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CONTINUOUS DATA ASSIMILATION FOR THE
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Abstract. In this paper, we identify conditions, based solely on the observed data, for the
global well-posedness, regularity, and the asymptotic tracking property of solutions of the Newtonian
relaxation (nudging) algorithm for data assimilation for the three-dimensional incompressible Navier–
Stokes equations (3D NSE). A rigorous analysis of this algorithm for dissipative partial differential
equations was first provided by Azouani, Olson, and Titi [J. Nonlinear Sci., 24 (2014), pp. 277–
304] in the context of the two-dimensional Navier–Stokes equations. In that analysis, as also in
each of the subsequent ones of other dissipative systems including the 3D Boussinesq system with a
large Prandtl number, the primitive equations of the ocean and atmosphere, and several α-models
of turbulence, a crucial role is played by the known uniform H1-norm bound of the absorbing ball
(i.e., an eventual H1-norm bound on a solution of each of these systems). However, in the 3D case,
even for a globally regular solution, no such (eventual) uniform H1-norm bound is known. The
starting point of our analysis is a Leray–Hopf weak solution, satisfying a certain condition based on
observations, which subsequent work has shown to imply eventual regularity (and regularity in case
the solution is on the weak attractor). To the best of our knowledge, this is the first such rigorous
analysis of the Azouani–Olson–Titi data assimilation algorithm for the 3D NSE for which an a priori
eventual uniform H1-norm bound is unknown, even if the solution is regular.

Key words. three-dimensional Navier–Stokes equations, continuous data assimilation, deter-
mining modes, determining volume elements and nodes, signal synchronization
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1. Introduction. For a given dynamical system, which is believed to accurately
describe some aspect(s) of an underlying physical reality, the problem of forecasting is
often hindered by inadequate knowledge of the initial state and/or model parameters
describing the system. However, in many cases, this is compensated by the fact that
one has access to data from (possibly noisy) measurements of the system, collected on
a much coarser spatial grid than the desired resolution of the forecast. The objective
of data assimilation and signal synchronization is to use this coarse scale observational
measurements to fine tune our knowledge of the state and/or model to improve the
accuracy of the forecasts [24, 45].

Due to its ubiquity in scientific applications, data assimilation has been the sub-
ject of a very large body of work. Classically, these techniques are based on linear
quadratic estimation, also known as the Kalman filter. The Kalman filter has the
drawback of assuming that the underlying system and any corresponding observation
models are linear. It also assumes that measurement noise is Gaussian distributed.
This has been mitigated by practitioners via modifications, such as the ensemble
Kalman filter, the extended Kalman filter, and the unscented Kalman filter, and
consequently, there has been a recent surge of interest in developing a rigorous math-
ematical framework for these approaches; see, for instance, [5, 39, 45, 46, 48, 57] and
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6698 ANIMIKH BISWAS AND RANDY PRICE

the references therein. These works provide a Bayesian and variational framework
for the problem, with emphasis on analyzing variational and Kalman filter based
methods. It should be noted, however, that the problems of stability, accuracy, and
catastrophic filter divergence, particularly for infinite dimensional chaotic dynamical
systems governed by PDEs, continue to pose serious challenges to rigorous analysis
and are far from being resolved [15, 16, 39, 65, 66].

An alternative approach to data assimilation has recently been rigorously ana-
lyzed in the context of dissipative PDEs in [7, 8]. Motivated by earlier work, mainly in
the context of finite dimensional dynamical systems governed by ordinary differential
equations and early work in meteorology [4, 6, 14, 42, 54, 64, 62, 68], this algorithm
employs a feedback control paradigm via a Newtonian relaxation scheme (nudging).
This was in turn predicated on the notion of finite determining functionals (modes,
nodes, volume elements) for dissipative systems, the rigorous existence of which was
first established in [35, 36, 37, 43]. Due to the fact that it was first studied rigorously
in fluid dynamics in [7, 8], we henceforth refer to the system associated to the nudg-
ing algorithm as the Azouani–Olson–Titi (AOT) system. The AOT system was later
generalized to include various other models and convergence in stronger norms (e.g.,
the analytic Gevrey class) [2, 13, 28, 30, 31, 32, 33, 51, 55], as well as to more gen-
eral situations such as discrete in time and error-contaminated measurements and to
statistical solutions [10, 12, 34]. This method has been shown to perform remarkably
well in numerical simulations [3, 29, 38, 40, 41, 47] and has recently been successfully
implemented for the first time for efficient dynamical downscaling of a global atmo-
spheric reanalysis [25]. Recent applications include its implementation in reduced
order modeling (ROM) of turbulent flows to mitigate inaccuracies in ROM [67], and
in inferring flow parameters and turbulence configurations [26, 18].

We will now give a schematic description of the AOT system. Assuming that the
observations are generated from a continuous dynamical system given by

d

dt
u = F (u), u(0) = u0,

the AOT algorithm entails solving an associated system

(1.1)
d

dt
w = F (w)− µ(Ihw − Ihu), w(0) = w0 (arbitrary),

where Ih is a finite rank linear operator acting on the phase space, called an interpolant
operator, constructed solely from observations on u (e.g., low (Fourier) modes of u
or values of u measured in a coarse spatial grid). Here h refers to the size of the
spatial grid or, in case of the modal interpolant, the reciprocal of h stands for the
number of observed modes. Moreover, µ > 0 is the relaxation/nudging parameter. An
appropriate choice of µ is crucial in establishing that the AOT system (1.1) is well-
posed and that its solution tracks the solution of the original system asymptotically,
i.e., ∥w − u∥ −→ 0 as t→ ∞ in a suitable norm.

Here, we consider the well-posedness, stability, and convergence/asymptotic track-
ing property of solutions of the AOT system for the three-dimensional incompressible
Navier–Stokes equations (3D NSE). Although numerical simulations demonstrating
the efficacy of the AOT algorithm for the 3D NSE have recently been demonstrated
in [27], to the best of our knowledge, this is the first such rigorous analytical result
for the 3D NSE. Our starting point in the analysis is observations on finitely many
modes or volume elements (more generally, type 1 observations [7]) of a given solu-
tion u of the 3D NSE with an arbitrarily large Grashoff number and with either space
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periodic or Dirichlet boundary conditions. We consider a Leray–Hopf weak solution,
satisfying a certain condition based on observations (more precisely (1.6) in case of
modal observations or (3.8) for volume element observation), which subsequent work
has shown to imply eventually regularity (and regularity in case the solution is on the
weak attractor). More importantly from our perspective, unlike in data assimilation
for the 2D NSE or the α-models of turbulence in the 3D case [1, 2, 7, 28, 33] we do
not know the bound

(1.2) M = sup
[T0,∞)

∥u∥H1 (T0 ≥ 0),

where T0 is the time beyond which the solution is regular. Note that global regularity
simply means that sup[0,T ] ∥u∥H1 < ∞ for all T < ∞, and unlike in the 2D case, it
is quite possible for a globally regular solution to satisfy lim supt→∞ ∥u∥H1 = ∞ (i.e.,
M = ∞, whereM is as in (1.2)). Furthermore, in all the cases mentioned before where
a rigorous analysis of the AOT system is available, including the 3D cases such as
the Navier–Stokes-α models [1, 2, 33] and the Boussinesq system with a large Prandtl
number [28], it is known that an absorbing ball exists with an explicit estimate (in
terms of the physical parameters) of a uniform bound of its H1-norm. This in turn
means that not only M as in (1.2) is finite for a sufficiently large T0, an estimate of it
in terms of the physical parameters of the system is available. This fact is critical in
setting the value of the parameter µ in (1.1) that guarantees well-posedness, stability,
and the asymptotic tracking property of solutions of the AOT system. Moreover,
these bounds are used in providing an upper bound on the spatial resolution h of the
observations (or lower bound on the number of observed low modes) necessary for
data assimilation. Such a bound M is unknown for the 3D NSE, even for a globally
regular solution.

In this work, we circumvent this difficulty by identifying a condition on the ob-
served data (e.g., (1.6) for modal observations or (3.23) for a more general type 1
observation operator) which leads us to appropriately set the value of µ in (1.1) such
that the AOT system is well-posed and its solution asymptotically tracks the solution
u exponentially. We note further that unlike in the 2D case where one uses the 2D
embedding inequalities, the global well-posedness of the AOT system does not follow
from the usual Sobolev embedding inequalities in three dimensions; instead it cru-
cially depends on the choice of µ, which in turn depends on condition (1.6) or (3.23).
Moreover, our condition does not depend on any a priori knowledge of the regularity,
or the bound M in (1.2), which may not even be finite. We further emphasize that
our result applies quite generally to an arbitrarily large Grashoff number.

1.1. Connection to regularity. At the time of submission of this manuscript,
it was unknown whether the conditions (1.6) or (3.23) imply regularity, although as
noted in the discussion below, an (eventual) uniform bound as in (1.2) implies our
condition. In a follow-up work [9] of the first author (together with another collabo-
rator), we have established that (1.6) and (3.23) are in fact new, observable regularity
criteria on the weak global attractor of the 3D NSE. This result, which is obtained a
posteriori, and without any a priori assumption of regularity on the Leray–Hopf weak
solution u, essentially uses the techniques developed in this paper. Additionally, for
general Leray–Hopf weak solutions not necessarily on the weak attractor, it is now
known that our conditions also imply eventual regularity. More precisely, if either of
(1.6) or (3.23) holds with T = ∞, then there exists a time T0 such that the solution of
the 3D NSE u is regular on [T0,∞), i.e., sup[T0,T1] ∥u∥H1 <∞ for all fixed T1 satisfy-
ing T0 < T1 <∞. This result was obtained by Cheskidov and Titi [21] and involves a
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6700 ANIMIKH BISWAS AND RANDY PRICE

contradiction argument that crucially makes use of the asymptotic tracking property
(e.g., Theorems 3.3 and 3.6) obtained here.

Examples of nonstationary 3D flows with an arbitrarily large Grashoff number
which are either regular or eventually regular include Navier–Stokes equations in a
thin 3D domain [52, 53, 56], large Prandtl number flows in case of the Boussinesq
system [69, 70], as well as 2D flows which can be considered as “embedded” in 3D
flows.

1.2. Overview. We will give a brief description of our results in the case of the
modal interpolant (observable), even though our results are applicable to the more
general case of a type 1 interpolant operator (see section 2 or [8, 7] for a definition).
Let A denote the Stokes operator (see section 2 or [23, 63]) with either the space
periodic or the homogeneous Dirichlet boundary condition. It is well-known that A is a
positive self-adjoint operator with a compact inverse (on appropriate functional spaces
as described in section 2) with eigenvalues 0 < λ1 < λ2 < · · · , with λK → ∞. Let
the modal interpolant PK be orthogonal projection on the (finite dimensional) space
spanned by eigenvectors corresponding to eigenvalues λ1, . . . , λK . Let the Navier–
Stokes equations be given by (2.1) (or in its functional form (2.2)) and let G denote
the (nondimensional) Grashoff number

G =
∥f∥L2

ν2λ
3/4
1

,

where ν is the kinematic viscosity and f is the body force. Let u be a Leray–Hopf weak
solution of the 3D NSE (see Definition 2.1), satisfying the energy bound ∥u(t)∥L2 ≲

Gνλ
−1/4
1 for t ≥ t∗ [23]. Henceforth, a ≲ b means a ≤ Cb and a ≳ b means a ≥ Cb, for

some nondimensional constant C which may depend on the Sobolev constants (i.e.,
the domain), but not on any other physical parameters. Moreover, the notation a ∼ b
means that both a ≲ b and b ≲ a hold.

Following Theorem 3.2 (see (3.7)), define

M2
K,u := 8

(
∥f∥2L2

ν2λ1
+ sup

t∈[t0,T )

∥PK(u)∥2H1

)
, where t0 < T ≤ ∞.

We first proceed to show that MK,u as defined above is finite. To that end, using the
fact that [23, 63]

∥PKu∥H1 ∼ ∥A1/2PKu∥L2 ≤ λ
1/2
K ∥u∥L2 ,

we have
sup

t∈[t0,∞)

∥PKu∥H1 ≲ λ
1/2
K sup

t∈[t0,∞)

∥u∥L2 ≲ λ
1/2
K λ

−1/4
1 Gν,

where in the last inequality, we used the uniform bound on the L2-norm of a Leray–
Hopf weak solution u noted before. We thus conclude that in the definition above,
MK,u <∞.

With the above notation, our sufficient condition for the AOT algorithm (1.1)
to be well-posed, admitting a “regular” solution w, and possessing the (exponential)
tracking property (i.e., ∥w− u∥L2 ≲ e−cµt) on the time interval [t0, T ) with t0 < T ≤
∞, is given by (see (3.8))

(1.3) νmax

{
2cM4

K

ν4
, λ1

}
≤ νλK

4
.
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This is equivalent to

2
√
2cM2

K,u

ν2
≤ λ

1/2
K and 4λ1 ≤ λK .

In other words, denoting c1 = 16
√
2c and using the definition ofMK,u above, we need

K satisfying

(1.4) c1

(
∥f∥2L2

ν4λ1
+

supt∈[t0,T ) ∥PK(u)∥2H1

ν2

)
≤ λ

1/2
K and 4λ1 ≤ λK .

Let K0 be the smallest natural number such that we have

(1.5)
2c1∥f∥2L2

ν4λ1
≤ λ

1/2
K and 4λ1 ≤ λK ∀ K ≥ K0.

Since λK is strictly increasing in K and λK → ∞ as K → ∞, the existence of such a
K0 (which in fact is unique since λK is strictly monotone) is guaranteed. Note that
no smallness condition on f is necessary for this to hold. However, a larger value of
∥f∥L2 will necessitate a larger value of K0. Now, once K0 is thus defined, provided
there exists K ≥ K0 which satisfies

2c1 supt∈[t0,T ) ∥PK(u)∥2H1

ν2
≤ λ

1/2
K ,

then λK satisfies (1.4) and, consequently, (1.3). Thus, with K0 as in (1.5), one may
reformulate (1.3) as

(1.6) ∃ K ∈ N,K ≥ K0 such that
λ
−1/4
K

ν
sup
[t0,T )

∥PKu∥H1 ≤ c

2
.

A similar condition can be formulated for a more general type 1 interpolant (e.g.,
volume element) as well (see Theorems 3.5 and 3.6).

Remark 1.1. We now note the following concerning condition (1.6), and more
generally concerning Theorems 3.2, 3.3, 3.5, and 3.6.

1. The size of ∥f∥L2 (i.e., the Grashoff number G) occurring in the definition of
MK,u above can be arbitrarily large. A larger Grashoff number will in turn
necessitate a larger value of K0 in (1.5). We note that in the 2D case, where

regularity of u is known, with ∥u∥H1 ≲ νλ
1/2
1 G in the space periodic case,

(1.6) holds for K ∼ K0. This is indeed the case due to

(1.7) ∥PKu∥H1 ∼ ∥A1/2PKu∥L2 ≤ ∥A1/2u∥L2 ∼ ∥u∥H1 .

Therefore, in the 2D space periodic case, (1.5) and (1.6) simplify to a single
condition, namely λK ≥ Cν,λ1

G4. A similar bound for the number of modal
observations necessary for the AOT algorithm to converge in the 2D case
was obtained in their seminal work by Azouani, Olson, and Titi [7] (though
their bound is much sharper for the 2D space periodic case, namely, λK ≥
C(ν, λ1)G

1/2, due to the fact that they used 2D Sobolev embedding inequali-
ties in their derivation). Thus, (1.3) may be viewed as a generalization of the
2D result in [7] to the 3D setting.
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2. The condition (1.6) depends only on the observed part of the data PKu (i.e.,
the low modes) and does not involve the high modes. This ensures that we
can construct the data assimilation system (1.1) based only on the observed
data, provided (1.6) holds, which can in turn be verified from the observations.
Moreover, the value of the tuning parameter µ, crucial in setting up (1.1),
can be determined from the observed data as prescribed in (3.8).

3. Denote

(1.8) Kinf = min{K : K satisfies (1.3) (or (1.6))}.

Suppose that u is regular on the interval [t0, T ) where t0 < T ≤ ∞ and
satisfies

(1.9) sup
[t0,T )

∥u∥H1 <∞.

Due to (1.7) and the fact that λK → ∞ as K → ∞, clearly, in this case, we
have Kinf <∞. However, Kinf (equivalently λKinf

) as defined in (1.8) may
be much smaller than the one determined by the upper bound provided by
(1.9).

4. At the time of the submission of the manuscript, the converse direction of part
3 above was unknown. Subsequently, using the techniques developed here, we
have shown in [9] that (1.6) implies regularity on the weak attractor of the 3D
NSE. More precisely, if {u(t) : t ∈ R} is a Leray–Hopf weak solution on the

weak global attractor of the 3D NSE satisfying
λ
−1/4
K

ν sup(−∞,T ] ∥PKu∥H1 ≤ c,
then u is regular on (−∞, T ]. Additionally, it is now also known that condition
(1.6) with T = ∞ implies eventual regularity, i.e., if (1.6) holds with T = ∞,
then there exists T0 such that u is regular on [T0,∞), i.e., for all T1 satisfying
T0 < T1 < ∞, sup[T0,T1] ∥u∥H1 < ∞. This result, which uses a contradiction
argument and the asymptotic tracking property established here in Theorems
3.3 and 3.6, was obtained by Cheskidov and Titi [21].

5. Assume that u satisfies (1.6) with T = ∞. Then, due to the eventual reg-
ularity result due to Cheskidov and Titi [21], we know that u is regular
on some interval [T0,∞) and sup[T0,∞) ∥u∥H1 < ∞. An interesting ques-
tion that arises here is whether it is possible for sup[T0,∞) ∥u(t)∥H1 = ∞ for
a solution that is regular on [T0,∞). Although we do not know the an-
swer to this question, we note that if such a regular solution u exists, then
there exists another solution ũ of the 3D NSE with initial data ũ0 ∈ H1

and a finite time T0 < ∞ such that ũ is regular on [t0, T0) but not at T0
(i.e., lim supt↗T0

∥u(t)∥H1 = ∞) [23]. In other words, if solutions of the
3D NSE are globally regular for all initial data in H1, then in fact (1.9)
holds.

6. It is shown in Theorem 3.4 that the wave number Kinf identified in (1.8) is a
determining wave number for the 3D NSE. A different notion of a time-varying
determining wave number Λ(t) for the 3D, space periodic NSE is given in
[19, 20]. One crucial difference between them is that Kinf can be determined
by observing finitely many modes while determining the time dependent wave
number in [19, 20] requires the knowledge of all Fourier modes of u; a detailed
discussion and comparison is provided in Remark 3.4. However, Λ(t) is known
to be a determining wave number for any Leray–Hopf weak solution. On the
other hand, the pointwise analogue of Kinf is not known to be a determining
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wave number for a possibly non-regular Leray–Hopf solutions (if they exist)
at this point.

The organization of the paper is as follows. In section 2, we establish the requisite
notation and state preliminary results and facts. In section 3, we state and prove
our main results, while in section 4, we provide an adaptive version of our algorithm
which might be useful for computational purposes when the flow is turbulent in certain
intervals of time.

2. Notation and preliminaries. The 3D NSE on a domain Ω with time inde-
pendent forcing (assumed for simplicity) is given by

(2.1)
∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f, ∇ · u = 0 for t ∈ (0,∞),

with the initial condition u(0) = u0. Here u denotes the velocity of the fluid, p denotes
the pressure, ν is the kinematic viscosity, and f is the body force. Concerning the
boundary conditions, we assume either that Ω ⊂ R3 is bounded with boundary ∂Ω of
class C2 and u|∂Ω = 0 or that Ω = [0, L]3 and u is space periodic with space period
L in all variables with space average zero, i.e.,

∫
Ω
u = 0. For simplicity, we also take

the body force f to be time independent with f ∈ (L2(Ω))3.
We briefly introduce the functional framework for (2.1); for a more detailed dis-

cussion see [23, 63]. For α ≥ 0, we will denote by Hα(Ω) the usual Sobolev space of
order α. In the case of the periodic boundary conditions we consider V as the set of all
L-periodic trigonometric polynomials from R3 to R3 that are divergence free and have
zero average. In the case of the no-slip Dirichlet boundary conditions we consider V

as the set of all C∞ vector fields from Ω to R3 that are divergence free and compactly
supported. Then H is the closure of V with respect to the norm in (L2(Ω))3 and V is
the closure of V with respect to the norm in (H1(Ω))3. The inner products in H and
V are given by

(u, v) =

∫
Ω

u(x) · v(x)dx ∀ u, v ∈ H

and

((u, v)) =

∫
Ω

3∑
i=1

∂u

∂xi
· ∂v
∂xi

dx ∀u, v ∈ V,

and the corresponding norms are given by |u| = (u, u)1/2 and ∥u∥= ((u, u))1/2, re-
spectively. We also denote by Pσ the Leray–Hopf orthogonal projection operator from
L2(Ω) to H. The Stokes operator is given by

Av = Pσ(−∆)v, v ∈ H2(Ω) ∩ V.

We recall that A is a positive self-adjoint operator with a compact inverse and
D(A) = {u ∈ V : Au ∈ H}. Moreover, there exists a complete orthonormal set
of eigenfunctions ϕi ∈ H such that Aϕi = λiϕi where 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · are
the eigenvalues of A repeated according to multiplicity. In case u ∈ D(Aα), α ≥ 0,
then u ∈ H2α(Ω) and ∥u∥H2α ∼ |Aαu|. With the notation above, by applying the
projection Pσ to (2.1), we may express the NSE in the functional form as

(2.2)
du

dt
+ νAu+B(u, u) = f, ∇ · u = 0 for t ∈ (0,∞), u(0) = u0,

where B(u, u) = Pσ(u · ∇)u an for simplicity and where, by an abuse of notation, we
denote Pσf by f .
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We denote by HN the space spanned by the first N eigenvectors of A and the
orthogonal projection from H onto HN is denoted by PN . We also recall the Poincaré
inequality

(2.3) λ
1/2
1 |v| ≤ ∥v∥, v ∈ V.

Let V ′ denote the dual space of V . The bilinear continuous operator B from
V × V to V ′ is defined by

⟨B(u, v), w⟩ =
∑
i,j

∫
Ω

ui(∂ivj)wj , u, v, w ∈ V,

where ⟨·, ·⟩ denotes the duality between V and V ′. The bilinear term B satisfies the
orthogonality property

⟨B(u,w), w⟩ = 0 ∀u,w ∈ V.

Moreover, the bilinearity of B implies

(2.4) B(u, u)−B(w,w) = B(u− w, u)−B(w,w − u) = B(w̃, u) +B(w, w̃).

We recall some well-known bounds on the bilinear term in the 3D case which appear
in [58, 63].

Proposition 2.1. If u ∈ V, v ∈ D(A) and w ∈ H, then B(u, v) ∈ H and

(2.5) |(B(u, v), w)| ≤ c∥u∥L6∥∇v∥L3∥w∥L2 ≤ c∥u∥∥v∥1/2|Av|1/2|w|.

Moreover, if u, v, w ∈ V , then B(u, v) ∈ H and

(2.6) |(B(u, v), w)| ≤ c∥u∥L4∥∇v∥L2∥w∥L4 ≤ c|u|1/4∥u∥3/4∥v∥|w|1/4∥w∥3/4.

Definition 2.1. u is said to be a weak solution of (2.2) if for all T > 0, u belongs
to L∞([0, T ];H)∩L2([0, T ];V )∩C([0, T ];V ′)∩C([0, T ];Hw),

du
dt ∈ L1((0, T );V ′) and

satisfies a.e. t

d

dt
(u, v) + ν((u, v)) + (B(u, u), v) = (f, v) ∀v ∈ V and u(0) = u0.

In the above definition, Hw denotes the Hilbert space H equipped with its weak topology.
A weak solution u is said to be a Leray–Hopf weak solution if it additionally

satisfies for a.e. t0 ∈ [0,∞), including at t0 = 0, the energy inequality

(2.7)
1

2
|u(t)|2 + ν

∫ t

t0

∥u(s)∥2 ds ≤ 1

2
|u(t0)|2 +

∫ t

t0

(f, u(s)) ds, t ≥ t0,

as well as the global (in time) energy bound

(2.8) |u(t)|2 ≤ e−νλ1t|u0|2 +
|f |2

ν2λ21

(
1− e−νλ1t

)
, t ≥ 0.

A weak solution is said to be a strong solution if it also belongs to L∞((0, T );V )∩
L2((0, T );D(A)).
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Note that the equality u(0) = u0 makes sense as u ∈ C([0, T ];V ′). Moreover, it
follows immediately from (2.8) that for any Leray–Hopf weak solution, there exists a
time t∗ = t∗(u0) such that

(2.9) |u(t)|2 ≤ 2G2ν2λ
−1/2
1 ∀ t ≥ t∗, where the Grashoff number G :=

|f |
ν2λ

3/4
1

.

The Galerkin approximation corresponding to (2.2) is given by the solution uN
of the following Galerkin system:

duN
dt

+ νAuN + PNB(uN , uN ) = PNf,

∇ · uN = 0,

uN (0) = PNu(0).

(2.10)

The following theorem due to Leray [23, 58, 63] gives us the existence of weak solutions
to (2.2) in three dimensions.

Theorem 2.1. Let T > 0 and f ∈ L2
loc([0, T ];V

∗). Then if u0 ∈ H, there is a
weak solution of (2.2) such that

u ∈ L∞([0, T ];H) ∩ L2([0, T ];V ),

and the equation holds as an equality in L4/3([0, T ];V ′). Moreover, there exists a sub-
sequence {uNk

} which converges to a weak solution u, in the topology of L2([0, T ];H)∩
C([0, T ];V ′) ∩ C([0, T ];Hw), as well as weakly in L2([0, T ];V ).

Definition 2.2. Following [49], we will say that u is a restricted Leray–Hopf
weak solution if it is obtained as a subsequential limit of a Galerkin system where the
convergence is as given in Theorem 2.1. We will denote by Wu0

the set of all restricted
weak solutions of (2.2) with initial data u0 ∈ H and we denote W =

⋃
u0∈H Wu0

.

It can be shown [23] that any u ∈ W is in fact a Leray–Hopf weak solution, thus
justifying the terminology in Definition 2.2.

Remark 2.1. The existence of weak solutions via the Galerkin construction shows
that the class Wu0

, which is contained in the set of all Leray–Hopf weak solutions, is
nonempty. It is presently unknown whether the class of restricted weak solutions (and
therefore Leray–Hopf weak solutions) are unique, i.e., whether or not the cardinality
of Wu0 is one. However, recent results in [17] (see also [50] for the hyperdissipative
NSE) show that weak solutions are not unique, although the problem of uniqueness for
Leray–Hopf weak solutions (i.e., weak solutions which additionally satisfy the energy
inequality (2.7)) remain open as of this writing. On the other hand, the well-known
weak-strong uniqueness result of Sather and Serrin [61] says that if a strong solution
of (2.2) exists on [0, T ], then all Leray–Hopf weak solutions coincide with the strong
solution.

2.1. Interpolant operators.

Definition 2.3. A finite rank, bounded linear operator Ih : H → L2(Ω) is said
to be a type 1 interpolant observable if there exists a dimensionless constant c > 0
such that

(2.11) |Ihv| ≤ c|v| ∀ v ∈ H and |Ihv − v| ≤ ch∥v∥ ∀ v ∈ V.
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The orthogonal projection operator PK , also known as the modal interpolant,
provides such an example. Indeed, it is easy to check that it satisfies (2.11):

(2.12) |PKv| ≤ |v| ∀ v ∈ H and |PKv − v| ≤ 1

λ
1/2
K

∥v∥ ∀ v ∈ V.

Thus (2.11) is satisfied with h = 1√
λK

.

Another physically relevant example of a type 1 interpolant, which is important
from the point of view of applications, is the volume element interpolant [7, 43]. For
the case of the periodic boundary conditions, the volume element interpolant is given
by

(2.13) Ih(ϕ)(x) =

N∑
j=1

ϕ̄j

(
χQj

(x)− h3

L3

)
, where ϕ̄j =

1

h3

∫
Qj

ϕ(x)dx,

where the periodic domain with side length L has been divided into equal cubes Qj of
side length h and χE denotes the characteristic function of a Borel set E. As shown
in [37, 43, 44], the volume element interpolant satisfies (2.11). One can analogously
define the volume element interpolant in case of the homogeneous Dirichlet boundary
condition, with appropriate modifications.

3. Well-posedness and the tracking property of the data assimilation
system. For the remainder of the paper, we will assume that u ∈ W is a restricted
global weak solution of (2.2) corresponding to initial data u0 ∈ V , i.e., u can be approx-
imated by a sequence of solutions {uN} of the Galerkin system in the following way:
uN → u weakly in L2(0, T ;V ), strongly in L2(0, T ;H), and in C(0, T ;V ′) (equipped
with the sup-norm on [0, T ]). We begin by describing the AOT data assimilation
system that we consider here. The observations are given by

(3.1) Observation O = {Ihu(t)}t≥0

where Ih is a type 1 interpolant (e.g., either a modal or volume interpolant). Since Ih
is of finite rank and u ∈ C([0, T ];V ′), the mapping t → Ihu(t) from [0,∞) to L2(Ω)
is continuous.

Our data assimilation algorithm is given by the solution w of the equation

dw

dt
+ νAw +B(w,w) = f − µPσIh(w − u),

∇ · w = 0,

w(0) = 0,

(3.2)

where, as in (2.2), f is time independent and f ∈ (L2(Ω))3. Furthermore, since u(·)
is weakly continuous in t, i.e., u ∈ C([0,∞);Hw), it follows that Ihu(·) is well-defined
and continuous in t with values in L2(Ω). We made the choice w(0) = 0 for specificity.
However, the AOT data assimilation system can be initialized by any initial value.
Recall that for notational simplicity, we have assumed that f is time independent.
The Galerkin approximation of w is given by the solution of the equation

dwN

dt
+ νAwN + PNB(wN , wN ) = PNf − µPNIh(wN − u),

∇ · wN = 0,

wN (0) = PNw(0) = 0.

(3.3)
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3.1. Global existence of a weak solution. We will now show existence of
a global (in time) weak solution of (3.2), where the definition of a weak solution is
similar to Definition 2.1. As in the case of the 3D NSE, we proceed by establishing
a priori bounds on the Galerkin system (3.3). Henceforth, by translating time if
necessary, we will assume that the weak solution u ∈ W satisfies (2.9) for all t ≥ 0.

Theorem 3.1. Let u ∈ W satisfy (2.9) for all t ≥ 0 and let Ih be any type 1
interpolant satisfying (2.11). Then, provided

(3.4) νλ1 ≤ µ ≤ ν

4ch2
(c as in (2.11)),

there is a weak solution w of (3.2) such that for any T > 0,

w ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) with |w(t)|2 ≲ G2ν2λ1 ∀t ≥ 0,

and the equation holds as an equality in L4/3(0, T ;V ′). Moreover, there exists a sub-
sequence {wNk

} which converges to a weak solution w weakly in L2([0, T ];V ), strongly
in L2([0, T ];H), and in C([0, T ];V ′).

Proof. We will start by establishing a priori estimates on the Galerkin system.
Taking inner product of (3.3) with wN , we readily obtain (after some elementary
algebra)

1

2

d

dt
|wN |2 + ν∥wN∥2

= (f, wN )− µ|wN |2 + µ(IhwN − wN , wN ) + µ(Ihu,wN )

≤ |f |2

νλ1
+
νλ1
4

|wN |2 + µ

4
|wN |2 + µch2∥wN∥2

+ µ|Ihu|2 +
µ

4
|wN |2 − µ|wN |2,(3.5)

where to obtain (3.5), we used Cauchy–Schwarz and Young inequalities, in conjunction
with the second inequality in (2.11). Using the inequalities (2.3), (2.9) and the first
inequality in (2.11), we readily obtain

(3.6)
d

dt
|wN |2 + µ|wN |2 + ν∥wN∥2 ≤ |f |2

νλ1
+ cµG2ν2λ1.

Dropping the last term from the left and applying Gronwall inequality together with
(3.4) and recalling wN (0) = 0, we get

|wN |2 ≤ |f |2

µνλ1
+ cG2ν2λ1 ≲ G2ν2λ1.

Integrating both sides of (3.6) and inserting the above bound, we immediately obtain

ν

∫ T

0

∥wN∥2 ≲ (1 + µT )G2ν2λ1.

The remainder of the proof is similar to the proof of existence of weak solutions of
the 3D NSE [23, 63].
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3.2. Global existence of a strong solution and tracking property. Thus
far, no assumption on the solution u was necessary to establish existence of a weak
solution of (3.2). In order to ensure global existence of a (hence the) regular solution
of (3.2) and to establish the tracking property (i.e., to show that it tracks u asymptot-
ically), we need to impose conditions on the observed data coming from the solution
u. For clarity of exposition, we will consider the case of modal interpolant first before
proceeding to a more general type 1 interpolant.

3.2.1. Modal interpolant case (i.e., Ih = PK). Before we proceed, we first
note that supt≥0 ∥PKu∥ <∞. Indeed,

∥PKu∥ ≤ λ
1/2
K |PKu| ≲ λ

1/2
K G2ν2λ1,

where the last inequality follows from (2.9). However, as we will see below (see Remark
3.3 and (3.17)), this bound is insufficient to guarantee that w tracks u. We require a
more stringent bound as given in (3.8) or, equivalently, as in (3.17).

Theorem 3.2. Suppose Ih = PK is a modal interpolant which satisfies (2.12).
Let 0 < T ≤ ∞ and denote

(3.7) M2
K =M2

K,u := 8

(
|f |2

ν2λ1
+ sup

t∈[0,T )

∥PK(u)∥2
)
.

Assume that

(3.8) νmax

{
2cM4

K

ν4
, λ1

}
≤ µ ≤ νλK

4
.

Then any weak solution of (3.2) constructed in Theorem 3.1 as a subsequential limit
of wN satisfying (3.3) is regular on [0, T ], i.e., it satisfies

(3.9) ∥w(t)∥ ≤MK , t ∈ [0, T ].

Additionally, any two strong solutions w1, w2 of (3.2) on the interval [0, T ] (i.e.,
solutions satisfying supt∈[0,T ] ∥wi(t)∥V = supt∈[0,T ] ∥wi(t)∥ <∞, i = 1, 2) coincide.

Proof. As is customary, we will obtain a priori estimates on the Galerkin system
and then pass to the limit. We begin by rearranging (3.3) with the assumption N ≥ K
to first obtain

dwN

dt
+ νAwN + PNB(wN , wN ) = f − µPN (PK(wN )− wN ) + µPK(u)− µwN .

Now taking the inner product with AwN yields

1

2

d

dt
∥wN∥2 + ν|AwN |2 + µ∥wN∥2

= (f,AwN )− (B(wN , wN ), AwN )

− µ(PK(wN )− wN , AwN ) + µ(PK(u), AwN ).(3.10)

Each term on the right-hand side is estimated below. First, using Cauchy–Schwarz
and Young’s inequalities, we have

|(f,AwN )| ≤ 1

ν
|f |2 + ν

4
|AwN |2.
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Next, using (2.5) and Young’s inequality, we obtain

|(B(wN , wN ), AwN )| ≤ c∥wN∥3/2|AwN |3/2 ≤ c

ν3
∥wN∥6 + ν

4
|AwN |2.

Observe now that from (2.12) and Young’s inequality, we obtain

µ|(PK(wN )− wN , AwN )| ≤ µ|PK(wN )− wN ||AwN | ≤ µλ
−1/2
K ∥wN∥|AwN |

≤ µ2

νλK
∥wN∥2 + ν

4
|AwN |2 ≤ µ

4
∥wN∥2 + ν

4
|AwN |2.

Moreover,

µ|(PK(u), AwN )| = µ|(A1/2PK(u), A1/2wN )|

≤ µ∥PK(u)∥∥wN∥ ≤ µ∥PK(u)∥2 + µ

4
∥wN∥2.

Inserting these estimates into (3.10), we obtain

(3.11)
d

dt
∥wN∥2 +

(
µ− c

ν3
∥wN∥4

)
∥wN∥2 ≤ 2

ν
|f |2 + 2µ∥PK(u)∥2.

Let [0, T1] be the maximal interval on which ∥wN (t)∥ ≤MK holds for t ∈ [0, T1] where
MK as in (3.7). Note that T1 > 0 exists because we have wN (0) = 0. Assume that
T1 < T . Then by continuity, we must have ∥wN (T1)∥ =MK . Using the lower bound
for µ in (3.8), for all t ∈ [0, T1], we obtain

d

dt
∥wN∥2 + µ

2
∥wN∥2 ≤ 2

ν
|f |2 + 2µ sup

s∈[0,T ]

∥PK(u(s))∥2.

Since wN (0) = 0, by the Gronwall inequality we immediately obtain

∥wN∥2 ≤ 4

ν2λ1
|f |2 + 4 sup

s∈[0,T )

∥PK(u(s))∥2 ≤ 1

2
M2

K ∀t ∈ [0, T1].

This contradicts ∥wN (T1)∥ =MK . Therefore we conclude T1 ≥ T , and consequently,
∥wN (t)∥ ≤ MK for all t ∈ [0, T ]. Passing to the limit as N → ∞, we obtain the
desired conclusion for w, i.e., w satisfies the bound in (3.9).

We will now prove uniqueness of strong solutions. Observe that ∥B(w,w)∥V ′ ≲
∥w∥2L4 ≤ |w|1/2∥w∥3/2. It is now easy to see from (3.2) that if w is a strong solution
on [0, T ], then d

dtw ∈ L2([0, T ];V ′) and consequently, |w(t)|2 is differentiable a.e. on
[0, T ]. Let w̃ = w2 − w1. Then w̃ satisfies

(3.12)
d

dt
w̃ + νAw̃ +B(w2, w̃) +B(w̃, w1) = −µIhw̃.

Let

(3.13) M = sup
[0,T ]

∥w1∥ <∞.

By taking inner product with w̃ with (3.12), using the properties of the type 1 inter-
polant in (2.11) and the estimate of the nonlinear term in (2.6), we readily obtain

d

dt
|w̃|2 + ν∥w̃∥2

≤ c|w̃|1/2∥w̃∥3/2∥w1∥ − µ|w̃|2 + µch2∥w̃∥2 + µ

2
|w̃|2

≤ cM

ν3
|w̃|2 + ν

2
∥w̃∥2 + µ

2
∥w̃∥2 − µ

2
|w̃|2,
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where to obtain the inequality in the line above, we used Young’s inequality together
with (3.13) and the condition on µ in (3.4). Since w̃(0) = 0, using the Gronwall
inequality, we readily conclude that w̃ = 0 on [0, T ], i.e., w1 and w2 coincide on
[0, T ].

Remark 3.1. Observe that in the proof of the uniqueness presented above, the
bound in V of only one of the two solutions appears explicitly. Indeed, one can prove
a weak-strong uniqueness as in the case of the 3D NSE, a result due to Sather and
Serrin [61]. More precisely, if there exists a strong solution w of (3.2) on [0, T ], then
it coincides with any other Leray–Hopf weak solution of (3.2). The proof is similar
to that of the Sather–Serrin result [61].

We will now prove the tracking property of the solution given in Theorem 3.2.

Theorem 3.3. Assume that the hypotheses of Theorem 3.2 hold. Let w̃ = w− u.
Then |w̃(t)|2 ≤ e−

µ
2 t|w̃(0)|2 for all t ∈ [0, T ]. In particular, if in the statement of

Theorem 3.2, T = ∞, then
lim
t→∞

|w̃(t)|2 = 0.

Proof. Since u ∈ B, there exists a Galerkin sequence {uNk
}∞k=1 converging to u in

the sense of Theorem 2.1 (in particular, in the topology of L2([0, T ];H)∩C([0, T ];V ′)).
Note that by Theorem 3.2 and Remark 3.1, w is the unique, strong solution of (3.2).
Therefore, the entire Galerkin system {wN} converges to w. (To see this, note that
any subsequence of {wN} has a further subsequence which converges (in the metric
space L2([0, T ];H) ∩ C([0, T ];V ′)) to a strong solution of (3.2), which by uniqueness
(see Theorem 3.2) must be w.) Therefore, by relabeling the subsequence Nk, we can
assume that {uN} converges to the weak solution u while {wN} converges to the
unique strong solution w. We will now fix this sequence and assume N ≥ K, where
recall that PK is the modal interpolant.

Note that w̃N = wN − uN satisfies

dw̃N

dt
+ νAw̃N + PNB(wN , wN )− PNB(uN , uN ) = −µPK(w̃N ) + µPK(u− uN ),

which can be rearranged to

dw̃N

dt
+ νAw̃N + PNB(w̃N , wN ) + PNB(uN , w̃N ) = −µQK(w̃N )− µw̃N

+ µPK(u− uN ).

We take the inner product with w̃N

1

2

d

dt
|w̃N |2 + ν∥w̃N∥2 + µ|w̃N |2 = −(B(w̃N , wN ), w̃N )− µ(QK(w̃N ), w̃N )

+ µ(PK(u− uN ), w̃N )(3.14)

and estimate each term on the right-hand side as follows:

|(B(w̃N , wN ), w̃N )| ≤ c|w̃N |1/2∥wN∥∥w̃N∥3/2 ≤ c

ν3
∥wN∥4|w̃N |2 + ν

2
∥w̃N∥2,

µ|(QK(w̃N ), w̃N )| ≤ µ|QK(w̃N )||w̃N | ≤ µ

λ
1/2
K

∥w̃N∥|w̃N |

≤ µ

λK
∥w̃N∥2 + µ

4
|w̃N |2 ≤ ν

2
∥w̃N∥2 + µ

4
|w̃N |2,

µ|(PK(u− uN ), w̃N )| ≤ µ|PK(u− uN )||w̃N | ≤ µ|PK(u− uN )|2 + µ

4
|w̃N |2.
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Inserting the estimates into (3.14),

d

dt
|w̃N |2 +

(
µ− c

ν3
∥wN∥4

)
|w̃N |2 ≤ µ|PK(u− uN )|2.

Since µ satisfies (3.8), we get

d

dt
|w̃N |2 + µ

2
|w̃N |2 ≤ µ|PK(u− uN )|2.

Applying Gronwall, for all t ∈ [0, T ], we get

(3.15) |w̃N (t)|2 ≤ e−(µ/2)t|w̃(0)|2 + 2 sup
t∈[0,T ]

|PK(u− uN )|2.

Recall that uN → u in C(0, T ;V ′) for all T < ∞. Therefore, denoting by ϕi the ith
eigenvector of the Stokes operator A (which implies that ϕi ∈ V ), we have for each i,
lim supN→∞ sup[0,T ] |(u− uN , ϕi)| = 0. Therefore,

(3.16) lim sup
N→∞

sup
t∈[0,T ]

|PK(u− uN )|2 ≤ lim sup
N→∞

sup
t∈[0,T ]

K∑
i=1

|(u− uN , ϕi)|2 = 0.

Since w̃N converges to w̃ in L2([0, T ];H), there exists a subsequence w̃Nk
which con-

verges a.e. t ∈ [0, T ]. Now taking the limit and using (3.15) and (3.16), it follows that
a.e. t, we have

|w̃(t)|2 ≤ e−(µ/2)t|w̃(0)|2.
This proves the result.

Remark 3.2. The fact that u is a restricted Leray–Hopf weak solution, i.e., u is
obtained as a suitable limit of a Galerkin system (or some other appropriate limiting
procedure), is used only in the proof of Theorem 3.3. This technicality is due to
the fact that it is unknown whether for an arbitrary Leray–Hopf weak solution, the
quantity |u(t)|2 (and hence |w̃(t)|2 = |(w − u)|2 is differentiable, although |w(t)|2 is
due to its being a strong solution. However, subsequently in [9], we have been able
to extend this result to the case of an arbitrary Leray–Hopf weak solution (i.e., in
Theorem 3.3, the assumption that u is a restricted Leray–Hopf weak solution can
be relaxed to u being an arbitrary Leray–Hopf weak solution). Since w is a strong
solution, the proof is an appropriate (but nontrivial) modification of the Sather–Serrin
weak-strong uniqueness theorem for the Navier–Stokes equations.

Remark 3.3. Note that the conclusions of Theorems 3.2 and 3.3 rest on the choice
of µ satisfying (3.8). This is possible if there exists K such that

(3.17) C ≥ λ−1
K max

{
M4

K

ν4
, λ1

}
,

where MK is as defined in (3.7) and for suitable C > 0. We emphasize that this
condition is expressed purely in terms of the observed data which in this case are the
low modes of the solution u and does not involve information on the unknown high
modes.

Suppose now that the solution u is regular on [0, T ]. For initial data u0 ∈ V , it is
well-known (see, for instance, [60]) that this happens if for some 1

2 < θ ≤ 1 (here we

take θ ≤ 1 as u0 ∈ V = D(A1/2))

sup
t∈[0,T ]

|Aθ/2u| =Mθ <∞.
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In this case,

∥PKu∥ = |PKA
1/2u| ≤ λ

(1−θ)/2
K |Aθ/2u| ≤ λ

(1−θ)/2
K Mθ.

Therefore,

M2
K ≲

(
|f |2

ν2λ1
+ λ

(1−θ)
K M2

θ

)
.

Since θ > 1
2 , a choice of λK satisfying (3.17) is indeed possible if K is chosen large

enough. In the borderline case θ = 1
2 , by proceeding in an analogous manner, we get

that (3.17) can be satisfied if Mθ = supt∈[0,T ] |A1/4u| is small. It should be noted

that it is well-known that in case f is small and |A1/4u0| is small, then the solution
u is globally regular and additionally |A1/4u| remains small for all times. Thus we
conclude that (3.17) holds for sufficiently large K for T < ∞ when the solution is
regular on [0, T ]. We show below that this condition when T = ∞ also implies that
K satisfying (3.17) is asymptotically determining.

Theorem 3.4. Let u1, u2 be two restricted Leray–Hopf weak solutions withMK,ui
, i =

1, 2 defined as in (3.7). Assume moreover that on [0,∞), we have

(3.18) λK ≳ max

{
M4

K,u1

ν4
,
M4

K,u2

ν4
, λ1

}
,

where MK,ui , i = 1, 2, as defined in (3.7) with T = ∞. If

(3.19) lim
t→∞

|PK(u1 − u2)| = 0,

then limt→∞ |u1(t)− u2(t)| = 0.

Proof. Let w1 and w2 be two strong solutions of the data assimilation equation
(3.2) corresponding to u1 and u2 for µ satisfying (3.8) for both u1 and u2. Denote
w̃i = wi − ui, i = 1, 2. Then by Theorem 3.3, limt→∞ |w̃i| = 0. Let w̃ = w1 − w2.
Proceeding exactly as in the proof of Theorem 3.3, and noting that ∥wi∥ ≤ MK and
that µ satisfies (3.8), we conclude

d

dt
|w̃|2 + µ

2
|w̃|2 ≤ µ|PK(u2 − u1)|2,

which yields, upon integrating between s to T , that

|w̃(T )|2 ≲ e−
µ
2 (T−s)|w̃(s)|2 + sup

t∈[s,T ]

|PK(u2 − u1)|.

Letting T → ∞ and using (3.19), we conclude that limt→∞ |w̃| = 0. Thus, limt→∞ |u1−
u2| = 0.

Remark 3.4. Due to Theorem 3.4 and the discussion in the introduction, Kinf as
given in (1.8) defines a notion of a determining wave number in the 3D case. This
definition applies both to the space periodic as well as the homogeneous Dirichlet
boundary conditions. A different notion of a time-varying determining wave number
for two Leray–Hopf weak solutions, based on the Littlewood–Paley decomposition
and applicable to the space periodic boundary condition on the domain Ω = [0, L]3,
is provided in [19, 20]. It is given by

Λ(t) = min{λq : (Lλp−q)
δ−1/2∥up∥L∞ < c0ν ∀ p > q and

λ−2
q ∥∇u≤q∥L∞ < c0ν},(3.20)
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where recall that λq = 2q/L, uq = ∆qu, where ∆q is the Littlewood–Paley projection,
while u≤q =

∑
−1≤j≤q ∆qu (see, e.g., [22] for a description of the Littlewood–Paley

decomposition). In case u is regular, the set over which the infimum is being taken in
(1.8) is nonempty. It should be noted that Λ as defined in (3.20) is in L1[T1, T2]) for
any Leray–Hopf weak solution and its time average is bounded by the Kolmogorov’s
dissipation wave number. Additionally, Λ is bounded on [T1, T2] if and only if u is
regular on that interval.

However, in order to verify whether a λK satisfies (1.6), we only need all lower
modes of u (i.e., PKu). On the other hand, in order to verify the first condition in
(3.20), namely

(Lλp−q)
δ−1/2∥up∥L∞ < c0ν ∀ p > q,

one needs the knowledge of all the higher modes of u. This is an important point
from the data assimilation perspective as the choice of µ in the AOT algorithm (3.2)
depends on this wave number and should be verifiable from observed data (i.e., low
modes only). We cannot define the AOT algorithm (3.2) based on (3.20) (at least
as expounded in [20]), because in order to define Λ in (3.20), we need to observe all
modes. A similar comment holds for the definition of the determining wave number
presented in [19] which is based on the Lr-norm instead of the L∞-norm as discussed
here in (3.20).

We also note that our approach results in a suitable definition of determining
volume elements in the 3D case (Theorem 3.7), no analogue of which exists in [19, 20].

3.2.2. General type 1 interpolant. In this section, we assume that u and w
satisfy the space periodic boundary condition. Thus, the Stokes operator A = (−∆)
on V = H1(Ω). Moreover, we also assume that in addition to (2.11), Ih satisfies the
condition Ran(Ih) ⊂ V = H1(Ω) and

(3.21) ∥Ihv∥ ≤ C∥v∥ ∀v ∈ V.

This is clearly satisfied for the modal interpolant PK . In case of the volume inter-
polant, one may apply a suitable mollification procedure to obtain a modified volume
interpolant, Ĩh, that satisfies both (2.11) and (3.21). In fact, this is achieved by

replacing the term (χQj
(x)− h3

L3 ) by
(
ψj(x)−

∫
Ω
ψj(y)dy

)
, where ψj = ρϵ ∗ χQj

for

ρ(ξ) =

{
K0 exp

(
1

1−|ξ|2

)
for |ξ| < 1,

0 for |ξ| ≥ 1,

and

(K0)
−1 =

∫
|ξ|<1

exp

(
1

1− |ξ|2

)
dξ.

The mollification parameter ϵ is chosen to be a fraction of h. Ĩh is a C∞ function and
it can be show that it satisfies (3.21). For more details see the appendix of [7], which
proves the corresponding result for the type 2 case.

Theorem 3.5. Assume that u as in (2.2) and w as in (3.2) satisfy the space
periodic boundary condition. Suppose Ih is a general type 1 interpolant and satisfies
(2.11). Let 0 < T ≤ ∞ and denote

(3.22) M2
h =M2

h,u := 8

(
1

ν2λ1
|f |2 + sup

t∈[0,T )

∥Ih(u)∥2
)
.
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Assume that

(3.23) max

{
2cM4

h

ν3
, νλ1

}
≤ µ ≤ ν

4ch2
.

Then any weak solution of (3.2) constructed in Theorem 3.1 as a subsequential limit
of wN satisfying (3.3) is regular on [0, T ], i.e., it satisfies

(3.24) ∥w(t)∥ ≤Mh, t ∈ [0, T ].

Proof. We proceed as in Theorem 3.2 by rearranging (3.3)

dwN

dt
+ νAwN + PNB(wN , wN ) = f − µPN (Ih(wN )− wN ) + µPNIh(u)− µwN

and taking the inner product with AwN

1

2

d

dt
∥wN∥2 + ν|AwN |2 + µ∥wN∥2

= (f,AwN )− (B(wN , wN ), AwN )

−µ(Ih(wN )− wN , AwN ) + µ(Ih(u), AwN ).(3.25)

Each term on the right-hand side is estimated below as in Theorem 3.2. First, we
have by Cauchy–Schwarz and Young’s inqualities,

|(f,AwN )| ≤ |f ||Aw| ≤ 1

ν
|f |2 + ν

4
|AwN |2.

Next, the nonlinear term is estimated using (2.5) and Young’s inequalities as

|(B(wN , wN ), AwN )| ≤ c∥wN∥3/2|AwN |3/2 ≤ c

ν3
∥wN∥6 + ν

4
|AwN |2.

Next, using (2.11),

µ|Ih(wN )− wN , AwN )| ≤ µ|Ih(wN )− wN ||AwN |

≤ µch∥wN∥|AwN | ≤ (µch)2

ν
∥wN∥2 + ν

4
|AwN |2

≤ µ

4
∥wN∥2 + ν

4
|AwN |2,

where to obtain the last inequality, we used (3.23). Observe now that since A = (−∆)
in the space periodic case, we can integrate by parts to obtain

µ|(Ih(u), AwN )| ≤ µ∥Ih(u)∥∥wN∥ ≤ µ∥Ih(u)∥2 +
µ

4
∥wN∥2.

Inserting the above estimates into (3.25) we obtain

d

dt
∥wN∥2 +

(
µ− c

ν3
∥wN∥4

)
∥wN∥2 ≤ 2

ν
|f |2 + 2µ∥Ih(u)∥2.

Let [0, T1] be the maximal interval on which ∥wN (t)∥ ≤Mh holds for t ∈ [0, T1] where
Mh as in (3.22). Note that T1 exists because we have wN (0) = 0. Assume that
T1 < T . Using the lower bound for µ in (3.23) and the Gronwall inequality we obtain

∥wN∥2 ≤ 4

ν2λ1
|f |2 + 4 sup

s∈[0,T ]

∥Ih(u(s))∥2 =
1

2
M2

h ∀ t ∈ [0, T1].

Arguing as in Theorem 3.2 by contradiction, we obtain the desired conclusion for w,
i.e., ∥w(t)∥ ≤Mh for all t ∈ [0, T ].
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We now can deduce the following result regarding the tracking property of w.

Theorem 3.6. Assume that the hypotheses of Theorem 3.5 hold. Let w̃ = w− u.

Then |w̃(t)|2 ≤ e
−µ
2 t|w̃(0)|2 for all t ∈ [0, T ]. In particular, if in the statement of

Theorem 3.5 we have T = ∞, then

lim
t→∞

|w̃(t)|2 = 0.

Proof. We proceed as in the proof of Theorem 3.3 by considering Galerkin se-
quences {uN} and {wN}. Note that the difference w̃N satisfies

dw̃N

dt
+ vAw̃N+PNB(wN , wN )−PNB(uN , uN )=− µPNIh(w̃N )+µPNIh(u−uN ),

which can be rearranged to

dw̃N

dt
+ vAw̃N + PNB(w̃N , wN ) + PNB(uN , w̃N ) = −µ(Ih(w̃N )− w̃N )− µw̃N

+ µPNIh(u− uN ).

We take the inner product with w̃N

1

2

d

dt
|w̃N |2 + ν∥w̃N∥2 + µ|w̃N |2 = −(B(w̃N , wN ), w̃N )− µ(Ih(w̃N )− w̃N , w̃N )

+ µ(Ih(u− uN ), w̃N )(3.26)

and estimate each term on the right-hand side as follows:

|(B(w̃N , wN ), w̃N )| ≤ c|w̃N |1/2∥wN∥∥w̃N∥3/2 ≤ c

ν3
∥wN∥4|w̃N |2 + ν

2
∥w̃N∥2

µ|(Ih(w̃N )− w̃N , w̃N )| ≤ µ|Ih(w̃N )− w̃N ||w̃N | ≤ µch∥w̃N∥|w̃N |

≤ µc2h2∥w̃N∥2 + µ

4
|w̃N |2 ≤ ν

2
∥w̃N∥2 + µ

4
|w̃N |2

µ|(Ih(u− uN ), w̃N )| ≤ µ|Ih(u− uN )||w̃N | ≤ µ|Ih(u− uN )|2 + µ

4
|w̃N |2.

Inserting the estimates into (3.26),

d

dt
|w̃N |2 +

(
µ− c

ν3
∥wN∥4

)
|w̃N |2 ≤ µ|Ih(u− uN )|2

and since µ satisfies (3.23) we get

d

dt
|w̃N |2 + µ

2
|w̃N |2 ≤ µ|Ih(u− uN )|2.

Applying Gronwall, for all t ∈ [0, T ], we get

|w̃N (t)|2 ≤ e−(µ/2)t|w̃(0)|2 + 2 sup
t∈[0,t]

|Ih(u− uN )|2.

Recall uN → u in C(0, T ;V ′) and the range of Ih is a finite dimensional vector space
with a basis {ψ}. Therefore,

lim inf
N→∞

|Ih(u− uN )| ≤ lim inf
N→∞

K′∑
i=1

|(u− uN , ψi)| = 0.
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Since w̃N converges to w̃ weakly,

|w̃(t)|2 ≤ e−(µ/2)t|w̃(0)|2

which proves the result.

So far, we have not used the bound on the interpolant assumed in (3.21) in the
proof of the above results. Its role is clarified in the remark below. More precisely,
we show using (3.21) that in case the solution u from which the observations are
obtained is regular, then a parameter µ satisfying the condition (3.23) can be chosen,
thus ensuring that the corresponding data assimilation solution given by (3.2) tracks
u.

Remark 3.5. A choice of µ satisfying (3.23) exists provided the condition

(3.27) max

{
2cM4

h

ν4
, λ1

}
≲

1

h2

holds. Due to (3.21), this is clearly satisfied for sufficiently small h if u is regular
and supt∈[t0,∞) ∥u∥ < ∞. Thus global regularity and uniform boundedness in V of
u guarantee the existence of a globally regular solution for the AOT algorithm (3.2)
and the unique solution w tracks u.

We now show that Theorem 3.6 implies the existence of asymptotically determin-
ing volume elements, similar to the modal case.

Theorem 3.7. Let u1, u2 be two restricted Leray-Hopf weak solutions with
Mh,ui

, i = 1, 2, defined as in (3.22). Assume moreover that on [0,∞), we have

(3.28) h−2 ≳ max

{
M4

h,u1

ν4
,
M4

h,u2

ν4
, λ1

}
,

where Mh,ui
, i = 1, 2, as defined in (3.22) with T = ∞. If

(3.29) lim
t→∞

|Ih(u1 − u2)| = 0,

then limt→∞ |u1(t)− u2(t)| = 0.

Proof. Let w1 and w2 be two strong solutions of the data assimilation equation
(3.2) corresponding to u1 and u2 for µ satisfying (3.23) for both u1 and u2. Denote
w̃i = wi − ui, i = 1, 2. Then by Theorem 3.6, limt→∞ |w̃i| = 0. Let w̃ = w1 − w2.
Proceeding exactly as in the proof of Theorem 3.6, and noting that ∥wi∥ ≤ Mh and
that µ satisfies (3.23), we conclude

d

dt
|w̃|2 + µ

2
|w̃|2 ≤ µ|Ih(u2 − u1)|2,

which yields, upon integrating between s to T , that

|w̃(T )|2 ≲ e−
µ
2 (T−s)|w̃(s)|2 + sup

t∈[s,T ]

|Ih(u2 − u1)|.

Letting T → ∞ and using (3.29), we conclude that limt→∞ |w̃| = 0. Thus, limt→∞ |u1−
u2| = 0.
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4. Adaptive algorithm. Since (3.2) becomes stiff for larger values of µ, in this
section we define an adaptive algorithm so that the value of the nudging parameter
can be adjusted to a higher value only in the time intervals where the flow is turbulent.
This data assimilation algorithm is iteratively defined by

dw

dt
+ νAw +B(w,w) = f − µk+1Ih(w − u), t ∈ (Tk, Tk+1],

∇ · w = 0,

w(Tk) = lim
t→Tk

w(t), w(T0) = 0

(4.1)

for k ∈ {0, 1, . . . , j}.
Although the following theorems can be proven for a general type 1 interpolant

Ih, for simplicity of exposition, we take Ih = PK .

Theorem 4.1. Suppose Ih = PK is a modal interpolant (and consequently satis-
fies (2.12)). Denote for k ∈ {0, 1, . . . , j}

(4.2) M2
k+1 = 2×max

{
∥w(Tk)∥2,

(
4|f |2

ν2λ1
+ 2M̃2

k+1

)}
,

where

(4.3) M̃k+1 = sup
t∈[Tk,Tk+1]

∥PKu(t)∥.

Suppose a choice of {µk}j+1
k=1 exists satisfying

(4.4) max

{
2c

ν3
M4

k , νλ1

}
≤ µk ≤ νλK

8
, k ∈ {1, . . . , j + 1}.

Then the solution of (4.1) satisfies

(4.5) ∥w(t)∥2 ≤M2
k+1 ∀t ∈ [Tk, Tk+1], k ∈ {0, 1, . . . , j},

and

(4.6) ∥w(t)∥2 ≤ 8|f |2

ν2λ1
+ 4× sup

t∈[T0,Tj+1]

∥PKu(t)∥2 ≤
ν2λ

1/2
K

4c
∀t ∈ [T0, Tj+1].

Proof. We restrict time to be in an arbitrary interval [Tk, Tk+1] and take the inner
product of (4.1) with Aw

1

2

d

dt
∥w∥2 + ν|Aw|2 + µk+1∥w∥2 = (B(w,w), Aw) + (f,Aw)

+ µk+1(QKw,Aw) + µk+1(PKu,Aw).(4.7)

Each term on the right-hand side is estimated as before:

|(B(w,w), Aw)| ≤ c∥w∥3/2|Aw|3/2 ≤ ν

8
|Aw|2 + c

ν3
∥w∥6,

|(f,Aw)| ≤ 1

ν
|f |2 + ν

4
|Aw|2,

µk+1|(QKw,Aw)| = µk+1∥QKw∥2 ≤ µk+1

λK
|Aw|2 ≤ ν

8
|Aw|2,

µk+1|(PKu,Aw)| ≤
µk+1

2
∥PKu∥2 +

µk+1

2
∥w∥2.
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Inserting the estimates into (4.7),

d

dt
∥w∥2 +

(
µk+1 −

c

ν3
∥w∥4

)
∥w∥2 ≤ 2

ν
|f |2 + µk+1∥PKu∥2.

Assume [Tk, T
∗], T ∗ < Tk+1, is the largest interval starting from Tk such that ∥w∥ ≤

Mk+1 holds. Note by construction we have ∥w(Tk)∥ ≤Mk+1 so T ∗ exists. Then using
the lower bound for µk+1 in (4.4) and defining τ = t− Tk we obtain by the Gronwall
inequality for all t ∈ [Tk, T

∗],

∥w(t)∥2 ≤ e−(µk+1/2)τ∥w(Tk)∥2 +
(
1− e−(µk+1/2)τ

)(4|f |2

ν2λ1
+ 2M̃2

k+1

)
≤ 1

2
M2

k+1,

a contradiction, thus ∥w(t)∥ ≤ Mk+1 for t ∈ [Tk, Tk+1], k ∈ {0, 1, . . . , j}. The bound
in (4.6) is obtained by finding an upper bound of the collection {Mk} and using (4.4)

as follows. Recall M2
1 = 8|f |2

ν2λ1
+ 4M̃2

1 .

M2
j+1 ≤ max

{
M2

j ,

(
8|f |2

ν2λ1
+ 4M̃2

j+1

)}
≤ max

{
M2

j−1,

(
8|f |2

ν2λ1
+ 4M̃2

j

)
,

(
8|f |2

ν2λ1
+ 4M̃2

j+1

)}
. . .

≤ 8|f |2

ν2λ1
+ 4×max{M̃2

1 , . . . , M̃
2
j+1} =

8|f |2

ν2λ1
+ 4× sup

t∈[T0,Tj+1]

∥PKu(t)∥2.

We finish by noting that (4.4) implies 8|f |2
ν2λ1

+ 4 × max{M̃2
1 , . . . , M̃

2
j+1}

≤ ν2λ
1/2
K

4c .

Remark 4.1. In order for this iterative construction to work up to time interval
[Tj , Tj+1], i.e., for a choice of {µk} satisfying (4.4) to exist, we need to satisfyM4

kλ
−1
K ≤

ν4

16c , k ∈ {1, . . . , j +1}. Using the upper bound on {Mk}, such a choice of {µk}j+1
k=1 is

possible if we assume

(4.8) sup
t∈[T0,Tj+1]

(
128|f |4

ν4λ21
+ 32∥PKu(t)∥4

)
λ−1
K ≤ ν4

16c
.

The theorem below establishes the tracking property of the solution w.

Theorem 4.2. Suppose Ih = PK is a modal interpolant and satisfies (2.12). As-
sume the same conditions from Theorem 4.1. Then the solutions of (2.2) and (4.1)
satisfy

|w̃(t)|2 ≤ e−(µk+1/2)t|w̃(Tk)|2 ∀t ∈ [Tk, Tk+1], ∀k ∈ {0, 1, . . . , j},

where w̃ = w − u.

Proof. Assume N ≥ K, t ∈ [Tk, Tk+1], and w̃N satisfies

dw̃N

dt
+ vAw̃N + PNB(wN , wN )− PNB(uN , uN )

= −µk+1PK(w̃N ) + µk+1PK(u− uN ),
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which can be rearranged to

dw̃N

dt
+ vAw̃N + PNB(w̃N , wN ) + PNB(uN , w̃N )

= −µk+1QK(w̃N )− µk+1w̃N + µk+1PK(u− uN ).

We take the inner product with w̃N

1

2

d

dt
|w̃N |2 + ν∥w̃N∥2 + µk+1|w̃N |2

= −(B(w̃N , wN ), w̃N )− µk+1(QK(w̃N ), w̃N )

+ µk+1(PK(u− uN ), w̃N ).(4.9)

We now estimate each term on the right-hand side as follows:

|(B(w̃N , wN ), w̃N )| ≤ c|w̃N |1/2∥wN∥∥w̃N∥3/2

≤ c

ν3
∥wN∥4|w̃N |2 + ν

2
∥w̃N∥2,

µk+1|(QK(w̃N ), w̃N )| ≤ µk+1|QK(w̃N )||w̃N |

≤ µk+1

λ
1/2
K

∥w̃N∥|w̃N | ≤ µk+1

λK
∥w̃N∥2 + µk+1

4
|w̃N |2

≤ ν

2
∥w̃N∥2 + µk+1

4
|w̃N |2,

µk+1|(PK(u− uN ), w̃N )| ≤ µj+1|PK(u− uN )||w̃N |

≤ µk+1|PK(u− uN )|2 + µk+1

4
|w̃N |2.

Inserting the estimates into (4.9),

d

dt
|w̃N |2 + (µk+1 −

c

ν3
∥wN∥4)|w̃N |2 ≤ µk+1|PK(u− uN )|2,

and since µ satifies (4.4),

d

dt
|w̃N |2 + µk+1

2
|w̃N |2 ≤ µk+1|PK(u− uN )|2.

By the Gronwall inequality,

|w̃N (t)|2 ≤ e−(µk+1/2)t|w̃(Tk)|2 + 2 sup
t∈[Tk,Tk+1]

|PK(u− uN )|2.

Recall uN → u in C(0, T ;V ′) and ϕi is the ith eigenvector associated with A. There-
fore,

lim inf
N→∞

|PK(u− uN )| ≤ lim inf
N→∞

K∑
i=1

|(u− uN , ϕi)| = 0.

Since w̃N converges to w̃ weakly,

|w̃(t)|2 ≤ e−(µk+1/2)t|w̃(Tk)|2 ∀t ∈ [Tk, Tk+1],

which proves the result.
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Remark 4.2. In certain applications, particularly for noisy observations, replacing
the scalar damping operator µk+1 (i.e., µk+1I) in (4.1) with a positive semidefinite
operator Σk+1 may be beneficial. This is precisely the case in 3D Var or variants of the
ensemble Kalman filter; see [15, 16, 46]. For instance, in the context of the 2D Navier–
Stokes equation, a convergence analysis for 3D Var is presented in [15] for modal
observations where the damping operator is µPNA

2α = µPNA
2αPN for adequate

α and where A is the Stokes operator. One can suitably modify our techniques to
address this situation for the 3D case as well [11].

Acknowledgment. The authors would like to thank the anonymous referees for
their careful reading of the manuscript and several cogent remarks which led to a
much improved version. In particular, the authors would like to thank the referees
for independently noting the connection to eventual regularity.
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