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Abstract—It is well-known that TCP performs poorly in a wireless envi-
ronment. This paper presents an empirical performance analysis of TCP
on Cellular Digital Packet Data (CDPD) and Bluetooth. This analysis
brings out the weaknesses of TCP in realistic conditions. We also present
CentaurusComm, a message based transport protocol designed to perform
well in low bandwidth networks and resource poor devices. In partic-
ular, CentaurusComm is optimized to handle data exchanges consisting
of short message sizes. The application used to perform all the experi-
ments is typical of common applications that would use these protocols
and network technologies. Typical mobile devices used in the experiments
included Palm Pilots. We show that TCP performance on CDPD is very
poor because of its low bandwidth and high latency. CentaurusComm
outperforms TCP on CDPD. We show that on Bluetooth, which has higher
bandwidth and lower latency than CDPD, both protocols perform compa-
rably.

|. INTRODUCTION

Wireless networks of the present and future are envisioned
to range from body area networks to satellite Wide Area Net-
works (WANs). These will include Bluetooth [1] based sys-
tems, 802.11 based WLANS [2] and WANS based on packet ra-
dio technologies like CDPD [3] and General Packet Radio Ser-
vice (GPRS) [4]. At an abstract level, data exchange in wireless
networks is very similar to that in wired networks, except for
smaller data sizes. Connection-less and connection-oriented
data transfer mechanisms exist in most wireless systems. The
amount of data exchanged is typically of the order of hundreds
of bytes. Maximum Transfer Units (MTU) specified by kernels
optimized for wireless networks also tend to be of the order of
hundreds of bytes for typical applications. TCP has been the
protocol of choice for reliable, connection-oriented data trans-
fer on wired networks. Adapting TCP to wireless networks has
thus become an important area of research.

TCP performance has been extensively researched on wired
networks that have high bandwidth and throughput, and low
latency and delays ([5], [6], [7], [8])- As expected, TCP per-
forms very well on wired networks. However, research on TCP
performance over wireless networks has shown that it fails un-
der certain conditions. Non-congestion losses (losses due to
wireless channel errors or client mobility) mostly contribute to
the poor performance of TCP. This is because TCP implicitly
assumes that all losses are due to congestion and reduces the
window on the sender [9]. If the losses are not due to con-
gestion, then TCP unnecessarily reduces throughput leading to
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poor performance.

We propose a new protocol called CentaurusComm that
eliminates the congestion related problems of TCP, while pro-
viding reliable, message oriented data transmission. This pro-
tocol has been designed to cater to resource poor devices ex-
changing small amounts of data in low bandwidth networks.
We show that this protocol performs better than TCP in CDPD
networks and comparably to TCP in Bluetooth. In Section I,
we explain the reasons for proposing a new protocol as opposed
to making further modifications to TCP.

A thorough quantitative analysis of TCP and Centaurus-
Comm performance on different types of wireless networks
like CDPD, WLAN and Bluetooth is essential in order to un-
derstand their behavior on each type of wireless network. It
is possible to analyze the performance of TCP and Centaur-
usComm by simulating these different networks and associated
environments using simulators like ns-2 [10]. Such simulations
can provide very accurate information on the behavior of such
protocols. We believe that the main drawback of such analy-
ses is that the effects of uncontrolled parameters such as sig-
nal strength, channel error rates, channel “busyness” and noise
cannot be accurately studied. In simulators, these parameters
must be carefully modeled in order to create realistic scenarios.
For example, error rates can be modeled in ns-2 using the Two-
State Markov model with a bit error rate of 108 signifying that
the channel state is “good” and a bit error rate of 10~2 signify-
ing that it is “bad”. The problem with this kind of modeling is
that these two values may never be seen during an actual trans-
mission on a CDPD network. Error rates might actually vary
between a certain range around these two fixed values. If, due
to these variations in error rates, the channel state cannot be
characterized as “good” or “bad”, then performance cannot be
accurately studied or explained. Of course, it is possible to de-
sign a more complex simulator that uses an algorithm that could
model error rates with greater accuracy. We believe that direct
measurement is a much simpler and more accurate method of
analyzing and studying performance in wireless networks.

We now present a brief overview of the wireless network
technologies considered in this paper — CDPD and Bluetooth.
CDPD is a packet switched communications network based on
TCP/IP that normally operates as an overlay on top of the ex-
isting Advanced Mobile Phone Services (AMPS) infrastruc-
ture. It is in fact a digital cellular system designed for data



transport that can operate independently or on any cellular sys-
tem that uses 30 kHz channelization (e.g. AMPS analog sys-
tems in North America). CDPD is a representative Wireless
WAN (WWAN) that provides data rates of up to 19.2Kbps.
Bluetooth is a fast emerging wireless technology that provides
short range, moderate bandwidth connections. It operates in
the globally available 2.4 GHz ISM frequency band and pro-
vides data rates of up to 432 Kbps (symmetric) and 721 Kbps
(unsymmetric). It supports both point-to-point and point-to-
multipoint connections. With the current specification, up to
seven ‘slave’ devices can be set to communicate with a ‘mas-
ter’ radio in one device. Several of these ‘piconets’ can be es-
tablished and linked together in ad-hoc ‘scatternets’ to allow
communication among continually flexible configurations.

The rest of the paper is organized as follows: Section Il dis-
cusses some well-known solutions for improving TCP perfor-
mance over wireless networks and also describes prior work
on empirical performance evaluation of TCP. We describe the
CentaurusComm protocol in detail in section Ill. Section IV
describes the performance metrics for TCP and Centaurus-
Comm, the CDPD parameters we have considered and the ex-
perimental We discuss and analyze the experimental results in
Section V. Section VI presents our conclusions and describes
future work.

Il. PRIOR WORK ON IMPROVING TCP PERFORMANCE IN
WIRELESS NETWORKS

There are two classes of solutions to the TCP performance
problem in wireless networks. The problem can be solved ei-
ther by modifying TCP (e.g., I-TCP) or by replacing it by a
protocol that is optimized for wireless networks (e.g., Centaur-
usComm.)

Most of the prior research work has focused on making
the TCP/IP stack smarter by modifying TCP. Proposed so-
lutions either involve violation of end-to-end semantics([11],
[12]), modification of TCP code on the mobile client, the wired
source or both ([13],[14]) or introduction of TCP-aware smarts
in the base station [15]. Other solutions that attempt to improve
TCP performance while retaining the end-to-end semantics in-
clude [16] and [17]. We describe, in brief, protocols discussed
in [11], [12] and [17].

Indirect-TCP (I-TCP) was introduced in [11]; it proposed
that the TCP connection be split at the wired-wireless network
border, thus maintaining two connections - one over the wired
network and another over the wireless network. Thus, the TCP
on a wired host is unaware of non-congestion related losses on
the wireless part of the connection. A protocol similar to I-
TCP, called MTCP was proposed in [12]. The main difference
between I-TCP and MTCP is that in the latter, the last byte of
TCP is acknowledged to the wired host only after the mobile
client receives it.

The solution proposed by [17] is to modify the design of
congestion control and reliability in TCP. Congestion control

is done at the receiver using rate-based and inter-packet delay
based mechanisms. Thus, the sender modifies the transmission
rate (increase, maintain or decrease) based on the observations
of the receiver. Reliability in [17] eliminates the need for a re-
transmission timeout. Based on information received in ACKs,
the sender decides whether or not a retransmission is required.
This protocol was proposed specifically to improve TCP per-
formance over the CDPD network. In this work, real-time per-
formance measurements were carried out, but the authors warn
against using the results to quantify TCP performance because
the experiments were performed in uncontrolled conditions.

Empirical TCP performance evaluation over some wireless
networks is discussed in [15], [18] and [19]. In [19], through-
put was chosen as the performance metric; location dependent
performance was measured and analyzed. WLANS have loca-
tion dependent characteristics, therefore the variation in TCP
throughput based on different locations of the mobile client
was studied. In [18], interaction between TCP and Radio Link
Protocol (RLP) (a GSM network specific link layer protocol)
was the basis of performance analysis. The primary perfor-
mance metric was TCP’s utilization of the bandwidth provided
by RLP. This work concludes that link layer solutions can alone
solve the problem of poor TCP performance in wireless net-
works. Various solutions discussed above were actually imple-
mented and TCP performance was evaluated over a WLAN in
[15]. This work also concludes that a reliable, TCP-aware link
layer provides very good performance.

I1l. CENTAURUSCOMM TRANSPORT PROTOCOL

We now discuss a solution that seeks to replace TCP with a
protocol better suited to wireless networks. One of the main
motivations for designing such solutions is the set of typical
applications that use them. Mobile and wireless users typi-
cally run applications like web browsers and E-mail clients on
their devices. These applications generate short messages as
opposed to continuous streams of data. Our protocol is opti-
mized to handle short messages more efficiently than TCP. The
CentaurusComm transport protocol that we propose is based on
the idea of exchanging message objects rather than data pack-
ets that are timed by the ACK mechanism of TCP. Message
objects consist of a number of short sized data packets along
with a bitmap. The basic idea is for the recipient of the mes-
sage to only reply with an ACK after having received all data
packets in the object. The recipient would use the SACK mech-
anism to indicate any data packets not received. We claim that
this mechanism of data exchange is better than, for example,
simply increasing the window size of TCP or using TCP with
SACKs. Increasing the TCP window size would mean accom-
modating more data segments per transmission. Using SACKs
with TCP implies that if data segments within the sequence are
lost, those that have been successfully received would have to
be buffered while waiting for retransmissions of the lost seg-
ments. In both cases, more memory and CPU cycles have to be



spent by the receiver. Typical clients in wireless environments
cannot afford the extra overhead. We therefore believe that our
solution is much better suited for resource poor clients in low to
moderate bandwidth networks than TCP. It is, of course, possi-
ble to further modify TCP to make it more adaptable to wireless
networks. However, we believe that with all the modifications
included, the semantics of TCP would have changed so signif-
icantly that it would not resemble the original protocol design
and thereby remain TCP in name only.

The idea of using a message based protocol over CDPD
rather than TCP is also found in the Aether Intelligent Mes-
saging (AIM) protocol [20]. Unfortunately, this protocol is
proprietary to Aether Systems Inc. No specifications or im-
plementations are publicly available. The information on AIM
is provided only in a high level white paper. Thus, we were
unable to compare the performance of our approach with that
of AIM. However, it does appear that AIM has an approach
similar to CentaurusComm.

A. System Architecture

CentaurusComm consists of two protocol modules (Level I
and Level 11) and an application program interface (API). Level
I modules are communication medium dependent; the Level Il
module is medium independent. The API is responsible for ac-
cepting the objects from the application layer for transmission
and notifying it when messages are received.

The entire protocol is implemented as a collection of data
structures and state machines. As the protocol is designed to
run on a wide range of low power systems such as PDAs and
low power embedded computers, it does not depend on any
advanced operating system features such as signals and multi-
threading, that are typically not part of such systems. In fact,
TCP requires signals in order to determine if certain conditions
have occurred The protocol is designed in such a way that ev-
ery step is performed in small chunks, with each chunk lasting
for a very short time. With the exception of domain name reso-
lution that occurs very infrequently, the protocol never blocks.
The application is only responsible for calling a worker routine
of the protocol.

The worker routine is part of the Level | module. Its main
purpose is to perform message transmission or reception de-
pending on transmit and receive queues. This routine checks
the send and receive queues, the network connections and the
Level Il state machine. If required, the worker routine will at-
tempt to send any data waiting in the send queue and/or run
the Level 1l state machine to act upon data received from the
receive queue. In addition, on peer-to-peer type networks, the
worker routine will examine the table of outgoing messages and
trigger the Level 11 state machine in order to start the transmis-
sion of outgoing messages, if this event has not yet occurred.
On master-slave type networks, this routine is responsible for
periodically establishing connections with the slaves and trig-
gering the Level 11 module to start a session.

B. Communication between Level | and Level 11 modules

Both Level | and Level 1l modules are implemented as state
machines. Level | and Level Il share data items that serve as
the communication area between the two modules. The Level
Il state machine is always set in motion by the Level | mod-
ule. On master-slave type networks (e.g., IrDA), this is done if
the Level | module is in the connected state. On peer-to-peer
type networks (e.g., UDP/IP) this is done when a data packet
destined for the Level 11 module arrives at the Level | module.
In both cases, the Level | module will copy the contents of the
packet (minus the headers) to a common area before starting
the Level 1l state machine. The Level Il state machine will ex-
amine the contents of a received packet and change its internal
state as required. In addition, it places outgoing data (to the
other end) in the common area. The Level Il module sets a
specific flag in the common area when a session ends.

C. The Level |11 Module

The Level Il module performs reliable transmission of mes-
sages. It provides message segmentation and reassembly,
keeps track of lost packets and performs retransmission using
the SACK mechanism. In addition, it provides rudimentary
time synchronization mechanisms along with identification and
deletion of old messages.

C.1 Level Il Sessions

The Level 1l module consists of a session based protocol.
During a session, both ends attempt to transmit a single mes-
sage to each other. Thus, at most two messages can be trans-
mitted in one session. However, under certain conditions, more
than one session is required to transmit a message. Multi-
ple sessions may be required if the underlying communication
medium does not allow more then two entities to communicate
at the same time, thus requiring some type of time division mul-
tiplexing. InfraRed and Bluetooth are typical examples of such
media. Multiple sessions may also be required if network con-
ditions cause loss of a control packet. In order to conserve time
and memory, the CentaurusComm protocol does not provide
any mechanism for retransmission of a control packet. There-
fore, when a packet that carries a control message is lost, the
session cannot continue and will hang till a watchdog timer de-
strays it. After the session is destroyed by the watchdog timer, a
new session is created and the message transmission resumes.
Now, because of the way SACKs are implemented, message
data that was received in the previous session will not be re-
transmitted. The Level Il module is not responsible for setting
up and shutting down of the sessions. All session management
is provided by the Level | module.

C.2 Session and Transmission Setup

When the Level I module establishes a connection with its
peer, it resets the Level 11 state machine to the initial state and
goes into the connected state. In the connected state, every



packet that is received by the Level I module is sent to the
Level Il module. Session startup is different for different types
of communication media. On media such as InfraRed, one of
the devices is selected to be a master. This is the only device
that can start a session. The master device is responsible for
discovering all the devices in the neighborhood it can commu-
nicate with and polling these devices for messages by estab-
lishing a session with each one in a round-robin fashion. For
media that allow multiple nodes to communicate at the same
time (either in point-to-multipoint or mulitpoint-to-multipoint
mode) the device that has an outgoing message is responsible
for establishing the session with the recipient. On such devices,
the Level I module is responsible for maintaining the state of
sessions for different devices and loading the correct state for
each session.

When a session is established on peer-to-peer type networks,
the Level I module that is responsible for initiating the session
sends a POLL message to the local Level 1l module. When
the Level Il module receives the POLL message it scans the
table of outgoing objects and finds the object that should be de-
livered to the peer device. For small mobile devices, the table
of outgoing objects contains only one entry, so the selection of
the object is trivial. For servers, the table will have multiple
entries. Therefore, linear search is used to select the outgoing
object. When the object is selected, the Level Il module sends
an OBJ message that contains the class of the object, its size
and a time stamp, to the other end. On master-slave type net-
works the transmission procedure is slightly different. When
the Level I module establishes a session, it sends a HEL O mes-
sage instead of POLL to the local Level Il module, which then
sends the POLL message as a response to HEL O message to
the other device.

Upon reception of an OBJ message, the device examines
the class and time stamp on the object and decides to either
accept or reject it. Objects are rejected if either the receiver
does not accept the type of object that sender is trying to send
or if the receiver already has a newer copy of the object of this
type. If the device decides to reject this object it sends back
a REJ message. If not, it sends back a PROCEED message
that contains the bitmap of the already received segments of
the object. For the very first session, this bitmap has all its bits
setto 0.

C.3 Message Transmission

When the REJ message is received, the device removes the
object from the table of outgoing objects. If this device acts
as a slave, it sends a NOPE message to the master. This will
cause sender and receiver to interchange their roles and repeat
the session.

When the device receives a PROCEED message, it updates
its copy of the bitmap and starts sending packets that corre-
spond to the bitmap entries marked 0. The process of send-
ing packets is as follows. After determining which message

segment needs to be sent, the device prepares the packet with
its initial header containing the string PK followed by the slot
number and then the contents of the message. This packet is
copied to the common communication area and the out data
flag is set. The Level 11 state machine then switches the state to
‘wait for SENT’. The Level I code picks up this data packet and
sends it to the appropriate communication channel. When the
PK message is received at the other end, that device copies the
contents to the appropriate slot in the object reception buffer
and sets the bit corresponding to this slot to 1.

For peer-to-peer network media that provide buffering of the
outgoing packets, the Level | module sends a SENT message to
the local Level Il module right after the packet is placed on the
network stack to transmit. For master-slave type networks, the
Level I module places the packet on the network stack and then
returns to the event loop of the application. When the network
stack completes transmission of the packet it sends a packet
handled indication to the Level | module, which in turn, sends
the SENT message to the local Level 11 module. Reception of
the SENT message by the Level Il module causes the bit corre-
sponding to the last transmitted segment to be set to 1. It then
checks the bitmap and the object size to determine if it needs
to send any additional packets. The same process applies to all
messages that are exchanged between two devices. However,
the synchronous nature of session set up makes the handling of
the SENT message optional for the rest of the exchanged mes-
sages. If a control message is lost because of the problems with
local network stack or during transmission, the whole session
will be terminated by the watchdog timer.

C.4 Session Completion

After the sender completes packet transmission, it sends a
DONE message to the other side and goes to the *wait for mes-
sage’ state. When the DONE message is received at the other
end the Level 11 module checks its own message bitmap. If all
the expected message segments are received, it responds with
the ACK message and updates the time stamp of the last re-
ceived object in its object acceptance table. It then sends an in-
dication to the application that the message has been received.
The application is responsible for processing the received mes-
sage before it calls the worker routine again, because the con-
tents of the message buffer might get overwritten on the subse-
quent run of the worker routine. If the receiving side gets the
DONE message and discovers that one or more segments of
the message still have their corresponding bits set to 0, it sends
a new PROCEED message and a new bitmap to the sender.

1V. PERFORMANCE METRICS AND EXPERIMENTAL SETUP

A. TCP and CentaurusComm Performance Metrics

o Round Trip Time (RTT): It is one of the most important
measures of network performance. In our experiments, we have
measured RTT on both the client and server. The client is pri-
marily the initiator of connections, as described below. Thus,



the client has the most accurate measure of RTT of packets on
the channel. This is because the client records the time just
before transmitting the request on the channel and again imme-
diately after receiving the reply.

This is the only metric used to evaluate the performance of Cen-
taurusComm. In order to obtain accurate RTT measurements
on the CentaurusComm server, we recorded and analyzed the
output produced by the tcpdump program.

o Retransmitted TCP Segments. This metric provides an in-
dication of how TCP is being affected by the current state of
the network. Retransmissions on a wireless network may oc-
cur due to two reasons: (i) loss of signal between wireless
client and base station and (ii) congestion at some intermediate
base station/wired node leading to packet drops. The TCP im-
plementation in Linux 2.2.17 on our test server performs fast
retransmits - retransmit only the segment not received by the
client. Therefore, in the best case only one segment is retrans-
mitted and in the worst case, the entire window is retransmitted.
We record the number of retransmitted segments per request-
reply-good bye session on both the server and the client.

B. Measured CDPD Parameters on Client

« Relative Signal Strength Indication (RSSI): RSSI is a pa-
rameter representing the received signal strength of both the
wireless client and the base station. It is used by the client
to determine whether a hand-off procedure or a power change
must be initiated. This value is measured in dBm. On CDPD
networks, a value of -113 dBm indicates the absence of signal.
This parameter very clearly indicates whether or not a client
can receive and transmit data from its current location. We
record the value of RSSI by querying the modem every second.
o Forward BLock Error Rate (BLER): This parameter mea-
sures the state of the channel from the perspective of noise and
errors in transmission due to noise. This measurement is per-
formed on the forward channel (base station to wireless client).
The CDPD network uses the Reed-Solomon forward error cor-
recting code (FEC) on transmitted blocks of data.

o Céll Busy: This is a measure of the “busyness” of the cell
that supports the client. This is also measured as a percentage.
The client will not be able to transmit or receive data if the cell
becomes too busy to support this client. Thus, the client can
try to reach a base station in an adjoining cell that may not be
busy.

C. General Experimental Setup

We used the typical client server scenario to perform ex-
periments. The client program was executed Palm Pilots run-
ning PalmOS 3.5 using OmniSky modems for communication
over CDPD. For evaluation of TCP and CentaurusComm per-
formance on Bluetooth, we executed the client program on a
Linux-based (version 2.2.17) system using the Bluetooth stack
developed by Axis Communications, Inc. We used Bluetooth
hardware developed by Ericsson. A concurrent server also ex-
ecuted on a Linux-based (version 2.2.17) system. In all exper-

iments, the wireless client initiates the connection to the server
that is part of a LAN.

C.1 Application Model

All experiments were done on a per-session basis. A session
consisted of a request message from the client, a reply mes-
sage from the server and a good-bye message from the client.
The good-bye message consisted of all recorded values, of var-
ious parameters described above, on the client. We have used
the typical request/reply scenario found in most client/server
based applications. We have attempted to model common ap-
plications like Web browsers and E-mail. In these applications,
the client usually initiates the connection, sends a request and
waits for server response. We performed different sets of exper-
iments in which either the request message or the reply message
size was constant. This was done in order to model the applica-
tion scenarios more accurately (where the common case is for
one side to send small nearly-fixed size messages and the other
to send larger, variable size messages.)

C.2 Palm Pilot/CDPD Specific Setup

The experiments consisted of 100 sessions per variable
packet size, which ranged from 128 bytes to 8192 bytes. Two
sets of experiments were performed. In one set, the request size
was varied and in the other, the reply size was varied. Thus,
starting with the shortest size - 128 bytes - the request (reply)
size was increased every 100 sessions in the first (second) ex-
periment.

Typically, the request, reply and good-bye packets are sent
and received after establishing a TCP connection between the
client on the Palm and the server on the Linux box. During ex-
periments, we discovered that the limit on the number of open
sockets on the Palm is 15. It is also known that the connections
remain in the TIME_WAIT state for a while even after the sock-
ets have been closed. Thus, a large amount of time is spent in
waiting to establish connections. In order to reduce the testing
time, we reduced the number of sessions to 100. In addition,
we decided to establish only one TCP connection to exchange
messages in all 100 sessions with packet sizes varying as de-
scribed above. Thus, we eliminated the connection setup time
from the overall testing time. In order to assure ourselves that
connection setup time remains the same on the average, we
included the connection setup and tear-down for 100 sessions
with the client request size of 4096 bytes.

Another observation we made during testing is that TCP
packets of size 8192 bytes cannot be sent from Palm Pilots
successfully. The main problem is the small Maximum Seg-
ment Size (MSS) of 536 bytes, leading to fragmentation of
large packets into many small fragments. We have analyzed the
output of tcpdump on the server and it appears that the ACKs
to all the fragments are not received by the Palm. Thus, the
TCP on the Palm assumes that the fragments were lost and re-
transmits one or more fragments. This leads to increased traffic



and exacerbates the situation. The PalmQOS networking func-
tion provides for a finite application timeout after which the
application reports an error. We have observed, invariably, that
this timeout expires when packets of size 8192 bytes are sent.
Increasing this application timeout made little difference to the
transmission failure.

We note that the CentaurusComm protocol faced none of the
problems discussed in the context of TCP. Large packet sizes
posed no problems and were successfully transmitted. How-
ever, in order to limit testing time, only 100 sessions were cre-
ated per variable packet size.

C.3 Bluetooth Specific Setup

As mentioned above, both the client and server programs
were executed on Linux-based systems, to test TCP perfor-
mance over Bluetooth. Therefore, we did not face any of the
Palm related problems discussed above. Experiments consisted
of 1000 sessions with variable packet sizes ranging from 64
bytes to 8192 bytes. The experiment sets were generated in
the same manner as for CDPD. However, in order to exchange
TCP packets over Bluetooth, the Point-to-Point Protocol (PPP)
must be pushed on top of the Bluetooth stack (consisting RF-
COMM, L2CAP, serial transport driver and lower layers). PPP
requires a connection to exist between the peers that need to
communicate via TCP or UDP or any other transport protocol.
Thus, an RFCOMM connection was first established between
the two Linux boxes. PPP was then started and the connection
remained established through all sets of experiments.

C.4 Controlled Experimental Variables

In this section we define the overall experiment space and de-
scribe the various controlled variables. We have used five con-
trolled variables in the experiments.These are packet size (re-
quest/reply), connection setup mode (on/off), time-of-day,
location and client mobility. Our experimental space is de-
fined by different combinations of these five variables. Based
on the different values that these variables are allowed to take,
we have quite a large experimental space consisting of about
288 (CDPD) to 432 (Bluetooth) possible 5-tuples. We allow
each variable to take only a subset of the possible values and
thus reduce the size of the space considerably.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Performance of TCP and CentaurusComm over CDPD
A.1 TCP over CDPD

Different locations were chosen to measure performance of
TCP over CDPD. Each location experienced different signal
strengths, peak hours and channel busyness. However, our
analysis indicates that the overall performance of successful
transmissions is quite similar. The graph in figure 1 shows typi-
cal TCP performance over CDPD with respect to RTT. We were
unable to obtain enough useful data for packets of sizes 256
and 512 bytes. However, we show the expected plot (dashed
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curve) if the RTT were to vary linearly with the packet size. It
should be noted that the plot is a curve and not a straight line
because the scale on the x-axis is logarithmic to base 2. We
note that there is a sudden increase in RTT when the packet
size increases from 2048 bytes to 4096 bytes. Analysis of the
output of tcpdump indicates that a large number of retransmis-
sions begin to occur when transmitting segments of a 4096 byte
packet. These retransmissions cause further segment losses and
thus increase the overall time to transmit the entire packet. In
some cases they cause the interruption of the whole transmis-
sion process. This is a well-known problem discussed in detail
in [17].

The graph in figure 2 shows the influence of the measured
environmental factors on the performance of TCP for 1024-
byte packets. The plots of the measured variables have been
scaled and shifted on each graph. This allows us to visually de-
termine the effect of RSSI, BLER and Cell Congestion on RTT.
The diamond shapes on the graphs represent sessions that were
dropped. “Efficiency” is simply the ratio of number of bytes
transmitted to those received per session. ldeally efficiency
should be 1. When more number of bytes are received for a
given packet size, due to retransmissions, efficiency decreases.
The “RTT Range” shown in the figure is the difference between
maximum and minimum RTT values for the chosen number of
data points.

The graph suggests that signal strength does not have much
influence on the performance except when it drops to the zero
level. The zero level is represented in the graph by the dashed
line directly underneath the RSSI plot. The zero level for a
CDPD modem is -113 dBm. We note that block error rate
caused by RF noise and congestion at the cell cause signifi-
cant performance degradation. In figure 2, we see that a com-
bination of moderate BLER and Cell Congestion lead to higher
RTT and lower efficiency values.

A.2 CentaurusComm over CDPD

Experimental results indicate that the CentaurusComm pro-
tocol is not as prone to performance degradation as TCP over
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CDPD. The graph in figure 3 shows CentaurusComm perfor-
mance for different message sizes. When comparing the RTT
values for CentaurusComm to those of TCP, it must be noted
that TCP measurements do not include time required to set up a
connection. The typical connection time for TCP under favor-
able conditions is about 2 seconds. Therefore, taking the con-
nection time into account, it could be observed that for small
packet sizes the performance of CentaurusComm is compara-
ble to the that of TCP. For message sizes of 4096 bytes the
performance is better by a factor of about 5. For a message size
of 8192 bytes measurements were not possible on TCP due to
very few successful sessions. On the other hand, with Centaur-
usComm there were no lost sessions observed for any message
size. However we did not test CentaurusComm under extreme
conditions such as underwater tunnels. The graph in figure 4
shows the relationship between environmental conditions and
RTT. The packet size in figure 4 is 8192 bytes. These figures
also bring out the effects of BLER, RSSI and Cell Congestion
on RTT. Most of the large peaks on the RTT plot were actually
caused by the CDPD modem getting ejected from the channel
and performing wide channel scan. We also found that Cen-
taurusComm incurs a constant performance penalty of about 2
seconds because of the initial and final synchronization of the
sender and receiver. However, this could be improved by re-
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Fig. 4. Influence of environmental factors on performance of CentaurusComm
in CDPD for large transmissions

designing the protocol so that it starts sending the beginning of
the message before it gets the PROCEED message from the
receiver. This would greatly improve the performance in cases
when the environmental conditions are favorable, but would not
significantly reduce the performance under unfavorable condi-
tions.

B. Performance of TCP and CentaurusComm over Bluetooth
B.1 TCP over Bluetooth

Analysis of TCP performance over Bluetooth indicates that
the RTT remains almost constant for packet sizes between 64
and 1024 bytes, and again between 2048 and 4096 bytes. We
notice a jump of around 400 ms in the RTT when the packet
size increases from 1024 to 2048 bytes and again from 4096
to 8192 bytes. It is possible that this behavior is due optimiza-
tion of the TCP buffer size for certain sizes like 1024 and 4096
bytes. However, we have not investigated this possibility. The
graph shown on figure 5 is typical of TCP performance over
Bluetooth under the conditions described above. The analysis
of the session dump shows that due to the low latency of the
Bluetooth network, TCP does not exhibit the congestion con-
trol problem described in [17].

However, we did not perform extensive testing under differ-
ent conditions, so it is not known how Bluetooth networks will
behave under hostile conditions, such as high RF interference
and mobility of the client. We performed Bluetooth testing on
Linux-based workstations, which can afford to maintain large
buffers and windows for handling transmissions. The behavior
of TCP over Bluetooth might be different for small handhelds
and embedded devices which are viewed as major market for
Bluetooth. Evaluating TCP over Bluetooth using smaller de-
vices is part of our future work.

B.2 CentaurusComm over Bluetooth

We conducted some preliminary experiments of Centaurus-
Comm behavior over Bluetooth networks. The same Level |
module that was used for running CentaurusComm over CDPD
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type of networks was used in this case as well. Analysis of
CentaurusComm performance over Bluetooth shows that the
protocol scales linearly with message size. When comparing
TCP and CentaurusComm over Bluetooth, it should be noted
that TCP shows better performance because it has the advan-
tage of running in kernel space. In general, we find that Cen-
taurusComm performs very similarly to TCP for small packet
sizes; the difference in RTT is around 50ms up to 512-byte
packets. For packet sizes 1024 bytes and above, the difference
in RTT ranges between 100ms and 150ms. We attribute this to
the slower execution of segmentation and reassembly in Cen-
taurusComm, in user space. One peculiar problem we faced
with CentaurusComm was with 8192 byte sized packets. For
reasons yet undetermined, the average RTT for 8192 byte pack-
ets increases phenomenally to around 3.5s from an average of
around 0.6s for 4096 byte packets. We are trying to determine
the cause(s) of this behavior. The graph in figure 6 shows the
performance of CentaurusComm over Bluetooth for different
message sizes up to 4096 bytes.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have conducted an empirical study of the
performance of two different transport protocols over wireless
networks. Simulation studies have shown that TCP does not

perform well in wireless networks. However, we believe that
our work is one of the few that consists of experimental evalu-
ation and analysis of TCP in wireless networks. We have also
described CentaurusComm, a protocol optimized for wireless
networks, evaluated its performance empirically and compared
it with TCP. We also conclude that results obtained empirically
are very important in evaluating performance of protocols in
wireless networks. In the future we are planning to conduct
more rigorous testing of these protocols on Bluetooth and other
types of wireless networks. Future work also includes clean in-
tegration of CentaurusComm over the Bluetooth Stack. The
current method of sending CentaurusComm messages over the
PPP/RFCOMM/L2CAP part of the stack is quite expensive in
terms of time. We are now working on integrating Centaurus-
Comm directly with the HCI and the L2CAP layers.
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