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ABSTRACT 
Large-scale distributed systems are playing an increasing role in 
computational research, production operations, information 
processing, and application hosting. The continuous management 
of such systems is a critical consideration when focusing on 
reliability, availability, and security. As the number of commodity 
components within these systems continue to grow, it becomes 
increasingly difficult to track the multitude of parameters required 
to ensure optimal performance from the system, especially in 
those systems that have been built through expansion and not as 
an initial purchase of identical nodes. In this paper, we discuss the 
use of statistical inference, specifically Markov Logic Networks, 
in a distributed multi-agent system to provide the most effective 
means of managing these parameters. We showcase an 
architecture that provides services to manage a system’s 
configuration throughout its life-cycle, and is capable of resolving 
differences after identifying potential mis-configurations using 
conflict discovery and resolution modules.   

Categories and Subject Descriptors 
G.3 [Probability and Statistics]: markov processes, probabilistic 
algorithms, statistical computing. 

I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving – 
deduction, inference engines, uncertainty. 

I.2.4 [Artificial Intelligence]: Knowledge Representation 
Foundations and Methods – predicate logic, temporal logic. 

K.6.4 [Management of Computing and Information Systems]: 
System Management – centralization/decentralization.  

General Terms 
Algorithms, Management, Reliability, and Experimentation. 

Keywords 
Configuration, Distributed, Management, Probability. 

1. INTRODUCTION 
Data centers, particularly those providing high-end computing 
services, continue to provide more power and resources while 

simultaneously implementing green initiatives and virtualized 
hosts to leverage appropriate economies of scale. Managing this 
complex nest of systems that have varying requirements, 
configurations, and access rights in an efficient manner requires a 
cadre of highly-trained system administrators. To alleviate 
increasing workloads placed on the staff, freeing them up for 
more cerebral tasks, the goal of automated system management 
must be achieved.  

The purpose of our research is to provide a true distributed 
approach to system management, with the means to administer 
ever-growing systems, both in physical size and density, without 
increasing the administration staff. To reach this goal, we must 
investigate the use of autonomic principles on each node of a 
large distributed system. The primary task to achieve this is 
twofold. First, the system must be able to manage aspects of its 
configuration without using a central image master, relying only 
on the knowledge of its peers. Second, the system must be able to 
understand and evaluate its operating environment to identify 
issues before they become catastrophic problems. In each of these 
scenarios, the system should rely on itself to provide the 
necessary means for self-management using a combination of 
historical analysis and information relayed from nodes currently 
operating in a similar configuration.   

Our approach provides a flexible solution that can be adapted to 
different types of distributed systems in order to remove the 
centralized knowledge base as both a single point of failure and a 
network bottleneck. This allows us to implement an intelligent 
technique for evaluating potential changes needed to keep the 
system in a consistent state. The proposition is that through 
dynamically adapting to the current state of the system, a more 
consistent, better tuned environment for the end users will be 
provided without compromising functionality or availability.  

2. ARCHITECTURE 
Our current architecture consists of four functions: Data 
Gathering, Probabilistic Inference, Conflict Discovery, and 
Resolution. Each of these functions provides a necessary service, 
with the Probabilistic Inference function being the most complex 
and important in determining if the system configuration is 
accurate or not.  

2.1 Data Gathering 
The Data Gathering module exists on each node in a distributed 
system, collecting information about parameters, properties and 
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settings to allow for a complete analysis of system state. Once the 
data is gathered, it is placed into the appropriate format for the 
Probabilistic Inference module, and passed off to be consolidated 
into a single input deck for analysis.  

2.2 Probabilistic Inference 
The Probabilistic Inference model verifies that every system node 
is approximately identical to other related nodes. By performing 
comparisons on multiple nodes, statistical relational learning 
methods will be used to determine the optimal configuration and 
make adjustments as necessary. Due to the infinite possible 
optimal configurations for differing environments, a statistical 
relational learning method is the preferred inference mechanism, 
specifically Markov Logic Networks (MLNs) [1].  

MLNs provide a first-order predicate knowledge base with a 
weight applied to each formula. The logic being used allows for 
an initial set of conditions that capture the rules needed to make 
informed decisions in the inference phase. The softening 
constraints that a MLN provides as compared to strict first-order 
logic allows for an expanded view of options when changes are 
being considered [3]. The probabilistic inference performed 
within MLNs provides an effective means to distribute the 
calculation of the correct configuration, while still ensuring that 
nodes will sustain a secure operational baseline for their users.  

As systems age, node configurations can and do change to 
accommodate updated software, libraries, patches and hardware 
replacements. Once a potential issue is discovered, nodes will use 
the probabilistic inference engine to form an agreement on which 
configuration value is correct. To ensure each node is sending an 
accurate description of itself for each set of comparisons, time 
comparisons will occur at multiple stages to determine if they 
were gathered at the “same” time across the cluster. Latency is a 
concern for any type of distributed system, but can pose 
additional issues in situations such as this.  

2.3 Conflict Discovery and Resolution 
The Conflict Discovery module performs the final analysis of the 
Probabilistic Inference module’s results. At this stage, the data is 
reviewed to determine what, if any, corrective actions need to be 
taken on various nodes. During the course of analysis, corrective 
actions are grouped by node, and communicated back to the 
appropriate Resolution module.  
The Resolution module exists on each node, and is responsible for 
performing the actual corrective actions as dictated by the 
Probabilistic Inference and Conflict Discovery modules. 
Depending on the results of the analysis phase, a node may or 
may not have to wait for idle time to correct itself to prevent 
interference with user jobs. The Resolution module verifies that 
the conflict still exists prior to taking corrective action to ensure 
the planned action still corrects the identified problem.  

3. INFERENCE MODEL APPROACH 
Our inference models contain a number of setting, parameter and 
environment values that require consistency across a large 
distributed system. A statistical approach to solving these issues 
as they arise can take all the known factors into account and 

weight them to minimize uncertainty and determine the most 
valid option.  

The MLN probabilistic inference calculations are being 
performed using the Alchemy System for Statistical and 
Relational Artificial Intelligence [2]. In this system, there are two 
stages which must be executed in order to perform the analysis. 
The first stage is weight learning with the MLN formulas and 
training data knowledge base. The system allows for both 
generative and discriminative learning, providing new weighted 
MLN data that will be used for the inference model.  

The second stage takes the weighted MLN output and uses that 
along with the evidence knowledge base to perform an inference 
calculation on the network. The system allows for various types 
of inference, including Gibbs sampling, MC-SAT, simulated 
tempering, and Maximum A Posteriori (MAP). The output of 
each inference calculation is the statistical probability that an 
evidence predicate is not true. 

The goal of this set of inference models is to form a distributed, 
intelligent system integrity validation product that ensures an 
optimal configuration while simultaneously watching for 
attempted infiltrations. Performing configuration control in this 
manner will greatly improve the productivity of staff responsible 
for maintenance on both large and small distributed systems.  

4. CONCLUSION 
The management of distributed systems such as large 
computational clusters is a non-trivial task. As systems continue 
to grow in size and both the quantity and quality of services 
offered, there will continue to be adoption of these systems in 
industries outside what has been seen as the norm in the past. The 
ability for all types of distributed systems to diagnose and recover 
from performance and configuration issues without resorting to a 
centralized knowledge base is the next great stride in allowing 
systems to self-manage their reliability and stability in this high-
end community.  

The prototype system we have built utilizes a novel approach to 
performing a probabilistic model-based diagnosis. We are 
removing single points of failure for diagnosis and allowing the 
system to correct different types of issues itself. This prototype 
system and the results as a means to incorporate industry best 
practices along with some of the latest research being done in the 
area of statistical relational learning and autonomic computing.  
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