (R), mean-

square error (MSE), and confusion matrix values are some of the other prominent metrics 

used to determine the predictive accuracy of our algorithms. 

2.5 Scenario B (Prediction Efficiency) 

We determine the prediction speed of our algorithms respecting the total time (in seconds) 

taken to fit the model with training data in addition to testing the accuracy of the models 

output with new test data. 

As earlier stated, the performance of algorithms can also be evaluated based on a number 

of other different factors/metrics such as: fitting speed, level of memory consumption, and 

ease of interpretation of results, etc. [173]. 
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2.6 Evaluated Algorithms 

The following taxonomy of classification, and regression supervised machine learning 

algorithms were evaluated in this research. 

2.6.1 Classification Taxonomy 

The following are the list of supervised machine learning classification algorithms 

evaluated in this research with respect to prediction accuracy, and prediction speed: Neural 

network pattern recognition (NN_p.reg), Neural network time series (NN_time), Neural 

network fitting (NN_fit), Naïve bayes (NB), Classification decision tree (Ctree), 

Discriminant analysis (DA), Support vector machine (SVM), K-nearest neighbors (KNN), 

Generalized linear model (GLM), Treebagger (TB), Classification ensemble using 

boosting (LSBOOST), and Classification ensemble using bagging/bootstrap 

aggregation/bagged decision tree (BAG) [172] [181]. 

2.6.2 Regression Taxonomy 

In the same vein, the following supervised machine learning regression algorithms were 

also evaluated with respect to prediction accuracy, and speed/time: Regression decision 

trees (Rtree), Treebagger regression (TB.R), Generalized linear regression model 

(GLM.R), Stepwise generalized linear regression model (GLM.S), Linear regression (LR), 

Stepwise linear regression (SLR), Robust linear regression (RLR), Boosted decision tree 

(BDT), Bagged decision tree (BGDT), K-nearest neighbor regression (KNN.R), Naïve 
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bayes regression (NB.R), Neural network fitting regression (NN_fit.R), and Neural 

network time series (NN_time.R) [172] [176]. 

3. Evaluation Results and Discussion 

In this section, we present and critically analyze the results of our experiments using the 

predictive accuracy, and prediction speed of the evaluated algorithms as primary evaluation 

criteria. 

3.1 Regression Results 

3.1.1 Predictive Accuracy 

As earlier stated, the root mean-square error (RMSE) value was used in ascertaining the 

prediction accuracy of the evaluated algorithms with respect to traffic volume patterns on 

I-270. Accordingly, from Figure 56, the predictive accuracy of the machine learning 

algorithms we evaluated are listed in descending order from most accurate to least accurate 

with their corresponding RMS errors: Regression tree [Rtree]: 0.39, Boosted decision tree 

[BDT]: 1.97, Stepwise generalized linear model [GLM.S]: 2.27, Bagged decision tree 

[BGDT]: 2.51, Naïve bayes regression [NB.R]: 2.76, Stepwise linear regression [SLR]: 

4.42, Neural network fitting regression [NN_fit.R]: 6.06, Linear regression [LR]: 7.51, 

Generalized linear model regression [GLM.R]: 7.51, Robust linear regression [RLR]: 

11.24, K-nearest neighbor regression [KNN.R]: 11.73, Neural network time series 

regression [NN_time.R]: 20.20, and Treebagger regression [TB.R]: 38.39. 
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3.1.2 Prediction Speed 

Similarly, from Figure 57, with respect to prediction speed, the following gives the 

performance of our evaluated algorithms from most efficient (left) to least efficient (right) 

– in descending order – with their corresponding prediction time (in seconds): Regression 

tree [Rtree]: 0.15, Naïve bayes regression [NB.R]: 0.28, Linear regression [LR]: 0.42, 

Robust linear regression [RLR]: 0.58, Generalized linear model regression [GLM.R]: 0.58, 

K-nearest neighbor [KNN.R]: 0.71, Treebagger regression [TB.R]: 0.93, Stepwise linear 

regression [SLR]: 1.02, Boosted decision tree [BDT]: 1.25, Bagged decision tree [BGDT]: 

1.50, Neural network fitting regression [NN_fit.R]: 2.06, Stepwise generalized linear 

model regression [GLM.S]: 2.82, and Neural network time series [NN_time.R]: 4.12. 

Overall, respecting both predictive accuracy (Figure 56), and prediction speed (Figure 57), 

Regression tree [Rtree] gave the best prediction accuracy, and prediction speed/efficiency, 

while Treebagger regression [TB.R], and Neural network time series [NN_time.R] gave 

the worst prediction accuracy, and prediction speed/efficiency. 

Figure 55 shows the actual whole day traffic volume pattern recorded on I-270 on 

September 19th, 2012 in relation to similar patterns forecasted by our regression algorithms. 
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Figure 55: Whole day actual traffic volume pattern on Wednesday, September 19th, 2012 

on I-270 in relation to evaluated regression algorithms. 
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Figure 56: Predictive accuracy of supervised machine learning regression algorithms as a 

function of the root mean-square error (RMSE). 

 

Figure 57: Prediction speed (efficiency) of supervised machine learning algorithms as a 

function of the prediction time in seconds. 

Figure 58 shows the performance of our evaluated regression algorithms relative to their 

R-values. As previously noted, the closer the R-value is to one (1), the better the predictive 

accuracy of the algorithm and vice versa. Consequently, from Figure 58, naïve bayes 

regression (NB.R) algorithm gave the best prediction accuracy, while stepwise linear 

regression (SLR) algorithm gave the worst recorded performance. The superior 
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performance of naïve bayes regression (NB.R) could be attributable to the fact that, as 

previously stated, algorithms such as Bayes tends to show more resilience/better 

performance as the number of faulty nodes increase because its computations are based on 

averaging sample values such that more accurate approximations/predictions can be made 

[8]. Besides, Naïve Bayes classification gives more accurate classifications than other 

classifiers while using less training data to determine the optimal features required for more 

accurate predictions because of its class independence characteristics. Because of this, it is 

particularly suited for datasets with many predictors/features [173]. However, as 

aforementioned, when using kernel distributions and large datasets, the Naïve Bayes 

prediction speed and memory usage levels suffers adversely as opposed to using simple 

distribution [175] [172]. 

In another reference study [175] [172] of much fewer supervised learning algorithms, the 

authors assigned a high predictive accuracy to Support Vector Machine (SVM) over Trees 

(classification and/or regression trees), and Naïve Bayes – which both received a medium 

predictive accuracy [175] [172]. In the same vein, respecting prediction speed, both Trees 

(classification and/or regression trees) had a fast prediction speed over Nearest Neighbor – 

which received a medium prediction speed. Lastly, respecting fitting speed, Trees 

(classification and/or regression trees), Nearest Neighbor, and Discriminant Analysis all 

gave a fast fitting speed, while Support Vector Machine (SVM) gave a medium fitting 

speed. Besides, the authors  [175] [172] also found Trees (classification and/or regression 

trees) to have low memory usage capacity, and be easy to interpret  [175] [172]. 
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Figure 58: Performance of regression algorithms with respect to the regression value (R-

value). 

3.1.3 Linear Regression (pValue) 

With respect to linear regression, a predictor with a low p-value (e.g. < 0.05) means that 

changes in its value will affect the response value immensely and vice versa. Every 

predictor has a p-value; in other words, the closer the p-value is to zero, the better/more 

desirable. In general, predictors with high p-values are usually weak/inconsequential 

predictors [172] [173]. Table 4 shows the levels of performance of our real-world dataset 

features with respect to predictor importance in descending order of importance i.e. from 

most important (Occupancy – with ID: x3) to least important (Quality – with ID: x4). 
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Table 4: Levels of predictor importance (in descending order). 

ID pValue Predictors 

x3 1.04E-169 Occupancy 

x2 2.65E-50 Speed 

x1 0.30516 Zone_id 

x5 0.30646 Time of Day 

x4  Quality 

3.2 Classification Results 

Similar to the work by Dong and Mahmassani, from our real-world data, we identified 49 

congestions most prevalent in the morning and evening rush hours as shown in the 

confusion matrix in Figure 62 [11]. 

3.2.1 Predictive Accuracy 

Respecting the effectiveness of our evaluated algorithms in accurately predicting the 

presence (average speed less than speed limit [65km/h]), or absence (average speed greater 

than or equal to speed limit [65km/h]) on I-270, the following lists the predictive accuracy 

of our evaluated supervised machine learning classification algorithms in decreasing order 

of accuracy i.e. from most accurate to least accurate with their corresponding root mean-

square errors (RMSE) as shown in Figure 59: Classification tree [Ctree]: 0, Treebagger 

classification [TB]: 0, Classification ensemble with boosting [LSBOOST]: 0, 

Classification ensemble with bagging/bootstrap aggregation [BAG]: 0, Generalized linear 
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model classification [GLM]: 1.78999E-13, Neural network fitting classification [NN_fit]: 

6.70647E-05, Naïve bayes classification [NB]: 0.004, Neural network prediction 

classification [NN_p.reg]: 0.0051, Support vector machine [SVM]: 0.008, Discriminant 

analysis [DA]: 0.06, K-nearest neighbor classification [KNN]: 0.20, and Neural network 

time series classification [NN_time]: 0.30. Because most of the classification algorithms 

we evaluated gave a RMSE value of zero (0), or very close to zero, one can safely say that 

they are equally effective/accurate respecting prediction accuracy. Beside, Discriminant 

analysis [DA], K-nearest neighbor [KNN], and Neural network time series classifications, 

all  other classification algorithms gave us a prediction accuracy of 99.19% and above (as 

shown in Figure 59) which is very desirable i.e. their RMS errors was zero, or very close 

to zero. In other words, the high level of prediction accuracy exhibited by these algorithms 

can be attributable to the fact that they accurately identified/classified the presence, or 

absence of congestions on our reference roadway (I-270) with little or no 

misclassifications/errors in the form of false positives (FP), and/or false negatives (FN) as 

shown in Figure 62. 
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Figure 59: Predictive accuracy of supervised machine learning classification algorithms as 

a function of the root mean-square error (RMSE). 

 

Figure 60: Prediction speed (efficiency) of supervised machine learning classification 

algorithms as a function of prediction time in seconds. 

3.2.2 Prediction Speed 

Similarly, respecting prediction speed/time, the following lists the efficiency of our 

evaluated algorithms in descending order from most efficient (left) to least efficient (right) 

with their corresponding prediction time in seconds as shown in  Figure 60: Classification 

tree [Ctree]: 0.34, K-nearest neighbor classification [KNN]: 0.70, Naïve Bayes 

classification [NB]: 0.90, Classification ensemble with boosting [LSBOOST]: 1.15, 
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Support vector machine [SVM]: 1.97, Neural network pattern recognition classification 

[NN_p.reg]: 2.05, Discriminant analysis [DA]: 2.57, Neural network fitting classification 

[NN_fit]: 2.84, Classification ensemble with bagging [BAG]: 3.09, Neural network time 

series classification [NN_time]: 3.38, Treebagger classification [TB]: 5.05, and 

Generalized linear model classification [GLM]: 5.27. 

 

Figure 61: Predictive accuracy of classification algorithms with respect to confusion 

matrix. 
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Figure 62: Confusion matrix of neural network pattern recognition classification [169]. 

Where TPR = True positive rate/sensitivity, FPR = False positive rate, TNR = True 

negative rate, PPV = Positive predictive value, NPV = Negative predictive value, and 

ACC = Predictive accuracy/accuracy. 

3.2.3 Confusion Matrix 

With respect to the confusion matrix, as shown in Figure 62, any value laying outside the 

green diagonal is misclassified with the rightmost bottom row (in blue) showing the total 

correctly classified cases (in green characters) – i.e. 98.4%, and misclassified cases (in red 
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characters) – i.e. 1.6%; the total correctly classified cases/accuracy (ACC) of 98.4% 

signifies a very good congestion recognition/prediction performance [169]. 

3.2.4 Receiver Operating Characteristics (ROC) Curve 

As previously noted, the receiver operating characteristics (ROC) curve shows a plot of 

the true positive rate (sensitivity) against the false positive rate (1 – Specificity). Figure 63 

shows the classification accuracy of the neural network pattern recognition classification 

algorithm (NN_p.reg) with 100% sensitivity/performance in prognosticating the presence, 

or absence of congestions on I-270. 

 

Figure 63: ROC curve of neural network pattern recognition classification algorithm 

(NN_p.reg). 
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Overall, respecting both predictive accuracy, and prediction speed, classification trees 

(Ctree) gave the best predictive accuracy, and speed. On the one hand, from its RMSE 

value, neural network time series classification algorithm (NN_time) gave the worst 

predictive accuracy (Figure 59, and Figure 61); on the other hand, generalized linear model 

classification gave the worst prediction speed (Figure 60). 

3.2.5 Decision Trees 

With respect to decision trees, evaluations/tests on an attribute, the results of those tests, 

and the response/decision taken are represented in a decision tree flow chart by internal 

nodes, branches, and leaf nodes  [180]. Figure 64 shows the results of our classification of 

the presence of congestion i.e. speed limit less than 65km/h – one (1), or absence of 

congestion i.e. speed limit greater than or equal to 65km/h – zero (0) on our selected 

roadway – I-270. Similarly, Figure 65 shows the series of regression tree computations that 

take place in order to prognosticate traffic volume patterns using our dataset – from a 

simple root node (top/higher) to more complex/detailed branch, and leaf nodes 

(bottom/lower). 
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Figure 64: Results of classification tree (Ctree) used in identifying the presence, or absence 

of congestions on I-270. 

 

Figure 65: Results of regression tree (Rtree) used in forecasting future traffic volume 

patterns on I-270 on Wednesday, September 19th, 2012. 

In summary, the superior performance of classification tree (Ctree), and regression tree 

(Rtree) algorithms can be attributable to the fact that both trees are used to 

forecast/prognosticate/predict responses to data by traversing from the root/source node to 
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the leaf nodes where the responses (which can be nominal i.e. classification e.g. true, or 

false; or numeric i.e. regression) reside as shown in Figure 64, and Figure 65 respectively 

[173]. Using regression trees, a good fit is usually obtained respecting the training data, but 

the predictive accuracy of new test data is often poor. The use of smaller trees with as few 

levels as possible was used to minimize outliers [173]. 

3.2.6 Treebagger 

With respect to Treebagger ensemble learning, estimating feature importance tries to 

classify/categorize training set attributes/features based on the effect they have on the 

prediction accuracy of machine learning techniques/algorithms  [180]. Figure 66 shows the 

level of importance of features/predictors with respect to our real-world dataset as 

previously shown in Table 1, and Table 2 (Chapter 3, Section 5.2). Important features 

primarily determine the predictive accuracy/capability of algorithms  more than 

unimportant one’s [173]. Evidently, from Figure 66, the most important predictor/training 

feature is shown to be the level of occupancy on I-270 (68%), followed by the roadway 

speed (28%), and time of day (4%). The other predictors/features/attributes: zone_id, and 

quality have no effect on the models produced and their subsequent prediction performance 

results/outputs because they are predominantly constant values. 
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Figure 66: Level of importance of features used in Treebagger ensemble. 

Generally speaking, in both classification, and regression, the fitting time (Fitting_time) is 

always less than the prediction time (Prediction_time) and rises or falls accordingly – 

although some variations exist respecting our results from Figure 57, and Figure 60. This 

is true because more work is usually done after fitting a model by evaluating/validating the 

models accuracy with new test data. Respecting classification algorithms, the most 

significant difference between fitting time and prediction time is observable with respect 

to generalized linear model classification (GLM) algorithm at: 4.70 seconds as shown in 

Figure 60. Similarly, respecting regression algorithms, Figure 57 shows the most 

significant difference between prediction, and fitting time to correspond to those of 

generalized linear model stepwise regression (GLM.S) algorithm at: 1.17 seconds. 

In order to obtain more representative, and accurate results, traffic volume measurement 

intervals/time has been found to be most effective when set between 5 – 15 minutes. 

Erroneous results/fluctuations in traffic volume patterns are introduced when traffic 

volume is sampled/measured above, or below this range/interval [64] [4] [45] [11] [54]. 
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Also, 5-6 days of repeated/same day historical traffic data has proved optimal for a more 

accurate prediction. As earlier stated, reducing this number introduced errors in 

aggregation, and increasing it did affect the results obtained [45]. Besides, the forecasting 

window is inversely proportional to the prediction accuracy of the algorithm i.e. as the 

forecasting window increases, the prediction accuracy decreases, and vice versa [45]. 

Consequently, several studies have segmented daily traffic volume patterns into different 

categories of varying weekday/non-weekday, or weekend times: peak and non-peak; 

morning, afternoon, and evening, etc. as an aid to more efficient, and effective analysis; 

however, because we evaluated an entire days traffic volume pattern – this, indeed, makes 

our work more encompassing [5]. 

3.3 Notable Contributions 

To the best of our knowledge, using our unique, and scarce/difficult to obtain field data, 

our work is the first to evaluate the prediction accuracy (effectiveness), and prediction 

speed (efficiency) of time-variant/series traffic patterns in a heterogeneous driving 

environment using a taxonomy of several machine learning algorithms. Besides, a by-

product of our research is the evaluation of different machine learning 

models/methods/algorithms with the aim of determining which one is best suited to more 

accurate traffic pattern prediction and why. 

4. Remarks 

Accurate knowledge of the current traffic condition/patterns is invaluable in congestion 

avoidance and amelioration. Consequently, in this chapter, we evaluated the performance 
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of several supervised machine learning (classification, and regression) algorithms with 

respect to prediction accuracy, and prediction speed using realistic traffic data, and road 

networks. Overall, our results showed that classification tree (Ctree), and regression tree 

(Rtree) gave the best predictive accuracy with respect to the root mean-square error 

(RMSE), and prediction speed/efficiency among all the evaluated, supervised 

classification, and regression machine learning algorithms. We also demonstrated that, 

often, a tradeoff between prediction speed and accuracy is frequently necessary especially 

respecting safety/life-critical scenarios requiring little or no tolerance for errors/delays. In 

summary, the travel time/volume prediction accuracy of these and other artificial 

intelligence (AI) algorithms such as genetic algorithms, and fuzzy logic, etc. depends on 

the design and calibration of their parameters as they also are not generic i.e. they need to 

be, meticulously, fine-tuned to suit the particular type of problem/roadway in question [37]. 

As an extension to our current work, we will also evaluate the efficiency, and effectiveness 

of these algorithms – in addition to some others we have already been working on such as 

genetic, time series, multistart, and simulated annealing algorithms, etc. – respecting this, 

and other pertinent evaluation metrics such as: CPU usage, memory usage, and ease of 

interpretation of results [173]. 
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Chapter 6 

Human Factors Challenges in Intelligent Transportation System (ITS) 

1. Overview 

Driver distraction is an ever-present, and often ever-growing trend resulting in safety 

compromises attributable to distractions from in-vehicle technological equipment usage 

[210]. Consequently, the effective design of driver-vehicle interfaces (DVIs) and other 

human-machine interfaces (HMIs) together with their usability, and accessibility while 

driving is most requisite [15]. Driving distractions can be classified as: visual distractions 

– any activity that takes your eyes away from the road, cognitive distraction – any activity 

that takes your mind away from the course of driving, and manual distractions – any 

activity that takes your hands away from the steering wheel [15]. Besides, multitasking 

during driving is a distractive activity that can increase the risks/likelihood of vehicular 

crashes/accidents besides cognitive/information overloading as a result of operating in-

vehicle communication devices by the driver. Consequently, as earlier stated/expressed, 

any technology that minimizes/eliminates multitasking reduces overloading – by 

minimizing the number and complexity of driving tasks a person can perform – and other 

sources of distracted driving is highly demanded [15]. 

Owing to the aforesaid, with our developed in-vehicle Driver Notification Application 

(DNA), we examine the effects of increasing driver distraction levels on the evaluation 
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metrics of traffic efficiency, and safety using two types of popular driver models – young 

drivers (ages 16 – 25 years), and middle-age drivers (ages 30 – 45 years). 

Overall, our results show that as a drivers distraction level is increased, less heed is given 

to change route/reroute directives from the in-vehicle on-board unit (OBU) using visual, 

audio, and haptic feedback/notifications. Interestingly, middle-age drivers proved more 

effective/resilient in mitigating the negative effects of driver distraction over young drivers 

by overcoming the visual/perceptual, motor response, and cognitive distraction levels of 

the driver in a timelier, and effective manner. 

2. Motivation and Background 

As previously stated, according to the results of the analysis of the National Motor Vehicle 

Crash Causation Survey (NMVCCS) database between 2005 and 2007, 11% of crashes 

were attributed to distractions as a causative agent/culprit. Drilling further down to the 

details, the following lists the levels of distractions and their causative 

agents/culprits/activities: 0.2% - use of cell phones, 0.9% - use of radios and similar 

devices, and 12% - talking with other passengers, or use of cell phones. The age distribution 

of drivers most prone to engage in an in-vehicle distracting activity was recorded at 

between 16 to 25 years with the highest distraction propensity of 6.6% [15]. Besides, in 

2010, the National Highway Traffic Safety Administration (NHTSA) reported that 3,092 

deaths, and 417,000 injuries resulted from distracted driving alone [15]. 
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In another study reported by the United States Department of Transportation (U.S. DoT) 

Research and Innovative Technology Administration (RITA) in 2011 – as shown in Figure 

67  [20], the majority of road transportation accidents/crashes – safety challenge – are 

attributed to the human driver i.e. they are human factors related/precipitated/caused [20]. 

 

 

Figure 67: Factors responsible for most traffic accidents/crashes [20]. 

Owing from the aforesaid, it is self-evident that the need for more human factors research 

in intelligent transportation system (ITS)/vehicular ad hoc networks (VANETs) cannot be 

overemphasized. This is consequent upon the fact that, besides the traditional sources of 

distractions already present in vehicles such as fatigue, radio operations, distractions/noise 

from passengers, eating, etc., the growth of portable devices and other in-vehicle 

technologies have further exacerbated the levels/sources of distractions experienced by 

drivers while driving [15]. In addition, increasing multitasking activities tends to increase 

a drivers level of distraction and consequent risk exposures. This is true, in addition to the 
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fact that activities with high complexity/stages of completion, and are attention demanding, 

etc. have the propensity of further increasing a drivers workload while driving [15]. 

Prioritizing the information conveyed to the driver from a gamut, and the mode of such 

presentation (audio, video, text, vibrations, or a combination of one or more of the 

aforementioned modes, etc.) is imperative in minimizing distracted driving/competing with 

drivers attention [15]. Obviously, this will go a long way in obviating many of the attendant 

accidents/crashes, and other exposures to risk consequent upon/deriving from distracted 

driving [15]. 

One of the goals of the human factors research in ITS is to mitigate sources of distractions 

emanating from the use of in-vehicle information systems (IVIS) [15]. Consequently, the 

effective design of the human-machine interface (HMI)/driver-vehicle interface (DVI) 

together with their operation modes in order to reduce distractions, and driver workload is 

pertinent in ameliorating the human factors (HF) challenges of ITS [15]. The connected 

vehicles human factors research ensures that safety applications, and other applications do 

not, inadvertently, distract the driver as a result of competing attention from visual, and 

audio prompts (through increased driver workload) requiring attention; thereby dividing 

the drivers full attention requisite in the course of driving [15]. As a safety measure, in-

vehicle technologies can also advice a distracted/sleepy driver, whose attention status has 

declined, of his/her propensity to crashes/accidents [15]. 

Going forward, there is a need for more accurate and standardized metrics for measuring 

distraction levels together with their corresponding mitigation techniques [15]. This is 
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because a lot of inconsistent metrics have been developed/promulgated by several 

researchers in both the industry and academic domains in order to measure/quantify driver 

distraction. It is noteworthy that, although it may be evident that distraction levels are 

somewhat related to the drivers behavior, both attributes are, particularly, 

challenging/difficult to quantify because of the non-uniform/varying/unpredictable, and 

often subjective driver responses/reactions. Consequently, NHTSA is pioneering the effort 

towards furthering the ITS human factors research domain by developing a consistent, 

scientific/objective/empirical metrics and guidelines for quantifying a drivers distraction 

level that, they  hope, will be acceptable to all concerned stakeholders [15]. 

From the aforesaid, it is self-evidently imperative that more studies that incorporate the 

human factors challenge in intelligent transportation system (ITS) are essential to 

promulgating/fostering the ITS research domain in relation to its promised 

deliverables/benefits – this is the primary goal of this research. 

Consequently, using field, and simulation data, we investigated the safety, and traffic 

efficiency promised benefits of ITS in the presence of distracted driving using two distinct, 

but popular age groups/driver models: ages 16 – 25 years (young drivers), and ages 30 – 

45 years (middle-age drivers). Our high-level/overall results show that middle-age drivers 

outperformed young drivers in better overcoming the distraction barrier introduced by the 

subjective, and unpredictable human driver. 

 



206 

 

  

 

 

3. Main Contributions: A Generic Human Factors ITS Test-bed 

As aforesaid, most research in intelligent transportation system (ITS)/vehicular ad hoc 

networks (VANETs) do not incorporate the human factors challenge; this is further 

compounded by the fact that human behaviors are quite erratic/unique/idiosyncratic – 

varying by race, gender, age, and driving experience, etc. 

In order to help bridge this pertinent gap, using field and simulation studies, we model the 

distraction level of a driver as a composite of several factors such as cognitive, perceptual, 

and motor impairments/challenges, etc. as shown in Figure 68. Specifically, using our 

realistic field data, road network, and simulation, we investigate the impact of driver 

distraction levels on the two popular age groups/driver models – young, and middle-age 

drivers. Our choice of this age group was informed by the fact that, as aforementioned, 

according to the National Highway Traffic Safety Administration (NHTSA), the age 

distribution of drivers most prone to engage in an in-vehicle distracting activity was 

recorded at between 16 to 25 years with the highest distraction propensity of 6.6% [15] 

[20] [21]. 

3.1 Test-bed Setup and Simulation Parameters 

Our test-bed setup is synonymous to that used in Section 5.1 of Chapter 3. Specifically, 

Figure 70 shows some of the coupled simulators used in order to carry out our distracted 

driving scenario. In the same vein, Table 5 shows some of the simulation parameters used 

in our distracted driving simulation. 
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Table 5: Some simulation parameters used for our distracted driving scenario [152]. 

Simulation Parameter Value 

Maximum Node Bandwidth 100000000 bits/s 

Packet Delivery Ratio (PDR) 1.0 

Throughput 500000000 bits/s 

Simulation Duration 7000 seconds 

Simulation Area 77000 * 67000 meters 

MAC Bitrate 6 Mbps 

MAC Basic Bitrate 3 Mbps 

Carrier Frequency 5.9 GHz DSRC band 

Protocol/Standard IEEE 802.11p/WAVE 

Vehicle/RSU Tx Antenna Height 2m/100m 

Vehicle/RSU Rx Antenna Height 2m/100m 

Radio Sensitivity -85 dBm 

Radio Attenuation Model FreeSpaceModel 

RSU Tx Power 50 mW 

 

Figure 68 shows some of the various factors/parameters considered in modeling our driver 

distraction/attention level used in our simulation study. 
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Figure 68: Several factors/parameters considered in modeling a drivers 

distraction/attention level in relation to our performance evaluation metrics [46] [15, 210]. 

1.1.1 The V2X Simulation Framework (VSimRTI) Behavior Simulator 

The V2X simulation runtime infrastructure (VSimRTI) behavior simulator as shown in 

Figure 69 was used in carrying out our distracted driving simulation evaluation. It is written 

in the Java programming language; it is currently compatible with the Java Runtime 

Environment (JRE) version 7 i.e. Java SE 7 and it is packaged and executed/deployed as 

Java Archive (JAR) files [152]. Federates and Ambassadors: Because of its use of the 

high-level architecture (HLA) federate-ambassador concept, pertinent simulators can be 

(de)coupled with ease; in order to add/couple a new simulator, the ambassador interface 
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only needs to be developed/implemented and after that, commands can then be 

run/executed to achieve the desired goal(s)/objective(s) [152]. 

1.1.2 Components of our VSimRTI Behavior Simulator 

1.1.2.1 Behavior Module 

The VSimRTI behavior module allows for the customization of driver driving behavior by 

manipulating/altering/modifying the sent/received messages to, and from the 

driver/vehicle. Figure 69 depicts the interactions of specialized/customized driver 

reaction/behavior models (DReaM) with VSimRTI and its traffic and application 

simulators/federates [152]. 

 

Figure 69: Incorporating customized driver behavior/reaction modules/models with 

VSimRTI and coupled federates/simulators [152]. 
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In general, a vehicles behavior in the form of lane, route, and/or speed changes/controls 

can be executed/implemented using the vehicle control interface [152]. 

1.1.2.2 Traffic Simulators 

Besides simulating vehicular movements/traffic, other entities such as pedestrians, trains, 

planes, and ships/boats, etc. can also be simulated using the traffic simulator. 

Consequently, different types of traffic simulators are distinguished based on whether they 

are: microscopic models, sub-microscopic models, macroscopic models, or mesoscopic 

models. Microscopic models allows for the simulation of individual vehicles, which 

implies that it is computationally expensive. Currently, two types of microscopic traffic 

simulators – SUMO (Simulation of Urban Mobility), and VISSIM (Verkehr In Städten – 

Simulationsmodell) – are supported by VSimRTI; sub-microscopic models are a further 

refined/detailed version of the microscopic model and is hence the most computationally 

expensive model; macroscopic models focuses on entire traffic flow simulation and not on 

individual vehicles – hence useful for prognosticating traffic jams and requires less 

computational resources; mesoscopic models balances the pros and cons of both 

microscopic, and macroscopic, and sub-microscopic models [152]. 

1.1.2.2.1 SUMO 

SUMO was developed by the German Aerospace Center as a microscopic traffic simulator, 

and free software written in C++ that can be used to simulate road networks at a speed that 

is faster than real-time in order to enhance its scalability. Using SUMO, each vehicle is 

simulated individually via its assigned route. Currently, SUMO version 22 i.e. SUMO 
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0.22.0 is supported and is deployed/comes preconfigured with VSimRTI [152]. A unique 

feature of VSimRTI is seen in the fact that unlike classic traffic simulation procedures, 

VSimRTI creates SUMO route files at runtime in order to enable dynamic/adaptive routing 

[152]. 

1.1.2.3 Communication Simulators 

3.1.2.3.1 OMNeT++ 

The OMNeT++6,7 discrete event simulator uses/employs its extensions for wireless 

communication such as INET, INETMANET, and Mobility frameworks for simulation of 

distributed systems and computer networks [152]. It is an open source software for 

academic use written in C++ by OpenSim Ltd. and the OMNeT++ community. It can be 

run in both Windows (using mingw), and Linux operating systems [152]. Using the latest 

INETMANET extension (INETMANET 1.latest), VSimRTI is coupled with the 

OMNeT++ version 4.4 using the supplied installation script [152]. For the purposes of our 

distracted driving study, we employed the OMNeT++ discrete event simulator. Another 

network/communication simulator that can be used with VSimRTI is ns-3 [152]. 

3.1.2.3.2 JiST/SWANS 

It is written in Java and can be used across platforms/on different operating systems; its 

new routing protocol now supports geographic routing [152]. Network layer routing 

                                                           
6 http://omnetpp.org/ 
7 https://github.com/aarizaq/inetmanet-2.0 
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protocols, radio channel, and physical layer (antenna height, receiver sensitivity, and 

transmission power, etc.) parameters respecting network nodes (vehicles, traffic lights, 

and/or road-side units) can be configured using the SWANS configuration file [152]. 

Wireless protocols/standards such as IEEE 802.11b, and IEEE 802.11p – vehicular 

communication standard, etc. are some of the other configurable physical layer parameters 

[152]. Respecting network layer routing, single-hop broadcast, and Greedy Geocast 

(CGGC) are some of the options available for use [152]. 

1.1.2.4 Application Simulators 

The application simulator is responsible for creating V2X applications following the 

European Telecommunications Standards Institute (ETSI) standard. Accord to the 

standard, Cooperative Awareness Messages (CAM) are used for vehicular/traffic 

situational awareness, while Decentralized Environmental Notification Messages (DENM) 

are used to alter node (vehicle, road-side unit, and/or traffic light) behaviors [152]. 
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Figure 70: More coupled simulators that can be used with VSimRTI in order to create a 

single integrated simulation framework/architecture [76] [77]. 

1.2 Evaluation Scenarios 

Our evaluation scenario consists of a simulated accident on Constitutional Avenue NW, 

which has the effect of blocking its entire 3 lanes together with reduced speed limit as a 

result of slippery roadway caused by frozen ice, and poor driving visibility as a result of 

the presence of fog. For the purposes of this study, vehicles emanate from John Hanson 

Hwy (source) to Dulles Toll Road (destination) via Constitution Avenue NW (if vehicle 

driver is DNA-equipped and distracted), or H. Street NW (if vehicle driver is DNA-

equipped and not distracted) 



214 

 

  

 

 

In order to evade this precarious road condition, vehicles running our developed Driver 

Notification Application (DNA) are notified via their in-vehicle onboard units (OBUs) – 

informing the human driver to take an alternative route using textual, visual, audio, and 

haptic feedback mechanisms as shown in Figure 71. When travel speed across a roadway 

falls, typically because of congestion, DNA-equipped vehicles relay/convey this 

information to trailing ones who then use this information to compute the edge weights in 

addition to alternative route(s) travel times. These vehicle drivers are advised reroute when 

an alternative route has better travel time than the main/primary route [82] [76] [166]. 

 

Figure 71: In-vehicle textual, audio, visual, and haptic notification of the congested 

condition on our reference roadway – Constitution Avenue NW [211]. 
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1.3 Performance Evaluation Metrics 

Emanating from the above evaluation scenarios, we determine the efficiency, and 

effectiveness of young, and middle-age driver models respecting the evaluation metrics of 

traffic efficiency, and safety performances using ad hoc/decentralized communication 

architecture. Specifically, respecting traffic efficiency, the best traffic efficiency result is 

equivalent to the fastest vehicle trip/travel time from source (John Hanson Hwy – from the 

West) to destination (Dulles Toll Road – in the East). With respect to safety performance, 

the highest safety performance (100%) is obtained when all DNA-equipped vehicles that 

received the reroute/change route directive to evade Constitutional Avenue NW did same 

and vice versa. In summary, equipped vehicles that failed to heed these reroute directives 

suffer adverse effects respecting their safety, and traffic efficiency performances – the 

opposite is also true. 

2. Performance Evaluation Results and Discussion 

We here present the results of our empirical study respecting the influence of driver 

distraction levels on the safety, and traffic efficiency performances of young, and middle-

age driver models/age groups using decentralized/ad hoc communication. Again, the 

suffixes _app, _noapp, and _ref, in this section, refers to vehicles running our driver 

notification application (DNA) (_app), classic/DNA-unequipped vehicles (_noapp), and 

reference measurements/results (_ref) void of all simulated incidents on Constitutional 

Avenue NW. In the same vein, DNA-equipped vehicle drivers that heeded, and did not 

heed the reroute/change route directives are denoted with (rerouted_yes), and 
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(rerouted_no) respectively. Finally, the aggregate of all (rerouted_yes/no) vehicles is 

denoted by (total). 

2.1 Human Factors Challenge: Young Driver 

Figure 72 [a – d] shows the results of our traffic efficiency, and safety – Figure 72 [e – f] 

– performance results respecting the young driver model. 

On the one hand, the best case traffic efficiency scenario respecting travel time [TT] was 

observed at 100 emitted vehicles, and 100% driver agility/attentiveness were no difference 

existed amongst the performance metrics evaluated. On the other hand, the worst case 

traffic efficiency scenario respecting travel time [TT] performance was observed at 5 

emitted vehicles and 5% driver agility/attentiveness resulting in the following losses: travel 

time [TT]: 84.99% (23.21 minutes/1392.8 seconds), average speed: 70.86% (0.012 km/h), 

PMx: 3.74% (23.96mg), CO: 5.76% (7.85g), C02: 11.69% (787.67g/km), NOx: 7.1% 

(1.06g), HC: 20.86% (0.46g), and fuel consumed: 11.69% (0.31 liters). An improvement 

in travel distance [TD]: 0.29% (0.145km) was also observed here. 

At 5% DNA-emitted vehicles, and 5% driver agility/attentiveness, the average speed of 

DNA-equipped vehicles fell from 106.92 km/h (reference) to 57.62km/h as a consequence 

of the road traffic congestion on Constitution Avenue NW resulting in a 53.89% 

decrease/loss. The losses/deteriorations in the evaluated performance metrics can be 

attributable to this decrease in average speed. 



217 

 

  

 

 

With respect to safety, the best case safety rate/performance (70%) was observed at 100 

emitted vehicles, and 100% driver agility/attentiveness because only 70 out of 100 DNA-

equipped vehicles heeded the change route/reroute directive. In the same vein, the worst 

case safety performance (32%) was observed at 50 DNA-emitted vehicles, and 50% driver 

agility/attentiveness because only 16 out of 50 equipped vehicles heeded the change route 

directive.   
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Figure 72: Performance of some evaluated metrics in relation to the impact/influence of distracted driving on 

the young driver model. 
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2.2 Human Factors Challenge: Middle-age Driver 

Figure 73 [a – d] shows the results of our traffic efficiency, and safety –  

Figure 73 [e – f] – performance results respecting the middle-age driver model. The best 

case traffic efficiency scenario respecting travel time [TT] was observed at 100 emitted 

vehicles when the driver’s agility/attentiveness is highest (100%) i.e. there was no 

difference observed with respect to the performance metrics evaluated in this scenario in 

relation to the reference scenario. Similarly, the safety rate remained unchanged at 100% 

because all equipped vehicle drivers (100) heeded the change route/reroute directive on 

time. 

 

The worst case traffic efficiency scenario with respect to travel time [TT] performance was 

observed at 5 emitted vehicles with driver’s agility/attentiveness at its lowest point (5%). 

This resulted in the following losses: travel time [TT]: 84.86% (23.18 minutes/1390.8 

seconds), average speed: 46.06% (49.25km/h), PMx: 2.24% (0.014g), CO: 3.78% (5.1g), 

CO2: 8.96% (602.25g), NOx: 5.07% (0.75g), HC: 16.46% (0.36g), and fuel consumed: 

8.96% (0.24 liters). On the other hand, an improvement in travel distance [TD]: 0.29% 

(145.35 meters) was observed also at 5% driver agility/attentiveness, and 5 emitted 

vehicles. 

 

At 5% DNA-emitted vehicles, and 5% driver agility/attentiveness, the average speed of 

DNA-equipped vehicles fell from a reference of 106.9 km/h to 57.65 km/h as a result of 
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the road traffic congestion on Constitution Avenue NW leading to a 53.93% decrease. This 

decrease is responsible for the deteriorations in the performance metrics evaluated as a 

result of increased trip/travel time. 

 

With respect to safety, the lowest safety performance (40%) was also observed at 5% 

agility/attentiveness, and 5 emitted vehicles because out of a total of 5 DNA-emitted 

vehicles, only 2 heeded the change route request. 
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Figure 73: Performance of some evaluated metrics in relation to the impact/influence of distracted driving on 

the middle-age driver model. 
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2.3 Human Factors Challenge: Middle-age versus Young Driver 

Figure 74 [a – d] shows the results of our traffic efficiency, and safety – Figure 74 [e – f] 

– performance results comparing the performances of the young driver model in relation 

to the middle-age driver model. In this section, the additional suffixes (.m), and (.y) in 

Figure 74 denotes the performance results of middle-age (.m), and young (.y) drivers 

respectively. 

With respect to travel time, on the one hand, the best case traffic efficiency performance 

was observed at 95 emitted vehicles, and 95% driver agility/attention with the following 

improvements of middle-age drivers over young drivers: travel time [TT]: 26.19% (10.05 

minutes/603.16 seconds), average speed: 35.69% (27.11km/h), PMx: 1.7% (0.011g), CO: 

1.77% (2.46g), CO2: 4.12% (289.61g), NOx: 2.66% (0.4g), HC: 6.46% (0.15g), and fuel 

consumed: 4.12% (0.11 liters). On the other hand, young drivers outperformed middle-age 

drivers with respect to travel distance [TD] by 0.15% (0.07km) also at 95 emitted vehicles. 

On the other hand, also with respect to travel time, the following worst case traffic 

efficiency performance was observed at 10 emitted vehicles, and 10% driver  

agility/attention with the following improvements of middle-age drivers over young 

drivers: travel time [TT]: 0.03% (1 second), and average speed: 0.035% (0.022Km/h). 

However, young drivers outperformed middle-age drivers with respect to the following 

metrics – although no change/difference in travel distance [TD] was observed: PMx: 0.41% 

(0.0026g), CO: 0.27% (0.38g), CO2: 0.47% (34.01g), NOx: 0.43% (0.067g), HC: 0.32 

(0.0082g), and fuel consumed: 0.47% (0.013 liters). 
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At 95 DNA-emitted vehicles, and 95% driver agility/attentiveness, the decrease in average 

speed by 73.69% from 103.05km/h (middle-age) to 75.94km/h (young) is attributable to 

the road traffic congestion on Constitution Avenue NW; this resulted in better performance 

of middle-age drivers over young drivers in relation to the evaluated performance metrics 

– especially respecting traffic efficiency. 

The best case safety performance with respect to middle-age drivers (100%), and young 

drivers (70%) were observed at 100 DNA emitted-vehicles, and 100% driver 

agility/attentiveness. Similarly, the worst case safety performances of both middle-age, and 

young drivers (40% each) was recorded at 5 IWA-emitted vehicles, and 5% driver 

agility/attention. 
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Figure 74: Comparing the impact/influence of distracted driving on the young, and middle-

age driver models respecting some of our evaluated metrics. 
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When travel speed across a roadway falls, typically because of congestion, DNA-equipped 

vehicles relay/convey this information to trailing ones who then use this information to 

compute the edge weights in addition to alternative route(s) travel times. These vehicles 

reroute when an alternative route has better travel time than the main/primary route [82]. 

In general, the higher the V2X penetration rates, more application-supported vehicles take 

alternative routes to get to the destination thereby improving traffic efficiency, and safety. 

However, high vehicular traffic densities/volumes, increased packet collisions as a result 

of more nodes (vehicles, RSU’s, and traffic lights, etc.), and interferences from external 

obstacles such as high buildings, etc. are typical characteristics of urban/city roadways – 

the opposite is true for rural roadways [82]. Consequently, V2X traffic efficiency, and 

safety performances, for example, is highly dependent on the type/nature of the 

used/evaluated roadway [82]. 

Because V2V communication relies on multi-hop communication, several V2V reroute 

messages are lost/do not reach the intended vehicles on time in order to trigger rerouting 

through alternative routes – especially at low DNA-supported vehicles (V2X) penetration 

rates [82]. This is one of the primary reasons why V2I (single-hop) communication is 

preferred over V2V (multi-hop) communication respecting safety/life-critical 

applications/scenarios [82]. 

Although rerouted vehicles took a longer distance to get to the destination, these alternative 

routes had higher speed limits, lower traffic densities, and higher roadway capacities. 

Consequently, their travel time performance was comparable to those vehicles that took 
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the main/original congested route [82]. However, because DNA-equipped vehicles 

travelled at greater distances and speed through alternative routes to get to the destination, 

they incurred additional fuel consumption and CO2 emissions i.e. they became 

worse/increased/worsened [82] – compared to our reference scenario where no 

accident/incident was present on Constitutional Avenue NW [82]. 

3. Remarks 

In this chapter, we have experimentally demonstrated that the levels of driver distractions 

adversely affects the safety, and traffic efficiency/mobility goals of intelligent 

transportation system (ITS)/vehicular ad hoc networks (VANETs); using both field and 

simulation data, we modeled a drivers distraction levels as being a composite of: 

perceptual/visual, motor (reaction/response time/agility), and cognitive skills/capabilities, 

etc. From our results, we have seen that middle-age drivers showed more 

resilience/effectiveness over younger drivers in alleviating the adverse effects of distracted 

driving. 

It is important to note that vehicle-to-vehicle (V2V) communication performance is 

hampered by several factors such as low vehicle-to-x (V2X) penetration rates, low traffic 

volume/densities which eventually leads to a disconnect in communication because of the 

long inter-vehicle distance that exceeds the communication range of V2V communication 

via multi-hop communication. In order to ameliorate this weakness in V2V/decentralized 

communication/routing, V2I communication can be used to complement/supplement them 

using nodes/road-side units (RSUs) employing centralized/decentralized routing [82]. In 
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other words, V2V communication is only effective when the inter-vehicle distance of V2X 

equipped vehicles lies within the communication range of the transmitting/sending vehicle 

and the receiving vehicle using multi-hop propagation/routing [82]. 

4. Outlook 

The following will be interesting/important future research areas: the influence of 

automated vehicles/robotics, electric vehicles, together with their interactions with the 

traditional human-driven vehicles have not been adequately proven to be compatible/co-

exist in a complex heterogeneous driving environment [15]. In addition, the interaction of 

human-to-machine, and machine-to-machine/robotics systems needs to be further 

evaluated to determine whether their use is beneficial, or detrimental to mobility/traffic 

efficiency, safety, and security goals of ITS especially respecting the levels of distractions 

introduced by their usage. Besides, it also will be astonishing to note the most expedient 

point (if any) of transferring (full/partial) vehicular control from the human driver to the 

machine and vice versa in order to especially meet the safety goals of ITS [15] [21]. Finally, 

the advent of automated technologies have also highlighted several deficient areas 

requiring more/further research/investigations; some of these areas include, but are not 

limited to: human factors, security, reliability, and need for  more 

standardization/normalization/unification of standards/policies/evaluation metrics together 

with their subsequent unanimous adoption by all stakeholders [15]. 
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Chapter 7 

Securing Transportation Cyber-Physical Systems 

1. Overview 

As earlier stated/alluded to severally in this dissertation research, vehicle-to-vehicle (V2V), 

and vehicle-to-infrastructure (V2I) communications in intelligent transportation systems 

(ITS)/vehicular ad hoc networks (VANETs) have been touted to be a major panacea for 

improving safety, traffic efficiency, and provision of infotainment services. However, their 

levels of improvements have not been adequately evaluated especially in a complex, 

heterogeneous real-world setting – particularly, in the presence of various security/privacy 

attacks.  

Besides, like in other security domains, confidentiality, integrity, and availability (CIA) are 

imperative security requirements that must be guaranteed in order to engender confidence, 

and widespread adoption of the intelligent transportation system (ITS)/vehicular ad hoc 

network (VANET) technology. Consequently, security compromises in ITS/VANETs, like 

in other safety/life-critical systems/applications, can be calamitous resulting in the loss of 

lives. Consequently, these systems must have little or no tolerance for errors, 

vulnerabilities/exposures, and other possible security flaws that can be compromised by 

the adversary. 

To this end, we experimentally demonstrated the devastating effects of a physical layer 

jamming attack i.e. a type of denial of service (DoS) attack, against the availability security 
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requirement/goal/objective on vehicle-to-vehicle (V2V), and vehicle-to-infrastructure 

(V2I) communication architectures using real-world data, and road networks. 

Our overall result shows that, although V2V, and V2I communication architectures were 

both adversely affected by the jamming attack, V2I communication, however, showed 

more resilience to V2V communication in accurately disseminating safety-critical 

messages to their intended vehicles/destinations resulting in better safety, and traffic 

efficiency performances/measures. In addition, we also proffered some mitigation 

techniques against attacks that are intended to compromise/vitiate the availability security 

requirement/goal in general, and denial-of-service (DoS) – jamming – attacks in particular. 

2. Motivation 

Owing to the safety/life-critical nature/requirement of intelligent transportation system 

(ITS)/vehicular ad hoc networks (VANETs), little or no tolerance for errors is strictly 

mandated in the ITS/VANET ecosystem. Security compromises in ITS/VANETs can be 

quite disastrous and will, subsequently, hinder the already fragile trust by stakeholders – 

more especially road users/operators – in embracing the laudable mobility/traffic 

efficiency, safety, and infotainment, etc. promises of this evolving/fledgling technology. 

From the aforesaid, mitigation techniques that strive to preserve the confidentiality, 

integrity, and availability (CIA) security and privacy goals of ITS are imperative. It is, 

however, important to note that of all the promised security, mobility/traffic efficiency, and 

greener transportation, etc. benefits of ITS/VANETs, none is more imperative than safety. 
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In other words, to be reliably adopted in the real-world, all traditional, and emerging 

ITS/VANET applications must never, in any way, vitiate/compromise safety [20]. 

With all these in mind, in this chapter, we attempt to investigate the impact of vehicle-to-

vehicle (V2V), and vehicle-to-infrastructure (V2I) communications jamming attacks in a 

realistic scenario. We also proffer some mitigation techniques that can ensure that continual 

operations are sustained even when all, or part of the system is under attack/being 

compromised. 

Besides, in this chapter, we provide some background information respecting the 

ITS/VANET domain in relation to its architecture, standards, features, and applications in 

Section 3. Next, in Section 4, we examine some of the security, and privacy requirements, 

and challenges in the ITS ecosystem; this is, subsequently, followed by an exposition of 

some of the available countermeasures/mitigation techniques employed to address some of 

the identified challenges/potential vulnerabilities in Sections 5, and 6. Following in Section 

7, we present our main contribution in light of an actual empirical/experimental 

demonstration of a denial-of-service (DoS)/jamming attack against the availability security 

goal/requirement using both V2V, and V2I communications. In Section 8, we highlight 

some of the major findings of our experimental/empirical study. Finally, in Section 9, we 

buttress some of our evaluation results and draw conclusions based on them. 
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3. Transportation Cyber-Physical Systems 

Smart vehicles are able to process, record/store data/information from vehicle-to-vehicle 

(V2V) and vehicle-to-infrastructure (V2I) communications. The VANET is made up of 

entities such as on-board units (OBUs), road-side units (RSUs), and trusted platform 

module (TPM), etc. These entities communicate with one another via V2V, and/or V2I 

communication as shown in Figure 75. V2I communication requires more bandwidth and 

is less susceptible to attacks. Some of the wireless communication standards that can be 

used with V2I communication include, but are not limited to: GSM, UMTS, WiMAX, etc. 

In VANETs, two main routing methods have been identified: source/centralized/vehicle-

to-infrastructure routing protocol (single-hop), and hop by hop/decentralized/vehicle-to-

vehicle routing protocol (multi-hop). The six main classifications of V2V routing protocols 

in VANETs include: topology-based (which can be proactive/table-driven, reactive/on-

demand, or hybrid), position-based, multicast-based, cluster-based, broadcast-based, and 

geocast-based routing protocols. On the other hand, static, and dynamic infrastructure-

based routing protocols are examples of V2I routing protocols [30, 31, 44, 212-215]. 

3.1 Architecture 

The three main types of architecture in VANETs are: cellular/wireless 

LAN/centralized/vehicle-to-infrastructure (V2I) communication architecture, ad 

hoc/decentralized/vehicle-to-vehicle (V2V) communication architecture – can be single-

hop (used for safety related messages/communication), or multi-hop (used for non-safety 

related messages) depending on the position of the receiver relative to the sender, and a 
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combination of both (hybrid). They are pictorially shown in the Figure 75 below. In 

VANETs, message transmissions can be via broadcast (V2I), or unicast/ad hoc (V2V)  [97] 

[216] [96]. 

 

Figure 75: VANET network architectures: (a) pure cellular (V2I), (b) pure ad hoc (V2V), 

(c) hybrid (V2V & V2I) [95] [96]. 

3.2 Applications 

VANET applications/services can be categorized under the following headings: safety, 

comfort/infotainment, and traffic efficiency applications. Traffic efficiency and safety can 

be enhanced via cooperative driving, and traffic monitoring applications. Some safety 

applications of VANETs include, but are not limited to: electronic break light warnings, 

and cooperative collision avoidance. Some traffic efficiency applications of VANETs 

include, but are not limited to: road congestion notifications, parking availability 

notification, etc. Besides, VANET applications can be used for warning, traffic 

management, and provision of value-added applications. Payment, infotainment, and 

location-based services are some of the value added applications of VANETs. Maintenance 
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applications in VANETs could be in the form of remote vehicle diagnosis [30, 31, 44, 94-

97, 217] [218]. 

3.3 Standards 

In the VANET domain, dedicated short range communication (DSRC), and wireless access 

in vehicular environments (WAVE) are the approved vehicular communication standards 

in use. DSRC and WAVE are both based on IEEE 802.11p, and IEEE 1609 – a higher 

standard that IEEE 802.11p depends upon. Besides the DSRC (IEEE 802.11p), and WAVE 

(IEEE 1609), WiMAX, satellite, and cellular wireless technologies can also be used in 

VANETs. 

Using WAVE, or the DSRC protocol/communication standard, V2V and V2I 

communication is secured against a lot of attacks such as: spoofing, eavesdropping, and 

modification attacks, etc. It protects against these attacks using public key, hybrid key, and 

elliptical curve cryptography (ECC) techniques. The DSRC channel allocations in USA 

consists of 7 channels at 10MHz; that of Europe, however, consists of 5 channels also at 

10MHz [94] [30, 219]. 

DSRC: The 5.850 – 5.925GHz spectrum has been reserved by the U.S. Federal 

Communications Commission (FCC) for vehicular communications. The DSRC (IEEE 

802.11p originating from IEEE 802.11) is the wireless communication standard for 

VANETs having a data rate of between 3 – 27 Mbps using a 10MHz channel with a 

maximum transmission range of 1000 meters. DSRC/IEEE 802.11p has low 
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communication latency, and fast link setup time with high data transfer ranges. However, 

a drawback of IEEE 802.11p is that as the number of nodes increases, its performance 

degrades [36]. It is also plagued by problems such as the presence of collisions, low 

throughput, and predictability problems especially in VANETs with large number of nodes 

[36]. For situational awareness, vehicles constantly send beacon packets amongst one 

another with a frequency of 10 messages/second at a maximum communication range of 

150m. 

WAVE: The WAVE design/architecture addresses features such as security, safety, 

automatic tolls, and traffic efficiency. IEEE 1609.2 reduces message overhead by half 

when elliptic curve digital signature algorithm (ECDSA) is used for signature generation 

and verification/validation. Verification on demand (VoD), used in IEEE 1609.2 is an 

approach to reduce the computational/processing overhead of each connected vehicle by 

sampling/selecting a subset of the entire message for processing based on their threat level 

instead of the entire population. Like the IEEE 802.11p, the WAVE standard has gone 

through a lot of evolutions with specific/specialized standards that are more applicable to 

certain domains/problems than others [44] [30, 31] [93] [99] [101] [29] [15, 220, 221] 

[101] [20] [21]. 

3.4 Characteristics 

VANETs are a subset of mobile ad hoc networks (MANETs)  and other ad hoc networks 

sharing similar characteristics with autonomous devices (vehicles/OBUs, RSUs, traffic 

lights) acting as routers with frequently changing topologies that transmit information/data 
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from source to destination. Nodes with higher mobility and speeds, more scalability, 

frequently changing/dynamic network topologies, predictable mobility, regular 

disconnections, transmission medium availability (air), support for anonymity, bandwidth 

limitations, susceptibility to attenuations, and transmission power limitations especially as 

communication range/distance increases, etc. are some of the most prominent/unique 

features of VANETs that distinguish them from MANETs. Besides, VANETs have higher 

privacy, safety, and security requirements compared to MANETs [31] [44] [30] [94]  [95]. 

Buttressing, some of the aforementioned points, VANETs possess unique features such as: 

Dynamic topology:  Nodes in VANETs usually move at very high speeds resulting in short 

connection times – especially for nodes moving in opposite directions together with 

susceptibility to interferences as a result of reflections from multipath propagations, 

climate/weather (natural interferences), etc. 

Bandwidth limitations: Reflections, signal fading/delays, diffractions, etc. all limit the 

effectiveness of exchanged messages in V2X communication with a maximum theoretical 

throughput of 27 Mbps. 

Transmission power limitations: VANETs also have limited transmission powers (for up 

to a maximum of 1000m). 

Energy efficiency: Because of steady power supply from batteries, and other sources 

VANETs do not normally suffer from energy limitations as experienced in other mobile 

devices such as smart phones. Besides, energy considerations/constraints might be 
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neglected for VANETs especially with respect to energy used by cryptographic algorithms, 

because of its efficient/effective energy storage/utilization [30, 31, 44] [95]. 

4. Security and Privacy Issues in Transportation Cyber-Physical Systems 

4.1 Security and Privacy Requirements 

Security, safety, and privacy are major requirements of VANET. Security requirements in 

VANETs include, but are not limited to: integrity/data trust, confidentiality, non-

repudiation, access control, real-time operational constraints/demands, availability, and 

privacy protection. Some of these security requirements are unique to VANETs, but others 

are applicable to general security measures. 

The following are some more elaborations of the requirements for VANET 

security/privacy [97] [31] [94] [95] [96] [44, 104, 220, 222]: 

 Identification and Authentication: All on-board units (OBUs)/connected vehicles, 

road-side units (RSUs), and every other participating entity must be properly authenticated 

before joining the network. Authenticating a vehicle/sender by the receiver is important in 

order to determine whether the sender is legitimate especially with respect to safety/life-

critical messages. This is true because false data injection in VANETs can be used to 

disrupt traffic flow, get undeserved road use priority, and cause accidents or other life 

threatening injuries, etc. Authentication (identity verification) prevents privilege 

escalation/increase in a node (vehicle, or RSU) authorization level. It also prevents Sybil 

attacks i.e. one vehicle cannot take over the entire road by claiming there is an 
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accident/congestion ahead because a vehicle can only possess one unique network 

identification number at any given time [223]. 

 Data consistency verification: The system must give the same results/output given 

a specified input. 

 Confidentiality: Not every message in VANETs should be encrypted – for example, 

safety related messages. However, message exchanges between and/or among RSUs that 

are sensitive in nature e.g. toll payments, internet connections via RSUs, etc. must be 

encrypted such that if an adversary gets hold of this information, it will be meaningless. 

Secure communication can be realized/achieved using public/asymmetric key 

cryptography/encryption. In other words, confidentiality obviates/prevents unauthorized 

access [223]. 

 Message integrity/data trust: The system must not permit modifications in transit. 

 Non-repudiation: Although a driver’s privacy must not be compromised, offending 

parties must be reliably made liable/culpable for their actions. Non-repudiation is 

dependent on proper authentication. It ensures that an entity/sender (vehicle, or 

infrastructure – RSU) cannot feign ignorance of all or part of its action because 

auditability/accountability is enforced by storing/maintaining evidence such as a vehicles 

route, timestamps, speed, and other actions/violations in a tamper proof device (TPD). 

Consequently, a sender cannot deny/refute sending a message – thus providing evidence 

for eventual prosecution. 

 Availability: The system must not experience unscheduled downtime. Availability 

ensures continuous operation/performance by designing fault-tolerant, resilient systems, 
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and using devices with high survivability such that normal operations continue even while 

under attack and/or parts of the network (devices) have failed/become unavailable. In other 

words, continuous availability must be maintained with respect to both anticipated, and 

unanticipated usage [223]. 

 Traceability and revocation: The system must maintain a valid and verifiable 

log/record of all activities of participating nodes in order to enforce the non-

repudiation/auditability condition. However, maintaining a balance between 

auditability/accountability, and privacy in VANETs is a major challenge. 

 Privacy: The system must not collect unauthorized personally identifiable 

information. A major challenge ensues in trying to balance the need for privacy, and the 

need for security. In general, however, with respect to privacy, unauthorized persons must 

not track a driver’s behavior, and location (past, and present movements), etc.  In other 

words, personally identifiable information must not be traceable to an actual user [44] [31]  

[97]. 

 Satisfaction of real-time constraints: The safety/life-critical nature of VANET 

safety applications mandates 100% reliability/dependability with no tolerance for errors. 

With respect to VANET safety applications, real-time delivery, reliability, latency, 

security, and trust must be guaranteed. 

 Access control: Using access policies, unauthorized access to privileged/sensitive 

information is forbidden by preventing privilege/role escalations. 

In summary, balance/tradeoff must be reached between ensuring security, and ensuring 

privacy. This is true because some emergency situations may require law enforcement 
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officers, for example, to know where a vehicle is located, and who owns it in order to be 

able to respond appropriately. Besides, the desire for privacy and security must not 

jeopardize real-time operations. 

It is imperative to note that, the above list of security and privacy requirements of VANETs 

is not intended to be a comprehensive one – this is true because new requirements usually 

emanate upon actual real-world deployments/implementations. 

4.2 Security and Privacy Challenges 

Just as security, safety, and privacy are major VANET requirements, they are also major 

VANET challenges [30] [31] [94, 97] [29, 95] [44] [216]. Security compromises in 

VANETs can be fatal/disastrous because of its safety-critical nature. Generally, real-time 

communication requirements for responding to safety-critical messages before it becomes 

too late, increase in network size as the number of connected vehicles increase, frequent 

changes in network topology, transient authentication/security mechanisms, diverse 

definitions of security, safety, and privacy with respect to different jurisdictions, 

centralized storage/management of keys – who should be responsible for this and why, lack 

of user buy-in, etc. are some of the factors/constraints that must be addressed before 

VANETs can be widely adopted. In more details, some of the security challenges 

respecting VANETs include, but are not limited to: 
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1. High mobility: It is more difficult to ensure security, and non-repudiation because 

of the transient nature of V2V and V2I communication interactions owing to frequently 

changing network topology/high mobility. 

2. Conflict between privacy and security requirements: Generally speaking, more 

security usually means less privacy and vice versa. Many drivers will be unwilling to give 

up their privacy for some perceived security benefit. Besides, another major challenge is 

to balance strong security with good performance. 

3. Availability: A high availability requirement is mandated in VANETs especially 

because of its safety-critical nature by providing fail-safe, resilient, and fault-tolerant 

operations. 

4. Low tolerance for errors: With respect to VANETs, more focus must be placed on 

preventative security measures rather than corrective/detective ones. This is true because 

in a safety/life-critical scenario/application, for example, any infinitesimal delay in the 

dissemination of messages to intended recipients can prove fatal/calamitous. Bandwidth 

saturation, and communication/processing overheads are some of the drawbacks to real-

time/near real-time communications in VANETs. 

5. Key distribution: With lots of participating stakeholders such as government, 

vehicle manufactures, etc. it is difficult to ascertain who should be the certificate authority 

(CA) responsible for (public) key distribution such that attacks such as Sybil/spoofing 

attacks, for example, can be thwarted without compromising the users’ privacy 

requirements. Also, interoperability among these different participating entities is also a 

major challenge.  For example, interoperability amongst different certificate authorities 
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(CAs) residing/situated in different geographic jurisdictions and governed by varying laws 

and liabilities, is a major problem besides the privacy problem of vehicle tracking, user 

profiling, and vehicle identification through linking. 

6. Cooperation: Aligning the interests of manufactures, consumers, and government, 

etc. is challenging because of their often divergent interests/goals. For example, 

users/consumers may offer fierce resistance to VANET use and will be reluctant to adopt 

it because they perceive that they are being monitored, or will subsequently be monitored 

by the technology. 

More specifically, before VANET technology can be fully embraced by all stakeholders 

(direct, and/or indirect), it must address three major areas of challenge: social, economic, 

and technical. Some of these challenges are summarized thus [31, 93, 97]: 

1. Network scale and dynamics: VANETs need new security different from 

conventional approaches because of frequent changes in network topology, scale, and 

mobility, etc. 

2. Privacy: Driver and vehicle anonymity militates against privacy violations, 

however, an offending driver can feign ignorance of committing a crime if 100% privacy 

is implemented. Consequently, a tradeoff between privacy and security is imperative. 

3. Trust: Abuse may become inevitable if authorities are given 

unmitigated/unabridged powers. Consequently, misuse of authority by an authorized entity 

e.g. the police is a major privacy concern. However, if appropriate security and privacy 

measures are implemented, the challenge of not having enthusiastic users of the technology 
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because of security, and privacy concerns can be allayed by focusing on the benefits of the 

technology such as reduced road traffic accidents (safety), traffic efficiency/mobility, and 

provision of infotainment services, etc. This is true because although there are risks 

associated with the use of cellphones/the internet, people still use them today because they 

are convinced that their benefits far outweigh the risks. 

4. Cost: Installation costs with respect to consumers/road users/drivers, and 

authorities (infrastructure) costs must be kept to the lowest/barest minimum in order to 

ensure quick and easy adoption. 

5. Gradual deployment: Of VANET technology must be supported owing to high 

infrastructure cost factors and other ramifications/constraints respecting stakeholders. 

The above list of possible VANETs challenges is not intended to be an exhaustive one – 

this is true because new challenges usually surface/manifest upon actual real-world 

deployments/implementations. 

4.2.1 Security Actors/Entities 

Some actors who are directly or indirectly involved in VANET security include, but are 

not limited to: vehicle driver, on-board unit (OBU), road-side unit (RSU), third parties e.g. 

certificate authorities (CAs) – trusted, and untrusted stakeholders –  and the adversary (who 

can be internal/authenticated vs. external, rational vs. irrational, active vs. passive, and 

local vs. extended); it is important to note that the OBU/vehicle, the RSU, and all order 

legitimate entities/nodes can be normal or malicious [30]. In other words, besides vehicles, 
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other entities/nodes such as RSUs, and traffic lights are also susceptible to attacks based 

on identified vulnerabilities [31]. 

4.2.2 Attacker Profiles 

As aforesaid, attackers in a VANET environment can be categorized as: outsider vs. 

insider, malicious vs. rational, active vs. passive, and local vs. extended  [97] [44] [31]. 

1. Outsider vs. insider: It is very difficult for an outsider to carry out devastating 

attacks. Insiders, however, unleash more damages than outsiders because they are 

legitimate members of the network and they have been fully authenticated. Insiders can 

also be in the form of industrial insiders who can intentionally inject destructive code into 

a system. 

2. Malicious vs. rational: Malicious attackers are undirected – they derive no specific 

gain/benefit in attacking/bringing down the system; as an example of malicious attackers, 

pranksters can cause accidents or illusions of one such that other following vehicles are 

forced to slow down. Rational attackers are, however, more predictable, focused/goal-

directed/benefit-oriented, and seek a specific result. For example, the rational attacker can 

use eavesdropping/impersonation, and message delay/suppression to attack a network. 

3. Active vs. passive: Active nodes (insiders) have network authorization; passive 

nodes (outsiders) can only do things such as eavesdropping – they are not authenticated to 

operate within the network. Using eavesdropping as a passive attack mechanism, a 

government agency, for example, can try to categorize/profile drivers based on their 

behavior if given unabridged powers. 
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4. Local vs. extended: Local attackers are restricted in geographical 

influence/coverage/scope while extended attackers reach to larger geographical areas. 

4.2.3 Attack Classifications 

Some VANET security vulnerabilities/possible attacks can be carried out via jamming, 

interference, eavesdropping, etc. [30] [215]. Figure 76 shows an incomprehensive list of 

possible threats and attacks against some VANET system/security requirements. 

 

Figure 76: Examples of VANET threats and attacks [30]. 

It is pertinent to note that developing a comprehensive threat model on possible VANET 

attacks is a prerequisite for developing effective countermeasures against them [93]. 

Consequently, we further elaborate upon some of the aforementioned VANET security 

threats/attacks and their corresponding compromised security goals/requirements [31] [44, 

93] [30] [29] [224] [101]: 
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2. Availability attacks: Availability in VANETs can be compromised by denial of 

service (DoS), replay, and channel jamming attacks, etc. Availability attack aims at 

disruption of network operation; for example, it may focus on safety, and payment-related 

applications leading to wireless channel jamming, and denial of service (DoS) attacks with 

the aim of causing the network not to perform its proper/normal functions resulting in 

network downtime/unavailability. It manifests in the form of: 

 Denial of Service attacks: Can be perpetrated by a malicious internal/external node. 

It can be used to prevent vehicles from getting critical safety-related messages by jamming 

the communication channel – it is a malicious and active attack. For example, a DoS attack 

can be used to prevent real-time verification of legitimate/critical message signatures 

because of replay attacks from spurious/non-critical messages used to overwhelm the 

system/queue. 

Some DoS attack examples can be executed via: 

- Jamming attack: Usually an intentional attack aimed at communication channel 

(physical layer) disruption. Jamming aims at precluding/starving other nodes from utilizing 

available resources [91]. 

- Greedy behavior attack: Greedy drivers can give the illusion of an accident on a 

lane/road in order to take over the entire roadway/lane by causing following vehicles to use 

alternative routes/lanes/paths. 
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- Blackhole attack: This is an attack on availability where a malicious node hoards 

received packets/messages and refuses to participate in routing it from source to 

destination. This attack can also lead to man in the middle attack. 

- Grayhole attack: This is a malicious attack that selectively deletes/excludes some 

data packets meant for certain applications. 

- Sinkhole attack: Here, a malicious node tries to redirect data packets to pass through 

it – it can thus decide to either modify these packets that it has attracted to itself or it can 

completely delete it. A sinkhole attack can be the first step in executing a grayhole and/or 

blackhole attack. 

- Malware attack: Can be perpetrated, for example, during software updates where 

malicious software can be installed advertently, or inadvertently [30]. 

- Wormhole attack: This is a DoS attack that creates the illusion that two far 

away/widely separated malicious nodes are close to each other’s communication range. 

Consequently, other neighboring nodes falsely believe that both nodes are adjacent to each 

other when this is not so [30] [44] [216]. 

- Broadcast tampering attack: Can be executed by legitimate nodes that hide safety 

related messages leading to accidents. 

- Spamming attack: Has the effect of consuming precious bandwidth leading to 

collisions. 

3. Authentication and identification attacks: Manifests itself via: 

 Sybil attack: This has the effect of causing a malicious node to possess more than 

one (many) identities at the same time which can be used to create a fallacious sense of 



247 

 

  

 

 

congestion as shown in Figure 77. Adequate authentication (security) guards against 

Sybil/spoofing attacks where a single vehicle can create a false notion of the presence of 

an accident, for example,  when there is none [44] [216]. 

 

Figure 77: Sybil attack used to create an illusion of a congested condition in order to get 

undue roadway usage priority for example [103]. 

 GPS spoofing/position faking attack: This can be used to deceptively provide a 

position/location of a node that is untrue. Cheating with positioning, speed, and identity 

information applies to both safety and payment related applications such that an attacker 

can feign knowledge/ignorance of committing a malicious attack [93]. 

 Node impersonation attack: Impersonation involves cheating with somebody 

else’s/some entities (vehicles, RSUs, or traffic lights) identity [93]. It violates 

authentication by allowing one or more nodes in the network to have the same network 

identification number which, in normal circumstances, must be unique. Consequently, the 

impersonating/malicious node can feign ignorance of an attack since the non-repudiation 
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security requirement has been violated with impunity. To be useful as evidence (after/post-

collision), incidents must use digital signatures that support non-repudiation with no 

support for anonymity [29] [30] [216]. Property (vehicle, or RSU), location/position, and 

identity authentication mechanisms can be used to prevent impersonation attacks. It makes 

sure that the communicating entities are authorized together with their positions (location 

authentication) [97] [225] [44]. Impersonation attacks can be carried out by insiders to the 

network and it is normally rational and active  [97]. 

 Tunneling attack: Here, the attacker establishes a tunnel to another part of the 

network using a different communication channel – this is very similar to a wormhole 

attack. 

 Key and/or certificate replication attack: Duplicates unique keys/certificates 

making unique identification of nodes/vehicles difficult especially in disputes/accident 

resolutions because of the ambiguity created. 

 

4. Confidentiality attacks: Confidentiality ensures that only authorized persons have 

access to data/resources. An attack on confidentiality manifests itself via eavesdropping, 

and traffic analysis (passive) attacks; this can, not only lead to confidentiality violations, 

but also to violations of privacy. 

 Eavesdropping: Here, the adversary tries to obtain access to secret/confidential data 

via a vehicle (moving/stationary), or a compromised infrastructure/RSU. Implementing 

confidentiality requirements can be used to mitigate this type of attack via encryption. 
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5. Integrity and data trust attacks: Ensures that data has not been modified in transit 

i.e. it makes sure that what was sent is the same as what was received. This attack manifests 

itself in: 

 Masquerading attack: Here, the attacker hides under a false identity (mask) that 

has the appearance of emanating from a legitimately authenticated node, and uses this to 

generate untrue/lying messages or to execute blackhole attacks. 

 Replay attack: A unique feature of replay attacks is that unlike other types of 

attacks, replay attacks can be perpetrated by illegitimate nodes. Message replay has the 

negative effects of consuming/occupying precious bandwidth resulting in the dropping of 

priority messages from the queue when full. Message deletion and replay are used to bring 

down the efficiency of the system; they cannot be prevented by using digital signatures like 

message forgery, and modification can [29, 30]. 

1. Suppressing/fabricating/modifying/tampering with messages: Violates the 

integrity/non-repudiation security requirement. Fabrication attacks manifest via 

dissemination of false/bogus information, cheating with sensed information, tunneling, 

masquerading, and hidden vehicle attacks [44]. Hidden vehicle attacks prevents vehicles 

from participating in traffic condition information dissemination thus breaking the multi-

hop message distribution path; it is usually active and perpetrated by an insider [216]. By 

deleting, forging, replaying, or modifying a message containing parameters such as vehicle 

speed, timestamp, location, or direction, the receiving entity/vehicle can over or 

underestimate the severity of the message leading to collisions and other 

negative/undesirable events/consequences [29]. Specifically, message modification can 
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trigger a false sense of security when a critical message that should trigger collision 

avoidance mechanisms/applications is downgraded and vice versa. This attack is 

perpetrated by a rational attacker [216]. 

 Illusion attack: Here, voluntary sensors that generate false data are placed in the 

network. Because these malicious sensors are properly authenticated, they cannot be 

prevented by authentication mechanisms [30]. It is important to note that illusion, 

modification, masquerading, and replay/broadcast attacks are also considered attacks on 

authentication, and identification. 

6. Non-repudiation/accountability attacks: This attack manifests itself in the form 

of loss of traceability/auditability of events or activities. 

Other VANET attacks/threats include: 

 Privacy attacks: This manifests itself as: 

 Tracking: Identity disclosure attack can be carried out via tracking of 

vehicles/nodes [93]. 

 Social engineering [226]. 

 Timing attack: Here, critical messages are intentionally delayed such that they 

arrive out of sync and cannot be subsequently used [30]. It can involve adding a delay to a 

sent message or not sending the message at all; this has the effect of negatively affecting 

availability, and delaying time/safety-critical information from promptly getting to its 

intended destination. Here, message integrity is not compromised – it only arrives out of 
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sync, or might not even arrive at all; with safety-critical messages, the consequences of this 

attack can be calamitous [97] [44] [216]. 

 Hardware tampering: Can be done by the manufacturer; it can be mitigated by 

physical inspection and the use of the trusted platform module (TPM). Here, it is required 

that availability be maintained. The attacker can be from the inside, or outside; rational and 

active [31] [97]. 

 Brute force attack: Can be committed/executed against message confidentiality, 

encryption keys, or identification and authentication. For example, a brute force/dictionary 

attack can be performed in order to discover the network identification (ID) number of a 

node (vehicle, RSU, or traffic light) [30]. 

 Man in the middle attack: This attack violates authentication, integrity, and non-

repudiation mechanisms. It is executed by having an intermediate/middle node or vehicle 

relaying messages to/from one vehicle to another while the transmitting vehicle falsely 

assumes that it is in direct communication with the receiving vehicle/node. Consequently, 

an innocent sending node can be falsely accused of a malicious activity/action they are not 

responsible for. Non-repudiation, and use of digital signatures and certificates can be used 

to mitigate against this type of attack [97]. 

Besides, with respect to the security requirements of a system, we can also categorize 

attacks in VANETs thus: 

 Attacks on authentication and secrecy 

 Network availability attacks 
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 Stealthy attacks on integrity of service(s) [44]. 

Raya and Hubaux [93] identified three major areas/classifications of security 

threats/attacks in VANETs namely: safety application, payment-based application, and 

attacks on privacy. With respect to VANET safety applications, because of the safety-

critical nature of VANETs, they are normally accompanied by high levels of liability. 

Respecting privacy, because of V2V and V2I (V2X) communication, it is easier to track 

vehicles and/or their drivers. 

An exhaustive/comprehensive list of all possible adversaries, requirements, and 

countermeasures in a security system is unrealistic/impractical, especially prior to adequate 

(full/partial) real-world implementations/deployments – as is the case with VANETs [44]. 

To this end, the various attacks and threats here presented are only an incomprehensive list. 

5. Security and Privacy Countermeasures in Transportation Cyber-Physical 

Systems 

5.1 Cryptography Mechanisms 

Figure 78 shows a pictorial view of the encryption/decryption process. 

 Symmetric/secret/private key cryptography: Uses the encryption key to easily 

obtain the decryption key. It thrives on the fact that the secret key is never revealed to 

outsiders beside the communicating entities. However, the requirement that both parties 

possess the secret key is a drawback respecting symmetric key cryptosystem in relation to 

its asymmetric/public key counterpart [30]. Symmetric/private key cryptography is no 
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longer used for VANETs and in most other domains because of its scalability issues/high 

overhead in key maintenance cost, especially when network size increases [31]. 

 Asymmetric/public key cryptography: Here, the public key – which as the name 

implies is made public – is used for encrypting the message, while the private key (not 

made public) is used for message decryption. The wireless access in vehicular 

environments (WAVE) uses public/asymmetric key cryptography. Public key/asymmetric 

cryptography is used/applied in digital signatures via digital certificates issued by 

certificate authorities (CAs). It is, however, slower/less efficient than its symmetric/private 

key cryptography counterpart. Besides, the process of verifying the digital signature of the 

sender by the receiver in order to verify that the message is authentic is not very amenable 

to real-time/safety-critical applications requiring little or no latency/delay [29] [227]. 

 

Figure 78: Encryption and decryption processes [30]. 

5.2 Cryptography Protections 

By the use of cryptography, the following security requirements can be attained/satisfied: 

 Confidentiality: Most exchanged VANET messages are transmitted 

unencrypted/unprotected excepting sensitive security/privacy related one’s such as 
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electronic toll payments [30]. For example, in general, safety-related messages are 

normally not secured by encryption/other security mechanisms because of the absence of 

critical/private data/information [44]. 

 Authentication:  Implemented via digital signatures. 

 Integrity: Implemented via one way hash functions. 

 Non-repudiation: Ensures that all participating nodes cannot feign ignorance of all 

or part of its legitimate communication/activities. 

5.3 Public Key Infrastructure (PKI) 

A public key infrastructure (PKI) simply consists of several hardware, software, and 

procedures, etc. interacting together. It is normally employed to handle key exchanges as 

the number of participating users/nodes increases i.e. the PKI certification authority (CA) 

acts as a middle-man/trusted third party between/among users. It maintains the life cycle 

of digital certificates   – certificates in VANETs go through the issue, distribution, 

validation, and revocation lifecycles [30]. 

Identification, authentication, authorization, confidentiality, and non-repudiation are 

achieved using PKI’s, and digital certificates. It is, however, imperative to note that 

interoperability, privacy and the need to constantly update the certificate revocation list 

(CRL) in real-time/near real-time is a major challenge in VANETs [31]. It is also germane 

to note that using PKI’s alone cannot protect against privacy attacks/breaches as they were 

not originally designed to provide privacy [31] [99] [100]. 
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5.3.1 VANET’s Public Key Infrastructure (VPKI) 

Similarly, VANET/vehicular PKI (VPKI) is used to efficiently authenticate 

communicating entities/nodes in a VANET environment using digital certificates/IDs 

issued by the certificate authority (CA) [30] [29]. Each vehicle on the road is validated by 

a certificate authority (CA) trusted by both parties. Key management in VANETs requires 

anonymously installing, certifying, and revoking a public/private key pair by a certificate 

authority (CA) [44]. 

Interoperability, inter-domain authentication and authorization between and among CAs 

located in different geographical jurisdictions/boundaries is another challenge i.e. how 

authentication and authorization can be efficiently, and effectively performed between two 

or more intersecting CA domains (in real/near real-time). As a solution to the 

interoperability and authentication problems identified in VANETs, Inter-domain 

Authentication System (AS) was proposed [31]. 

As earlier said, although the use of PKI’s alone provide countermeasures against security 

compromises, they are helpless against privacy issues/compromises [31]. Privacy can, 

however, be maintained by using a centralized public key infrastructure (PKI) together 

with a trusted third-party [31] [97]. Encryption/cryptography is also used to 

ensure/maintain privacy  [97]. 

A disadvantage of using VPKI is that it introduces delays in terms of signature generation, 

transmission, and verification especially respecting safety/life-critical messages [93]. 
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Besides, because of the large number of PKI's and the amount of instructions required to 

be executed, real-time digital signature verification suffers from significant 

performance/message overheads requiring expensive computational resources/power – 

delays resulting in overheads in computation and unnecessary bandwidth over-utilization 

are undesirable [29]. 

5.3.2 Group Signature 

Group-based signatures, an alternative to using PKI’s, reduce the amount of exchanged 

keys in VANETs [31]. However, group-based signature and identity-based signature 

approaches can suffer from scalability problems especially as the number of vehicles in the 

group/cluster continually increases i.e. computational complexity increases as scalability 

increases [31]. 

5.4 Security Countermeasures for Securing VANETs 

Most VANET implementations only start addressing security issues when a breach has 

occurred as security is not built/designed into most implementations – this is also true of 

many other IT domains besides VANETs [93]. 

5.4.1 Generic Security Mechanisms 

In VANETs, like many other security domains, proactive (preventative) security 

mechanisms supersedes reactive (detective) one’s [97]  [44]. 

5.4.1.1 Prevention Techniques 
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Preventative security techniques are analogous to intrusion prevention mechanisms in other 

network security domains; they can be implemented via: 

1. Digital signature-based techniques: Ensures authentication, integrity, and non-

repudiation of participating entities. It can be certificate-based/certificate-void. The 

efficiency of digital signatures especially as scalability increases has not been sufficiently 

studied/ascertained. 

2. Proprietary system design: This is aimed at making it difficult for an adversary to 

penetrate the system using known vulnerabilities. 

3. Temper proof hardware: Can securely store evidence from malicious 

modifications/attacks using tamper resistant/proof device (TPD) [44]. 

5.4.1.2 Detection Techniques 

Reactive security measures are synonymous to intrusion detection techniques in other 

network security domains [44]. When preventive security mechanisms fail to deter an 

attack, detective security measures must be triggered as a fallback mechanism. Efficiently 

and reliably implementing detective security measures can go a long way in even 

preventing collisions and other safety-critical compromises/disasters; they can be 

implemented via: 

5. Signature-based detection: Compares network traffic with previously known attack 

signatures. It is effective only against known attacks/exploits. Some of its advantages 

include: simplicity, and fast attack detection, etc. On the other hand, some of its 
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disadvantages are: incapacitation against new attacks because it depends on regular updates 

to the attack signature database. 

6. Anomaly-based detection: Detects unusual network activity based on predefined 

thresholds. Some of its advantages are: does not require frequent updates of attack 

signature database; it has a downside of being susceptible to producing many false-positive 

results as a result of the vague/equivocal definition of normal versus abnormal 

use/behavior. 

7. Context verification: The normal operation  of  entities in a VANET e.g. RSUs, 

vehicles, and traffic lights, together with their environmental interactions, can be used to 

deduce/infer the presence or absence of attacks/abnormal operation/behavior  [31] [44]  

[98]. 

5.4.2 Specific Security Solutions for VANETs 

1. Specific attack-based solutions: Privacy-preserving detection of abuses of 

pseudonyms (P2DAP) militates against Sybil attacks in VANETs. It is, however, 

incapacitated with respect to collusion attacks [44]. Channel, communication technology, 

and key switches/changes are some security solutions against attacks such as DoS. 

2. Use of digital signatures: Ensures message security; they can be used to provide 

authentication, integrity, and non-repudiation security requirements. Message security can 

be protected/ensured using vehicular PKI. With respect to vehicular PKI, each vehicle uses 

its pair of public/private key pairs to sign/verify all sent/broadcasted messages [97]. 

3. Use of electronic license plates (ELPs): EPLs can be issued by transportation 

authorities to uniquely identify vehicles [93]. 
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4. Use of encryption: Confidentiality is ensured by encrypting all messages before 

sending them [97]. 

5. Event data recording: Ensures that all events/incidents amongst participating 

entities (vehicles, RSUs, and traffic lights) are meticulously logged/stored for audit 

purposes which may be used for establishing liability/exonerating from liability. 

6. Use of tamper-proof device/hardware: This is a physical security mechanism used 

to secure messages (incoming, and outgoing), keys, etc. Electronic license plates (ELPs) 

and VPKI can be kept safe/secured using tamper-proof hardware [93]. Besides, all events 

in VANETs must be logged using event data recording which can subsequently be retrieved 

and analyzed for audit purposes. 

7. Data correlation: As a protection against false data injection attacks, data 

correlation verifies the relevance, credibility, and consistency of data/information 

emanating from various sources before making actionable decisions with them [93]. 

8. Secure positioning: Can be maintained using GPS security measures. 

9. Secure routing: Secure routing/communication can be identity-based – unicast 

(sent to an individual node), and/or geography-based (multicast) – sent to two or more 

nodes (a group of nodes) [44]. Secure routing protocol (SRP) [228] and secure beaconing  

[229] fall under the category of ID-based routing protocols because they are susceptible to 

privacy breaches/violations [44]. In general, because security is usually included as an 

afterthought, most secure routing protocols violate privacy requirements [44]. 

10. Secure MAC: Besides securing routing, securing the medium access control (MAC) 

is also pertinent [44] [230] [231]. 
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5.5 VANET Security Architectures 

In the VANET literature, many authors have proposed several VANET security 

architectures, primarily, dealing with is security, and privacy requirements. Some of these 

architectures include, but are not limited to: 

5.5.1 Global Security Architecture 

Because privacy, safety and security are some of the main deliverables of VANETs, 

Engoulou et al. [97], proposed a global security architecture for dealing with the security 

requirements, threats, and challenges of VANETs. This global security architecture 

consists of five levels  grouped into three stages namely: security material, and 

authentication level (prevention stage); trust, and message/data level (detection and 

correction stage); and cryptographic level (privacy stage) [97] [94]. 

5.5.2 Security Architecture for VANET (SAV) 

In addition, attacks in VANETs were described with respect to its: nature, scope, 

consequences/impact, and target as shown in the security architecture for VANET (SAV) 

[97]. It consists of basic security elements (public key infrastructure, positioning and time), 

single hop security (integrity, non-repudiation, authentication, and confidentiality), multi-

hop security (end-to-end security mechanisms for confidentiality, authentication, non-

repudiation), and  services protection (routing, location services, warning alarms, etc.) [97]. 
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6. VANET Privacy 

Privacy risks escalate when participating entities (vehicles, RSUs, and traffic lights) give 

out more information than is absolutely necessary  [31]. Identity privacy, location privacy, 

and data privacy are the three main domains of privacy in VANETs. Anonymity can be 

used to ensure privacy using pseudonyms; pseudonyms are generic aliases/identifiers used 

to avoid the use of real/personally identifiable information [31]. Most pseudonimity 

techniques can successfully guarantee location, and identity privacy; pseudonyms can also 

be used to prevent the malicious vehicle/individual/node linking (user profiling), and 

tracking [31]. Certificate authorities (CA’s) manage a nodes (vehicle, traffic light, or RSU) 

identity using public and private key cryptography/encryption  [97]. 

Serna-Olvera [31] proposed a privacy aware security framework that consists of: 

4 Authentication System (AS): Using policy mapping, the AS enables the 

interoperability of PKI’s, and certificate validation across untrusted domains. 

5 Anonymous Information Retrieval (AIR): Uses query permutation and query 

forgery/manipulation to prevent node/vehicle tracking that can be used for user profiling. 

6 Attribute-Based Privacy (ABP): Uses incomplete/selective attribute/parameter 

disclosures to prevent vehicle tracking. 

7 Trust Validation Model (TVM): As shown in Figure 79, TVM uses trust-

levels/sensitivity levels to avoid unauthorized access to a vehicles private information that 

can cause a vehicle to believe a lie in order to deceive or manipulate it [31]. The Online 

Certificate Status Protocol (OCSP) is used to increase the efficiency of the verification of 
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the status of a vehicle based on the certificate revocation list (CRL) in a situation where 

you have many certificate authorities (CAs). It also reduces network traffic resulting in 

better bandwidth management. 

 

 

 

Figure 79: Using trust validation model (TVM) to avoid acting on malicious message 

dissemination that can compromise both security, and privacy [31]. 

Summarily, the Privacy Enhancing Model (PEM) which consists of Attribute-Based 

Privacy (ABP) protocol – using Attribute-Based Credentials (ABC) and Anonymous 

Information Retrieval (AIR) protocol – can be used to ensure that a vehicle cannot be 

tracked, or linked with an identifier; in doing this, privacy/anonymity is preserved [31]. 

The danger of possible leak of personally identifiable information – a privacy concern – 
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can be mitigated using a privacy enhancement feature to encrypt the hash of the senders 

public key which can only be decrypted by authorized parties/entities [29]. In other words, 

encryption can be used to ensure privacy [29]. 

Finally, security, and reliability are major prerequisites for dependable and wide-usage of 

VANET safety-critical applications [44]. More security means less privacy and vice versa; 

hence, a tradeoff must be reached because in order to enhance security, some privacy must 

be sacrificed and vice versa [44]. Conflicts between security and efficiency/performance, 

security and quality-of-service (QoS), together with other conflicting actors/requirements 

must be resolved in order to improve/increase the real-world adoption of VANETs [44]. A 

holistic view of security from the ground up is essential, but lacking in VANETs – more 

research is needed in this area [44] [232]. 

7. Main Contributions: Test-bed Setup 

Here, we give a detailed description of our simulation architecture/platform, input, 

parameters, and evaluation scenarios towards the attainment of our research goals and 

objectives. 

A number of research efforts have sort to address the privacy and security challenges of 

VANETs, however, most of these works are mostly abstract/theoretical without the use of 

real-world data, realistic road networks, or both [30] [230] [231] [44]. In order to bridge 

this gap, we used both real-world data, and road networks in our study. 

4.4 V2X Simulation Infrastructure 
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In order to carry out our V2X jamming attack scenario, we used the V2X simulation 

runtime infrastructure (VSimRTI) co-simulation platform which comprises traffic, 

application, and communication simulators; the reason for this is that the use of traffic 

simulators alone is inadequate in fulfilling the requirements of V2X simulation [98]. In 

order to simulate V2X communication, every participating equipped vehicle must be 

running an application. In our scenario, our equipped vehicles were running our incident 

warning application (IWA). 

4.5 Real-World Dataset 

Our use of real-world traffic data was born from the fact that many existing studies [1-14] 

are void of them – hence, they simulate an overly simplistic and unrealistic traffic condition 

using unrealistic road networks/topologies which cannot be deemed representative of real-

world practice. As a result, six weeks, weekday traffic volume data patterns were collected, 

and analyzed before feeding its output to the SUMO traffic simulator [132]. Because most 

traffic congestions are experienced in the morning (5:00 a.m./7:00 a.m. – 10:00 a.m.), and 

evening (4:00 p.m. – 7:00 p.m.) rush-hours, we chose the morning traffic condition as our 

primary simulation focus [37, 53]. Table 1 and Table 2 – in Chapter 3, Section 5.2 – shows 

a snapshot of our real-world traffic data. 

4.6 Simulation Input and Parameters 

As aforesaid, we used the V2X simulation runtime infrastructure (VSimRTI) for the 

purposes of our study because of its unique capability of coupling various types of 

simulators together in a flexible manner [134]. In summary, using road network data from 
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OpenStreetMap8, as input, eWorld9 was used to generate events such as ice, road 

accidents/obstacles, etc. which were subsequently exported as inputs to the simulation for 

urban mobility (SUMO) traffic simulator  [142] [144]. SUMO generated vehicular traffic 

was then used as input to the VSimRTI cellular simulator, or the Java in simulation 

time/scalable wireless ad hoc network simulator (JiST/SWANS) [133, 144] 

network/communication simulator which handles the exchange of messages among nodes 

such as vehicles, road-side units (RSUs), and traffic lights; they can also modify a vehicles 

position, speed, direction, etc. through a socket interface at runtime using the SUMO 

Traffic Control Interface (TraCI) [33]. The VSimRTI cellular simulator – used for 

cellular/V2I/centralized message(s) transmission, and the JiST/SWANS 

network/communication simulator – used for ad hoc/V2V/decentralized message(s) 

transmission are both responsible for relaying vehicular situational awareness messages 

with cooperative awareness messages (CAM), and messages that trigger rerouting with 

decentralized environment notification messages (DENM), etc. upon detecting roadway 

congestions caused by ice, accident, and fog; both CAM and DENM have message lengths 

of 1500 bytes each [133, 134, 148]. Some of the simulator parameters used in our 

simulation study include, but are not limited to: communication range (300m), frequency 

(5.9GHz), protocol (Cached Greedy Geo-cast [CGGC] geo-broadcasting protocol), 

wireless communication protocol/standard (IEEE 802.11p), bandwidth (10 Mbps); our 

                                                           
8 http://www.openstreetmap.org 
9 http://eworld.sourceforge.net/ 

http://www.openstreetmap.org/
http://eworld.sourceforge.net/
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total simulation runtime/duration was set at 7000 seconds with a total simulation area of 

77000 x 67000 m. 

In addition, the following JiST/SWANs network/communication simulator parameters 

respecting our vehicles and road-side units (RSUs) were used in our simulation (Table 6) 

– which is typical of real-world conditions. 

Table 6: Vehicle and RSU simulation parameters. 

Simulation 

Parameter 

Value 

Vehicle RSU 

Antenna height 1.5 m 10.0 m 

Transmission power 

18.5 

dbm 

17 

dbm 

Transmitter/Receiver 

antenna gain 

0 dbm 0 dbm 

Receiver sensitivity -91 dbm 

-91 

dbm 

Receiver threshold -81 dbm 

-81 

dbm 

 

Specifically, we conducted our vehicle-to-infrastructure (V2I)/centralized jamming attack 

scenario using the VSimRTI cellular (CELL) simulator. Using the cellular simulator, V2X 



267 

 

  

 

 

messages can be configured to be transmitted to nodes/vehicles/RSUs via broadcast, 

geocast, or unicast addressing/communication [233]. Besides, VSimRTI is responsible for 

time management, managing/controlling/directing communication amongst coupled 

simulators, and ensuring that each application-equipped vehicle/node is simulated 

individually [233]. 

Figure 80 shows our study area in the VSimRTI Websocket visualizer on Google Map with 

IWA-equipped vehicles (red colored entities/nodes – vehicles, RSUs, or traffic lights – 

signifies V2X message (CAM/DENM) transmission, while green colored entities/nodes – 

vehicles, RSUs, or traffic lights – signifies V2X message (CAM/DENM) reception); IWA-

unequipped/classic/traditional entities/nodes – black colored vehicles, RSUs, or traffic 

lights – signifies no V2X message transmission or reception support in our simulation. 
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Figure 80: Simulation visualization using the VSimRTI Websocket visualizer on Google 

Map [152]. 

4.7 Evaluation Scenarios 

In seeking to find/ascertain the traffic efficiency, safety/effectiveness, and resilience to 

attacks of vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) communications, 

the following scenarios were employed as shown in  

Figure 81. 

4.7.1 Scenario A (Traffic Efficiency) 
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Vehicles using our IWA are notified to reroute because of the detected road traffic 

congestion ahead. Classic/non-equipped vehicles do not receive/respond to these reroute 

messages, hence they drive heedlessly/blindly to meet the congested situation. As a result, 

our incident warning application (IWA) equipped vehicles bypass this incident while 

unequipped/classic vehicles suffer the consequences especially manifesting in 

aggravated/exacerbated trip time (TT), fuel consumption (FC), and CO2 emission, etc. 

4.7.2 Scenario B (Safety) 

The metric we used to evaluate safety is with respect to the total number of IWA-equipped 

vehicles that actually rerouted/heeded the reroute message/directive to take an alternative 

route to its destination in relation to the entire population equipped to reroute. Accordingly, 

100% safety is attained if all vehicles that got the reroute request actually heeded them and 

vice versa. We assume that all our incident warning application (IWA) equipped vehicles 

that received the message/directive to reroute actually heeds it. Using the human machine 

interface (HMI), V2X equipped vehicle drivers are notified of traffic-related 

incidents/events [98] [140, 141]. 

4.7.3 Scenario C (Jamming Attack) 

This attack has a negative effect on scenarios A, and B respectively. In this attack, we 

disrupt the wireless communications channels ability to disseminate traffic related 

information to intended recipients in a progressive manner. As previously stated, a 

jamming attack is usually an intentional attack aimed at communication channel 

disruption/congestion. Jamming aims at precluding/starving other nodes from utilizing 
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available resources – it is a type of denial of service (DoS) attack that is active and 

malicious in nature [30]. In order to evaluate the effect of a jamming attack on our 

simulation setup, we simulated a situation where a malicious insider overwhelms the 

radio/communication channel with spurious signals thereby obviating legitimate vehicles 

from receiving reroute/safety-critical messages (as a result of wireless network congestion) 

in order to effectuate rerouting that will lead to bypassing of the identified congestion on 

the original/primary route. In order to execute our jamming attack, we gradually decreased 

the available communication channel percentage from 100% (totally uncompromised – 

100% availability) to 0% (totally compromised – 0% availability) at 5% decrements. 

Attacks were performed while observing/measuring corresponding driver reactions. The 

ratio of IWA-equipped vehicles to classic /unequipped vehicles was kept constant at 50% 

each for the entirety of our simulation runs. 

Specifically, from our real-world traffic data, on our evaluated route, a maximum of 144 

vehicles every 5 minutes was recorded at congestion prevalent times (5 a.m. – 10 a.m. in 

the morning) during weekdays [146]. Consequently, we simulated a road incident on 

Constitution Avenue NW, between this time interval, that has the effect of blocking its 

entire 3 lanes for 40 minutes. Thereafter, the default travel speed limit of all vehicles was 

reduced from 50km/h to 20km/h for another 50 minutes because of slippery road segments 

caused by frozen ice and compounded by the presence of fog around the area that resulted 

in poor driving visibility; the length of the affected roadway is 82.3 meters [28]. Without 

the traffic incident on Constitution Avenue NW, every vehicle emanating from John 
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Hanson Hwy from the West (source) through New York Ave NE, and finally to Dulles Toll 

Road in the East (destination) will traverse/enter Constitution Avenue via 9th Street. 

However, because of the traffic incident on Constitution Avenue, on getting to 9th Street, 

our incident warning application (IWA) equipped vehicles will receive reroute 

messages/directives from the road-side unit (RSU), located on 9th Street, to bypass 

Constitution Avenue. As a result, the IWA- equipped vehicles avoid the congestion on 

Constitution Avenue, by talking an alternative route via H. Street NW to Custis Memorial 

Pkwy before finally arriving at the final destination – Dulles Toll Rd. On the other hand, 

unequipped/classic vehicles suffer the consequences of the congestion on Constitution 

Avenue because they are uninformed/unintelligent. 

In addition, using the Handbook Emission Factors for Road Transport (HBEFA), we 

evaluated the performance of the following six major pollutants: PMx (particulate matters 

or particulate mass value), NOx (comprising NO2 [nitrogen dioxide], and NO [nitrogen 

monoxide]), HC – hydrocarbons ( consisting of benzene, toluene, CH4 [methane], NMHC 

[non-methane hydrocarbons], and xylene), CO2 (carbon dioxide), and CO (carbon 

monoxide) [132, 161, 164, 165] [60, 132, 161] [60, 67, 132, 162-164]. Each driver’s 

emission footprint is displayed via the vehicles on-board diagnostics display (OBD). 
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Figure 81: Jamming attack simulation workflow [76] [166]. 
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8. Evaluation Results and Discussion 

In this section, the results of our jamming attack and its effect on traffic efficiency, and 

safety applications of vehicle-to-vehicle (V2V), and vehicle-to-infrastructure (V2I) 

communications are presented and later compared. Again, it is important to note that the 

ratio of IWA-equipped vehicles to classic /unequipped vehicles was kept constant at 50% 

each for the entirety of our simulation runs. The suffixes _a, _n, and _r shown in Figure 82 

(a – f), and subsequently in this chapter refer to the evaluated performance metrics with 

respect to vehicles that are running our incident warning application (IWA) used to bypass 

the road traffic congestion on Constitution Avenue by circumnavigating through other 

alternative/secondary routes (_a) – these vehicles are suffering from the adverse effects of 

the jamming attack, vehicles that are running our IWA, but are not negatively 

affected/influenced by the jamming attack  (_n), and vehicles that travel through the 

primary/original route via Constitution Avenue free of congestions (_r). 

8.1 Jamming Attack on Vehicle-to-Vehicle (V2V) Communication 

Figure 83 shows the visualization of our jamming simulation attack on V2V 

communication.  Figure 82 (a – f) show the results of our 21 simulation runs with respect 

to some of our evaluated performance metrics from 0% to 100% communication channel 

availability each at 5% steps/increments. 
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Figure 82: Performance of some evaluated metrics in relation to available communication channel as a result of jamming attack. 
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Figure 83: Visualizing our V2V jamming attack simulation scenario in the VSimRTI ITEF 

on Google Map [152]. 

Figure 84 shows several IWA-enabled vehicles (in blue) congested on Constitution Avenue 

NW at 100% available communication channel that failed to heed the change route/reroute 

request using V2V communication. 
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Figure 84: Congested vehicles on Constitution Avenue NW using V2V Communication at 

100% available communication channel [152]. 

 

Figure 85 shows the average speed performance at 100% available communication channel 

of IWA-enabled vehicles (in blue), and unequipped/classic vehicles (in red) while 

employing V2V communication [152]. 
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Figure 85: Travel speed against time of 50% IWA-enabled vehicles using V2V 

communication at 100% available communication channel [152]. 

 

Again, the ratio of IWA-equipped vehicles to classic/unequipped vehicles was kept 

constant at 50% each throughout the entire 21 simulation runs. Besides rerouting vehicles 

away from the primary roadway to the secondary/alternative one in order to avoid 

congestion, our IWA equipped vehicles also have prior knowledge of the congested states 

of these alternative/secondary routes such that vehicles are not blindly rerouted from one 

congested roadway to another – this is true when using V2V communication, but not V2I 

communication [13] [5]. 
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With respect to traffic efficiency (shown in Figure 82 [a – d]), our average best case result 

– with respect to travel time [TT] – was obtained at 100% communication channel 

availability with little or no difference observed amongst the evaluated performance 

metrics. In the same vein, the average worst case scenario was, evidently, observed at 0% 

available communication channel with the following recorded  losses: travel time [TT]: 

(60.92%) – 3655.56 seconds, average speed (38.06%) – 29.01km/h, PMx (3.16%) – 0.02g, 

CO (4.18%) – 5.81g/m, CO2 (9.28%) – 0.65g/km, NOx (5.68%) – 8.06g, HC (15.76%) – 

0.37g, and fuel consumed (9.28%) – 0.25 liters. The only improvement was observed 

respecting travel distance [TD] at: (0.33%) – 161.5 meters. Similarly, with respect to the 

average second worst case result obtained at 5% available communication channel, the 

following losses were observed: travel time [TT]: (54.92%) – 1260.63 seconds, average 

speed (35.64%) – 27.16km/h, NOx (5.51%) – 0.84g,  PMx (3.25%) – 0.02g, CO (4.07%) – 

5.65g/m, CO2 (8.81%) – 0.61g/km, HC (14.66%) – 0.34g, and fuel consumed (8.81%) – 

0.24 liters. The only improvement was observed with respect to travel distance [TD] at: 

(0.29%) – 144.68 meters. Generally, IWA-equipped vehicles under the influence of the 

communication channel jamming attack (_a) travelled at an average speed of 61.66 km/h 

from source to destination while IWA supported/equipped vehicles, free from the jamming 

attack (_n), maintained an average speed of 76.2 km/h. Consequently, because attacked 

vehicles travelled at lower and less uniform speeds owing to congestion, more fuel was 

utilized in the attack scenario than with the attack-free vehicles scenario. 
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Similarly, with respect to safety (Figure 82 [e – f]), the average best case safety 

performance was observed at 100% available communication channel having a safety rate 

of 66.66% i.e. only 48 out of 72 equipped vehicles heeded the reroute/change route 

directive – 24 equipped vehicles did not. On the other hand, the average worst case safety 

performance was observed at 0% available communication channel resulting in a 0% safety 

rate because none of the 72 IWA-equipped vehicles got the reroute/change route directive 

consequent upon the completely jammed radio/communication channel. Similarly, the 

average second worst case safety performance was observed at 5% available 

communication channel with a safety rate of 6.94%. This means that only 5 out of 72 

equipped vehicles heeded the change route directive i.e. 67 equipped vehicles did not. 

The overall poor performance (with respect to the evaluated metrics) of V2V 

communication is attributable to the fact that not all IWA-equipped vehicles that received 

the reroute directive actually heeded them. Possible reasons why these reroute/change route 

directives were not heeded by IWA-equipped vehicles could be because they got the 

message a little bit too late in order to enable them to utilize it to bypass the incident on 

time (relative to their current travel speed) before it became too late [98]. It is also evident 

that as the available communication channel of IWA-equipped/V2X vehicles increase, the 

number of vehicles that responded to the change route request to reroute also increased. 

This is true because unlike V2I communication which is primarily single-hop 

communication, V2V communication relies on multi-hop communication with leading 

vehicles transmitting messages such as road conditions/congested states to trailing or 
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following vehicles. In a situation where more classic vehicles outnumber V2X vehicles 

within a given communication range i.e. 300m, these safety-critical messages may stop 

midway as there are not enough relays/equipped vehicles that can convey these messages 

beyond their communication range. This is one reason why safety-critical messages are 

best disseminated via single-hop (V2I communication) rather than multi-hop (V2V 

communication). Also, because of high V2X message exchanges sequel to high IWA-

equipped vehicles/nodes – especially at high communication channel availability and 

increased travel speeds – particularly present in a highway scenario – packet/message 

collisions can result in packet/message drops, corruption, and/or delays sequel to 

bandwidth saturation, etc. It is also noteworthy that another possible reason why V2V 

communication did not perform better as expected could be because of man-made, and 

natural interferences. Man-made interferences such as presence of obstacles, high-rise 

buildings, etc. and natural interferences such as fogs, heavy rains, tornadoes, etc., diminish 

the efficiency, and effectiveness/accuracy of V2V communications. This is especially true 

because V2V communication simulations performed on highway scenarios tend to produce 

more effective and predictable results than those done in other rural/city scenarios because 

of the infrequent interferences from high-rise buildings and other obstacles that 

limit/interfere with the V2V multi-hop communication path. This is why, often times, 

V2V/decentralized/ad hoc communication is complemented with 

V2I/centralized/broadcast communication as a hybrid – hence the name V2X 

communication [8]. 
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8.2 Jamming Attack on Vehicle-to-Infrastructure (V2I) Communication 

Figure 86 shows the visualization of our jamming simulation attack on V2I 

communication. 

The best case traffic efficiency scenario was observed at 100% available communication 

channel resulting in little or no change in the evaluated performance metrics, including 

safety rate. 

 

Figure 86: Visualizing our V2I jamming attack simulation scenario in the VSimRTI ITEF 

on Google Map [152]. 

Figure 87 shows no IWA-enabled vehicles (in blue) congested on Constitution Avenue 

NW at 100% available communication channel that failed to heed the change route/reroute 

request using V2I communication. 
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Figure 87: Only classic/unequipped vehicles congested on Constitution Avenue NW using 

V2I Communication at 100% available communication channel [152]. 

Figure 88 shows the average speed performance at 100% available communication channel 

of IWA-enabled vehicles (in blue), and unequipped/classic vehicles (in red) while 

employing V2I communication [152]. 
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Figure 88: Travel Speed against time of 50% IWA-enabled vehicles using V2I 

communications at 100% available communication channel [152]. 

 

From  

Figure 89 [a – d], in the worst case traffic efficiency scenario (0% available 

communication channel), the following losses were observed: travel time [TT]: 125.24% 

(34.22 minutes/2053.66 seconds), average speed: 55.82% (59.64km/h), PMx: 4.37% 

(0.027g), CO: 5.99% (8.18g), CO2: 13.83% (930.86g), NOx: 8.23% (1.23g), HC: 24.3% 

(0.53g), and fuel consumed: 13.83% (0.37 liters). The safety rate ( 

Figure 89 [e – f]) also fell from 100% to 0% because no vehicle (out of a total of 72 IWA-

equipped vehicles) received the change route/reroute directive requisite to avoid the traffic 
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incident on Constitutional Avenue NW because the entire available communication 

channel has been jammed. The second worst case safety performance was, evidently, 

recorded at 5% available communication channel with the following losses: travel time 

[TT]: 117.07% (31.99 minutes/1919.76 seconds), average speed: 54.14% (57.85km/h), 

PMx: 3.97% (0.025g), CO: 5.46% (7.44g), CO2: 12.82% (862.87g), NOx: 7.58% (1.13g), 

HC: 22.58% (0.5g), and fuel consumed: 12.82% (0.34 liters). The second worst case safety 

performance was recorded at 5% available communication channel as:  6.94% because 

only 5 out of 72 IWA-equipped vehicles actually rerouted in response to the change route 

request i.e. 67 did not. 

 

Also at 0% available communication channel, the travel distance increased by 0.49% 

(242.26 meters) because more vehicles took the congested route i.e. Constitution Avenue 

NW. Overall, the average speed of IWA-equipped vehicles fell from 106.84km/h (in the 

attack free scenario), to 47.2km/h in the attack scenario resulting in a decrease in average 

speed of 55.82% (59.64km/h). This resulted in more deterioration in fuel consumption 

levels, together with other evaluated performance metrics. 

 

With respect to safety performance ( 

Figure 89 [e – f]), the best case safety performance (100%), and the worst case safety 

performance (0%) were observed at 100%, and 0% available communication channel 

respectively. This is true because at 100% available communication channel, all 72 IWA-

equipped vehicles heeded the change route directive on time, and vice versa. 
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Figure 89: Performance of some evaluated metrics in relation to available communication channel as a result 

of jamming attack. 
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8.3 Jamming Attack on V2V versus V2I Communications: A Comparison 

With respect to traffic efficiency performance (Figure 90 [a – d]), on the one hand, our best 

case performance of V2I communication over V2V communication was observed at 100% 

available communication channel with the following recorded improvements: travel time 

[TT]: 28.55% (10.92 minutes/655.36 seconds), average speed: 40.20% (30.63km/h), PMx: 

1.3% (8.41mg), CO: 1.85% (2.57g/m), CO2: 4.17% (0.29g/km), NOx: 2.53% (0.38g), HC: 

7.02% (0.16g), and fuel consumed: 4.17% (0.11 liters). Travel distance, however, increased 

by 0.16% (0.08km/80.75meters) because, using V2I communication, more IWA-equipped 

vehicles rerouted – thereby taking a longer route/path to get to the destination over V2V 

communication. 

 

On the other hand, our worst case traffic efficiency performance was recorded at between 

0% - 15% available communication channel with no difference was observed between V2I 

communication, and V2V communication, because both VANET architectures equally 

rerouted the same number of vehicles. 

 

With respect to safety performance (Figure 90 [e – f]), the best case safety performance of 

V2I communication over V2V communication was also observed at 100% available 

communication channel because, while all IWA-equipped vehicles that got the change 

route/reroute directive using V2I communication rerouted (resulting in a safety 

performance of 100%), only 48 out of the total of 72 IWA-equipped vehicles – i.e. a safety 

rate of 66.66% – actually heeded the change route/reroute directive using V2V 
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communication resulting in a deficit of 33.33% using V2V communication in relation to 

V2I communication. 

 

In the same vein, the worst case safety performance of V2I communication over V2V 

communication was observed at 20% available communication channel were V2I 

communication gave a 4.16% superior safety performance over V2V communication. In 

other words, 17 out of 72 IWA-equipped vehicles heeded the change route request using 

V2V communication – resulting in a safety rate of 23%, while 20 out of the same 72 IWA-

equipped vehicles heeded the reroute/change route directive using V2I communication – 

resulting in a safety rate of 27.77%. 
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Figure 90: Performance of some evaluated metrics in relation to available communication channel as a 

result of jamming attack. 
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As earlier emphasized upon, confidentiality, integrity, and availability (CIA) are the major 

security goals/requirements of ITS/VANETs. To this end, a jamming attack – a type of 

denial of service (DoS) attack – was executed against both V2V, and V2I communication 

with a view of determining their resilience respecting traffic efficiency, and safety. In 

summary, our high-level results show that V2I communication was more resilient to the 

jamming attack implemented against its radio/communication channel than V2V 

communication respecting both safety, and traffic efficiency. One reason for the superior 

performance of V2I communication over V2V communication can be attributable to the 

fact that, although V2I communication requires more bandwidth, it is, however, less 

susceptible to attacks when compared to V2V communication as has been reported in 

literature [30, 31, 44, 212-215]. Besides, respecting our centralized/V2I communication 

scenario, IWA-equipped vehicles are informed about the congested condition on 

Constitutional Avenue NW via broadcast communication i.e. geo-routing/casting 

employing single-hop communication/propagation such that all vehicles within the 

geographic/broadcast radius receive the change route/reroute directive. In the same vein, 

respecting our decentralized/V2V scenario, IWA-equipped vehicles are informed of the 

congested condition on Constitutional Avenue NW using geo-routing/casting employing 

multi-hop communication/propagation from source to destination. However, at low 

IWA/V2X-equipped vehicles ratio, multi-hop communication/propagation is susceptible 

to failure because of the insufficient number of equipped vehicles necessary to 

convey/relay the message(s) from source to destination [158] [167]. 

In closing, our results concur with existing studies that assert that safety-critical messages 

are best disseminated using single-hop communication especially in a complex, 
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heterogeneous driving environment having a mixture of classic and V2X vehicles in equal 

or unequal proportions such as ours. As evidently shown by our previous results in Chapter 

4, V2X communication, indeed, results in improved safety, and traffic efficiency; however, 

these improvements are mostly dependent on several factors which can be man-made 

(internal), natural (external), or a combination of both. Overall, as the communication 

channel available to incident warning application (IWA) equipped vehicles increase, 

performance with respect to travel time (TT), safety, and other performance metrics also 

increase – the opposite is also true [13] [140, 141]. 

A jamming attack can also be executed via a timing attack. As aforesaid, in light of a timing 

attack, critical messages are intentionally delayed such that they arrive out of sync and 

cannot be subsequently used [30]. It can involve adding a delay to a sent message or not 

sending the message at all; this has the effect of negatively affecting availability, and 

delaying time/safety-critical information from promptly getting to its intended destination; 

respecting safety-critical messages, the consequences of this attack, as we have lucidly 

seen, can be calamitous [97] [44] [216]. 

As previously stated/alluded to, denial of service attacks compromise availability by 

jamming/flooding the network with overwhelming data. This attack can be carried out by 

an insider/outsider, and rational/malicious attacker; however, more devastating attacks 

usually emanate from an insider. Some mitigation techniques against DoS attacks include, 

but are not limited to: use of frequency hopping, communication channel and key 

switches/changes by the on-board unit (OBU) [97] [44]. Besides, building redundancy into 

sensors and other ITS equipment/technology can be used to ensure fail-safe/resilient 
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operations. This can also be used to mitigate/lessen the severity of attacks against the 

availability security requirement such as a jamming attack [15]. Applying techniques such 

as graceful performance degradation, attack isolation/localization, network traffic load-

balancing, and defense-in-depth/layered security mitigation techniques can be used as a 

countermeasure against attacks aimed at, particularly, compromising the availability 

security requirement/goal. 

9. Remarks 

Generally speaking, intelligent transportation system (ITS) security attacks can be in the 

form of message: deletion, modification, forgery, and replay attacks, etc. As one amongst 

many mitigation techniques/countermeasures, real-time digital signature verification must 

be done with little or no computational and performance overheads especially in safety/life-

critical scenarios in validating the authenticity of disseminated message(s) [29]. In 

addition, ITS challenges are mostly domain specific – general communication security 

measures are not directly suitable unless they are contextualized to the specific 

requirements of ITS. Owing to this, and other imperative reasons, in this chapter, for each 

security functional requirement, we have elucidated countermeasures/mitigation 

techniques, risks, and possible attacks/vulnerabilities that can be launched/exploited 

against it with a view of fostering the security of transportation cyber-physical systems. 

Besides, in this chapter, we have empirically shown/demonstrated the adverse effects of 

jamming attacks – a type of denial of service (DoS) attack – on the wireless 

radio/communication channels (physical layer) ability to disseminate safety-critical 

messages to intended/equipped vehicles in order to satisfy the availability security 
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goal/requirement. From our experimental results, we have also demonstrated that vehicle-

to-infrastructure (V2I) communication architecture outperformed vehicle-to-vehicle 

(V2V) communication with respect to resilience against jamming attacks. By using 

countermeasures/techniques such as building redundancy into systems/ITS equipment in 

order to engender fail-safe operations – a type of layered security mechanism/defense-in-

depth – and implementing periodic/regular frequency hopping/changes, etc. attacks on the 

availability security goal/requirement can be, to a large extent, mitigated – if not 

completely eradicated [97] [44]. 

In closing, in the future, there is projected to be an astronomical leap in the number of 

electric vehicles on the road. Besides, the amount of CO2 – together with other greenhouse 

gases (GHG) – emitted into the environment can be radically reduced because of the advent 

of electric/other hybrid vehicles. This is one of the major reasons why the United States 

has been estimated to have about one million electric/hybrid vehicles by 2015 – which is 

still expected to grow [68]. With this, however, also comes the challenge of modeling and 

adequately securing the electricity generation, distribution, and storage 

demands/requirements of electric vehicles in the smart grid. 
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Chapter 8 

Conclusions and Future Research 

In this section, we reiterate our empirical research findings based on our overall research 

aim and specific research objectives/goals. We also give some recommendations for future 

research based on our experiences and we again reiterate some of our unique contributions 

to knowledge. 

Final Remarks 

In this dissertation, we have empirically demonstrated that, indeed, some tangible benefits 

respecting safety, and traffic efficiency are derivable from intelligent transportation system 

(ITS)/vehicular ad hoc networks (VANETs) using two VANET architectures: vehicle-to-

vehicle (V2V)/inter-vehicle communication (IVC), and vehicle-to-infrastructure (V2I) 

communication in a realistic scenario. 

First and foremost, we developed a generic real-world ITS test-bed, and a mobile 

application called Incident Warning Application (IWA) using real-world data, and road 

networks on which we evaluated the traffic efficiency performance of two popular 

vehicular routing algorithms: Dijkstra, and A* (Astar) routing algorithms. Our results show 

that no significant difference was observed respecting travel time (traffic efficiency) 

performance between these two algorithms. 

Next, using the aforementioned test-bed, we also evaluated the traffic efficiency/mobility, 

and safety benefits of V2V/IVC, and V2I communication architectures respecting vehicles 
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equipped with our IWA. Our results show that V2I communication outperformed V2V 

communication in relation to our reference/chosen roadway. 

Also, using over 24 classification, and regression supervised machine learning algorithms, 

we have shown that classification tree (Ctree), and regression tree (Rtree) gave the best 

performances respecting the evaluation metrics of prediction speed/efficiency, and 

prediction accuracy/effectiveness in reliably prognosticating traffic patterns/conditions. 

We have also shown that depending on the goal/scenario/situation in question, the choice 

of one machine learning algorithm over another may be necessary/pertinent/imperative, 

thus requiring/necessitating some kind of tradeoff. 

Next, using two major driver models mostly prone to accidents and distracted driving – 

young drivers (ages 16 – 25 years), and middle-age drivers (ages 30 – 45 years), we also 

evaluated the influence of distracted driving on the ITS goals of improved mobility/traffic 

efficiency, and safety in a realistic scenario. Our results show that middle-age drivers 

outperformed younger drivers in mitigating the influence of distracted driving using our 

developed in-vehicle Driver Notification Application (DNA). 

Finally, as earlier noted, confidentiality, integrity, and availability (CIA) are the major 

security goals/requirements respecting the ITS/VANET ecosystem. To this end, using the 

aforementioned simulation test-bed/setup, we evaluated the performance of V2V/IVC, and 

V2I communication architectures under the influence of a type of denial-of-service (DoS) 

attack – jamming attack – on both safety, and traffic efficiency. Our results show that V2I 

communication outperformed V2V communication respecting both safety, and traffic 

efficiency performances by showing more resilience/resistance to jamming attacks. We 
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have also shown that safety/life-critical messages are best disseminated using V2I/single-

hop communication as a result of its better accuracy in disseminating messages to intended 

receivers in relation to V2V/multi-hop communication. 

Contribution to Knowledge 

Here, we highlight some of our major contributions to knowledge emanating from this 

research study. 

As has been lucidly documented from our comprehensive/extensive review of literature, 

most research in the ITS/VANET domain are either void of real-world data, road networks, 

or both. By fulfilling/satisfying these limitations in our study, our results can be directly, 

and reliably used by traffic engineers, road users/operators, transportation 

authorities/agencies, and other concerned stakeholders in comprehending the 

results/ramifications of actual real-world implementations/deployments in a less expensive 

simulation setting first. 

Also, to the best of our knowledge, respecting our comprehensive/extensive evaluation of 

over 24 supervised machine learning classification, and regression algorithms, our work is 

the first to evaluate these many number of algorithms in the same setting – employing a 

multi-metric evaluation/comparison approach. This is true because of the extreme 

difficulty, tenacity/perseverance required in completing such a gigantic project. 

Next, respecting the comparison of the mobility/traffic efficiency, and safety performance 

cost of V2V/IVC, and V2I VANET communication architectures, to the best of our 
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knowledge, our work is the first to empirically/experimentally evaluate them in a realistic 

scenario. 

Again, to the best of our knowledge, or work is the first to empirically evaluate the 

influence/impact of a Denial of Service (DoS) attack against the availability security 

requirement – jamming attack – and distracted driving – a major human factors research 

challenge – using the V2X simulation runtime infrastructure (VSimRTI) in a realistic 

environment. 

Last, but not least, the results of this research has been critically evaluated, peer-reviewed, 

and published in several reputable/prestigious/esteemed/refereed conferences across the 

globe, thus validating its importance and its unique contribution to existing knowledge, 

especially, respecting the ITS/VANET domain. 

Research Limitations 

As aforesaid/alluded to throughout the entirety of this dissertation, realistic simulation 

studies are most imperative, and often inevitable as a first step before real-world 

studies/deployments/implementations can commence; one major reason for this is because 

of the expensive nature of the later. 

Consequently, although our work is amongst one of the few most realistic studies one can 

find in the research literature – largely because of our use of difficult to secure/obtain real-

world data, and difficult to prepare realistic road networks corroborated by several research 

studies [1-14] – actual real-world studies/implementations are most vital in 

corroborating/validating the results we obtained solely in a simulation-based environment. 
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As may be obvious to the experienced reader, the resources necessary to execute this 

gigantic project/task is beyond the scope and reach of these authors; however, this is 

amongst one of our future aspirations. Nevertheless, we have also emphasized that because 

of the realistic nature of our work, compared with most other existing research efforts in 

the intelligent transportation system (ITS)/vehicular ad hoc network (VANET) domain, 

ours can be more reliably/confidently utilized by all concerned stakeholders such as road 

users/operators, traffic engineers, public authorities, and transportation 

agencies/authorities, etc. to better understand the implications/ramifications of actual real-

world deployments of this promising technology – first in a least expensive simulation 

setting – prior to more expensive, and often wasteful, real-world ventures. Also, real-

world/real-time, streaming/dynamic ITS big data analytics consumes a lot of system 

resources requiring the use of computers of the supercomputer category/class – which, at 

the moment, is outside the reach of this research/researchers within the scope, cost/budget, 

and time constraints of this study. Nevertheless, we will endeavor to implement/execute 

this in our future studies. 

 

Besides, we also plan to develop/implement a dedicated driving simulator that can be 

coupled to our existing V2X simulation runtime infrastructure (VSimRTI) architecture; 

this will improve the effectiveness of our future human factors research results – which, in 

this study was solely simulation-based. 

Lastly, because various vehicles have different mass/weight, acceleration/deceleration, 

engine design (manual versus automatic transmission), make, model, and manufacturer 

specifications, etc., they all have different fuel consumption levels for example [62]. 
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Consequently, our use of only one vehicle class/category – passenger vehicles – may not 

be deemed representative to that obtainable in the real-world. However, again, within the 

complexity, scope, time, budget/cost, and technical limits of this research work, our choice 

of this vehicle class/category is not alien to that used by similar prestigious 

researchers/works in the ITS/VANET domain; this is especially true for simulation-based 

research works. 

Recommendations for Further Research 

In the course of this pertinent study, several ideas were generated that could not be 

implemented within the scope, time, and cost limitations/boundaries of this work. As a 

result, in this section, we try to elucidate some of the areas were further work is required. 

According to the United States Department of Transportation (U.S. DOT), the 

influence/impact of introducing the following new technologies possess a high-risk/high 

reward characteristics especially respecting the ITS goals of safety, and security [15]: 

 Introduction of robotics using automated vehicles: This mandates changes in the 

following incomprehensive areas: new infrastructure constructions/modifications; 

inculcating varying levels of automation that have the capability of ensuring that the system 

can fail safely, and full control can be regained by the human driver whenever necessary 

or at predetermined conditions/occasions – whatever these conditions might be; economic, 

legal, regulatory, and interoperability demands/requirements [15]. 

 Electric vehicles (EVs): Vehicles consisting of electronic circuit boards and their 

use of real-time/streaming data respecting the ITS goals of improved eco-friendly 

driving/reduction in levels of energy and fuel usage is necessary. This is also true of other 
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hybrid vehicle models that can use both fuel/gas and other forms of energy such as 

electricity, together with other forms of renewable energy. Alternatives to fuel/gasoline 

(renewable energy) in transportation is essential in reducing the greenhouse 

contribution/footprint of transportation and its related applications [15] [68]. This has 

become very imperative because Europe plans to completely ban petrol/gas, and diesel 

vehicles by 2050, while the UK plans to do the same by 2035 [234]. Similarly, in 2015, the 

U.S. has been projected/estimated to have about one million hybrid/electric vehicles [68]. 

In addition, with the advent of electric vehicles, their comprehensive impact on the 

available smart/power grid capacity is worthy of further evaluation studies – especially in 

more realistic scenarios like ours. This is true because most existing studies cannot be 

directly used in the real-world because they are either void of real-world data (which is 

very difficult to obtain/secure based our experience), real-world road networks, or both [1-

14]. 

 Besides, the use of current advances in 4th generation wireless 

technologies/protocols such as long-term evolution (LTE), and Internet Protocol Version 

6 (IPv6) and its impact on the goals of ITS and its interacting ecosystem is imperative. It 

is important to note that amongst all other ITS security requirements identified by 

stakeholders – including the U.S. DOT – such as: security, mobility/traffic efficiency, and 

reduced fuel/energy consumption (environmental impacts), safety has always remained 

most paramount. Consequently, any advances/improvements in all other areas of interest 

that vitiates safety is highly undesirable and is guaranteed not to be adopted in the real-

world [15]. 
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Also, in the future, we will endeavor to investigate the following interesting and 

challenging research areas respecting the VANET/ITS domain: 

 VANET architecture: The effect of jamming attacks, together with other types of 

security, and privacy attacks on V2V2I (hybrid) communication needs to be further 

evaluated/studied. To this end, this will be the focus of our research in the near future. This 

is especially true because sometime this year (2015), V2V communication technology for 

vehicles will become a federal requirement in the United States [47]. In addition, security, 

privacy, safety, and reliability (trust) of disseminated information is a very important area 

of research not dealt with in this dissertation, but is an interesting area of research [8]. Also, 

throughput, packet deliver ratio (pdr), end-to-end delay, and traffic information 

dissemination/exchange time – together with other networking/communication/security 

related metrics of the various ITS/VANET architectures will be the focus/subject of our 

future research [8]. 

 VANET clouds: The security, privacy, and storage challenges present in traditional 

VANETs are also similar to those of VANET clouds [109] which consists of the following 

three architectures: Vehicles using Clouds (VuC), Vehicular Clouds (VC), and Hybrid 

Vehicular Clouds (HVC) [109] [235] [236]. VANET clouds have become an interesting 

and attractive area of research because it mitigates some of the limitations of traditional 

VANETs. For example, signal degradations as a result of various obstacles along the line-

of-sight (LOS) path, transmission range limitations, and other natural and/or man-made 

conditions can result in packet drops thereby adversely affecting vehicle-to-vehicle (V2V), 

and vehicle-to-infrastructure (V2I) communication efficiency and effectiveness. VANET 

clouds, however, can extend the current transmission range limitations of traditional 
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VANETs – since they are not primarily LOS-based i.e. they are non-LOS [109]. Besides, 

the big data generated by traditional VANETs can be easily migrated to the cloud in a cost 

efficient and effective manner [109]; these and other challenges/promises respecting 

VANET clouds also will be our primary research focus in the near future. 

 Human factors (HF): Safety, traffic efficiency, security, and privacy, etc. are only 

as effective as the weakest link in the chain – this is often the unpredictable human driver, 

hence the name human-in-the-loop challenge. Consequently, the influence of human factor 

characteristics such as perceptual, motor, and cognitive skills/capabilities on the 

aforementioned parameters is very much requisite both in field, and simulation studies. 

Besides, as more self-driving/driverless cars are currently being promulgated by more 

companies such as Google, it will be quite interesting to study their effects in a 

heterogeneous driving environment consisting of other types of driving models such as 

completely human driven, and semi-automatic (hybrid) driving. In other words, it is 

absolutely imperative to identify ways of integrating human factors in requirements 

gathering, design, and implementation of cyber-transportation systems (CTS)/ITS [21]. 

 Cryptography: Because of the safety/life-critical nature of ITS and its strict 

requirement of little or no tolerance for delays/latencies/errors in message dissemination, 

the influence of various cryptographic algorithms on timely, and accurate message 

dissemination is imperative, especially as the network size begins to scale/increase. 

Besides, other challenges respecting cloud storage/processing; big data management of 

both historical, and streaming/real-time/dynamic data; and application of various other 

machine learning algorithms towards reliable and realistic traffic pattern prediction using 

several designs/architectures such as client/server (centralized), and peer-to-peer 
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(decentralized) architectures, etc. is imperative and require more studies in order to further 

the VANET/ITS domain. As an extension to our current work, we will also evaluate the 

efficiency, and effectiveness of our machine learning algorithms respecting other pertinent 

evaluation metrics such as: CPU usage, memory usage, and ease of interpretation of results 

[173]. However, it is imperative to note that because of the prevalence of widespread, 

complex, large-scale, and heterogeneous dynamic real-time datasets, it is a major challenge 

to integrate these data sources into an integrated model that is useful for efficient and 

effective knowledge discovery that will be useful for accurate, real-time decision making 

[4]. 

In closing, respecting the relatively new research domain of ITS, it is normal for 

requirements, challenges/problems, etc. to be in a constant state of flux because of the 

flexible nature of research – especially prior to full, or partial real-world implementation. 

Consequently, new requirements/problems are bound to emanate during or after real-world 

deployments; hence, policy, technology, and requirements changes must be, inevitably, 

anticipated sooner, or later [15]. 
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Appendices 

Appendix A 

Code for Incident Warning Application (IWA) 

The code snippet for the mobile application – Incident Warning Application (IWA) – 

developed in this research is here presented [152]. 

Incident Warning Application (IWA) Java Code [152]. 

// Author: Nnanna N. Ekedebe 

// Copyright © May 8th, 2015 

//AppName: Incident Warning Application (IWA) 

package com.dcaiti.vsimrti.app.IncidentWarningApp; 

import com.dcaiti.vsimrti.fed.app.api.helper.SafeTimerLong; 

import com.dcaiti.vsimrti.fed.app.api.interfaces.Application; 

import com.dcaiti.vsimrti.fed.app.api.interfaces.ApplicationLayer; 

import com.dcaiti.vsimrti.fed.app.api.interfaces.CommunicationModule; 

import com.dcaiti.vsimrti.fed.app.api.interfaces.unitaccess.controller.VehicleController; 

import com.dcaiti.vsimrti.fed.app.api.interfaces.unitaccess.provider.VehicleProvider; 

import com.dcaiti.vsimrti.fed.app.api.util.ReceivedV2XMessage; 

import com.dcaiti.vsimrti.rti.objects.v2x.denm.DENM; 

import com.dcaiti.vsimrti.geographic.GeometryHelper; 

import com.dcaiti.vsimrti.rti.behavior.SlowDownData; 

import com.dcaiti.vsimrti.rti.enums.SensorType; 

import com.dcaiti.vsimrti.rti.geometry.GeoCircle; 

import com.dcaiti.vsimrti.rti.geometry.GeoPoint; 

import com.dcaiti.vsimrti.rti.objects.Route; 

import com.dcaiti.vsimrti.rti.objects.address.DestinationAddressContainer; 

import com.dcaiti.vsimrti.rti.objects.address.GeocastDestinationAddress; 

import com.dcaiti.vsimrti.rti.objects.v2x.MessageRouting; 

import com.dcaiti.vsimrti.rti.objects.v2x.V2XMessage; 

import java.util.Objects; 

import org.opengis.geometry.DirectPosition; 

import org.slf4j.Logger; 

 

/** 

* Class implementing the application interface and fulfilling a re-routing 

* based on changing roadway incident conditions. 

*/ 

@SuppressWarnings("unused") 

public class IncidentWarningApp implements Application { 
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/** 

* Reference to the {@link ApplicationLayer}. 

*/ 

private ApplicationLayer applicationLayer; 

 

/** 

* Short reference to the {@link VehicleController} for convenience. 

*/ 

private VehicleController vc; 

 

/** 

* Short reference to the {@link VehicleProvider} for convenience. 

*/ 

private VehicleProvider vp; 

 

/** 

 

* Short reference to the {@link CommunicationModule} for convenience. 

*/ 

 

… 
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Appendix B 

Traffic Prognosis 

1. Actual Regression Results 

Respecting some of our evaluated algorithms in prognosticating the actual traffic volume 

patterns on I-270 [173] [204] [71]. 

Table 7: Actual versus predicted traffic volume levels of some regression algorithms on 

I-270 [173] [204] [71]. 

Actual RLR GLM GLM.S BDT BGDT KNN.R NB.R TB.R NN_fit Time of Day 

81 104 112 63 32 75 88 28 70 45 0:03 

55 107 115 64 32 74 54 22 69 45 0:09 

41 35 51 55 22 75 36 22 70 45 0:14 

37 95 104 62 34 77 43 22 72 45 0:20 

36 41 57 56 22 76 36 22 70 45 0:26 

58 49 63 57 25 77 67 28 70 45 0:32 

44 60 74 58 29 79 40 22 71 45 0:39 

26 73 84 59 29 79 59 22 71 45 0:43 

42 129 134 66 23 68 34 22 64 45 0:49 

35 135 139 67 23 68 44 22 64 45 0:55 

58 135 139 67 23 68 44 22 64 45 1:02 

26 47 62 56 25 77 67 22 70 45 1:08 

29 29 46 54 22 76 36 22 70 45 1:13 

39 85 95 61 34 79 61 22 72 45 1:19 

29 50 64 67 45 77 36 28 75 37 1:26 

29 81 91 71 52 82 59 26 78 67 1:31 

35 3 24 51 20 77 24 22 79 45 1:37 

32 74 86 60 29 79 59 22 71 45 1:43 

23 79 90 60 29 79 61 22 71 45 1:49 

17 97 105 62 32 76 43 22 72 45 1:56 

32 -63 -34 43 31 148 29 24 183 45 2:01 

24 -63 -34 43 31 148 29 24 183 45 2:02 

31 27 45 54 20 78 36 22 70 45 2:07 

25 50 65 57 25 77 67 22 70 45 2:13 

22 100 109 63 32 77 43 22 72 45 2:19 

28 59 71 77 64 87 36 34 86 56 2:25 

29 69 81 59 29 80 68 24 74 45 2:31 

29 -19 4 56 43 148 29 28 182 37 2:37 

18 76 87 60 29 79 59 22 72 45 2:44 
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Table 8: Actual performance results of our evaluated regression algorithms - a multi-

metric comparison [173] [204] [71]. 

Algorithm R_value R_error MSE RMSE Prediction_time Fitting_time 

Rtree 0.93652 0.06348 0.149075637 0.386103143 0.154 0.128 

NB.R 0.97626 0.02374 7.590135643 2.75502008 0.285 0.183 

LR 0.83621 0.16379 56.4564748 7.513752378 0.42 0.324 

RLR 0.84069 0.15931 126.2651262 11.23677561 0.584 0.351 

GLM.R 0.83621 0.16379 56.4564748 7.513752378 0.588 0.411 

KNN.R 0.92263 0.07737 137.6145707 11.73092369 0.711 0.155 

TB.R 0.94798 0.05202 38.38577751 38.38577751 0.936 0.841 

SLR 0.8361 0.1639 19.51204145 4.417243649 1.021 0.862 

BDT 0.97551 0.02449 3.862772032 1.965393607 1.257 1.107 

BGDT 0.95808 0.04192 6.279435827 2.50588025 1.509 1.155 

NN_fit.R 0.970015 0.029985 36.68816236 6.057075396 2.06 1.735 

GLM.S 0.94811 0.05189 5.175033923 2.274870089 2.822 1.648 

NN_time.R 0.973027 0.026973 408.0444 20.20010891 4.124 3.17 

2. Actual Classification Results 

Respecting some of our evaluated algorithms in prognosticating the presence/absence of 

congested traffic on I-270. 

 

Table 9: More metrics used to evaluate the performance of our classification algorithms 

[173] [204] [71]. 

(a) 

Algorithm PA RA Mis R Pt Ft TP FP TN FN P N P+N 

Ctree 100.00 100 0.00 1.00 0.34 0.15 200 0 0 49 249 0 249 

TB 100.00 100 0.00 1.00 5.06 2.37 200 0 0 49 249 0 249 

LSBOOST 100.00 100 0.00 1.00 1.16 0.96 200 0 0 49 249 0 249 

BAG 100.00 100 0.00 1.00 3.09 3.07 200 0 0 49 249 0 249 

NN_fit 100.00 100 0.00 1.00 2.84 2.30 200 0 0 29 229 0 249 

NB 99.60 100 0.40 0.99 0.91 0.09 200 1 0 48 248 1 249 

GLM 99.20 100 0.80 1.00 5.28 0.58 199 1 1 48 247 2 249 

SVM 99.20 100 0.80 0.97 1.98 0.58 200 2 0 47 247 2 249 

NN_p.reg 98.40 100 1.60 0.98 2.05 1.39 200 0 4 45 245 4 249 

DA 93.57 100 6.43 0.79 2.58 0.18 200 16 0 33 233 16 249 

KNN 80.32 100 19.68 0.80 0.71 0.12 200 49 0 0 200 49 249 

NN_time 73.90 100 26.10 0.68 3.39 3.17 167 32 33 17 184 65 249 
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(b) 

Algorithm PPV NPV TPR TNR FPR FDR ACC F1 I M 

Ctree 1.00 0.00 0.80 0.00 0.00 0.00 0.80 0.89 -0.20 0.00 

TB 1.00 0.00 0.80 0.00 0.00 0.00 0.80 0.89 -0.20 0.00 

LSBOOST 1.00 0.00 0.80 0.00 0.00 0.00 0.80 0.89 -0.20 0.00 

BAG 1.00 0.00 0.80 0.00 0.00 0.00 0.80 0.89 -0.20 0.00 

NN_fit 1.00 0.00 0.87 0.00 0.00 0.00 0.80 0.93 -0.13 0.00 

NB 1.00 0.00 0.81 0.00 1.00 0.00 0.80 0.89 -0.19 0.00 

GLM 1.00 0.02 0.81 0.50 0.50 0.01 0.80 0.89 0.31 0.02 

SVM 0.99 0.00 0.81 0.00 1.00 0.01 0.80 0.89 -0.19 -0.01 

NN_p.reg 1.00 0.08 0.82 1.00 0.00 0.00 0.82 0.90 0.82 0.08 

DA 0.93 0.00 0.86 0.00 1.00 0.07 0.80 0.89 -0.14 -0.07 

KNN 0.80 0.00 1.00 0.00 1.00 0.20 0.80 0.89 0.00 -0.20 

NN_time 0.84 0.66 0.91 0.51 0.49 0.16 0.80 0.87 0.42 0.50 
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