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High-current, high-power photodetectors are important in RF-photonic sys-

tems, optical communications systems, photonic microwave generation, and high-

frequency measurement systems. Device nonlinearity limits the performance of these

photodetectors. In order to obtain a linear response with a high output current, we

must understand the sources of nonlinearity and find ways to mitigate them. Besides

nonlinearity, another important characteristic of photodetectors is the phase noise

and amplitude-to-phase (AM-to-PM) conversion. This effect limits the performance

of photonic microwave generation systems. We must find the source of AM-to-PM

conversion in the photodetectors and find ways to mitigate it.

In this dissertation, we first describe one-dimensional (1D) and two-dimensional

(2D) drift-diffusion models that we used to study p-i-n, partially depleted absorber

(PDA), and modified uni-traveling carrier (MUTC) photodetectors. We obtained

excellent agreement with experiments for the harmonic power and responsivity. Im-

pact ionization, external loading, and the Franz-Keldysh effect are all included in

the model.



In a p-i-n photodetector, we found that impact ionization is an important

source of nonlinearity. In a PDA photodetector, we showed that the Franz-Keldysh

effect is an important source of nonlinearity. Decreasing the effective load resistor

decreases the higher harmonic powers.

In an MUTC photodetector, our theoretical calculation agree well with the

experimental results. We demonstrated that the dominant physical source of non-

linearity is the Franz-Keldysh effect. We also showed that a shift in the bias null

that occurs when the difference frequency is compared to the sum frequency is due

to displacement current in the intrinsic region of the device.

AM-to-PM conversion in the photodetector occurs due to nonlinearities in the

photodetector. We used the impulse response to calculate the phase delay in the

photodetector and to analyze the source of AM-to-PM conversion. AM-to-PM noise

conversion is due to the change in the transit time that occurs when the pulse energy

changes. Our calculations show that the AM-to-PM noise conversion coefficient can

be reduced 90% by completely removing the heterojunction between InGaAs and

InP. While that is not possible to do in practice, this result demonstrates that it

should be reduced as far as possible.

In the course of our studies, we have created a computational model for high-

current photodetectors. Using this model, we have carried out a detailed study of

the field and current evolution in these devices. In addition to its use to analyze

the characteristics of existing photodetectors, this model can be used to design new

device structures.
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Chapter 1

Introduction

High-current, high-power photodetectors are important in RF-photonic or ana-

log photonic systems [1,5–10], fiber-radio wireless communications systems [11,12],

photonic microwave generation systems [13, 14], and high-frequency measurement

systems [4, 15]. The main goal when designing an RF-photonic system is to mini-

mize the noise and distortion that occurs when translating signals between the radio

frequency (RF) and optical domains. Our goal is to find the sources of noise and

distortion in the photodetectors and to mitigate them by proper design.

1.1 Analog photonics links

1.1.1 Overview of analog photonic links

Figure 1.1 shows a typical fiber optic link. An optical link has three basic

components. These are: (1) a modulation device, which transfers the electrical

signal onto an optical carrier, (2) an optical fiber, and (3) a photodetector, which

recovers the electrical signal from the optical carrier. The fiber has a relatively low

loss compared to microwave cables. An optical fiber operating at 1.5 µm has a loss

of 0.2 dB/km, while a typical 3/8-inch cable has a loss of 18 dB/km at 10 GHz [1].

Analog photonic or RF-photonic systems have significant advantages over

purely electronic systems in many RF applications [1, 5, 7–10, 16, 17]. These ad-

1



vantages include reduced size, lower cost, immunity to electromagnetic interference,

large bandwidth, and low loss. However, analog links also have some limitations,

which include less efficiency, a higher noise figure, a lower spur-free dynamic range

(SFDR), and lower RF power [7].

RF-to-Optical

Modulation

Device

Optical-to-RF

Demodulation

Device

Optical Transmission

RF input RF output

Figure 1.1: Basic structure of a fiber optic link: modulation device, optical fiber

and photodetector. Similar to Fig. 1.2 in [1].

1.1.2 Frequency response and distortion in analog links

The RF gain of an analog photonic link is the ratio of the RF power at the

photodetector output to the RF power at the input of the modulator. The RF gain

is frequency dependent, which is an important system limitation since it leads to

distortion [1]. Hence, it is important to understand the sources of this frequency

dependence. First, the laser has a frequency-dependent response to the modulator

frequency. For a semiconductor laser, the laser’s frequency response depends on the

carrier lifetime and the photon lifetime [1]. The modulator also has a frequency-

dependent response to the RF current. For the Mach-Zehnder modulator (MZM),

which is the most commonly used modulator, the frequency response is determined

by the optical transit time past the electrodes relative to the modulation period

of the maximum modulation frequency [1]. Additionally, the photodetector has a
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frequency-dependent response. Its response is the most complex and difficult to

analyze. We will discuss its response in more detail later.

Distortion of a sinusoidal current input produces harmonics of the fundamental

signal, which limits the performance of an RF-photonic link. The most important

distortion is the third-order intermodulation power because this distortion produces

frequencies that are close to the fundamental frequency. The distortion at inter-

modulation and harmonic frequencies increases faster than the fundamental power

as the power increases. As the power increases, the distortion will eventually be

greater than the noise limit. Below this power, the link is considered to be linear;

above this power, the link is considered to be nonlinear.

1.2 Microwave generation

Comb
Laser

Optical
Cavity

Photodetector

Figure 1.2: Microwave generation from frequency combs.

Recently, there has been great interest generating microwaves through optical

frequency division (OFD) with a modelocked laser comb [13,14,18,19]. Ultrastable

microwave generation has been demonstrated [18, 19]. The stability of the optical

reference is transferred to the repetition rate of the pulse train of a modelocked

laser. Figure 1.2 shows a schematic diagram of microwave generation using a pho-

todetector. One approach for achieving optical-to-electrical conversion is the bal-

anced optical-microwave photodetector (BOM-PD) [20, 21]. Direct pulse detection
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is also promising. The pulsed output of the frequency-stabilized laser illuminates a

high-speed photodiode that produces a microwave signal. The phase noise that is

produced by the photodetector is a critical limit to system performance.

Carrier-envelope-phase locking (CEPL) of passively modelocked lasers has

great potential for low-noise microwave generation [22]. The key figures-of-merit

for photodetectors in optoelectronic oscillators and CEPL lasers are the power spec-

trum of the phase noise, including the white noise and flicker noise contributions,

as well as the power-to-phase conversion ratio. The noise contributions are more

important in optoelectronic oscillators [23], while the power-to-phase conversion is

more important in CEPL lasers [19, 24]. The impact of these physical effects on

device performance is qualitatively understood and has impacted the design of the

detection systems [24], but quantitative design tools have been lacking.

1.3 Photodetector

1.3.1 Overview of photodetector

A photodetector is an optoelectronic device that absorbs light and converts

it to electric current. Modern photodetectors operate on the basis of the internal

photo-effect, in which the generated electron-hole pairs remain in the sample [25].

The absorption of a photon by a semiconductor results in the generation of an

electron in the conduction band and a hole that is generated in the valence band.

In the presence of an electric field, the two carriers drift in opposite directions. The

transport of the carriers induces an electric current in the external circuit.
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The most common photodetector in use for analog optical links is the p-i-n

photodetector. Figure 1.3 shows a diagram of a reversed-biased p-i-n photodetector.

Most of the voltage through the device occurs in the intrinsic region. After an

electron-hole pair is generated in the intrinsic region, the electron and the hole drift

in opposite directions due to the electric field. The photo-generated electrons drift

to the n-region, and the holes drift to the p-region. The photodiode is a diode. So,

under reverse bias and with a dark condition in which there is no incoming light,

there is only the dark current I, which is given by [26]

I = I0

[
exp

(
qV

kBT

)
− 1

]
, (1.1)

where I0 is a parameter depending on the doping level and material of the photode-

tector, V is bias voltage, q is the magnitude of the electron charge, kB is Boltzmann’s

constant, and T is temperature. If the device is reverse biased, the dark current is

negligible. The photocurrent is dependent on the light intensity and is defined as

Ip =
ηq

hν
Popt, (1.2)

where η is the quantum efficiency, h is the Planck’s constant, ν is the frequency of

incident light, and Popt is the input optical power.

The quantum efficiency η of a photodetector equals Ne/Nphot, where Ne is the

number of electrons per second in the output current and Nphot is the number of

photons per second in the incoming light. For a surface normal photodetector, the
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Figure 1.3: Basic structure of p-i-n photodetector.

quantum efficiency can be written as

η = ζ(1−R) [1− exp(−αwi)] , (1.3)

where ζ is the fraction of electron-hole pairs that contribute to the photocurrent,

R is the reflection index, α is the absorption coefficient, and wi is the length of the

absorption layer in the photodetector, which is the length of the intrinsic region

in the p-i-n photodetector. The responsivity R can be defined as the ratio of the

output current to the input optical power. From Eq. 1.2, we obtain

R =
ηq

hν
. (1.4)

Another important feature of a photodetector is its response time or band-

width, which is constrained by the transit time and the RC time constant, where

R is due to the series load resistance and C is the junction capacitance. Since the

electron velocity is faster than the hole velocity in InGaAs by factor of 2, the transit

time is mainly determined by the hole velocity in the intrinsic region. For a p-i-
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n photodetector, the bandwidth is limited by this transit time and approximately

equals [27]

fT =
vp,sat

πwi
, (1.5)

where vp,sat is the saturation hole velocity. The RC-limited bandwidth is given

by [27]

fRC =
1

2πC(Rs +Rload)
, (1.6)

where Rs is the series resistance and Rload is the load resistor. The capacitance in

the p-i-n photodetector is given by [26]

C =
εA

wi
, (1.7)

where ε is the dielectric constant and A is the area of the device.

A thicker (wi) intrinsic region leads to a higher efficiency. However, the transit

time becomes longer, which reduces the frequency range. Additionally, space charge

in the intrinsic region leads to nonlinearity in the p-i-n photodetector. Hence, there

is a trade-off between efficiency, transit time, and nonlinearity.

1.3.2 Introduction of modeling photodetector

In the mid-1990s, Williams, et al. [28, 29] developed a 1D model of high-

current photodetectors, based on the drift-diffusion equations, which greatly eluci-

dated space-charge effects in these devices. Since that time, this model has been

improved in several ways. Improvements include taking into account the barrier
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heights at the material interfaces [30], taking into account the external circuit [30],

and taking into account the change in the refractive index [31]. Jiang, et al. [32]

developed a circuit-equivalent model to study the distortion of the p-i-n photodetec-

tor. In this early work, these authors [30–32] determined the p-i-n photodetecter’s

harmonic power at different frequencies for different illumination powers and deter-

mined the influence of the circuit paramters on the behavior of the photodetector.

Walker and colleagues [33,34] developed 1D and 2D models of metal-semiconductor-

metal photodetectors to study the transient behavior of the photodetectors. They

showed that it is possible for a 1D model to give a good approximate solution. They

also discussed diffraction and transient behavior in an metal-semiconductor-metal

(MSM) photodetector. Wilson et al. [35] studied impact ionization effect in GaAs

p-i-n photodetector under high illumination. Recently, Fu et al. [36] used a 1D

drift-diffusion model to study the nonlinear intermodulation distortion in a modi-

fied uni-traveling-carrier (MUTC) photodetector. In the model, they included the

Franz-Keldysh effect and impact ionization. They calculated the electric field in the

device and then calculated the absorption coefficient and impact ionization in the

device.

In our earliest work, we revisited the question of determining the sources of

nonlinearity in a simple p-i-n photodetectors at room temperature [37]. Subsequent

to the early simulation work [2,3,33,34], it had been discovered that several effects

that were not included in the original studies can play an important role. These

include external loading [38], thermionic emission at the heterojunction boundaries

[39–41], incomplete ionization [41], impact ionization [36, 41–43], and the Franz-
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Keldysh effect [44].

We showed that impact ionization, in particular, is the dominant nonlinear ef-

fect at large reverse biases (>10 V) in a simple p-i-n device, leading in most cases to

an increase in the harmonic power beyond some voltage [37]. Additionally, modern-

day computers allowed us to carry out cylindrically-symmetric two-dimensional (2D)

simulations and thus take into account transverse diffusion without making ad hoc

assumptions about the beam radius. We showed that it is necessary to take into

account 2D effects to obtain good agreement with experiments at low reverse bi-

ases where the transverse diffusion becomes important. Finally, we carried out fully

implicit simulations, in contrast to the explicit simulations in the original work by

Williams et al. [2,3]. Explicit simulations of the drift-diffusion equations are intrin-

sically unstable [45]. (See also ref. [3], Fig. 4.14, p. 56.) Williams et al. [2, 3] used

a grid-dependent diffusion cap that avoids this instability, but lowers the diffusion

by up to a factor of 100 in some regions of the photodetector — in particular, the

p-i interface. We did not use a diffusion cap, which in some cases led to different

physics for the dominant source of nonlinearity. In particular, we found that the

role of p-region absorption is less than what Williams et al. [2] predicted because of

diffusive backflow of electrons from the n-region through the intrinsic region to the

p-region.

We then extended the model to study the sources of nonlinearity in a partially

depleted absorber (PDA) photodetector [46,47], which has several absorption layers

on each side of intrinsic region in PDA photodetector [46]. These photodetectors can

support higher currents than can standard p-i-n photodetectors, but have a structure

9



that is significantly more complex. In InGaAs, the electron velocity is much greater

than the hole velocity, and the carrier velocity difference induces device nonlinearity.

In a PDA photodetector, it is possible to have a better carrier balance in the intrinsic

region, reducing the built-in fields, by adjusting the length of the absorption layers.

Subsequent to the original experimental study [46], it was discovered that

several voltage-dependent effects, such as the Franz-Keldysh effect and impact ion-

ization, play a role in the generation of higher harmonic power [44,48]. In this work,

we used a 2D drift-diffusion model that uses one longitudinal and one radial dimen-

sion and assumes cylindrical symmetry, in keeping with our prior work that showed

that a 2D model produces more reliable results than a 1D purely longitudinal model,

particularly at low reverse bias where transverse current flow is important [37]. It

also allowed us to avoid ad hoc assumptions for the radial intensity profile of the in-

cident light. We included incomplete ionization, the Franz-Keldysh effect, external

loading, and history-dependent impact ionization in our model [37, 43, 47, 49–51],

and we studied the influence of all these effects on the harmonic power.

We showed that the Franz-Keldysh effect can be an important source of non-

linearity in PDA photodetectors. It leads to changes in the absorption coefficient

that depend on the incident light wavelength and the strength of the electric field.

We showed that increasing the length of the p-region absorption layers can eliminate

the impact of the Franz-Keldysh effect. We also found that history-dependent im-

pact ionization can be important in PDA photodetectors. The “dead length” [51],

which is the distance required for a carrier to gain sufficient kinetic energy from the

electric field so that it can initiate impact ionization, cannot be ignored in a device
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with a thin intrinsic region. Finally, we showed that decreasing the load resistor

decreases the harmonic powers.

We next applied our model to the MUTC photodetector, where the only trav-

eling carriers are electrons. A key difficulty is that modeling the interface becomes

complicated because the structure is complicated. Hence, in each heterojunction, we

use a thermionic emission model as the boundary condition. To apply this model,

we need to find the correct band structure in order to obtain the barrier height.

In the intrinsic region, the electron velocity has an overshoot as a function of the

electric field strength. However, the intrinsic layer is sufficiently thin, such that the

transient behavior of the electron can become important. Our model must correctly

describe the velocity in the intrinsic region. In the PDA or p-i-n photodetector, the

active material only consists of InGaAs. However, in an MUTC photodetector, InP

is also an important material in the collection layer [36]. It is important to choose

the right parameters for the electron velocity model in InP.

We also studied AM-to-PM conversion using our model. In order to calculate

the AM-to-PM conversion coefficient, we calculate the impulse response of the pho-

todetector in time. We then use the Fourier transform to calculate the phase at

each pulse intensity. Since the pulse duration is short (about 100 femtoseconds), we

have to use a small time step to calculate the impulse response.

11



Chapter 2

Modeling the p-i-n photodetector

2.1 Structure of the p-i-n photodetector

The basic structure that we investigated is a single heterojunction device made

from InP and InGaAs [2], as shown in Fig. 2.1. The device is composed of a highly-

doped transparent n-InP substrate of length wn = 0.1 µm (ND = 2 × 1017 cm−3),

an intrinsic layer of n-InGaAs of length wi = 0.95 µm (NB = 5 × 1015 cm−3),

and a degenerately doped p-InGaAs p-region of length wp = 1 µm (NA = 7 × 1018

cm−3), where NA and ND denote the acceptor and donor densities, and NB denotes

the unintentional donor density in the intrinsic region. The total length of the

photodetector is L = 2.05 µm. The incident light was assumed to pass through an

aperture on the n-side ohmic contact of the device. The device radius is 15 µm. In

the simulation, we set ND = 2× 1017 cm−3, NA = 7× 1018 cm−3, and NB = 5× 1015

cm−3. We used z to parameterize the distance along the device from the p-contact,

and we used r to parameterize the radial distance.

2.2 Drift-diffusion model

To model the carrier transport in the photodetector, we used both 1D and 2D

drift-diffusion models [33,34,43,52–58]. The 1D model ignores the radial dependence
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Figure 2.1: Structure of the p-i-n photodetector. Lengths are not to scale.

of all qualities, while the 2D model assumes cylindrical symmetry. Both of these

models consist of three equations that govern the dynamics of the electron density

n, the hole density p, and the electric field E (gradient of the electrostatic potential,

ϕ),

∂(n−N+
D )

∂t
= Gl +Gi −R(n, p) +

∇ · Jn
q

, (2.1a)

∂(p−N−A )

∂t
= Gl +Gi −R(n, p)− ∇ · Jp

q
, (2.1b)

∇ · E =
q

ε

(
N+
D + p− n−N−A

)
, (2.1c)

where q is the unit of charge (here positive), Gl and Gi are the generation rate from

light and impact ionization, R is the recombination rate, ε is the permittivity of

the semiconductor material, and N+
D and N−A are the ionized donor and acceptor

impurity concentrations. The variables Jn and Jp are the current densities for

electrons and holes, respectively, and are given by

Jn = qnvn(E) + qDn∇n, (2.2a)

Jp = qpvp(E)− qDp∇p, (2.2b)
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where Dn and Dp are the electron and hole diffusion coefficients, respectively, while

vn(E) and vp(E) are the electric-field-dependent electron and hole drift velocities,

respectively.

The electron velocity as a function of electric field has been measured for

InGaAs samples at electric field strengths from 10–100 kV/cm. An empirical ex-

pression that has been used to fit vn(E) for electrons in InGaAs is given by [3, 52]

vn =
E (µn + vn,satβ|E|)

1 + β|E|2
, (2.3)

where µn is the electron low-field mobility, vn,sat is the saturated electron velocity,

and β is a fitting parameter. The parameters µn, vn,sat, and β are given in Table 2.1.

The hole velocity has also been measured in the range of 50–100 kV/cm. An empir-

ical expression that has been used to fit vp(E) for the holes in the InGaAs is given

by [59]

vp =
µpvp,satE(

vγp,sat + µγp |E|γ
)1/γ

, (2.4)

where µp is the hole low-field mobility, γ is an empirical fitting parameter that

depends on temperature, and vp,sat is the saturated hole velocity. The parameters

µp, γ, and vp,sat are given in Table 2.1. In Fig. 2.2, we show the electron and hole

velocities as a function of the electric field magnitude given by Eqs. 2.3 and 2.4.

The doping-dependence of the low-field mobilities, µn and µp, are fitted to

available experimental data, using Hilsum’s empirical formula [41,60],
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Parameter InP In0.53Ga0.47As

Wg (eV) 1.35 0.74

χ (eV) 4.38 4.6

εr (eV) 12.4 13.7

∆WD (eV) 0.007 0.005

∆WA (eV) 0.025 0.025

τn,p in i-region (ps) 200 200

τn,p in doped region (ps) 2 2

An (cm−1) 1.12 ×107 6.64×107

Bn (V/cm) 3.11 ×106 2×106

Ap (cm−1) 4.79 ×106 9.34×107

Bp (V/cm) 2.55 ×106 2.26×106

µn,0 (cm2/V sec) 6000 8000

µp,0 (cm2/V sec) 180 300

Nn,ref (cm−3) 1017 1017

Np,ref (cm−3) 6× 1017 1018

ηn 0.34 0.5

ηp 0.64 0.45

β (cm2/V2) 8× 10−8 8× 10−8

γ 1 1

α (µm−1 ) – 1.15

vn,sat (cm/sec) 5× 106 6× 106

vp,sat (cm/sec) 6× 106 6× 106

m∗n/m0 – 0.041

m∗p/m0 – 0.59

Table 2.1: Material parameters at 300 K that we used in the simulations.
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µ =
µ0

1 +

(
ND +NA

Nref

)η , (2.5)

where µ0 is the mobility in low doping concentration, while Nref and η are empirical

parameters.

We use the same expression for the electron and hole diffusion coefficient that

Williams [3] used,

Dn =
kTµn/q[

1− 2 (|E|/Ep)2 + 4/3 (|E|/Ep)3]1/4 ,
Dp =

kT

q

vp(E)

E
,

(2.6)

where Ep is the electric field at which the diffusion constant peaks. We used Ep = 4

kV/cm in the simulation, with vp(E) given by Eq. 2.4 [3].

The largest contribution to recombination is the Shockley-Read-Hall (SRH)

effect. The expression for SRH recombination is

R =
np− n2

i

τp(n+ ni) + τn(p+ ni)
, (2.7)

where ni is the intrinsic density, while τp and τn are the hole and electron lifetimes,

respectively.

In our 2D simulations, we assume that the light intensity that is incident on

the detector is a Gaussian function of the radius and enters through an opening in

the n-side, anti-reflection-coated contact. Assuming that there are no reflections,
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Figure 2.2: Empirical expressions for electron and hole velocities versus the electric

field from Eqs. 2.3 and 2.4. We use different fitting parameters γ =1, 4 and hole

mobility µp = 150 cm2/V-s, 300 cm2/V-s. This figure is similar to Fig. 3 in Williams,

et al. [2].

the generation rate from the light as a function of position in the device is expressed

as

Gl(r, z, t) = Q(r, t)αexp[−α(wp + wi − z)], (2.8)

where α is the absorption coefficient in the InGaAs and Q is the incident photon

flux, which is given by

Q =
P

AWph

, (2.9)

where A is the area of the light spot, and Wph is the photon energy.
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We will assume that the beam is Gaussian-shaped with a profile given by

Q(r, t) = Q0(t)exp
[
−2 (r/r0)2] , (2.10)

where Q0(t) is the time-dependent incident photon flux and r0 is the spot size of

the light.

In the 2D model, we use the Gaussian profile in Eq. 2.10. However, in the 1D

drift-diffusion model, the physical Gaussian beam profile must be approximated by

a constant intensity over an effective beam area. The optical intensity is defined as

the optical power per unit area. We define an effective beam diameter D0 and an

average beam intensity Iav such that the total power of this constant approximation

is the same as the Gaussian beam, so that

∫ ∞
0

I(r)2πrdr = Iavπ

(
D0

2

)2

, (2.11)

where I(r) = I0exp (−2r2/r2
0) is the intensity of the Gaussian beam and r0 is the 1/e

beam radius of the Gaussian beam. In the 1D simulation, D0 is a fitting parameter,

and we obtain reasonable results when D0 approximately equals 2r0. The principal

advantages of the 2D model are that it is possible to use a realistic beam profile,

and it is not necessary to define the fitting parameter D0.

The total current output is the sum of the hole and electron currents with the

addition of the displacement current averaged over the photodetector length and is
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given by

Itotal =
1

L

∫ L

0

∫ R

0

2πr

(
Jn + Jp + ε

∂E

∂t

)
drdz, (2.12)

where L is the length of the device and R is the radius of the device. While it is

not necessary in principle to average over the device length since the total current is

constant, we find that the average is necessary in practice to reduce computational

fluctuations to an acceptable level.

To simulate nonlinearities, the photodetector is excited with a constant gen-

eration rate until the output current reaches a steady state, at which time a super-

imposed sinusoidal signal stimulates the device for a number of cycles, typically 10.

We then take the Fourier transform of the output current to obtain the harmonic

power. In several cases, we carried the simulations out to 20 cycles and observed no

significant difference in the results.

The simulated light is modulated at frequency f1 with modulation depth m

and enters into the simulated photodetector. We assume that the power of the light

is

P = P0 [1 +m sin(2πf1t)] , (2.13)

where P0 is the average light power. In the simulation, only single-pass illumination

is considered.

When we solve the drift-diffusion equation in time, we obtain the output cur-

rent I as a function of time. We use the Fourier transform to calculate the power at

each frequency. We assume that current sequence I has N values. Then, the output
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current If at frequency f is

If =
2

N

∣∣∣∣∣
N−1∑
k=0

I[k]ei2πfk∆t

∣∣∣∣∣ , (2.14)

where ∆t is time step of the current sequence. The harmonic power Pf at frequency

f is given by

Pf =
1

2
I2
fRload, (2.15)

where Rload is the load resistance. Usually, we measure the harmonic power Hf in

units of dBm,

Hf = 10 log10 (1000Pf ) . (2.16)

2.3 Boundary conditions and thermionic emission

To determine a set of boundary conditions, the p- and n-contacts in Fig. 2.1 are

assumed to be ohmic contacts and, as such, offer no barrier to carrier flow. Hence,

the carrier densities near the contacts may be approximated by their densities in

the bulk region. Assuming thermal equilibrium and vanishing space charge at the

ohmic contacts, the boundary conditions at the contacts are

p(r, 0) = N−A , n(r, 0) =
n2
i

p(r, 0)
, (2.17)

n(r, L) = N+
D , p(r, L) =

n2
i

n(r, L)
, (2.18)
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where p(r, 0) and n(r, 0) are the hole and electron densities at the contact at z = 0,

while p(r, L) and n(r, L) are the hole and electron densities at the contact at z = L.

We set the electrostatic potential at z = 0 to zero, i.e., ϕ(r, 0) = 0. We must

then set the boundary conditions for ϕ at the other device interfaces. To determine

the appropriate condition for ϕ(r, L), we must take into account the load resistor.

Then, the potential boundary conditions relate the given reverse bias Va, the built-in

potential Vbi,

Vbi =
kT

q
ln

(
N−AN

+
D

n2
i

)
, (2.19)

and the current in the photodetector to the electric field in the semiconductor region,

so that the boundary condition for the potential is

ϕ(r, L)− ϕ(r, 0) = ϕ(r, L) = Va − IRLoad + Vbi, (2.20)

where I is the output current. Since the current I is unknown at the start of

the simulation, we must find it iteratively. Starting with an initial guess I0, we

determine a new current I1 using Eq. 2.20. We then use I1 as the next guess. We

can assume that the output current I is an unknown function of the bias on the

device VD = ϕ(r, L)− ϕ(r, 0),

I = f(VD). (2.21)

We substitute Eq. 2.21 into Eq. 2.20, and obtain
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F (VD) =
VD − Va − Vbi

RLoad

+ f(VD) = 0. (2.22)

We then obtain the numerical derivative of df(VD)/dVD from two initial guesses of

output current I1 and I0,

df(VD)

dVD
=

I1 − I0

VD1 − VD0

, (2.23)

where VD1 is the bias applied on the device when the output current is I1, and VD0

is the bias applied on the device when the output current is I0. We next obtain the

numerical derivative of dF (VD)/dVD,

dF (VD)

dVD
=

1

RLoad

+
I1 − I0

VD1 − VD0

. (2.24)

We finally use Newton’s method to solve Eq. 2.22. The next guess for VD, VD2, is

VD2 = VD1 −
I1RLoad + VD1 − Va − Vbi

VD1 − VD0 +RLoad(I1 − I0)
(VD1 − VD0). (2.25)

We iterate until the relative difference for the output current is smaller than 10−6.

If we further decrease the relative difference, there is no change in the simulation

results.

At the boundary r = R, a floating boundary condition is applied. The bound-
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ary conditions are

∂p

∂r

∣∣∣∣
r=0

= 0,
∂p

∂r

∣∣∣∣
r=R

= 0,

∂n

∂r

∣∣∣∣
r=0

= 0,
∂n

∂r

∣∣∣∣
r=R

= 0,

∂ϕ

∂r

∣∣∣∣
r=0

= 0,
∂ϕ

∂r

∣∣∣∣
r=R

= 0.

(2.26)
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n-InP

z

Figure 2.3: A depiction of the photodetector band diagram. This figure is similar

to Fig. 3.2 in Williams [3].

Figure 2.3 shows the band diagram of the photodetector, where a reverse bias

voltage of a few volts is applied to the device. The InGaAs/InP heterojunction

depicted in Fig. 2.3 has a valence band discontinuity of 0.38 eV and a conduction

band discontinuity of 0.23 eV [3, 41, 42]. The reduction in the conduction band

discontinuity and the increase in the valence band discontinuity of approximately

0.1 eV is the result of the difference in the doping of the intrinsic and n-InGaAs layer.
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The electrons will be allowed to flow without restriction across the heterojunction

because the barrier is only 0.1 eV. However, holes are affected by the 0.5 eV barrier.

We use a thermionic emission model [39, 40] to calculate the hole current at the

heterojunction. We may write

Jp = qv1p− exp[(Wv1 −Wv2)/kBT ]− qv2p+, (2.27)

where v1 and v2 are respectively the hole emission velocities on the left side and

right side of the heterojunction, p− and p+ are the hole densities on the left side and

right side of the heterojunction, and Wv1 and Wv2 are the valance band energies on

the left side and right side of the heterojunction.

2.4 Additional effects

2.4.1 Incomplete ionization

The doping impurities introduced into InGaAs and InP are not fully ionized

at room temperature [41]. The incomplete ionization of impurities in InGaAs and

InP must be considered in a similar manner to those in silicon because the impurity

energy levels are relatively deep compared to the thermal energy, so that only some

of the impurities are ionized. The model accounts for the incomplete ionization of
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doping impurities such as boron, aluminium, and nitrogen, using the expressions

N+
D =

ND

1 + gD exp

(
WC −WD

kBT

)
exp

(
WFn −WC

kBT

) ,

N−A =
NA

1 + gA exp

(
WA −WV

kBT

)
exp

(
−WFp −WV

kBT

) , (2.28)

where N+
D and N−A are the ionized donor and acceptor impurity concentrations, ND

and NA are the donor and acceptor impurity concentrations, gD = 2 and gA = 4

are the respective ground-state degeneracy of donor and accept impurity levels,

WA and WD are the acceptor and donor energy levels, WC and WV are the low

conduction band and the high valence band energy levels, WFn and WFp are the

quasi-Fermi energy levels for the electrons and holes, kB is the Boltzmann constant,

and T is the temperature. The energy differences in the simulation are ∆WD =

WC −WD = 5 meV and ∆WA = WA −WV = 25 meV [41]. The basic variables

in the drift-diffusion equations, Eq. 2.1, are the potential (or electric field), the

electron concentration, and the hole concentration. Therefore, it is more convenient

to rewrite Eq. 2.28 in terms of the carrier concentration instead of the quasi-Fermi

levels. We use the expressions

N+
D =

ND

1 + gDn/n1

, N−A =
NA

1 + gAp/p1

, (2.29)
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where

n1 = NC exp

(
−∆WD

kBT

)
,

p1 = NV exp

(
−∆WA

kBT

)
,

(2.30)

and we make use of the expressions

n = NC exp

(
WFn −WC

kBT

)
,

p = NV exp

(
−WFp −WV

kBT

)
.

(2.31)

2.4.2 Impact ionization

In a strong electric field, accelerating electrons and holes can have kinetic

energies that are larger than the band gap (around 1 eV for In0.53Ga0.47As [61]), at

which point a lattice collision will produce an electron-hole pair. The electron and

hole move in opposite directions and can themselves produce new electron-hole pairs.

With a strong electric field and an acceleration region with a sufficiently long length,

this mechanism can lead to avalanche breakdown [62]. In the p-i-n photodetectors

that we are considering, the acceleration lengths are too small to lead to avalanche

breakdown since electrons leave the acceleration region too quickly. Nonetheless,

this impact ionization can lead to an important increase in the electron and hole

densities. We may write the electron and hole generation rate Gi as

Gi = αn
|Jn|
q

+ αp
|Jp|
q
, (2.32)
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where αn and αp are the impact ionization coefficients of the electrons and holes,

respectively. We calculate their values using the formulae [41]:

αn = An · exp

[
−
(
Bn

|E|

)m]
,

αp = Ap · exp

[
−
(
Bp

|E|

)m]
,

(2.33)

where An, Bn, Ap, and Bp are experimentally determined parameters [41, 42]. The

exponent m is taken to be 1.05. The values that we use, shown in Table 2.1 for

InGaAs, are modified slightly from the values in [41,42] in order to obtain harmonic

powers that are consistent with experiments. However, all values fall within the

range of experimental error.

2.4.2.1 History-dependent impact ionization

When the intrinsic region is very thin, we have to consider the “dead length”

[50] in the device. Equation 2.33 assumes that the ionization coefficient of electrons

is only a function of the local electric field; this assumption will become inaccurate

in thin layers. A carrier has to gain enough energy from the electric field to have

an ionizing collision [50, 51]. With a decrease of the material thickness, the impact

ionization coefficient should decrease [63]. In order to cause ionization, an electron

must travel a finite distance, which is frequently referred to as the dead length,

before it can gain sufficient energy from the electric field to lead to a non-negligible

ionization probability [64,65]. In a thin device, this dead length cannot be ignored.
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We use

αn(x′|x) = 6.64× 107exp
[
−2× 106/Eeff,e(x

′|x)
]
, (2.34)

as a history-dependent ionization coefficient [51, 64] in the simulation, where Eeff,e

is defined as the average of the electric field in a neighborhood [x, x′],

Eeff,e(x
′|x) =

∫ x′

x

dx′′E(x′′)Re(x
′′|x). (2.35)

The correlation function Re is given by

Re(x
′′|x) =

2√
πλe

exp

[
−(x′′ − x)2

λ2
e

]
, (2.36)

where λe is the correlation length, expressed in terms of the voltage drop across the

dead length Vde. In our simulations, we used λe = Vde/E, and we set Vde equal to 4

V as in the experiments in [64].

2.4.3 Franz-Keldysh effect

When the photon energy of the incident optical light is close to the band edge

of the InGaAs absorber, the Franz-Keldysh effect must be taken into account [66].

The Franz-Keldysh effect leads to oscillations in the carrier transition probability

for energies that are greater than the band gap, and it leads to tunneling of the

electron state into the forbidden band due to band-bending below the band gap in

the presence of an applied electric field.
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The expression for the absorption coefficient α [67] is

α =
2πe2

me
2cη′ω

|U(0)|2|〈ck0|e · p|vk0〉|2S(~ω), (2.37)

where e is the magnitude of the electron charge (here positive), me is the electron

mass, η′ is the real part of the refractive index at the frequency ω, c is the speed of

light, U(r) is the solution of the effective mass equation as a function of the relative

coordinate r, k0 is the point in k-space where the minimum energy gap between the

conduction band c and the valence band v occurs, e·p denotes the matrix elements of

the transition, S(~ω) is the density of excited states at the photon energy ~ω above

the ground state. The effective mass equation that governs the relative motion of

an electron and hole pair is

(
− ~2

2m∗
∇2 − e2

εr
+ eEz

)
U(r) = WU(r), (2.38)

where m∗ is the reduced effective mass memh/(me + mh), ε is the static dielectric

constant of the material, E is the electric field strength and is taken to be in the

z-direction, and W = 0 corresponds to the gap energy Wg. The second term on the

left is due to the Coulomb interaction between an electron and an hole. If we neglect

this term, the solution of Eq. 2.38 can be expressed in terms of Airy functions [68].

If units are chosen so that both the exciton Rydberg energy

R =
m∗e4

2~2ε2
(2.39)
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and the exciton Bohr radius

a =
~2ε

m∗e2
(2.40)

are unity, then the effective mass equation becomes

(
−∇2 − 2

r
+ fz

)
U = WU, (2.41)

where the field strength f is measured in units of (Rydbergs)/[(Bohr radius)–

(electron charge)].

Equation 2.41 is not separable in spherical polar coordinates, but it is separable

in parabolic coordinates defined by

ξ = r + z, ζ = r − z, φ = φ. (2.42)

The Laplace operator in parabolic coordinates is

∇2 =
4

ξ + ζ

[
∂

∂ξ

(
ξ
∂

∂ξ

)
+

∂

∂ζ

(
ζ
∂

∂ζ

)]
+

1

ξζ

∂2

∂φ2
. (2.43)

The solution of Eq. 2.41 may be written in the form [69,70]

U(r) =
χ1(ξ)χ2(ζ) exp(imφ)

(ξζ)1/2
, (2.44)

where m is the angular quantum number. Substituting Eq. 2.44 into Eq. 2.41 and
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separating the variables ξ and ζ, we obtain

χ1
′′(ξ) +

(
1−m2

4ξ2
+
η

ξ
+
W

4
− fξ

8

)
χ1(ξ) = 0, (2.45a)

χ2
′′(ζ) +

(
1−m2

4ζ2
+

1− η
ζ

+
W

4
+
fζ

8

)
χ2(ζ) = 0, (2.45b)

where χ1
′′(ξ) denotes d2χ1(ξ)/dξ2, χ2

′′(ζ) denotes d2χ2(ζ)/dζ2, and η is a separation

parameter. We note that the χ1(ξ) decays exponentially when ξ → ∞. Hence, the

eigenvalue η will have an infinite number of discrete values ηn, where n = 0, 1, 2...

is the number of nodes in χ1(ξ). By contrast, we find that χ2(ζ) is oscillatory for

large ζ. We note that in Eq. 2.45b the term (1− η)/ζ becomes equal to −η/ζ when

the Coulomb interaction is not included.

The solution of Eqs. 2.44 and 2.45 begins with the specification of W , f , and

m. For the allowed transitions considered here, only the case m = 0 contributes

to the absorption. An approximate value of η is specified, and the asymptotic

form of χ1(ξ) is determined by the WKBJ approximation [71, 72]. The Numerov

integrator [73] is then used to integrate inward until χ1(ξ) has a relative maximum.

A similar outward integration is started at ξ = 0 with a knowledge of the behavior

of the χ1(ξ) near the origin [71,72],

χ1 = ξ(|m|+1)/2

{
1− ηξ

|m|+ 1
+O(ξ2)

}
. (2.46)

The two solutions are joined at the outer maximum, and the solution from the inward

integration is scaled so that χ1 is continuous at the joining point. We then compare
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the slope of the two solutions and adjust η according to the Cooley formula [74]. We

repeat the integration process until the difference of the slopes of the two solutions

at the joining point converges to zero.

The asymptotic form of χ2 as y →∞ is [71, 72]

χ2(ζ)→ A

(W/f + ζ/2)1/4
sin

[
2

3
f 1/2 (W/f + ζ/2)3/2 + η

]
, (2.47)

where A is a normalization constant that we will determine shortly and η varies

only logarithmically with ζ. The density of states with Dirichlet (zero) boundary

conditions over a length L equals [69, 71]

S(W ) =
1

π

(
L

2f

)1/2

(2.48)

for large L. The normalization constant I is evaluated from the integral expression

[69,71]

I2 =

∫
|U |2Jdξdζdφ, (2.49)

where the Jacobian for parabolic cylinder coordinates is

J =
1

4
(ξ + ζ). (2.50)

We thus obtain

I2 =
1

4

∫ 2π

0

dφ

∫ ∞
0

dξ

∫ L

0

dζ
χ2

1(ξ)χ2
2(ζ)

ξζ
(ξ + ζ). (2.51)
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In Eq. 2.51, we may set the integration limit for ξ equal to infinity because of the

exponential decay of χ1. We must choose the integration limit for ζ so that it is

the same as the length that we chose to find the density of states in Eq. 2.48. This

box normalization will allow us to obtain a result for the absorption coefficient that

is independent of L as L → ∞. In the limit as L → ∞, the entire contribution to

the ζ-integration will come from the asymptotic limit, which allows us to simplify

Eq. 2.51. We use the asymptotic expression for the Jacobian, J = ζ/4, and Eq. 2.51

becomes

I2 =
1

2
π

∫ ∞
0

χ2
1(ξ)

ξ
dξ

∫ L

0

χ2
2(ζ)dζ =

1

2
π

∫ ∞
0

χ2
1(ξ)

ξ
dξ(2L)1/2A2, (2.52)

into which we will substitute the asymptotic expression from Eq. 2.47.

The coefficient A in Eq. 2.47 is determined by solving the differential equation

2.45b for χ2(ζ), starting at ζ = 0 with the expansion for χ2 [69, 71],

χ2 = ζ(|m|+1)/2

{
1− (1− η)ζ

|m|+ 1
+O(ζ2)

}
, (2.53)

and integrating outward using Numerov’s method. For large ζ, we fit the calculated

function to the asymptotic result in Eq. 2.47 to determine A. Substituting Eqs. 2.46

and 2.53 into Eq. 2.44, the wave function becomes

U(r) =
(
x2 + y2

)|m|/2{
1 +

(1− 2η)z − r
|m|+ 1

+O(r2)

}
exp(imφ). (2.54)

The value of U is zero at the origin when m 6= 0 and equals one when m = 0. The
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normalized wave function at the origin should equal

Unorm(0) = U(0)/I2 = 1/I2 =

[
1

2
π(2L2)1/2A2

∫ ∞
0

χ2
1(ξ)/ξdξ

]−1

. (2.55)

We finally substitute Eqs. 2.48 and 2.55 into Eq. 2.37, and the absorption coefficient

becomes

α =

(
2πe2

me
2cη′ω

)( |〈ck0|e · p|vk0〉|2
A2π2f 1/2

∫∞
0
χ2

1(ξ)/ξdξ

)
. (2.56)

We define a normalized absorption coefficient

ᾱ = |U(0)|2S(~ω) =
1

A2π2f 1/2
∫∞

0
[χ2

1(ξ)/ξ] dξ
. (2.57)

When we do not consider the Coulomb interaction in Eq. 2.37, the absorption coef-

ficient is given by [75]

α(ω,W ) =
(
Cθ

1/2
F /ω

)[∣∣∣∣dAi(β)

dβ

∣∣∣∣2 − β |Ai(β)|2
]
, (2.58)

where ω is the light frequency, C is a fitting parameter, and Ai(x) is the Airy

function. We also have

β =
ω1 − ω
θF

(2.59)

and

(θF )3 =
e2W 2

2mnp~
, (2.60)

where ~ω1 is the energy of the band gap, and mnp is the reduced mass of the electric-
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hole pair.

Figure 2.4 shows the normalized absorption coefficient ᾱ, defined in Eq. 2.57, as

a function of electric field with and without the Coulomb interaction in In0.53Ga0.47As.

The field strength is measured in units of (Rydbergs)/[(Bohr radius)–(electron charge)]

(Rbe). The dashed and solid curves are the simulation results with and without

the Coulomb interaction, respectively. We find that the amplitude of the normal-

ized absorption coefficient ᾱ is larger by approximately a factor of two when we

include the Coulomb interaction in the calculation. Since the responsivity factor

| 〈ck0|e · p|vk0〉 |2 is assumed to be unknown and is determined from a best fit to

the measured responsivity, this factor of two difference is not important when com-

paring the theoretically calculated responsivity as a function of bias and optical

wavelength to the measured values. What is important is the difference in the slope

between these two calculations. For an electric field between 50 and 100 Rbe, the

slope with the Coulomb interaction is larger than without. In both calculations, the

oscillations become more rapid as the field diminishes, but the values at which the

minima and maxima occur are different, as are the oscillation periods.

2.5 Temperature conduction model

When the photo-current increases, the temperature in the device increases,

and it becomes the most important source of nonlinearity in a high current pho-

todetector.
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Figure 2.4: Calculated absorption coefficient as a function of electric field. The

solid curves show the calculation results with the Coulomb interaction, and the

dashed curves show the calculation results without the Coulomb interaction. The

field strength is measured in units of (Rydbergs)/[(Bohr radius)–(electron charge)]

(Rbe).
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The heat flow equation [76–78] that governs the heat flow may be written as

ρcp
∂T

∂t
= (Jn + Jp) · E +RWg +∇ · [k(T )∇T ] , (2.61)

where ρ and cp are the specific mass density and specific heat of the material, T is

the lattice temperature, Wg is the energy gap of the material, and k is the thermal

conductivity. The thermal conductivity may be expressed as [77]

k(T ) = k300

(
T

300

)αk

, (2.62)

where k300 = 4.82 W/K-m and αk equals −1.17 in In0.53Ga0.47As. The electron

and hole mobility and the energy gap of the material are functions of temperature;

so, the heat flow equation must be included in the simulation. We solve the drift-

diffusion equation and the heat flow equation iteratively to obtain the steady-state

temperature distribution in the device. We calculate the band-gap Wg from the

expression [76,79,80]

Wg(T ) = 0.795− 4.91× 10−4T 2

301 + T
. (2.63)

The low-field mobility is given by

µLn = µLn,300 (T/300)rn , µLp = µLp,300 (T/300)rp . (2.64)
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Material µLn,300, cm2/(V-s) rn µLp,300, cm2/(V-s) rp

GaAs 8500 −2.2 491.5 −0.9

InAs 32500 −1.7 530 −2.3

InP 5300 −1.9 200 −1.2

Table 2.2: Material mobility parameters used in the simulation.

For material AxB1−x, the mobility is expressed as [80]

1

µAB

=
x

µA

+
1− x
µB

+
x(1− x)

Cµ
, (2.65)

where Cµ equals 1×106 cm2/(V-s) for InxGa1−xAs. We show the low-field mobilities

in Table 2.2 [79–81]. At room temperature, the electron mobility in In0.53Ga0.47As

equals 1.4× 104 cm2/(V-s), and the hole mobility equals 300 cm2/(V-s).

The saturated velocities of the holes and electrons are also functions of tem-

perature. These functions may be written [82]

vn,sat(T ) =
vn,sat,300

(1− An) + AnT/300
, vp,sat(T ) =

vp,sat,300

(1− An) + AnT/300
, (2.66)

where An equals 0.56 for In0.53Ga0.47As. The saturated, room-temperature electron

and hole velocities that we use in our simulations are 1.2×107 cm/s and 0.5×107

cm/s, respectively.
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2.6 Computational model

2.6.1 1D computational model

h′(m− 1) h′(m) h′(m)

h(m− 1) h(m) h(m+ 1)

m m+ 1m− 1
m+ 1/2 m+ 3/2m− 1/2m− 3/2

z = 0 z = L

1 M

Figure 2.5: Numerical mesh used for the finite difference spatial discretization of

the 1D drift-diffusion equation.

When discretizing the drift-diffusion equations for numerical computation, it

is important to use a fully implicit method [45]. Explicit methods are intrinsically

unstable and thus require an unreasonably small time step to yield physical results

with the diffusion coefficients given in Eq. 2.6. In our simulations, the time step

would be smaller than 10−15 s if we used an explicit method, compared with a time

step of 10−12 s using an implicit method. We have used the implicit Euler method

to discretize the equations in time t. We used second-order finite differences to

discretize the spatial dimension z. We discretize the z-dimension using the mesh

shown schematically in Fig. 2.5. We define p, n, and ϕ, at integral points in the

mesh that are indexed by m = 1, 2, ...,M . The current and electric field are defined

at intermediate points that are indexed by m = 3/2, 5/2, ...,M − 1/2. We use an

uneven spacing between mesh points, and hence we specify the distance between

the integral points m and m+1 as h(m), and the distance between the intermediate
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points m− 1/2 and m+ 1/2 as h′(m). We set

h′(m) =
h(m− 1) + h(m)

2
. (2.67)

Using this mesh, Eqs. 2.1 and 2.2 become

ni+1
m − nim
δt

=
1

q

(Jn)i+1
m+1/2 − (Jn)i+1

m−1/2

h′(m)
+Gi+1

m +Gi
i+1
m −Ri+1

m ,

pi+1
m − pim
δt

= −1

q

(Jp)
i+1
m+1/2 − (Jp)

i+1
m−1/2

h′(m)

+Gi+1
m +Gi

i+1
m −Ri+1

m ,
1

h′(m)

[
ϕi+1
m+1 − ϕi+1

m

h(m)
− ϕi+1

m − ϕi+1
m−1

h(m− 1)

]
= −q

ε

(
N+
Dm −N−Am + pi+1

m − ni+1
m

)
,

(2.68)

and

(Jn)i+1
m+1/2 = q(Dn)i+1

m+1/2

ni+1
m+1 − ni+1

m

h(m)
+ q(vn)i+1

m+1/2

ni+1
m+1 + ni+1

m

2
,

(Jp)
i+1
m+1/2 = −q(Dp)

i+1
m+1/2

pi+1
m+1 − pi+1

m

h(m)
+ q(vp)

i+1
m+1/2

pi+1
m+1 + pi+1

m

2
,

(2.69)

where ni+1
m and pi+1

m are the electron and hole densities at the point m and time-step

i+ 1, respectively, while (Jn)i+1
m+1/2 and (Jp)

i+1
m+1/2 are the electron and hole currents

at the point m + 1/2 and time-step i + 1, respectively, Gi+1
m is the generation rate

at the point m and time-step i + 1, Ri+1
m is the recombination rate at the point m

and time-step i+ 1, ϕi+1
m is the electrostatic potential at the point m and time-step

i+1, N+
Dm and N−Am are the ionized donor and acceptor doping density at the point

m, (Dn)i+1
m+1/2 and (Dp)

i+1
m+1/2 are the electron and hole diffusion coefficient at the

point m + 1/2 and time-step i + 1, (vn)i+1
m+1/2 and (vp)

i+1
m+1/2 are the electron and
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hole velocities at the point m+ 1/2 and time-step i+ 1. Here, we used the average

carrier densities
(
ni+1
m+1 + ni+1

m

)
/2 and

(
pi+1
m+1 + pi+1

m

)
/2 to approximate the carrier

densities ni+1
m+1/2 and pi+1

m+1/2 at the intermediate m + 1/2 point and time-step i + 1

in Eq. 2.69.

z0

m− 1 m m+ 1

∆z2

∆z1

M − 1 M21

ϕ, n, p, z

Jn, Jp,E

3/2 5/2 m− 1/2 m+ 1/2 M − 3/2 M − 1/2

... ...

... ...

Figure 2.6: Gridding scheme used in the device model for multilayer devices.

At the heterojunction interface z0 shown in Fig. 2.6, the discretization is dif-

ferent. We treat the drift-diffusion equation as a differential equation for the hole

density, assuming that all other variables are constant along the grid elements in-

troducing z0, and we integrate over the grid elements to obtain the hole density at

the interface z0. For a grid element containing a heterojunction interface, there is a

discontinuity in the hole density at this interface. So, the integration is done in two

steps, first from z(m) to z0 and then from z0 to z(m+ 1), as illustrated in Fig. 2.6.

The drift-diffusion equation for the hole derivative, which is obtained by inserting

Eq. 2.6 into Eq. 2.2b, can be written,

∂p

∂z
=

qE

kBT
p− EJp

kBTvp
. (2.70)
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Figure 2.7: Schematic illustration of the boundary condition used at the hetero-

junction. Valance band energies are denoted Wv1 and Wv2, while conduction band

energies are denoted Wc1 and Wc2.

Integrating from x(m) to x0 yields

p(z−0 ) = p(m)exp

[
qE(m+ 1/2)

kT
∆z1

]
− Jp(m+ 1/2)

qvp(m+ 1/2)

×
{

1− exp

[
qE(m+ 1/2)

kT
∆z1

]}
,

(2.71)

The integral from x0 to x(m+ 1) yields:

p(z+
0 ) = p(m+ 1)exp

[
−eE(m+ 1/2)

kT
∆z2

]
− Jp(m+ 1/2)

qvp(m+ 1/2)

{
1− exp

[
−qE(m+ 1/2)

kT
∆z2

]}
.

(2.72)

Thermionic emission [39, 40] is accounted for at the heterojunction interface.

The possible barriers for holes are illustrated in Fig. 2.7. When holes move from a

material with a higher valance band energy to a lower valance band energy, as shown

on the left of Fig. 2.7, the heterojunction is a barrier to holes, which is the case in

our structure. When holes move from a material with a lower valance band energy

to a material with a higher valance band energy, as shown on the right of Fig. 2.7,
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then holes move freely through the heterojunction. This kind of heterojunction is

not a barrier to holes. Using Eq. 2.27, the current at the heterojunction can be

written as

Jp(m+ 1/2) = qv1p(z
−
0 ) exp[(Wv1 −Wv2)/kT ]

− qv2p(z
+
0 ).

(2.73)

Inserting Eqs. 2.71 and 2.72 into Eq. 2.73 and rearranging yields

Jp(m+ 1/2) = qvp(m+ 1/2)
A−B

1 + C −D, (2.74)

where A, B, C, and D are

A = p(m) exp

[
qE(m+ 1/2)∆z1 +Wv1 −Wv2

kT

]
,

B = p(m+ 1) exp

[
−qE(m+ 1/2)∆z2

kT

]
,

C =

{
1− exp

[
qE(m+ 1/2)∆z1

kT

]}
exp

[
Wv1 −Wv2

kT

]
,

D = 1− exp

[
−qE(m+ 1/2)∆z2

kT

]
.

(2.75)

We have assumed that the electric field and the hole velocity are constant across

the heterojunction interface.

2.6.2 2D computational model

We use the implicit Euler method to discretize the equations in time t. We

use a second-order finite difference scheme to discretize the spatial dimensions r and
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Figure 2.8: Computational mesh used for the finite difference spatial discretization

of the 2D drift-diffusion equation.

z. The mesh is shown schematically in Fig. 2.8. The integral points in the mesh,

labeled (i, j), are where the values of p, n, and ϕ are defined, while the intermediate

points labeled (i−1/2, j) and (i, j−1/2) are where the current and electric field are

defined. We use an uneven spacing between mesh points, and hence we specify the

distance between the integral points (i, j) and (i, j − 1) as hj−1 in the longitudinal

(z) direction, and between (i, j) and (i − 1, j) as ki−1 in the radial (r) direction.

The distance between the intermediate point (i, j + 1/2) and (i, j − 1/2) is h′j and

between the intermediate point (i+ 1/2, j) and (i− 1/2, j) is k′i. We set

h′j =
hj−1 + hj

2
, k′i =

kj−1 + kj
2

. (2.76)
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Our time step is given by δt. We thus obtain

nt+1
i,j − nti,j
δt

=
1

q

(Jnr)
t+1
i+1/2,j − (Jnr)

t+1
i−1/2,j

k′i
+

1

q

(Jnr)
t+1
i,j

ri

+
1

q

(Jnz)
t+1
i,j+1/2 − (Jnz)

t+1
i,j−1/2

h′j
+Gt+1

i,j +Gi
t+1
i,j −Rt+1

i,j ,

(2.77a)

pt+1
i,j − pti,j
δt

= −1

q

(Jpr)
t+1
i+1/2,j − (Jpr)

t+1
i−1/2,j

k′i
− 1

q

(Jpr)
t+1
i,j

ri

− 1

q

(Jpz)
t+1
i,j+1/2 − (Jpz)

t+1
i,j−1/2

h′j
+Gt+1

i,j +Gi
t+1
i,j −Rt+1

i,j ,

(2.77b)

− q

ε

(
N+
Di,j −N−A i,j + pt+1

i,j − nt+1
i,j

)
=

1

k′i

[
ϕi+1,j − ϕi,j

ki
− ϕi,j − ϕi−1,j

ki−1

]
+

1

h′j

[
ϕi,j+1 − ϕi,j

hj
− ϕi,j − ϕi,j−1

hj−1

]
+

1

ri

ϕi+1,j − ϕi−1,j

ki + ki−1

.

(2.77c)

and

(Jnr)
t+1
i+1/2,j = q(Dn)t+1

i+1/2,j

nt+1
i+1,j − nt+1

i,j

ki
+ q(vnr)

t+1
i+1/2,j

nt+1
i+1,j + nt+1

i,j

2
,

(Jnr)
t+1
i,j = q(Dn)t+1

i,j

nt+1
i+1,j − nt+1

i−1,j

ki + ki−1

+ q(vnr)
t+1
i,j n

t+1
i,j ,

(Jnz)
t+1
i,j+1/2 = q(Dn)t+1

i,j+1/2

nt+1
i,j+1 − nt+1

i,j

hj
+ q(vnz)

t+1
i,j+1/2

nt+1
i,j+1 + nt+1

i,j

2
,

(2.78)
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(Jpr)
t+1
i+1/2,j = −q(Dp)

t+1
i+1/2,j

pt+1
i+1,j − pt+1

i,j

ki
+ q(vp)

t+1
i+1/2,j

pt+1
i+1,j + pt+1

i,j

2
,

(Jpr)
t+1
i,j = −q(Dp)

t+1
i,j

pt+1
i+1,j − pt+1

i−1,j

ki + ki−1

+ q(vp)
t+1
i,j p

t+1
i,j ,

(Jpz)
t+1
i,j+1/2 = −q(Dp)

t+1
i,j+1/2

pt+1
i,j+1 − pt+1

i,j

hj
+ q(vp)

t+1
i,j+1/2

pt+1
i,j+1 + pt+1

i,j

2
,

(2.79)

where nt+1
i,j and pt+1

i,j are the electron and hole densities at the point (i, j) and time-

step t + 1, respectively, while (Jnr)
t+1
i+1/2,j and (Jpr)

t+1
i+1/2,j are the electron and hole

currents at the point (i+ 1/2, j) and time-step t+ 1 in the radial direction, respec-

tively, (Jnz)
t+1
i,j+1/2 and (Jpz)

t+1
i,j+1/2 are the electron and hole currents at the point

(i, j + 1/2) and time-step t + 1 in the longitudinal direction, respectively, Gt+1
i,j is

the generation rate at the point (i, j) and time-step t+ 1, Rt+1
i,j is the recombination

rate at the point (i, j) and time-step t+ 1, Gi
t+1
i,j is the impact ionization generation

rate at the point (i, j) and time-step t + 1, ϕi,j is the electrostatic potential at the

point (i, j) and time-step t+ 1, N+
Di,j and N−A i,j are the ionized donor and acceptor

doping density at the point (i, j), (Dn)t+1
i+1/2,j and (Dp)

t+1
i+1/2,j are the electron and

hole diffusion coefficient at the point (i + 1/2, j) and time-step t + 1, (Dn)t+1
i,j+1/2

and (Dp)
t+1
i,j+1/2 are the electron and hole diffusion coefficient at the point (i, j+1/2)

and time-step t + 1, (vnr)
t+1
i+1/2,j and (vpr)

t+1
i+1/2,j are the electron and hole velocities

at the point (i + 1/2, j) and time-step t + 1 in the radial direction, (vnz)
t+1
i,j+1/2 and

(vpz)
t+1
i,j+1/2 are the electron and hole velocities at the point (i+1/2, j) and time-step

t+ 1 in the longitudinal direction.
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Figure 2.9: Measured harmonic power as a function of reversed bias. The output

current is 1 mA, the modulation frequency is 5 GHz, and the modulation depth is

100%.

2.7 p-i-n photodetector simulation results

2.7.1 p-i-n photodetector experimental results

In Fig. 2.9, we show the harmonic power as a function of reverse bias when

the output current is 1 mA. The harmonic power always decreases as the reverse

bias increases from 2 to 10 V, beyond which the harmonic power saturates and can

even increase slightly. From 0 to 2 V, all the harmonic powers increase because

the velocity is low due to the low electric field. Around 2 V, the second, third,

and fourth harmonic powers reach their peak values and then decrease. When the

bias increases, the electric field in the device increases and the space charge effect

diminishes, which leads to this decrease. However, at large reverse bias, we find

that the harmonic powers saturate and even increase slightly. Hence, there must be
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Figure 2.10: The carrier density (red denotes holes, green denotes electrons) and

electric field in the steady state. The reverse bias is 5 V.

another source of nonlinearity in the device.

2.7.2 Simulation results at steady state

The parameters used in our simulations are shown in Table 2.1. We vary some

parameters in order to see how they affect the results. In the following simulations,

we used the parameters shown in Table 2.1 unless otherwise specified. We did not

consider temperature changes for this p-i-n photodetector, since the output current

is only 0.1 mA. The temperature increase in this device should be negligible. We

also did not use a history-dependent impact ionization in the p-i-n photodetector

because the intrinsic region is sufficiently long that the dead length is negligible.

The photodetector is reverse-biased with an applied voltage of 5 V and operates

under dark (no generation) conditions. The total current is small throughout the

device, governed only by the injected minority carrier density at the contacts, which

is small due to the high doping densities and the reverse bias. The electric field and
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carrier density are shown in Fig. 2.10.

2.7.3 Comparison between 1D and 2D simulations
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Figure 2.11: Measured (symbols) and calculated harmonic power. The green solid

and red dashed curves show the results of the 1D and 2D models.

The harmonic powers that we calculated using the 1D model and 2D models

are compared in Fig. 2.11. In order to match the experimental data, we set D0 = 8

µm in the 1D simulations, and we set the spot size of the Gaussian beam width

equal to 4 µm in the 2D simulations. Compared to the 1D results, the harmonic

power in the 2D results is lower when the reverse bias is small. This difference is due

to the assumption of a constant generation rate as a function of r, which is implicit

in the 1D model. When r is small, the generation rate in the 2D model must be

higher than the constant generation rate in the 1D model, which will induce large

harmonic powers. However, when r is large, the generation rate in the 2D model

becomes smaller than in the 1D model inducing carrier flow in the radial direction.

This transverse flow is particularly important at low reverse bias, and we find the

largest discrepancies between the 1D and 2D models when the reverse bias is less
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(a) µp = 150 cm2/V-s
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(b) µp = 300 cm2/V-s

Figure 2.12: Measured and simulated powers of the fundamental, second, third, and

fourth harmonics of the photodetector output current for different diameters of the

light beam. The diameter of the light beam is 7 µm (green) and 7.5 µm (red). The

fundamental frequency is 5 GHz, the applied reverse bias is 5 V, and γ = 1.

than 3 V.

Despite the discrepancies between the 1D and 2D models, as well as the neces-

sity of empirically determining the parameter D0 in the 1D model so that the results

best match the experiments, the 1D model has the important advantage that it is

far more rapid computationally than is the 2D model. To calculate the data in the

1D simulations in Fig. 2.11 took 30 minutes of run time on a Dell T3500 computer,

while the data in the 2D simulation would have taken 60 hours of run time on the

same computer that we used for the 1D simulations. Instead we used UMBC’s High

Performance Computing Facility (HPCF) [http://www.umbc.edu/hpcf/], which al-

lowed us to carry out the simulations with 6 hours of run time.
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2.7.4 Space-charge-induced nonlinearities dominant at low voltages

We show in Fig. 2.12 that the diameter of the beam can also influence the re-

sults. The harmonic power decreases as the diameter increases. When the diameter

increases, the generation rate decreases, and a lower generation rate leads to less

nonlinearity.

The two simulation results in Fig. 2.12 are from simulations that use different

light beam spot sizes. The continuity equations are nonlinear because the carrier

velocities are functions of the generated carrier densities. When the photodetector is

dark, the electric field in the intrinsic region, plotted in Fig. 2.10, is not high enough

over the entire intrinsic region to saturate the hole or electron velocities. Thus, a

photo-generated space-charge electric field will induce carrier velocity variations and

cause nonlinearities that in turn generate harmonics in the photodetector current.

Figure 2.13 shows how the electric field changes due to the space charge in the

intrinsic region with different applied reverse biases. We see that the electric field is

between 30–100 kV/cm when the photodetector is dark and the reverse bias is 5 V.

The space-charge-induced electric field is about 10–20 kV/cm. From Fig. 2.2, we

note that velocities do not saturate until the electric field reaches about 80 kV/cm.

2.7.5 Harmonic power as a function of current

We show the harmonic power as a function of output current at 5 V in Fig. 2.14.

We obtained excellent agreement with the experiments. Figure 2.15 shows the har-
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(a) Reverse bias = 5 V
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(b) Reverse bias = 10 V

Figure 2.13: Electric field at a current of 1 mA (red-solid) and in a dark condition

(green-dashed).
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Figure 2.14: Calculated and measured harmonic power as a function of output

current at 5 V. The modulation frequency is 5 GHz, and the modulation depth is

100%.
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Figure 2.15: Calculated harmonic power as a function of output current at 5 V.

The modulation frequency is 5 GHz, and the modulation depth is 100%. The green

curve is the ideal output power.

monic power when the input power increases. The green curve is the ideal output

power as a function of the output current. When the output current increases,

the simulated fundamental power decreases. The output current begins to decrease

due to the nonlinearity. When the photo-current increases, the space charge effect

becomes more important because there is more space charge in the intrinsic region.

The harmonics should decrease as the reverse bias increases because the velo-

city saturates and becomes independent of the electric field strength. Figure 2.13(b)

shows that the electric field stength is greater than 80 kV/cm in the intrinsic re-

gion, and therefore the carrier velocities saturate when the applied reverse bias is

10 V or more. In this limit, the drift-diffusion equations become linear. However,

experiments show that the harmonic power is flat and even increases slightly in the

range of 10–15 V. So, there must be one or more additional sources of nonlinearity.
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(a) 1D model
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(b) 2D model

Figure 2.16: Measured and calculated harmonic powers. We compare the load

resistor’s influence to the harmonic power of the photodetector. The red dashed

curves show the results without the load resistor, and the green solid curves show

the results of keeping a 50 Ω resistor in the simulation.

2.7.6 External loading and thermionic emission

External loading is another source of nonlinearity in the photodetector. The

simulation results are shown in Fig. 2.16. The results show that external loading

only makes a small difference in the harmonic powers.

We expect that external loading has its greatest effect on the harmonic power

when the reverse bias is low. However, it affects the harmonic power elsewhere.

First, the load resistor reduces the bias that is applied to the device. For an average

current of 1 mA, the potential across the resistor is 0.05 V for a 50 Ω resistor. So, the

harmonic power as a function of reverse bias should shift to lower bias. Second, an

external load is also a source of nonlinearity. When the generation increases in the

device, there is more space charge in the depletion region, so that the electric field

in the depletion region changes, leading to space-charge induced nonlinearity [2].
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(a) 1D model
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(b) 2D model

Figure 2.17: Measured and calculated harmonic powers of the photodetector output

current as a function of the reverse bias. Impact ionization and a load resistor are

kept in the simulations. The harmonic power is compared with (red dashed curve)

and without (green solid curve) impact ionization. The red dashed curve is not

visible until almost 10 V in Fig. 2.17(a) because the green solid curve lies on top of

it. In Fig. 2.17(b), we only plot the green solid curve above 7 V.

When there is a large generation, the current and the bias across the resistor will

also increase. So, there is less reverse bias on the photodetector, and the electric

field decreases, changing the current.

In our simulations, the load resistor is not significant because the output cur-

rent of 1 mA is too small to lead to a significant voltage drop across the resistor.

The drop is only 0.05 V. However, we note that the load resistor becomes important

when the current is large, as is the case in some modern-day devices [36,44].

When thermionic boundary conditions are replaced by a complete barrier, as

was done by Williams, et al. [3], no difference is observed in the results. So the

comparison between these two models is not shown.
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(a) 1D model
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(b) 2D model

Figure 2.18: Measured and calculated harmonic powers of the photodetector output

current as a function of the reverse biases with (green solid curve) and without (red

dashed curve) the Franz-Keldysh effect. Impact ionization and a 50 Ω load resistor

are kept in the simulations.

2.7.7 Impact ionization effect on the harmonic power

In Fig. 2.17, we show the effect of impact ionization. Below 10 V, it makes little

to no difference in the results. However, above 10 V, the differences are significant,

leading in most cases to an increase in the harmonic power as the reverse bias

increases. It is not possible to obtain agreement with experiments without including

this effect.

2.7.8 The Franz-Keldysh effect

In all the simulations that we have shown thus far, we have not included the

Franz-Keldysh effect. We show the results when this effect is included in Fig. 2.18.

In both the 1D and 2D models, it leads to a rapid and unphysical oscillation in the

harmonic powers as the reverse bias increases. We conclude that the Franz-Keldysh

effect does not play a visible role in this device. We note that the Franz-Keldysh
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effect is a quantum coherent effect that requires maintaining phase coherence of

the electron wave functions, and we also note that the light wavelength of 1319 nm

corresponds to an energy of 0.94 eV, which differs significantly from the band edge

of 0.74 eV. We speculate that electron-phonon, electron-carrier, and/or electron-

impurity collisions are disrupting the quantum coherence that is needed for the

Franz-Keldysh effect to appear in the experimental devices. The Franz-Keldysh

effect is important in PDA and MUTC photodetectors [36,44], as we will discuss in

Chap. 3 and Chap. 4. of this dissertation.

2.8 Summary for the p-i-n photodetector

We studied 1D and 2D models of a single heterojunction p-i-n photodetector

that are based on the drift-diffusion equations. The harmonic power in these devices

decreases from 2 V to about 10 V, then saturates at around 10 V, and then in most

cases increases again as the reverse bias increases. We have examined the impact of

an external load, thermionic emission at the p-i-n interfaces, incomplete ionization,

impact ionization, and the Franz-Keldysh effect at room temperature. We have

found that the dominant physical cause of the observed saturation and the increase

at large reverse bias is impact ionization in the simple p-i-n device that we studied

in this chapter.
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Chapter 3

Modeling a PDA photodetector

3.1 Structure of the PDA photodetector

In Fig. 3.1 and Fig. 3.2, we show the structure of the PDA photodetector that

we studied. It has several absorption layers on each side of intrinsic region [46]. In

InGaAs, the electron velocity is much greater than the hole velocity; this difference in

carrier velocities induces device nonlinearity. In a PDA photodetector, it is possible

to have a better carrier balance in the intrinsic region and reduce the built-in fields

by adjusting the length of the absorption layers.
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Figure 3.1: Structure of the PDA photodetector. Not drawn to scale.
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Figure 3.2: The epitaxial structure of the modeled PDA photodetector. The pillar

has a diameter of 48 µm, and the base has a diameter of 70 µm. Light is incident

from the InP substrate side. Lengths are not to scale.

3.2 Simulation results

We use the model that described in the Chapter 2 to calculate the device

temperature, responsivity and harmonic power in the PDA photodetector.

3.2.1 Device temperature

Figure 3.3 shows the temperature in the device with a bias of 5 V. In the middle

of the device, the temperature can reach as high as 370 K. The most important

parameter in the device that affects the harmonic power is the InGaAs band gap.

The most important region of light absorption in the device that affects the harmonic

power is the intrinsic region. We calculated the average temperature in the region
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of the device where the light is absorbed ' (z = 0.2 − 1.3 µm). We then used

this average temperature to calculate the bandgap Wg and obtain the temperature

dependent parameters that are used in the transient calculations.
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Figure 3.3: Calculated temperature in the device. The bias is 5 V and the pho-

tocurrent is 10 mA.

Figure 3.4 shows the average temperature in the light-absorption region as a

function of bias. When the bias increases, the temperature increases, leading to a

decrease in the bandgap. The velocities of the electrons and holes are also affected.

We observe that the temperature change is only 30 K when the bias increases from

2 to 5 V; however, the energy gap decreases by 0.012 eV. Without considering the

temperature increase, we cannot achieve agreement with the experiments.

60



Parameter

Electron mobility in InP µLn,300 5300 cm2/V-s

Electron mobility in InGaAs µLn,300 14000 cm2/V-s

Hole mobility in InP µLp,300 200 cm2/V-s

Hole mobility in InGaAs µLp,300 300 cm2/V-s

Electron saturated velocity vn,sat,300 1.2× 107 cm/s

Hole saturated velocity vp,sat,300 5× 106 cm/s

Permittivity ε 1.21× 10−12 F/cm

Electron velocity fitting parameter in InP β 0.8× 10−8cm2/V2

Electron velocity fitting parameter in InGaAs β 0.4× 10−7cm2/V2

Hole velocity fitting parameter γ 2

Intrinsic region recombination times τn, τp 20 ns

Doped regions recombination times τn, τp 200 ps

Optical beam Gaussian radius rg 12 µm

Radius of the device R 24 µm

Donor energy level ∆WD 0.025 eV

Acceptor energy level ∆WA 0.005 eV

Light wavelength λ 1550 nm

Electron effective mass m∗n/m0 0.041

Heavy hole effective mass m∗p/m0 0.43

Light hole effective mass m∗p/m0 0.04

InGaAs Band gap energy at 300 K Wg 0.72 eV

Table 3.1: Parameters used in the simulation at room temperature.
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Figure 3.4: Calculated average temperature in the device. The output photocurrent

is 10 mA.

3.2.2 Responsivity

Figure 3.5 shows the simulated and measured responsivity for a 9 mA output

current. We obtain good agreement with the experimental results. In the simula-

tions, we keep incomplete ionization, impact ionization, and an external load. We

then calculated the harmonic power using the same parameters. The parameters

that we used in the simulations are shown in Table 3.1.

We show the effect of the Coulomb interaction. We show the responsivity as a

function of bias for different wavelengths in Fig. 3.6. When the bias is between 1 and

5 V, the electric field is between 4× 106 and 2× 107 V/cm, which corresponds to 36

to 180 (Rydbergs)/[(Bohr radius)–(electron charge)] (Rbe). Without the Coulomb

interaction in the simulation, we cannot obtain agreement at 1560 and 1580 nm even

with an optimal choice of the responsivity factor. When the Coulomb interaction is

not included, we see in Fig. 2.4 that the absorption coefficient first decreases and then
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Figure 3.5: Calculated responsivity of the photodetector in our 2D simulations. The

blue symbols show the experimental results, and the green curve shows the simulated

result. The output photocurrent is 9 mA. The incident light wavelength is 1550 nm.

becomes flat for an electric field between 50 and 150 Rbe. Hence, the responsivity

first decreases and then begins to increase at the wavelengths λ = 1560 nm and

λ = 1580 nm due to impact ionization. By contrast, when the Coulomb interaction

is included, the absorption coefficient always decreases for an electric field between

50 and 100 Rbe. So, the simulated responsivity decreases as the field increases,

which agrees with experiments.

While the responsivity factor | 〈ck0|e · p|vk0〉 |2 is assumed unknown and plays

no role in our calculation of the responsivity, our simulations combined with the

experimental measurements of the responsivity make definite predictions for this

factor. Without the Coulomb interaction, we predict | 〈ck0|e · p|vk0〉 |2 = 3.11 ×

10−48 J-s, and with the Coulomb interaction, we predict | 〈ck0|e · p|vk0〉 |2 = 1.40×

10−48 J-s. This transition matrix element can be calculated using the procedure
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Figure 3.6: Calculated and measured responsivity as a function of bias. The solid

curves show the experimental results; the dashed curves show the simulation results

with the Coulomb interaction; and the dashed dot curves show the simulation results

without the Coulomb interaction.

that is described in [83] and is approximately 1.51× 10−48 J-s [84], which provides

a further verification of the importance of the Coulomb interaction.

3.2.3 Harmonic power

Figure 3.7(a) shows the simulation results for the harmonic powers in the

1D simulation. The effective radius used in the simulations is 10 µm. We obtain

good agreement with the experiments. Figure 3.7(b) shows the calculated harmonic

powers in the 2D simulations. Here, we achieved excellent agreement with the ex-

periments for all reverse biases. We included external loading, impact ionization,

and the Franz-Keldysh effect in the simulations. The photocurrent is 10 mA, the

modulation depth is 40%, and the modulation frequency is 2 GHz. The 2D simula-
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***********

(a) 1D model

***********

(b) 2D model

Figure 3.7: Calculated harmonic powers of the photodetector output power in our 1D

and 2D simulations. The symbols show the experimental data for the fundamental,

second, and third harmonic powers. The dashed lines show the simulation results.

The photocurrent is 10 mA, and the modulation depth is 40%. The modulation

frequency is 2 GHz.

tions yield noticeably more accurate results than do the 1D simulations because the

2D simulations include transverse current flow, which is important in this device.

Figure 3.8 shows the harmonic powers in the 2D simulations at light modu-

lation frequencies of 3.1 GHz and 4.3 GHz. We obtain excellent agreement with

different modulation frequencies. We find that the fundamental power decreases

when the frequency increases. This decrease occurs because the carriers respond

less well to changes in the incident light as the frequency increases. The second

harmonic power decreases more slowly when the frequency increases. The dip in the

third harmonic power shifts from 4.0 V to 4.5 V when the frequency increases from

2.0 GHz to 3.1 GHz.

Figure 3.9(a) shows the influence of the Franz-Keldysh effect on the harmonic

power as a function of the reverse bias. When the Franz-Keldysh effect is not
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***********

(a) Frequency = 3.1 GHz

***********

(b) Frequency = 4.3 GHz

Figure 3.8: Calculated harmonic powers of the photodetector output power in our

2D simulations. The symbols show the experimental data for the fundamental,

second, and third harmonic powers. The curves show the simulation results. The

photocurrent is 10 mA, and the modulation depth is 40%.

***********

(a) With 50 Ω load

***********

(b) Without 50 Ω load

Figure 3.9: Calculated harmonic powers of the photodetector output power in our

simulations. The symbols show the experimental data for the fundamental, second,

and third harmonic powers. The curves show the simulation results. The photocur-

rent is 10 mA, the modulation depth is 40%, and the modulation frequency is 2

GHz. The green solid curves show the simulation results with the Franz-Keldysh

effect (FKE), and the red dashed curves show the simulation results without the

Franz-Keldysh effect.

kept in the simulation, the second and third harmonic powers in the simulation are

smaller than the experimentally-measured harmonic powers in the range from 2 V
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to 4 V. This result implies that the Franz-Keldysh effect is an important source of

nonlinearity in the photodetector. Without the Franz-Keldysh effect, the harmonic

powers decrease as the bias increases. However, with the Franz-Keldysh effect, the

harmonic powers oscillate. We observe a dip in the third harmonic power when the

bias is close to 4 V.

Photogenerated carriers change the electric field and hence the absorption

coefficient, which leads to changes in the output photocurrent. Due to the load

resistor in the circuit, the voltage across the device changes so that the electric

field in the device changes. When the load resistance is zero, Fig. 3.9(b) shows

the harmonic powers with and without the Franz-Keldysh effect. Without the load

resistor in the measured circuit, the voltage across the device is determined by the

applied voltage. The electric field in the intrinsic region only changes slightly due to

the change of the absorption coefficient. So, the Franz-Keldysh effect by itself makes

little difference. It is the load resistor combined with the Franz-Keldysh effect that

is the source of nonlinearity in the photodetector.

3.3 Other issues

3.3.1 Impact of the base radius

Figure 3.10 shows the harmonic powers for different geometries of the photode-

tector. The green curves represent the simulation results with the structure shown

in Fig. 3.2, in which the radius of the bottom layer (n-InP layer) of the device is

larger (35 µm) than other layers (24 µm), and the red curves represent a uniform
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Figure 3.10: Calculated harmonic powers of the photodetector output power in our

2D simulations. The symbols show the experimental data for the fundamental,

second, and third harmonic power. The green solid curves show the simulation

results when the base has a larger radius (green) and the same radius (red) as the

other layers in the device. The photocurrent is 10 mA, the modulation depth is

40%, and the modulation frequency is 2 GHz.

device, in which we assume that all layers in the device, including the base, have

the same radius (24 µm). The simulation results show that changing the size of

the base does not make much difference. The reason that changing the size of the

base does not matter much is that the nonlinearity is primarily created in the p-

and intrinsic layers. Hence, we can use a relatively simple structure to calculate the

harmonic powers in the device.

The actual device that we are modeling is not cylindrically symmetric, as we

assume in our 2D simulations. Instead, it sits on a pedestal with the electrical

contact on one side of the device. A full 3D simulation that models the actual

geometry is too computationally time-consuming to allow us to carry out parameter

studies. This result, which indicates that the behavior is largely independent of the

geometry of the base, increases our confidence in the 2D simulations.
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3.3.2 Validation of the Franz-Keldysh effect model

The Franz-Keldysh effect is a spatially extended effect that is due to tunneling

of electrons through a barrier [66]. Here, we verify that the change in the field

is small over the spatial extent of the Franz-Keldysh effect and will not affect the

calculation of this effect. In order for the change in the field to be sufficiently small,

the absorption length due to the Franz-Keldysh effect lA should satisfy the condition

1

lA
� max

∣∣∣∣ 1

E

dE

dz

∣∣∣∣ , (3.1)

where

lA =

(
~2

2eµE

)1/3

. (3.2)

The absorption coefficient is obtained from a dimensional analysis of the 1D two-

particle Schrödinger equation [85]

[(~2/2µ)∇2 + |e|Ez +W ]Φ(r) = 0, (3.3)

where E is the electric field in the z direction, W is the sum of the electron and

hole energies measured from their respective band edges, and µ is the reduced mass

that is defined by

1

µ
=

1

m∗h
+

1

m∗e
. (3.4)

As an example, we set the bias equal to 2 V. We assume that the electric field

in the intrinsic region is uniform, and the strength of the electric field should be
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approximately 1 × 107 V/m. Equation (3.2) then implies lA = 5.04 × 10−9 m, and

1/lA = 1.98× 108 m−1. Figure 3.11(a) shows (1/E)(dE/dz) in the intrinsic region.

We see the Eq. (3.1) is always satisfied. Figure 3.11(b) shows the electric field in

the device as a function of z. We can see that the electric field is almost zero in the

p-region except at the interface between the different layers.
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Figure 3.11: (a) The function (1/E)(dE/dz) in the intrinsic region. (b) The electric

field distribution in the device in the z-direction.

3.3.3 History-dependent impact ionization

Figure 3.12 shows calculated harmonic powers when we use the local field-

dependent impact ionization given in Eq. (2.33), which does not take take the dead

length into account. For comparison, we also show the harmonic powers when

we take into account the history-dependence impact ionization. The local field-

dependent impact ionization overestimates the impact ionization coefficient in the

device. Since the intrinsic region of this photodetector is only 250 nm, the dead

length effect [50] cannot be ignored, and we must use a history-dependent ionization.
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Figure 3.12: Calculated harmonic powers when we use the impact ionization

Eq. (2.33), which has no history dependence

Figure 3.13 shows the responsivity using the local field-dependent impact ion-

ization. When the history dependence is not included and the bias is greater than

4 V, we find that the calculated responsivity is higher than the experimental respon-

sivity. Our simulations show the impaction ionization does not make an important

contribution to nonlinearity in this device, which is consistent with the results in [36].

However, without using the history-dependent impact ionization in the simulation,

the model will overstate the importance of the impact ionization. Thus, it is impor-

tant to use the history dependent impact ionization in order to accurately determine

its importance.

71



***********

Figure 3.13: Calculated responsivity of the photodetector in our 2D simulation. The

green dotted curve shows the experimental results, the blue dash-dot curve shows

the simulated result with history-dependent impact ionization, and the red dashed

curve shows the simulated result without history-dependent impact ionization. The

output current is 9 mA. The incident light wavelength is 1550 nm.

3.3.4 Suggestions for improving device performance

The Franz-Keldysh effect in the intrinsic region is an important source of

nonlinearity in this photodetector. It plays almost no role in the other device regions,

because the electric field is nearly zero outside the intrinsic region and does not

change with the photo-generated carriers. It is therefore advantageous to maximize

the absorption in the p-region, which may be done by increasing its length. The

absorption in the intrinsic region decreases for the same output photocurrent when

the length of the p-region absorption layers increases. The change of the electric field

in the intrinsic region that is due to the photo-generated carriers decreases. So, the

nonlinearity in the intrinsic region decreases. Figure 3.14(a) shows the calculated
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harmonic powers when we double the length of the p-region absorption layers. The

harmonic powers decrease by about 5 dB between 2 and 4 V. These curves are similar

to the simulation results without the Franz-Keldysh effect, as shown in Fig. 3.9(a).

(a) p-region absorption layers (b) intrinsic region

Figure 3.14: Calculated harmonic powers when we double the length of (a) the p-

region absorption layers (red dashed curves) and (b) the intrinsic region (red dashed

curves). For comparison, we also show the original calculation as green solid curves.

Figure 3.14(b) shows the calculated harmonic powers when we double the

length of the intrinsic region. The strength of the electric field decreases when

the length of intrinsic region increases, increasing the period of the Franz-Keldysh

oscillations in the absorption coefficient. We find that the harmonic powers decrease

somewhat at high bias when we increase the length of the intrinsic region. However,

increasing the intrinsic region will increase the transit time and space charge effect.

Figure 3.9(b) indicates that the third harmonic power decreases without the

load resistor. It is not possible in practice to make the load resistance zero. However,

we note that the photodetector is close to an ideal current source and operates

most linearly with a fixed bias across the device. For narrowband applications,
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it is possible to use impedance matching to reduce the effective load resistance

and increase the linearity of the device. Figure 3.15 shows the calculated harmonic

powers with differing load resistances. We are assuming that an impedance-matching

circuit is used to match the effective load resistance to the final load, which is held at

50 Ω, so that the power dissipation is given by I2/2×50 Ω. Decreasing the effective

load resistor decreases the third harmonic power significantly at biases below 4 V.

When the bias decreases, the voltage across the load resistor become larger relative

to the voltage across the photodetector, which increases the effect of the load resistor

on the third harmonic power generation.
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Figure 3.15: Calculated harmonic powers with effective load resistances of 10 and

25 Ω.

Another possibility that we considered for reducing the impact of the Franz-

Keldysh effect is to increase the so-called “unintentional” doping density in the

intrinsic region. Figure 3.16 shows the calculated harmonic powers when we increase

the doping density to 5 × 1015 cm−3. We find that the second harmonic power is
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Figure 3.16: Calculated harmonic powers when the doping density in the intrinsic

region is 5× 105 cm−3.

almost the same. The dip in the third harmonic power shifts from 4 V to around

5 V. However, we do not see any decrease in the harmonic powers. So, this approach

does not succeed for this structure. We attribute this result to an increase in the

dark current when the doping density in the intrinsic region increases.

We found that the Franz-Keldysh effect plays an important role in the device

nonlinearity. We can mitigate the effect of the Franz-Keldysh effect by increasing

the length of the p-region absorption layers. The change of the absorption coefficient

principally occurs in the intrinsic region. The absorption in the p-region absorption

layers remains the same because the electric field does not change with the inci-

dent light power. Increasing the length of the p-region absorption layers therefore

decreases the nonlinearity due to the Franz-Keldysh effect.

It would be helpful to measure the output photocurrent with a fixed applied
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voltage across the device. With the load resistor in the measured circuit, it is difficult

to fix the voltage across the device when the photocurrent changes. However, the

harmonic powers decrease when we decrease the load resistor. The third harmonic

power decreases by more than 10 dB when the load resistor is 10 Ω.

3.4 Summary for the PDA photodetector

We have developed a 2D drift-diffusion model to study nonlinearity and har-

monic power generation in a PDA photodetector. The heat flow equation was in-

cluded in the model to study the effects of temperature change as a function of

bias. We have shown that history-dependent impact ionization is important in this

PDA photodetector, which has a thin intrinsic region. Without history-dependent

impact ionization in the model, the effect of impact ionization is overestimated,

and we cannot obtain agreement with experiments for either the responsivity or the

harmonic powers. We also achieved excellent agreement with the experiments at

different modulation frequencies.

We found that the Franz-Keldysh effect plays an important role in the device

nonlinearity. We can mitigate the Franz-Keldysh effect by increasing the length

of the p-region absorption layers. The change of the absorption coefficient occurs

principally in the intrinsic region. The absorption in the p-region absorption layers

remains the same because the electric field does not change with the incident light

power. Increasing the length of the p-region absorption layers therefore decreases

the nonlinearity due to the Franz-Keldysh effect. However, increasing the length of
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the p-region absorption layers also increases the recombination, leading to a tradeoff.

It would be helpful to measure the output photocurrent with a fixed applied

voltage across the device. With the load resistor in the measured circuit, it is difficult

to fix the voltage across the device when the photocurrent changes. However, the

harmonic powers decrease when we decrease the load resistor. The third harmonic

power decreases by more than 10 dB when the load resistor is 10 Ω.
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Chapter 4

Modeling an MUTC photodetector

A unitraveling-carrier photodiode (UTC) [4] only uses electrons as a traveling

carrier in the device. The UTC photodetector can achieve a higher speed and higher

output than devices that use both electrons and holes as carriers because the velocity

of an electron is larger than velocity of a hole in InGaAs by about a factor of two.

The band diagram of a UTC photodetector is shown schematically in Fig. 4.1.

absorption layer

carrier collection layer

diffusion blocking layer

Figure 4.1: A depiction of the photodetector band diagram. Black circles represent

electrons, and white circles represent holes. Red indicates the diffusion blocking

layer, purple indicates the absorption layer, green indicates the collection layer made

of InP. The slope of the band diagram is due to the built-in electric field in the

intrinsic region. This figure is similar to Fig. 1 in Ito [4].

The main difference between a p-i-n photodetector and a UTC photodetector

is the position of the absorption layer. In the p-i-n photodetector, the depleted

region and the p-region are used as the absorption layers. The holes have to travel
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through the entire intrinsic region and p-region to reach the p-contact. So, the

response time of a p-i-n photodetector is determined by the velocity of the holes.

In a UTC photodetector, the only absorption layer is the p-region. The intrinsic

region is used as a collection layer. Photogenerated majority holes quickly diffuse

to the p-contact. The photo-generated minority electrons in the absorption layer

diffuse (and/or drift) into the depleted collection layer. Therefore, the response

time of a UTC photodetector is determined only by the electron transport in the

device. There is a diffusion blocking layer on the p-side of the absorption layer to

block electrons from diffusing to the p-contact. Between the absorption layer and

the collection layer, a graded energy gap helps the electrons transit through the

interface and thus reduces the transport time.

An advantage of a UTC photodetector is its rapid response time, which can

be enhanced without reducing the responsivity. The widths of the absorption layer

and the collection layer can be designed independently. It is possible to achieve

a large bandwidth without reducing the responsivity by designing a thin intrinsic

absorption layer. By contrast, decreasing the width of the absorption layer in a

p-i-n photodetector decreases the responsivity.

Another advantage of a UTC photodetector is a high output saturation current

because of the reduced space charge effect. In the depletion region, the electron is

the only carrier, so that transport is faster than if holes are present, and the output

saturation current is an order of magnitude higher than is the case for a p-i-n

photodetector [86]. Even at zero bias, the UTC photodetector has a higher speed

and a higher output current because an electron can maintain high speed with a low
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electric field, such as the built-in electric field.

To date, a record 3-dB bandwidth of 310 GHz and a millimeter-wave output

power of over 20 mW at 100 GHz have been achieved [4] using a short pulse and

an effective load of 12.5 Ω. With a 50 Ω load, Rouvalis et. al [87] demonstrated an

output power of −9 dBm at 200 GHz.

An InGaAs/InP MUTC photodetector has been designed by Z. Li et al. [88].

Figure 4.2 shows the MUTC structure [88]. The main difference between this struc-

ture and a UTC photodetecter is that there is a cliff layer between the collection

layer and the absorption layer. The cliff layer is moderately doped. The electric field

has a large magnitude in the InGaAs intrinsic layer compared to the other photode-

tector regions. Hence the space charge effect is reduced. Another difference is that

there is a thin intrinsic layer of InGaAs, which is used to increase the responsivity.

4.1 Displacement current and intermodulation distortion

Asymmetries in the amplitudes of the lower and upper intermodulation dis-

tortion (IMD) tones are often observed in microwave devices that are subjected to

two-tone or three-tone tests. These asymmetries are also observed in the photode-

tector measurement [89, 90]. In a three-tone measurement, where the modulation

frequencies are F1, F2, and F3, the IMD power that is associated with the frequency

combination F1+F2 is different from the one at |F1−F2|. In particular, the bias volt-

age at which a null occurs (bias null) in the IMD is different. It has been suggested

that frequency dependence of the IMD power may be due to a memory effect, i.e.,
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a bandwidth-dependent nonlinear effect. There are several studies of the memory

effect on a microwave amplifier [91, 92], but the physical reason for the IMD power

difference in a photodetector remains unclear. We will use the drift-diffusion model

to show that the asymmetry is due to the displacement current.

A three-tone setup [93] was used to measure the harmonic powers in the device.

The device output power was measured as a function of reverse bias voltage from

0–10 V in 0.25 V increments. The frequencies are 4.9 GHz, 5.0 GHz, and 5.15 GHz.

The average photocurrent is 20 mA. We show the experimental results in Fig. 4.4.

We can separate the IMD2 (second-order IMD powers) into two groups. One group

contains the sum frequencies powers at F1 +F2, F1 +F3, and F2 +F3, and the other

group contains the difference frequencies powers at |F1−F2|, |F1−F3|, and |F2−F3|.

In each group, the IMD2 behavior is the same. Hence, we only show the IMD2

powers at F1+F2 and |F1−F2|. However, we observe a significant difference between

the IMD2 powers for the sum frequency (F1 + F2) and the difference frequency

(|F1−F2|). A bias null appears in both IMD2 powers, but the bias voltage at which

a null appears is different.

4.2 Simulation results

We use a drift-diffusion model to study the IMD in this MUTC device [88]

with a three-tone setup, which is the same as in the experiments. The generation
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Figure 4.2: Structure of the MUTC photodetector. Green indicates the absorption

regions, which include an intrinsic region and a p-doped region. Red indicates highly

doped InP layers, purple indicates highly-doped InGaAs layers, and white indicates

other layers.
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Figure 4.3: Schematic illustration of the test setup. MZM = Mach-Zehnder modu-

lator, DUT = Device under test, ESA = Electronic spectrum analyzer
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Figure 4.4: The measured fundamental, IMD2, and IMD3 powers as a function of

reverse bias for input frequencies F1 = 4.9 GHz, F2 = 5.0 GHz, and F3 = 5.15 GHz

with a photocurrent of 20 mA.

rate may be expressed as

G = G0 {1 +md [sin(2πF1t) + sin(2πF2t) + sin(2πF3t)]} , (4.1)

where G0 is the steady state generation rate, md is the modulation depth, and F1,

F2, and F3 are the three-tone modulation frequencies.

Figure 4.5 shows the steady-state electron and hole currents in the device. We

see that in the n-region, the total current depends on electron current, and in the

p-region, the hole current is larger than the electron current. In the intrinsic region,

the electron current is larger than the hole current. We know that the response time

of the MUTC device depends mainly on the electron transit time. It is important

to analyze the electron current in the intrinsic region, where most of the electrons

are generated.
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Figure 4.5: The calculated electron and hole currents in the device.

We show the simulation results for the IMD2 power in Fig. 4.6, and the agree-

ment with the experiments is good. We also obtain a bias null in the IMD2 power.

The bias null in the difference frequency IMD2 power appears at around 6 V, while

the bias null in the sum frequency IMD2 power appears at around 6.5 V, which

agrees with the experiment.

Figure 4.7 shows the RF output power when the Franz-Keldysh effect is not

included, in which case there is no bias null in the IMD2 power. We conclude that the

nulls are due to the Franz-Keldysh effect. The absorption coefficient changes when

the electric field changes in the device, so that the generation rate in the device —

especially in the intrinsic absorption region — changes as a function of the electric

field. The nulls appear at biases where the change of absorption coefficient as a

function of the electric field strength is small. Figure 4.8 shows the electric field

strength at 2 and 6 V. The electric field only differs significantly from zero in the
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Figure 4.6: The measured and calculated fundamental and IMD2 powers as a

function of reverse bias for input frequencies F1 = 4.9 GHz, F2 = 5.0 GHz, and

F3 = 5.15 GHz.

intrinsic absorption region, which is due to the cliff layer. The Franz-Keldysh effect

changes the absorption in the intrinsic absorption region since the electric field is

large. Figure 4.9 shows the absorption coefficient as a function of the electric field

strength. When the electric field is around 150 kV/cm, which correspond to an

applied bias of 6 V, the absorption reaches its peak. However, at this electric field,

the change of absorption due to the change of the electric field is small, so that the

nonlinearity due to the Franz-Keldysh effect is minimized. Hence, the IMD2 power

reaches its lowest value at around 6 V.

Figure 4.10 shows the current output in the presence of a three-tone modu-

lation and a one-tone modulation. With a three-tone modulation, it is difficult to

determine the physical origin of the device nonlinearity and explain the origin and

location of the bias null because two or three frequencies are mixed together. We

will use the one-tone modulation to analyze the physical origin of the nonlinearity.
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Figure 4.7: The calculated fundamental and IMD2 powers as a function of reverse

bias for input frequencies F1 = 4.9 GHz, F2 = 5.0 GHz, and F3 = 5.15 GHz. The

Franz-Keldysh effect is not included in the simulation.
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Figure 4.8: The calculated electric field in the device at 2 and 6 V.
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Figure 4.10: The current output of the photodetector with (a) a three-tone and

(b) a one-tone modulation.
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Figure 4.11: (a) The calculated electron density in the intrinsic region at 1000 nm

compared to a sine function at 5 and 6 V. (b) The calculated electron density in

the intrinsic region at 1000 nm compared to a sine function with and without the

Franz-Keldysh effect (FKE).

We will show that the results with a three-tone modulation and a simulation that

keeps only one tone are almost the same. Figure 4.11 shows the electron density as

a function of time compared to a modulation sine function (one-tone modulation)

in the intrinsic region. The amplitude of the modulation sine function is adjusted

to have the same amplitude as the electron density, but the phase is unchanged. We

observe that the electron density is not exactly a sine function. It is a delayed with

respect to the modulation sine function. We also find that the modulation depth for

the electron density (about 0.19) is larger than the modulation depth (0.04) of the

optical input power, which creates electrons in the intrinsic region. This increase

in the modulation depth occurs because electrons accumulate in the intrinsic region

at the heterojunction boundary with the cliff layer. In Fig. 4.11(a), we show that

the difference of the electron density from a sine function at 5 V is larger than the

difference of the electron density from a sine function at 6 V, which occurs because
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Figure 4.12: The calculated RF output powers for modulation frequencies of 100

MHz and 5 GHz.

the Franz-Keldysh effect is mitigated when the bias is 6 V, as we previously dis-

cussed. Figure 4.11(b) shows the electron density as a function of time with and

without the Franz-Keldysh effect at 5 V. We observe that the difference between

the electron density and the sine function is larger when the Franz-Keldysh effect is

taken into account, providing further evidence that the Franz-Keldysh effect is the

principal source of nonlinearity in the device.

We have shown that the Franz-Keldysh effect is the reason for the null that

appears in the IMD2 power, but we have not explained why the null position is

different for the sum frequency and the difference frequency IMD2 powers. We use a

one-tone simulation with different modulation frequencies to examine this question.

The modulation frequencies are set to 100 MHz and 5 GHz, so that the second-

harmonic frequencies are 200 MHz and 10 GHz, which correspond to the difference

and sum frequencies in the three-tone measurement. We show the harmonic powers

in Fig. 4.12. We find that the bias null in the second-harmonic power at a modulation
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Figure 4.13: The calculated amplitude of the electron, hole, and displacement cur-

rent in the device when a modulation is applied at 5 GHz.

frequency of 100 MHz is the same as the bias null in the three-tone simulation at

frequency |F1−F2|, and the bias null in the second-harmonic power at a modulation

frequency of 5 GHz is the same as the bias null in the three-tone simulation at the

frequency F1 +F2. This frequency dependence of the null position is consistent with

experiments [90].

4.3 Discussion

The current in the intrinsic region includes the electron current, the hole cur-

rent, and the displacement current. We show these currents in Fig. 4.13 at 5 GHz.

We see that the displacement current is almost zero at all positions except in the in-

trinsic region. Although the displacement current is small compared to the electron

and hole currents in the intrinsic region, the displacement current contributes to the

harmonic powers. In Fig. 4.14(a), we show the RF output current in the intrinsic
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region without the displacement current. We find that the bias nulls are the same

for different modulation frequencies. Displacement current is responsible for the

difference in the bias null of the IMD2 powers for the sum and difference frequen-

cies. The displacement current is proportional to the rate of change of the electric

field in the intrinsic region. When the modulation frequency is large, the rate of

change increases, and the displacement current becomes large and has a large effect

on the harmonic powers. Figure 4.14(b) shows the IMD2 power of the displacement

current. At the sum frequency F1 +F2, the IMD2 power of the displacement current

is around −85 dBm, which is close to the IMD2 power of the total current. By

contrast, the IMD2 power of the displacement current at the difference frequency

|F1 − F2| is about −125 dBm, which is much smaller than the IMD2 power of the

total current. So, the displacement current does not affect the IMD2 power of the

difference frequency.

From a circuit perspective, the displacement current is due to device capaci-

tance. Charge of opposite sign accumulates on each side of the intrinsic region, and

there is almost no charge in the intrinsic region, creating a capacitor. We show the

charge in the p-region and intrinsic region in Fig. 4.15. We see that when the bias

increases, the charge in the p-region increases. We note that the charge in the p-

region is negative and is positive in the n-region. Figure 4.16 shows the capacitance

of the device as a function of bias. The capacitance in the photodetector is almost

constant when the bias is large, but the impedance of the capacitance is different for

different modulation frequencies. The impedance difference for different modulation

frequencies leads to different displacement currents, which affects the bias null in
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Figure 4.14: The calculated fundamental and IMD2 powers as a function of reverse

bias for input frequencies F1 = 4.9 GHz, F2 = 5.0 GHz, and F3 = 5.15 GHz.

(a) Displacement current is not included in the total current. (b) IMD2 power of

the displacement current.
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Figure 4.15: The calculated charge in the p-region and intrinsic region in the device

at 2 and 6 V.

the IMD2. Figure 4.17 shows the largest displacement current when modulation is

applied to the device for modulation frequencies of 200 MHz and 5 GHz. We observe

that the displacement current with a 5 GHz modulation is much larger than with a

200 MHz modulation. The displacement current is larger in the intrinsic absorption

region, where the electric field is larger than it is in other regions.

Figure 4.18 shows the three-tone RF output powers as a function of applied

bias, when the lifetime increases to 5×10−11 in the p-region. The null position in the

second order harmonic powers are almost the same for the sum frequency and the

difference frequency. The recombination rate in the p-region significantly affects the

bias null of the IMD2. When the recombination time increases, the recombination

rate decreases in the p-region, so that more electrons enter the intrinsic region,

increasing the electron density and decreasing the electric field in the intrinsic region.

The Franz-Keldysh effect causes the null to appear when the electric field is around
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Figure 4.16: The calculated capacitance in the device as a function of bias.
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Figure 4.17: The amplitude of the sinusoidally varying displacement current in the

device at 200 MHz and 5 GHz.
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Figure 4.18: The calculated fundamental and IMD2 powers as a function of reverse

bias for input frequencies F1 = 4.9 GHz, F2 = 5.0 GHz, and F3 = 5.15 GHz. The

lifetime in the p-region is 5 × 10−11 s. (a) IMD2 power of the total current and

(b) IMD2 power of the displacement current

95



150 kV/cm. So, when the electric field decreases due to the increase in the electron

lifetime in the p-region, the bias null moves to a larger voltage bias where the average

electric field in the intrinsic absorption region is around 150 kV/cm.

Additionally, the electron diffusion coefficient is a factor in determining the

position of the nulls. When the diffusion coefficient of the electrons in the p-region

increases, more electrons diffuse into the p-region. Hence, there are less electrons

in the intrinsic region, so that the electric field n the intrinsic region increases, and

the capacitance increases. As a consequence, the impedances is smaller at high

modulation frequencies.

4.4 Summary

We obtained agreement with experiments for the null position in the IMD2

power for different modulation frequencies. We investigated the physical origin of

the nulls in the IMD2 power, and we found that the Franz-Keldysh effect causes

the bias nulls. The difference in the location of the bias nulls between the sum

frequency and difference frequency IMD2 powers is due to the displacement current

in the intrinsic region. When the frequency is high, the displacement current is large

and affects the harmonic powers.

We also found that the recombination rate in the p-region affects the bias null

in the IMD2 power. When the recombination rate decreases, more electrons enter

into the intrinsic region, which decreases the electric field is this region. Then the

bias null appears at a higher bias. The diffusion coefficient in the p-region is also a
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factor in determining the location of the bias null.
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Chapter 5

Modeling amplitude to phase (AM-to-PM) noise conversion in an

MUTC photodetector

5.1 Introduction

Ultrastable microwave signals are of great interest in applications such as

radar, telecommunications, navigation systems, and time synchronization [94–96].

Recently, there has been great interest in generating microwaves through optical

frequency division (OFD) with a modelocked laser comb. Ultrastable microwave

generation has been demonstrated [18, 19, 97, 98]. The stability of the optical refer-

ence is transferred to the repetition rate of the pulse train of a modelocked laser.

Two factors determine the noise level of the microwave output. One factor is the

phase noise in the modelocked laser comb, and the other factor is the phase noise

that is generated in the photodetector. In this paper, we will focus on the second

factor, explaining in particular the amplitude-to-phase noise conversion in a high

current photodetector.

The phase noise that is produced by the photodetector is a critical limit to

system performance. A major source of phase noise is amplitude-to-phase (AM-to-

PM) conversion in the photodetector. The AM-to-PM conversion coefficient αAM/PM

is defined as the phase change in the device ∆φ, divided by the fractional optical
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power fluctuation ∆P/P .

αAM/PM =
∆φ

∆P/P
. (5.1)

Zhang et al. [99] used a simple model to study the AM-to-PM conversion coefficient

in a p-i-n photodetector. Taylor et al. [100] experimentally studied AM-to-PM

conversion and found that there are several nulls, where the AM-to-PM conversion

coefficient approaches zero as a function of the photocurrent. In the experiments,

they use the impulse response method to measure the phase change and the AM-

to-PM noise conversion coefficient.

We have used a modified drift-diffusion model to study the AM-to-PM con-

version in the modified uni-traveling carrier (MUTC) photodetector [88] using the

configuration shown in Fig. 4.2. We first calculate the impulse response in the time

domain, and from that we calculate the AM-to-PM conversion coefficient. We ex-

plain the physical origin of the conversion nulls, and we show how the pulse duration

affects the AM-to-PM noise conversion coefficient. We show that when the pulse

duration is shorter than 500 fs, the output is only affected by the total pulse energy.

There are several methods to measure the phase noise [100]. One is to use a

phase bridge, which directly measures the phase fluctuations. The other method

is to measure the time-domain impulse response of the photodetector and to use a

Fourier transform to calculate the phase difference as the power varies. The advan-

tage of using a phase bridge is high precision, but the experimental setup is more

complicated than measurement of the time domain impulse response. Measurement

of the time domain impulse response, followed by the Fourier transform, is easier to

99



do, but it is necessary to measure more average current points.

We will simulate the impulse response of the photodetector to calculate the

phase. In the model, the input light is a pulse train. We calculate the output

current as a function of time. Then, we use a Fourier transform to calculate the RF

phase for the given Fourier frequency. We use the phase information to calculate

the AM-to-PM conversion coefficient that is defined in Eq. 5.1.
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Figure 5.1: The measured phase change and AM-to-PM noise conversion coefficient

in the MUTC device as a function of the output average photocurrent at 1 GHz.

Figure 5.1 shows the experimental phase change and AM-to-PM noise conver-

sion coefficient. The diameter of the device is 40 µm. The red curves are the fitted

curves. The repetition rate is 250 MHz. We calculate the phase change and the AM-

to-PM noise conversion coefficient at 1 GHz. We observe two nulls in the AM-to-PM

noise conversion coefficient. The phase increases when the photocurrent increases to

50 µA, and next decreases when the photocurrent increases to 155 µA, and finally

increases again when the photocurrent further increases. The pulse profile that we
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use in our calculations is

y(t) = Asech

(
t− tp
tw

)
, (5.2)

where tp is the pulse position, tw is the pulse duration, and A is the pulse amplitude.

5.2 Simulation results
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Figure 5.2: The calculated (a) phase change and (b) AM-to-PM noise conversion

coefficient in the MUTC device as a function of output average photocurrent at

1 GHz. The repetition rate is 250 MHz.
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Figure 5.3: The calculated transit time in the MUTC device as a function of the

average output photocurrent.

Figure 5.2 shows the calculated phase change and the AM-to-PM noise con-
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Figure 5.4: The calculated impulse response in the MUTC device for different av-

erage output photocurrents.
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Figure 5.5: The calculated impulse response in the MUTC device for different av-

erage output photocurrents.

version coefficient. We obtain agreement with experiments for the phase change and

AM-to-PM noise conversion coefficient. The nulls appear due to the phase changes

when the photocurrent increases. The offset in the phase between the simulation

and the experimental data is due to the different input pulse phase and is not mean-

ingful. It is the relative phase change as a function of the average pulse current that

is physically important. At present, we do not have an explanation for the difference

between the measured and theoretical values for αAM/PM, but this difference does
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not affect our conclusions. Figure 5.3 shows the calculated average transit time in

the device. The behavior of the transit time is similar to the phase change. When

the phase change increases, the transit time increases. At 50 µA, the transit time is

a maximum. Figure 5.4(a) shows the impulse response for different average output

photocurrents. Figure 5.4(b) shows the normalized impulse response. Figure 5.5

shows the tail of the normalized impulse response. When the average current in-

creases, the time for the impulse response to reach its peak increases. However,

when the current increases from 30 µA to 150 µA, the tail of the impulse response

decreases. These two processes compete with each other, leading at first to a small

phase increase and then a phase decrease. When the current is larger than 150 µA,

the output photocurrent response time increases dramatically, which corresponds to

a phase increase.

5.3 Physical origin of the nulls

The AM-to-PM noise conversion coefficient α, defined by Eq. (5.2), depends

on the phase change ∆φ. The phase change in turn depends on the average electron

transit time in the device. A key feature of an MUTC device is that the hole transit

time is dominated by diffusion current and is fast compared to the electron transit

time.

Figure 5.6 shows the electron velocity as a function of electric field for InGaAs

and InP. The velocity first rapidly increases and then decreases as a function of the

electric field, eventually saturating. The principal physical reason for this behavior
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Figure 5.6: The calculated electron velocity as a function of electric field for InGaAs

and InP.
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Figure 5.7: The calculated steady-state electric field distribution in the device for

different photocurrents. The applied reverse bias is 3 V.

is that the ratio of heavy (X- and L-valley) electrons to light (Γ-valley) electrons

increases as the electric field increases, slowing the average velocity. This behavior

is important in understanding the appearance of the higher-current null in the AM-
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Figure 5.8: The calculated steady state electric field distribution in the device for

different photocurrents in (a) the p-absorption region and (b) the collection region

shown in Fig. 4.2. The applied reverse bias is 3 V.

to-PM conversion.

There is an intrinsic absorption region and a p-absorption region in the device.

The photogenerated electrons in the InGaAs intrinsic region travel faster than in the

InP intrinsic region. However, there is a heterojunction between InGaAs and InP.

When the pulse energy increases, more electrons accumulate in the heterojunction,
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leading to a field that opposes the current flow. So, a larger optical pulse energy

leads to a longer time for the photocurrent to reach its peak.

The output photocurrent decay time changes significantly when the optical

pulse energy changes because the peak photocurrent changes, leading to a change

in the electric field in the device. The velocity depends on the electric field and

changes as the peak current varies. When the average photocurrent is 50 µA and

150 µA, the corresponding peak currents are 10 mA and 40 mA. Figure 5.7 shows

the electric field in the device for different photocurrents. Figure 5.8(a) shows the

electric field in the p-absorption region and the collection region. We observe that

when the current increases in the device, the electric field in the p-absorption region

and in the collection region increases. Figure 5.6 shows the electron velocity as

a function of the electric field in InGaAs and InP. The electron velocity increases

in the p-absorption region. The decay times decrease as the output photocurrent

increases. The two processes compete with each other. When the output average

photocurrent is less than 50 µA, the time that it takes the photocurrent to reach

its peak dominates the total transit time. So, the phase increases as the current

increases up to 50 µA. When the output photocurrent is between 50 µA and 150 µA,

the decay time dominates the average transit time. Hence, the phase increases when

the photocurrent increases. Finally, when the output photocurrent is larger than

150 µA, which corresponds to a peak current of 40 mA, the electric field in the n-

region becomes positive, so that the electron transit time increases when the output

photocurrent increases. Hence, the phase again increases when the photocurrent

increases.
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Figure 5.9: The calculated AM-to-PM noise conversion with different pulse dura-

tions at 1 GHz.

5.3.1 Pulse duration

Figure 5.9 shows the AM-to-PM noise conversion coefficient for different pulse

durations. We observe that the null position does not change when the pulse dura-

tion is less than 500 fs. When the pulse duration is larger than 500 fs the second

null position shifts to larger photocurrents. This shift occurs even though the pulse

duration is short compared to the photodetector response time, which is 40 ps.

When the pulse duration increases, the peak current decreases. Figure 5.10 shows

the impulse response for different pulse durations with the same pulse energy. The

photocurrent at which the second null occurs depends on the electric field, which

is determined by the peak current. When the pulse duration increases, the peak

current decreases, and a second null appears at a larger average photocurrent.
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Figure 5.10: The calculated impulse response for different pulse durations and the

same pulse energy.

5.3.2 Repetition rate

Figure 5.11(a) shows the AM-to-PM noise conversion coefficient as a function

of average current for different repetition rates. The curves are the same except for

a scale factor, as shown in Fig. 5.11(b), where we plot the two curves as a function

of optical pulse energy. So, the AM-to-PM noise conversion coefficient does not

depend on the repetition rate when the repetition rate is less than the bandwidth

of the photodetector, which is about 25 GHz. The average photocurrent depends

on the repetition rate. This result is consistent with experiments [97].

Figure 5.12 shows the impulse response for different repetition rates. We ob-

serve that the shape of the output photocurrents are the same. The only difference

is that the output photocurrent pulses are spaced twice as far apart, lowering the

average photocurrent by a factor of two, which has no effect on the Fourier transform

108



0 200 400 600
0

0.02

0.04

0.06

Current (µA)

α A
M

/P
M

 

 

250 M
500 M

(a)

Current (µA)

250 MHz
500 MHz

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

Energy (pJ)

α A
M

/P
M

 

 

250 M
500 M

(b)
250 MHz
500 MHz

Figure 5.11: The calculated AM-to-PM noise conversion coefficient at 1 GHz in the

MUTC for different repetition rates. (a) The AM-to-PM noise conversion coefficient

as a function of average current. (b) The AM-to-PM noise conversion coefficient as

a function of pulse energy.

of the photocurrent impulse response.
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Figure 5.12: The calculated impulse response of the MUTC device for different

repetition rates.

5.4 Discussion

5.4.1 Suggestions for improvement

The AM-to-PM noise conversion coefficient depends on the phase change in the

device, which is due to the change in the average electron transit time. The pileup

of electrons that occurs at the heterojunction between the intrinsic absorption layer

and the cliff layer is a major factor increasing the transit time. It is not possible

in practice to completely eliminate the heterojunction. However, by having several

intermediate layers, it should be possible to improve the heterojunction transition.

Figure 5.13 shows the phase change and AM-to-PM conversion coefficient if the

heterojunction barrier is reduced by half. The αAM/PM noise conversion coefficient
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is then also reduced by half. Figure 5.14 shows the phase change and AM-to-PM

conversion coefficient if there is no heterojunction between InGaAs and InP. In

this case, the αAM/PM noise conversion coefficient is reduced by about one order

of magnitude. We conclude that AM-to-PM noise conversion coefficient is reduced

when the heterojunction barrier is reduced.
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Figure 5.13: The calculated (a) phase change and (b) AM-to-PM noise conversion

coefficient in the MUTC device as a function of output average photocurrent at

1 GHz. The heterojunction barrier is reduce by half.
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Figure 5.14: The calculated (a) phase change and (b) AM-to-PM noise conversion

coefficient in the MUTC device as a function of output average photocurrent at

1 GHz. A heterojunction barrier is not included in the model.

111



5.5 Summary

We used a drift-diffusion model to study the AM-to-PM noise conversion in

an MUTC photodetector. There are two nulls in the AM-to-PM noise conversion

coefficient as a function of the average photocurrent. We have explained the ap-

pearance of these nulls as a consequence of changes in the transit time through the

device, which is in turn due to the nonlinear dependence of the electron velocity on

the electric field.

We also showed that when the pulse duration is less than 500 fs, the AM-

to-PM conversion coefficient does not change. When the pulse duration is greater

than 500 fs, the second null in the AM-to-PM shifts to larger photocurrents. The

repetition rate does not change the AM-to-PM conversion coefficient when plotted

as a function of the input optical pulse energy.

The AM-to-PM noise conversion coefficient can be greatly reduced by having

an intermediate transition layer between the InGaAs and InP heterojunction.
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Chapter 6

Carrier flow in the photodetectors

In this section, we describe and compare the carrier flow in the different pho-

todetector devices that we studied.

6.1 Carrier flow in the p-i-n photodetector

Figure 6.1: The electron density in the p-i-n photodetector when a modulation is

applied.
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Figure 6.2: The electron velocity density in the p-i-n photodetector when a modu-

lation is applied.

Figure 6.1 shows the electron density flow animation in the device during one

period when a modulation is applied to the device. The modulation frequency is

5 GHz. The average output current is 1 mA. The applied bias voltage is 4 V.

The other parameters are shown in Table 2.1. The electron density first increases

and then decreases as the modulated input optical power first increases and then

decreases. We observe that the density changes in the transverse direction, implying

a current flow. This transverse current flow is especially important when the reverse

bias is low. In Chapter 2, we showed that the difference between the 1D and 2D

model is due to the transverse flow in the device. Figure 6.2 shows the electron
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velocity during one period when a modulation is applied to the device. We note that

we only show the absolute velocity of electrons and holes. The electron velocity is in

the +z-direction, and the hole velocity is in the −z-direction. The velocity changes

dramatically at the i-n junction around 2000 nm. Figure 2.2 show the electron and

hole velocities as a function of the electric field. The hole velocity increases when the

electric field increases. When the electric field is larger than 7 kV/cm, the electron

velocity decreases as the electric field increases. With the increase of the electron

density, the electric field decreases and the electron velocity increases.

Figure 6.3: The hole density in the p-i-n photodetector when a modulation is ap-

plied.

Figure 6.3 shows the hole density in the device during one period when a

modulation is applied. Figure 6.4 shows the hole velocity in the device during one
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Figure 6.4: The hole velocity in the p-i-n photodetector when a modulation is

applied.

period when a modulation is applied. The hole velocity decreases when the hole

density increases and the electric field decreases.

6.2 Carrier flow in the PDA and MUTC photodetector

In the PDA and MUTC photodetector, transverse transport is not as impor-

tant as in the p-i-n photodetector. So, we only show the carrier density and velocity

from the 1D simulations. We show the carrier densities and velocities as a function

of time in both the PDA and MUTC photodetectors. The carrier densities and

velocities behave similarly. So, we only show them for the PDA photodetector.
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Figure 6.5: The electron and hole densities in the (a) PDA photodetector and (b)

MUTC photodetector at steady state. The output current is 10 mA. The modulation

depth is 10%. The green curve shows the hole density, and the red curve shows the

electron density.

Figure 6.5 shows the electron density at steady state. Figure 6.6 shows the

increase of the electron density in the device during the first half period when the
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Figure 6.6: The change in the electron density in the (a) PDA photodetector and

(b) MUTC photodetector during the first half period when a modulation is applied,

compared to the steady state.
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Figure 6.7: The electron velocity in the (a) PDA photodetector and (b) MUTC

photodetector when a modulation is applied. The electron velocity does not change

when the time increases.
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optical input is modulated. The applied bias is 6 V. The modulation depth is 10%.

The average output current is 10 mA. The other parameters are the same as in Table

2.1 and 3.1. In order to show the electron flow in the device clearly, we show the

increase of the electron density from the steady state instead of the electron density

itself. Figure 6.7 shows the electron velocity in the device. We find that the electron

velocity is almost unchanged. However, the velocity is in the +z-direction. So, the

electrons move in the +z-direction. Due to the heterojunction between InGaAs and

InP, the velocity decreases significantly in the heterojunction. In the p-region, the

electric field is small, and the velocity is close to zero.

Figure 6.8 shows the increase of hole density in the device during the first half-

period when the input is modulated light. The hole density is still larger than the

steady state density. The holes move in the −z-direction. Figure 6.9 shows the hole

velocity in the device. The velocity remains almost constant as the optical intensity

changes. The velocity drops significantly in the interface between the p-region and

the intrinsic region because the electric field is nearly equal to zero in the p-region.

So, there is an accumulation of holes at the interface.

Next we show the transient carrier flow when we instantaneously increase the

input optical power by 50%. As a consequence, the output current increases from

10 mA to 15 mA over 200 fs. Figure 6.10 shows the electron density evolution.

When the time increases, the electron density increases, and the increase is most

rapid in the region between 800 nm and 1000 nm, so that the electrons move in the

+z-direction. We show the electron velocity in Fig. 6.11. While the electron velocity

is almost constant, there is a small change, which is not visible. So, we only show
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Figure 6.8: The change in the hole density in the (a) PDA photodetector and

(b) MUTC photodetector during the first half period when a modulation is applied,

compared to the steady state.
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Figure 6.9: The hole velocity in the (a) PDA photodetector and (b) MUTC pho-

todetector when a modulation is applied. The hole velocity does not change when

the time increases.
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Figure 6.10: The increase of the electron density compared to the steady state in

the PDA photodetector when the optical power increases.
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Figure 6.11: The electron velocity in the PDA photodetector when the optical power

increases.
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Figure 6.12: The electron velocity in the PDA photodetector from 700 to 900 nm

in the PDA photodetector when the optical power increases.

the figure instead of animation. Fig. 6.12 shows the small change of the electron

velocity from 700 to 900 nm. Figure 6.13 shows the hole density. We observe that

the holes move to the p-region, and the hole density in the region between 600 nm

and 700 nm increases faster than in the other regions. We show the electron velocity

in Fig. 6.14. The hole velocity is almost constant.

The largest difference between the p-i-n photodetector and PDA photodetector

or MUTC photodetector is the space charge effect in the intrinsic region. When

the input optical power changes in the p-i-n photodetector, the electron and hole

velocities change dramatically. However, in the PDA or MUTC photodetector,
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Figure 6.13: The increase of the hole density in the PDA photodetector when the

optical power increases compared to steady state.
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Figure 6.14: The increase of the hole density in the PDA photodetector when the

optical power increases compared to steady state.
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the electron and hole velocities are almost constant when a modulation is applied.

Hence, the PDA or MUTC photodetector has better linearity than a traditional

p-i-n photodetector.

6.3 Impulse response in the MUTC photodetector

Figure 6.15: The electron and hole current in the MUTC photodetector with pulse

generation. The carrier pulse generation is at 900 nm.

In order to determine the current flow in the device in response to an input

optical pulse, we turn on carrier pulse generation at particular positions in the device

in our simulations, and we turn it off at other positions. The pulse duration has no

impact on the result as long as it is 500 fs or less and the total pulse energy is fixed.
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We used a 500 fs pulse. The applied bias is 4 V. The total pulse energy is 2 pJ. The

pulse in Fig. 6.15 shows the impulse response when we turn on the carrier generation

at 900 nm. Figure 6.16 shows the impulse response when we turn on the carrier

pulse generation at 600 nm. Initially, the electron and hole current are large, and

the hole current density rapidly becomes constant due to the holes diffusion, only

electron current density is visible. The electrons are the only important carriers in

the MUTC photodetector. We observe that the electrons that are generated at 600

nm take a longer time to reach the n-region than the electrons that are generated

at 900 nm, because the electrons have a longer distance to travel. We also observe

that the electron transit time is smaller in the InGaAs intrinsic region than it is in

the InP intrinsic region, which is because the electric field is larger in the InGaAs

intrinsic region than in the other regions. These animations show that the electrons

are the only traveling carrier in the device, and the transit time only depends on

the electrons.
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Figure 6.16: The electron and hole current in the MUTC photodetector with pulse

generation. The carrier pulse generation is at 600 nm.
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6.4 Summary

In this chapter, we show the current flow and the velocity in the p-i-n, PDA,

and MUTC photodetectors. We also show the electron and hole transport in both

the transverse and longitudinal directions.

The electric and hole velocities change dramatically in the intrinsic region in

the p-i-n photodetector, indicating that the space charge effect plays an important

role. By contrast, the electron and hole velocities are almost constant in the PDA

or MUTC photodetector.

In the MUTC photodetector, we show the impulse response of the device. In

the InGaAs intrinsic region, the electric field is larger than in the other regions, and

the electron velocity is also larger than in the other regions. The electron transport

time in the InP transit region dominates the total electron transit time.
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Chapter 7

Conclusion

We have built modified one-dimensional and two-dimensional drift-diffusion

models to study nonlinearity in p-i-n, PDA, and MUTC photodetectors. These

models include temperature changes, thermionic boundary conditions, incomplete

ionization, external loading, history-dependent ionization, and the Franz-Keldysh

effect.

We obtained excellent agreement with experiments for the harmonic power

and responsivity. In the p-i-n photodetector, we found that impact ionization is an

important source of nonlinearity. In the p-i-n photodetector, the output current is

about 0.1 mA, and the external loading is not important.

In the PDA photodetector, the output current is 10 mA, and the external load-

ing has a large impact on the nonlinearity and hence the harmonic powers. Due to a

thin intrinsic region in these devices, a history-dependent impact ionization should

be used in the model. We showed that the Franz-Keldysh effect is an important

source of nonlinearity. Decreasing the effective load resistor decreases the higher

harmonic powers.

We applied our model to study the source of nonlinearity and AM-to-PM

conversion in modified uni-traveling carrier (MUTC) photodetectors. In InGaAs,

the velocity of electrons is faster than the velocity of holes by a factor of 2. In an
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MUTC photodetector, electrons are the only carriers, which shortens the transit

time of carriers through the device and increases response time of the device. The

collection and absorption regions are separated, so that it is relatively easy to modify

each region to optimize the performance of the device. We obtained good agreement

with the experimental data for the MUTC photodetector. We showed that the

physical source of the bias null in the IMD2 power is the Franz-Keldysh effect. We

investigated the physical origin of a difference between the location of the bias nulls

for the sum frequency and difference frequency IMD2 powers, and we showed that

it is due to the displacement current in the intrinsic region.

AM-to-PM conversion in the photodetector occurs due to nonlinearities in the

photodetector. We used the impulse response to calculate the phase delay in the

photodetector, and to analyze the source of AM-to-PM conversion. The AM-to-

PM noise conversion is due to a change in the electron transit time when the pulse

energy changes. One way to reduce the AM-to-PM noise conversion coefficient is to

reduce the transit time by better design of the heterojunction between InGaAs and

InP. Our calculation shows that the AM-to-PM noise conversion coefficient can be

reduced up to 90% by lowering the heterojunction barrier between InGaAs and InP.

We also showed the electron and hole flow in the p-i-n, PDA, and MUTC

photodetectors, which allowed us to explain the difference in performance of the

three devices.
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