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Robust implementation of quantum gates despite always-on exchange coupling in
silicon double quantum dots

Utkan Güngördü∗ and J. P. Kestner
Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA

Addressibility of spin qubits in a silicon double quantum dot setup in the (1,1) charge configuration
relies on having a large difference between the Zeeman splittings of the electrons. When the difference
is not sufficiently large, the rotating wave approximation becomes inaccurate. We consider a device
working in this regime, with always-on exchange coupling, and describe how a CZ gate and arbitrary
one-qubit gates which are robust against charge noise can be implemented by smoothly pulsing the
microwave source, while eliminating the crosstalk stroboscopically. We find that the most significant
deviations from the rotating wave approximation, which are analogous to the Bloch-Siegert shift in
a two-level system, can be compensated using local virtual gates.

I. INTRODUCTION

Silicon is a promising platform for practical quantum
computing. Fidelities nearing 99.99% have recently been
reported for one-qubit gates in Si/SiGe [1] and above
99.9% in SiMOS and Si/SiO2 [2, 3]. However, a universal
quantum computer requires entangling operations as well
[4], and the infidelities for two-qubit gates remain orders
of magnitude higher [5–9]. Hyperfine coupling with rem-
nant spinful isotopes such as 29Si and 30Si is one source of
errors, but the concentration of these isotopes can be re-
duced down to 800ppm [1, 3, 10] or lower [11], essentially
eliminating it as a concern. Another significant source of
errors is charge noise, which remains a problem [12–17].
Although it can be partially mitigated when operating
at a “sweet spot” where the exchange is insensitive to
the leading order effects of the electrostatic fluctuations
in gate voltages [8], even there the second order fluctua-
tions can still be large, and there can be fluctuations in
the tunnel barrier as well [18]. Thus, schemes to correct
charge noise are of great importance for scalable quantum
computation in semiconductor devices.

Quantum dot setups in which the spin of each electron
is treated as a qubit are particularly attractive. Typi-
cal implementations of one-qubit gates require the abil-
ity to address one of the qubits without affecting the
other one. In setups using electron dipole spin resonance
(EDSR) [7, 8], this is done by placing a micromagnet
such that one of the electrons is closer to the micromag-
net than the other one, providing a strong magnetic field
gradient. The resulting difference between the Zeeman
energy splittings of the electrons, δEz, separates their
resonant frequencies and allows implementation of fast
[19, 20] or dynamically corrected [21] two-qubit gates to
suppress the impact of the charge noise on the exchange.
However, the micromagnet can also couple charge noise
directly to the spins through the effective spin-orbit in-
teraction, opening a new way for gate errors to enter.
In setups with electron spin resonance (ESR) [6, 10], on
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the other hand, the spins remain largely isolated from
the electrical environment in the absence of coupling. A
difference in resonant frequencies then comes only via a
difference in the g-factors of the electrons. The effective
g-factors of the electrons strongly depend on the interface
hosting the 2DEG [22–24], which is an aspect of the fab-
rication that cannot be controlled perfectly, and although
the resulting δEz can be electrically [16] or magnetically
[25] tunable to a certain extent, the maximum accessi-
ble value is typically much less than that provided by a
micromagnet [7]. In a double quantum dot setup, this
causes two issues with addressability. First, addressabil-
ity is diminished due to the failure of the rotating wave
approximation.

Second, when the exchange interaction is turned on,
this further leads to exchange-induced crosstalk between
the two electrons.

In Ref. [21], we described a robust pulse sequence
which implements a CZ gate in silicon double quantum
dots while correcting charge noise. However, this scheme
relies on having access to high-fidelity one-qubit gates in
the (1, 1) charge region while also having fully control-
lable exchange coupling. In devices where addressability
is poor, or where exchange cannot be turned off [10], im-
plementation of high-fidelity one-qubit gates is difficult,
even in the absence of any stochastic errors such as charge
noise.

In this paper, we simultaneously solve both issues of
charge noise and addressability in the presence of an
always-on exchange coupling and small δEz by deriving
shaped pulses that implement a robust CZ gate, as well
as robust, arbitrary one-qubit gates.

This paper is organized as follows. In Section II, we
describe the effective Hamiltonian for the silicon double
quantum dot in the (1,1) charge region, and discuss how
it algebraically splits into a pair of independent two-level
systems when the rotating wave approximation holds. In
Section III, we show that although errors from the ro-
tating wave approximation are significant, they can be
compensated for by using only local Z rotations. In Sec-
tion IV, we show how the results from Ref. [26] can be
used to suppress charge noise in the two-qubit system,
followed by Section V where we explicitly construct ro-

ar
X

iv
:1

91
1.

12
35

1v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
7 

N
ov

 2
01

9

mailto:utkan@umbc.edu


2

bust CZ and robust arbitrary one-qubit gates. Section
VI concludes the paper.

II. MODEL

Electrons in a double quantum dot in the (1, 1) charge
region in the far detuning regime (U + ε� U − ε) can be
modeled by the following Hamiltonian [27, 28]

H =


Ēz

E∗2,⊥
2

E∗1,⊥
2 0 0

E2,⊥
2

δEz
2 0

E∗1,⊥
2 t0

E1,⊥
2 0 − δEz2

E∗2,⊥
2 −t0

0
E1,⊥

2
E2,⊥

2 −Ēz 0
0 t0 −t0 0 U − ε

 (1)

in the basis of |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 , |S(0, 2)〉, which in-
cludes the possibility of tunneling of one of the elec-
trons to its neighboring dot and occupying the singlet
state |S(0, 2)〉. The energy of the |S(2, 0)〉 is too large in
this setup and thus neglected. Above, Ēz = µB(g1B

1
z +

g2B
2
z )/2 and δEz = µB(g1B

1
z − g2B

2
z ) denote the aver-

age and difference in Zeeman energies of the electrons
due a magnetic field provided by an external static mag-
net, t0 is tunneling energy, Ek⊥ is the Zeeman energy
µBgk(Bkx + iBky ) due to oscillating microwave source as
seen by the kth electron, U∓ε is the on–site electrostatic
energy where ε is the detuning from the applied gate volt-
age through. We will express Ek⊥ as Ωke

iωt where Ωk
is the slowly varying (compared to the timescale 1/ω)
microwave amplitude and ω is the microwave frequency,

such that

Ωke
iωt = µBgk(Bkx + iBky ). (2)

In the typical experimental regime of U − ε� t0, δEz,
one can use Schrieffer-Wolff transformation to block-
diagonalize H and obtain the following spin Hamiltonian
[19, 21]

H ≈


Ēz

E∗2,⊥
2

E∗1,⊥
2 0

E2,⊥
2

δEz
2 −

J
2

J
2

E∗1,⊥
2

E1,⊥
2

J
2 − δEz2 −

J
2

E∗2,⊥
2

0
E1,⊥

2
E2,⊥

2 −Ēz

 , (3)

where J ≡ 2t20/U − ε is the tunneling mediated exchange
coupling between the two electrons. This Heisenberg-
type exchange coupling mixes |↑↓〉 and |↓↑〉 states;

however, when it is changed slowly (J̇ � δEz/~ when
assuming J � δEz [21]) or held fixed (as is the case we
will focus on), one can instead work in the eigenbasis
of the Hamiltonian (at Ωi = 0), in which all states
become decoupled and the exchange coupling becomes
Ising-like [19, 21, 29]. To this end, let us denote the four
eigenvectors of H|Ωi=0 as |↑↑〉 , |ψ+(t)〉 , |ψ−(t)〉 , |↓↓〉.
We then transform to the logical basis of
{eiφ↑↑(t) |↑↑〉 , eiφ+(t) |ψ+(t)〉 , eiφ−(t) |ψ−(t)〉 , eiφ↓↓(t) |↓↓〉}
using HR = R†HR + i~(∂tR

†)R, where R is the trans-
formation matrix whose rows are given by the logical
basis states and φi(t) are yet undetermined degrees of
freedom, associated with shifts in ZZ, IZ, ZI terms in
the Hamiltonian in this new frame. We thus obtain the
rotating frame Hamiltonian

HR =


Ēz + φ̇↑↑

(Ẽ+
2,⊥)∗

2 e−i(φ↑↑−φ+) (Ẽ+
1,⊥)∗

2 e−i(φ↑↑−φ−) 0
Ẽ+

2,⊥
2 ei(φ↑↑−φ+) 1

2 (−J + ∆E) + φ̇+ Ṽ
(Ẽ−1,⊥)∗

2 ei(φ↓↓−φ+)

Ẽ+
1,⊥
2 ei(φ↑↑−φ−) Ṽ ∗ 1

2 (−J −∆E) + φ̇−
(Ẽ−2,⊥)∗

2 ei(φ↓↓−φ−)

0
Ẽ−1,⊥

2 e−i(φ↓↓−φ+) Ẽ−2,⊥
2 e−i(φ↓↓−φ−) −Ēz + φ̇↓↓,

 (4)

where ∆E =
√
δE2

z + J2 is the energy splitting between

the adiabatic eigenstates of H with zero net spin, Ṽ is
a diabatic correction which vanishes when J and δEz do
not vary in time [21]. The transverse terms in the logical
adiabatic basis are given by [21]

Ẽ±1,⊥ = Ω̃±1 e
iωt =

(∆E + δEz)Ω1 ∓ JΩ2√
2∆E(∆E + δEz)

eiωt,

E±2,⊥ = Ω̃±2 e
iωt =

(∆E + δEz)Ω2 ± JΩ1√
2∆E(∆E + δEz)

eiωt. (5)

This exchange-induced mixing of one-qubit “Rabi fre-
quencies”, which we recognize as a form of crosstalk, is

a result (and the cost) of working in the adiabatic ba-
sis with the simplified Ising-type exchange coupling. We
proceed by fixing the gauge with the choice φ̇± = ∓∆E/2

and φ̇↑↑ = φ̇↓↓ = −Ēz, and tune the microwave frequency
to ~ω = Ēz−∆E/2 such that if the rotating wave approx-
imation held and the “fast” oscillating terms were neg-
ligible, we would have addressed only the second qubit
(we can similarly tune into the first qubit by tuning the
microwave as ~ω = Ēz+∆E/2). This leads to the Hamil-
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tonian

HR =


0

Ω̃+
2

2
Ω̃+

1

2 e
i
~ ∆Et 0

Ω̃+
2

2 −J2 0
Ω̃−1
2 e

i
~ ∆Et

Ω̃+
1

2 e−
i
~ ∆Et 0 −J2

Ω̃−2
2

0
Ω̃−1
2 e−

i
~ ∆Et Ω̃−2

2 0

 .

(6)

We note in passing that we will consider modulation of
the envelope function Ωi as a function of time as well in
what follows, but these modulations will be much slower
than ω, so this decomposition of the microwave field into
amplitude and frequency is still meaningful.

In the experiments in Refs. [7, 8], δEz is provided by an
on-chip micromagnet which results in a strong magnetic
field gradient, and a δEz that is much larger than Ω2.
However, in the setups of Refs. [2, 10], δEz is due to the
differences between g-factors (which can be modulated
by the gate voltages [16] or by changing the orientation
of the external magnet [25]), and leads to a smaller δEz ∼
10MHz, in which case the rotating wave approximation
no longer holds.

Charge noise causes fluctuations in the exchange cou-
pling J → J̃ = J + δJ . Furthermore, spinful isotopes
cause stochastic fluctuations in Zeeman splittings, ε1
and ε2, through hyperfine coupling, although this can
be remedied by using a purified silicon with lower con-
centration of spinful silicon isotopes [11].

With these sources of errors in mind, we can write the
overall Hamiltonian as the sum of a noisy control and an
oscillatory term, H̃R = H̃c +Hosc where

H̃c =
γΩ2

2
IX +

γΩ1

2
ηZX +

J̃

4
ZZ + ε1ZI + ε2IZ,

Hosc =
γΩ1

2
[XI cos(∆Et) + Y I sin(∆Et)]+

ηΩ2

2
[XZ cos(∆Et) + Y Z sin(∆Et)] (7)

and

γ =
(∆E + δEz)√

2∆E(∆E + δEz)
, η =

J√
2∆E(∆E + δEz)

.

(8)

We will limit ourselves to exchange strengths smaller
than the difference in Zeeman splittings, such that
J/δEz, despite being non-negligible, can nevertheless be
treated as smallness parameter allowing a pertubative
treatment. Then, to the leading order in J/δEz, γ ≈ 1
and η ≈ J/2δEz. Moreover, we can neglect the pertur-
bations in γ and η due to exchange noise, because the δJ
terms are suppressed by the smallness factor of J/δE2

z

and we limit ourselves to J � δEz. Exchange noise in
∆E can also be neglected where it is suppressed by the
smallness factor J/δEz.

At this point, we note that the control Hamiltonian
Hc fits into the embedding su(2)⊕ su(2)⊕ u(1) ⊂ su(4).

The generators of these commuting su(2) algebras are
X±, Y±, Z± ≡ {(IZ ± ZZ)/2,−(IY ± ZY )/2, (IX ±
ZX)/2} and the u(1) is generated by Q ≡ ZI. Explicitly,
Hc can be split into three commuting parts

Hc = H+ +H− +Hq (9)

where

H± ≡Ω±X± + β±Z± Hq ≡ ε1ZI

Ω± ≡
γΩ2

2

(
1± 1

γ

g1

g2
η

)
, β̃± ≡ ε2 ±

J̃

4
, (10)

where we used Eq. (2) to express Ω1 as Ω2g1/g2.

III. BLOCH-SIEGERT SHIFT FOR THE
TWO-QUBIT SYSTEM

In this section, we will apply the rotating wave approx-
imation and also show how to compensate for the leading
order corrections to the approximation, and in the follow-
ing section, we will show how one can obtain a shaped
pulse Ω2(t) which can suppress the leading order effect
of the terms δJ , ε2 and η from the final time evolution
operator U(tf ).

The validity of the rotating wave approximation hinges
on the value of δEz/h. This value is 1.3GHz in the
Si/SiGe device from Ref. [7] and 210MHz in the Si/SiGe
device from Ref. [8], both of which incorporate micro-
magnets and operate via EDSR. However, in the Si/SiO2

device from Ref. [3, 10], operating via ESR, this value is
limited to around 15MHz, for which the rotating wave ap-
proximation to neglect Hosc fails, resulting in poor gate
fidelities. In this section, we will show that the most
significant contribution from the oscillatory terms can
nevertheless be easily compensated.

To this end, we treat Hosc as an interaction Hamilto-
nian and obtain the total time evolution operator as a
product of the time evolution operators due to Hc and
Hosc as

Utotal = Uc(tf ;−tf )Uosc(tf ;−tf ) (11)

where Uosc(t;−tf ) is the solution to the Schrödinger
equation

iU̇osc(t;−tf ) = H̄osc(t)Uosc(t;−tf )

H̄osc ≡ U†c (t;−tf )Hosc(t)Uc(t;−tf ) (12)

When ∆E is larger than the microwave amplitude, one
can obtain Uosc in a perturbative manner using Magnus
expansion

Uosc(t;−tf ) = e
∑∞
n=1 Φn , (13)

This allows use to obtain corrections to the rotating wave
approximation perturbatively in powers of the smallness
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factor Ω2(t)/∆E, as will be made clear shortly. The first
order term in the Magnus expansion

Φ1 = − i
~

∫ tf

t0

dt′H̄osc(t′) (14)

is negligible when ∆E � π/tf . For example, for a gate
time tf ∼ 10µs, we find that a value of ∆E ∼ 10MHz,
which is readily attainable in experiments, is sufficiently
large.

The leading order correction, then, is

Φ2 = − 1

2~2

∫ tf

t0

dt′
∫ t′

t0

dt′′[H̄osc(t′), H̄osc(t′′)]. (15)

We now show how this can be reduced to a simple con-
dition with good accuracy.

The first simplification we make is to note that in Hosc,
given explicitly in Eq. (7), the contribution of η is sup-
pressed by the smallness factor J/∆E compared to γ.
Thus, we neglect the terms proportional to η. The “fast”
oscillations in Hosc can be eliminated by (temporarily)
going into a rotating frame defined by the transforma-
tion S = ei∆EtZI , which leads to

HS
osc =

γΩ2(t)

2
XI + ∆EZI (16)

Since S ∈ U(1) commutes with U(t; t0) ∈ SU(2)×SU(2),
we can change the ordering of these transformations, and
obtain

Uosc(t; t0) = e
i
~ ∆EtZIT e− i

~
∫
dtU†c (t;t0)HSosc(t)Uc(t;t0), (17)

back in the frame of Eq. (7). Although we can use sec-
ond order Magnus expansion given by Φ2 as is to ap-
proximately evaluate the time-ordered integration above
at this point, we instead notice that ZI term in the inte-
grand above commutes with U(t; t0), and the weak (when
compared to ∆E) term γΩ2(t)U†(t; t0)[XI]U(t; t0)/2 an-
ticommutes with ZI at all times, forming a dynamical
su(2) algebra. Based on this, we approximate the lead-
ing order correction Φ2 by an averaged Bloch-Siegert shift
and obtain:

Uosc(tf ; t0) ≈ exp

[
−i 1

~∆E

∫ tf

t0

dt

(
γΩ2(t)

2

)2

ZI

]
.

(18)

The inverse of this rotation can then be applied prior to
the actual gate Utotal (cf. Eq. (11)) to compensate for
the unwanted ZI Bloch-Siegert rotation.

An alternative way of obtaining this correction would
be to solve the Schrödinger equation Eq. (12) numeri-
cally. Uosc tends to be a rotation mostly around ZI, so
we can pick up the ZI part of this SU(4) rotation, which
can be corrected for easily, using

U (ZI)
osc = eiΘZI , Θ ≡ tr (−i ln[Uosc(tf ;−tf )]ZI) .

We numerically find that the approximations we made in
this section lead to deviations in trace gate fidelity which
depend on Ω2(t)/∆E, and can be as small as ∼ 10−4 with
a suitable and experimentally attainable choice when us-
ing the parameters from Refs. [3, 10]. The numerical
results for each gate are given in Section V.

Overall, the results from this section allow us to eas-
ily compensate for the shortcomings of the rotating wave
approximation by applying a (virtual [30–32]) ZI rota-
tion given in Eq.(18) to undo Uosc(tf ; t0) in Eq. (11).
This compensation can be done before, after or during
the gate; the ordering does not matter because ZI is the
u(1) and commutes with the control Hamiltonian. We
thus need not carry Hosc forward in what follows, as it is
now compensated for separately.

IV. ROBUST GATES

In this section, we briefly summarize the results from
[26], and show how they can be adapted to the double
quantum dot system. In the next section, we will present
specific applications for obtaining a robust CZ gate and
robust, arbitrary one-qubit gates.

Consider a time evolution from t = 0 to tf of a two-
level system described by the noisy Hamiltonian

H(t) = [Ω(t) + g(t)εZ ]Z + [β + εX ]X. (19)

where εZ and εX are quasistatic, stochastic noise terms.
The leading order effects of these noise terms from the
time evolution at the final time tf can be eliminated if
Ω(t) is a shaped pulsed obtained from a function Φ(χ(t)),
through the following relation

Ω(t) = Ω̄(χ) ≡− β sin(2χ)× (20)

Φ′′(χ) + 4Φ′(χ) cot(2χ) + [Φ′(χ)]3 sin(4χ)

2
√

1 + [Φ′(χ) sin(2χ)]2
3

where χ = χ(t) is a reparametrization of time determined
by Φ(χ) through the relation

βt = ~
∫ χf

0

dχ
√

1 + [Φ′(χ) sin(2χ)]2, (21)

Φ(χ(t)) is any function which obeys the constraints [26]

sin(4χf ) + 8e−2iΦ(χf )

∫ χf

0

dχ sin2(2χ)e2iΦ(χf )

∫ χf

0

= 0,

(22a)

∫ χf

0

sin2(2χ)Φ′(χ) = 0, (22b)

∫ χf

0

dχ sin(2χ)ḡ(χ)e2iΦ(χf )
√

1 + [Φ′(χ) sin(2χ)]2 = 0

(22c)



5∫ χf

0

dχ cos(2χ)ḡ(χ)
√

1 + [Φ′(χ) sin(2χ)]2 = 0, (22d)

and ḡ(χ) ≡ g(t). The function Φ(χ) must satisfy the
following initial conditions

Φ(0) = 0, Φ′(0) = 0 (23)

to ensure that the initial time evolution operator is the
identity. The resulting gate U(tf ; 0) is determined by the
values of Φ(χf ) and Φ′(χf ) [26].

We focus on the particular case of g(t) = Ω(t) (i.e.,
multiplicative noise in the control field), or equivalently,
ḡ(χ) = Ω̄(χ). If Φ′(χ) is an odd function of χ (which itself
is an odd function of t), the pulse shape Ω̄(χ) becomes
an odd function of time as well. Since this means the
integrand of robustness conditions Eqs. (22b) and (22d)
are odd functions for time, we can consider expanding the
time evolution to the symmetric interval from t = −tf to
t = tf , which ensures that the integrals vanish and both
conditions are satisfied [26]. When the system is pulsed
from t = t0 = −tf to t = tf using a pulse that is odd in
time, the resulting time evolution is given by [26, 33]

U(tf ;−tf ) = ZφXθZ−φ = e−i
θ
2 (cosφX+sinφY ), (24)

φ ≡ sgn [Φ′(χf )] arcsec
√

1 + [Φ′(χf ) sin(2χf )]2, θ ≡ 4χf ,

where Xθ is a θ rotation around the X axis and Zφ is
defined similarly. We refer to the Supplementary Infor-
mation in Ref. [26] for the lengthy derivation of these
results.

We now show how these results can be used to suppress
the effects of δJ and η in H̃c from the final time evolution
operator U(tf ) in the double quantum dot system [34].
Although the four-level problem is algebraically split into
a commuting pair of two-level systems and a single-level
system, or su(2)⊕su(2)⊕u(1), we see from Eq. (10) that
the dynamics of these su(2)s are completely dependent:
that is, choosing the pulse shape Ω±(t) and the (time-
independent) “energy splitting” β± for one su(2) fixes
the values Ω∓(t) for the other su(2). This means that
additional care is required when choosing suitable gen-
erating functions Φ±(χ) for each su(2), and that Φ+(χ)
and Φ−(χ) cannot be chosen independently —in fact,
choosing one completely determines the other.

We now show that even under this constraint, we can
still use the results from Ref. [26] to implement a robust
quantum gate in the four-level system when the exchange
is held fixed and the microwave source is smoothly pulsed
in time.

First, from Eq. (10), we observe that in the absence of
the stochastic noise and η terms, we have

β+ = −β−, Ω+(t) = Ω−(t). (25)

Keeping Eq. (20) in mind, we realize that the choice

Φ−(χ) = −Φ+(χ) (26)

would be compatible with these dynamical constraints
between the su(2) subsystems. We are thus treating the
entire ηΩ2(t)ZXg1/2γg2 term as “noise”, and not just
the (already neglected) truly stochastic part which is due
to δJ ; this assumption is not strictly necessary, but it
is convenient as it allows us to establish a very simple
relationship between the two generating functions Φ−(χ)
and Φ+(χ).

With this choice, the overall robust time evolution for
the four-level system can thus be obtained as

R(θ, φ) ≡R+(θ, φ)R−(θ, φ),

R±(θ, φ) ≡Z±(φ)X±(±θ)Z±(−φ), (27)

where R± denotes the time evolution for each su(2) sub-
system. The rotation angle θ has alternating signs be-
cause β+ = −β−, corresponding to time-inversion fol-
lowing Eq. (21), which implies a sign flip in the overall
rotation angle in Eq. (24). Combining similar commuting
terms, this simplifies to

R(θ, φ) = IXφZZθIX−φ (28)

The pulse for the opposite sign, φ→ −φ, can be obtained
by the replacement Φ(χ)→ −Φ(χ) which implies Ω(t)→
−Ω(t), following respectively from Eqns. (24) and (20).
We will use this expression when targeting specific gates
in the next section.

V. EXAMPLES OF ROBUST GATES

For obtaining numerical results when targeting specific
gates in this section, we will use the following ansatz:

Φ+(χ) = a1χ
2 + sgn(χ)

[
a2χ

3 +

8∑
i=1

bi sin(nπχ/χf )

]
,

(29)

which obeys Φ+(0) = Φ′+(0) = 0 by construction. This
ansatz leads to a smooth pulse shape Ω+(t) that is odd
in time, and readily satisfies the initial conditions given
in Eq. (23). The coefficients ai and bi are free parameters
which will be used to find suitable pulse shapes that im-
plement a specific target unitary in the following sections.
Furthermore, this form allows enforcing the rotation axis
φ in Eq. (24) and the desirable property that the mi-
crowave source is turned off at the end, Ω+(tf ) = 0, in
an analytical manner:

a1 =
tanφ

χf sin(2χf )

(
1 + χf cot (2χf )

[
1 + sec2 φ

])
, (30)

a2 =− tanφ

3χ2
f sin(2χf )

(
1 + 2χf cot (2χf )

[
1 + sec2 φ

])
Finally, this leads to pulse shapes with modest bandwidth
requirements ∆f ∼ 8/tf .

We use the experimentally attainable values of J =
1MHz and δEz = 15MHz, which yields η ≈ 0.0333 and
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FIG. 1. (Color online) (a) Pulse shape γΩ2(t) in units of J =
1MHz which implements a CZ gate, R(π/2, 0), in t ≈ 13µs
that is robust against crosstalk ZX term whose strength is
characterized by η, and perturbations in exchange δJ . The
pulse shape is determined by 8 parameters bi given in Eq. (32).
(b) Infidelity of the robust pulse as a function of perturbation
strength, η or δJ/J , compared to the infidelity of a naive
pulse with Ω2 = 0 as a function of δJ/J .

γ ≈ 0.9994. For a given φ and θ, we use numerical con-
strained global optimization to solve for the remaining
robustness conditions Eqns. (22a) and (22c), subject to
the constraints [35]

max |γΩ2(t)| ≤ 1MHz, T ≡ 2tf ≤ 20µs, (31)

where T is the total gate time. The first constraint is
necessary for improving the accuracy of the Bloch-Siegert
shift compensation, where we assumed that γΩ2(t)/δEz
is a smallness factor whereas the second condition is for
keeping the gate time within reasonable limits.

We are only able to find numerical solutions within
these constraints if we introduce additional windings to
the ZZ rotation as θ → 2πk+θ. For a given target angle
φ, the gate time increases with k, which puts a limit on
how small Ω2(t) can be; we choose k such that the gate
time is minimal.

A. Robust CZ gate

A CZ gate exp
(
−iπ4ZZ

)
corresponds to θ = π/2 and

and φ = 0. We take the target angle to be θ = 2πk+π/2
with k = 5, which determines the values of ai through
Eq.(30) as a1 = 0 and a2 = 0, and using numerical opti-
mization for robustness conditions we find

b ≈ { − 2.63, 0.07,−0.31,−0.52, 0.09, 0.01,−0.03,−0.06}.
(32)

The resulting pulse shape Ω2(t), which takes ≈ 12.7µs is
shown in Fig. 1.

With the ZI Bloch-Siegert correction Eq. (18), the in-
fidelity due to neglecting Hosc is ≈ 4 × 10−4, whereas
using Eq. (19) yield ≈ 9×10−5. From Fig. 1, we see that
an infidelity budget of 10−4 is able to tolerate errors up
to δJ/J ≈ 0.075 (i.e., δJ ≈ 75kHz) and η ≈ 0.04.

Implementing such a smooth pulse shape exactly may
be challenging. As an example, we numerically checked
that at δJ ≈ 75kHz exchange error, an imperfect pulse
shape with 0.01 errors in all pulse “amplitudes” bi results
in ≈ 3× 10−4 infidelity instead of ≈ 10−4 with a perfect
pulse shape.

We numerically find that the limit on the maximum
allowed value of γΩ2 can be raised to 1.5MHz with similar
error characteristics, with a shorter gate time of T ≈
9.2µs at k = 3, with parameters

b ≈ {−0.51, 1.62, 0.12,−0.20, 0.05, 0.09, 0.04,−0.01}.
(33)

B. Robust one-qubit gates

For implementing one-qubit gates, we make use of the
availability of virtual local Z rotations [30–32] as follows.
Any one-qubit gate can be expressed in terms of three
Euler angles

IZα3
IYα2

IZα1
=IZα3

IXπ
2
IZα2

IX−π2 IZα1
(34)

=− IZα3IXπ
2
IZα2+πIXπ

2
IZα1+π.

This implies that having access to a single robust one-
qubit gate, IXπ

2
, rather than a set of gates with a con-

tinuous parameter, is sufficient.
Such a robust one-qubit gate can be implemented using
R(θ, φ) given in Eq. (28), since at θ = π it reduces to the
local gate

R(π, φ) = IXφZZπIX−φ = IX2φZZπ = −iIX2φIZπZIπ
(35)

The extra IZ and ZI rotations can be cancelled using
local virtual Z gates which leaves a pure IX rotation. In
the context of Eq. (34), however, this is unnecessary as
they combine and cancel to give the relation

IZα3
IYα2

IZα1
= −IZα3

R
(
π,
π

4

)
IZα2

R
(
π,
π

4

)
IZα1

.

(36)
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FIG. 2. (Color online) (a) Pulse shape γΩ2(t) in units of
J = 1MHz which implements R(π, π/4), which is IXπ

2
up to

local IZ π-pulses, in t ≈ 11µs that is robust against crosstalk
ZX term whose strength is characterized by η, and pertur-
bations in exchange δJ . The pulse shape is determined by 8
parameters bi given in Eq. (37). (b) Infidelity as a function
of perturbation strength, η or δJ/J .

We can thus implement any arbitrary one-qubit gate ro-
bustly using R(π, π/4) in conjunction with virtual IZ
rotations.

For finding a pulse shape which implements R(π, π/4),
we take θ = 2πk + π with k = 4, and obtain the param-
eters bi

b ≈ { − 2.52, 0.24,−0.24,−0.48, 0.21, 0.04, 0.02,−0.02}.
(37)

The corresponding pulse shape is given in Fig. 2, which
takes ≈ 10.5µs. This implies that arbitrary one-qubit
gates can be implemented robustly in ≈ 21µs.

With the ZI Bloch-Siegert correction from Eq. (18),

the infidelity due to neglecting Hosc is ≈ 3 × 10−4,
whereas using Eq. (19) yield ≈ 2×10−4. From Fig. 2, we
see that an infidelity budget of 10−4 allows δJ ≈ 110kHz
and η ≈ 0.06. A perturbation of 0.01 in all bi results in a
loss of fidelity of ≈ 2×10−4 at δJ ≈ 110kHz. Fig. 2 does
not include an infidelity curve for a naive implementa-
tion, because one-qubit gates with always-on J coupling
is a nontrivial problem even without any robustness re-
quirements [10]. We also observe that at δJ ≈ 110kHz
exchange error, an imperfect pulse shape with 0.01 devi-
ations in all bi increases the infidelity to ≈ 2× 10−4.

As in the case of CZ gate, we find that raising the
limit on the maximum allowed value of γΩ2 to 1.5MHz
yields an IXπ/2 gate with similar error characteristics,
and takes T ≈ 8.22µs at k = 3, with parameters

b ≈ {−0.66,−0.16,−0.22, 0.32,−0.02, 0.03, 0.00,−0.03}.
(38)

We note that the gate time for one qubit gates can be
improved by making a look up table for b correspond-
ing to R(π, φ) for each 2φ ∈ [−π/2, π/2], and use in-
stead the ZXZ parametrization for one-qubit rotations
as IZα3

IXα2
IZα1

, which would allow faster implementa-
tion of arbitrary one-qubit gates. Such a table with the
granularity of π/64 in φ is given in the Appendix A.

VI. CONCLUSION

In summary, we have shown how one can implement a
universal set of quantum gates in a silicon double quan-
tum dot setup that is robust against charge noise with
always-on exchange coupling and limited addressability.
The resulting pulse shapes require a modest bandwidth,
and can lead to gates with high fidelity even with system-
atic errors caused by the signal generator. We expect our
results can be implemented in existing devices without
modifications.

ACKNOWLEDGMENTS

This research was sponsored by the Army Research Of-
fice (ARO), and was accomplished under Grant Number
W911NF-17-1-0287.

Appendix A: Parameters for one-qubit gates X2φ

[1] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R.
Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda,
Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha, Nat.
Nanotechnol. 13, 102 (2018).

[2] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leen-
stra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E.
Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, Nat.
Nanotechnol. 9, 981 (2014).



8

2φ T (µs) k b
π
32

14.97 6 {−2.52, 0.24,−0.24,−0.48, 0.21, 0.04, 0.02,−0.02}
2π
32

15.05 6 {3.06, 0.01, 0.53, 0.45,−0.09, 0.00,−0.09,−0.04}
3π
32

14.97 5 {2.60,−0.34, 0.20, 0.35,−0.03,−0.07,−0.06, 0.12}
4π
32

13.02 5 {0.12, 1.07, 0.07, 0.03, 0.03, 0.11,−0.04,−0.04}
5π
32

11.86 4 {0.79,−0.97, 0.16, 0.13,−0.02,−0.10,−0.05,−0.01}
6π
32

9.92 4 {0.72,−0.87, 0.21, 0.17, 0.02,−0.09,−0.02, 0.01}
7π
32

9.90 4 {0.56,−0.72, 0.14, 0.14,−0.01,−0.05, 0.00, 0.06}
8π
32

7.89 3 {−0.11, 0.78, 0.04, 0.01, 0.05, 0.02, 0.04, 0.03}
9π
32

7.75 3 {0.01, 0.61, 0.10, 0.05, 0.06, 0.01, 0.01, 0.01}
10π
32

7.49 3 {−0.23, 0.49,−0.02, 0.03, 0.07, 0.06, 0.01, 0.03}
11π
32

7.56 3 {−0.26, 0.35, 0.00,−0.03, 0.09,−0.01, 0.03, 0.02}
12π
32

7.57 3 {−0.29, 0.21,−0.06, 0.13, 0.08,−0.04, 0.00, 0.01}
13π
32

10.00 4 {0.80, 0.27, 0.22, 0.19, 0.00,−0.07, 0.00, 0.03}
14π
32

10.01 4 {0.67, 0.30, 0.19,−0.15,−0.01,−0.01, 0.01, 0.02}
15π
32

10.24 4 {0.96, 0.47, 0.30, 0.01, 0.01, 0.09, 0.04, 0.04}
16π
32

10.51 4 {0.80, 0.30, 0.26,−0.22,−0.07, 0.07, 0.05, 0.03}

TABLE I. A look-up table of b values for implementing a robust IX2φ gate using k additional 2π rotations in θ, obtained
numerically under the constraint that γΩ2(t) never exceeds 1MHz. The gate X−2φ can be implemented with the replacement
ai, bi → −ai,−bi.

[3] C. H. Yang, K. W. Chan, R. Harper, W. Huang,
T. Evans, J. C. C. Hwang, B. Hensen, A. Laucht,
T. Tanttu, F. E. Hudson, S. T. Flammia, K. M. Itoh,
A. Morello, S. D. Bartlett, and A. S. Dzurak, Nat. Elec-
tron. 2, 151 (2019).

[4] S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).
[5] R. Brunner, Y.-S. Shin, T. Obata, M. Pioro-Ladrière,

T. Kubo, K. Yoshida, T. Taniyama, Y. Tokura, and
S. Tarucha, Phys. Rev. Lett. 107, 146801 (2011).

[6] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang,
J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht,
F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak,
Nature 526, 410 (2015).

[7] T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward,
P. Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally,
M. Friesen, S. N. Coppersmith, M. A. Eriksson, and
L. M. K. Vandersypen, Nature 555, 633 (2018).

[8] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M.
Taylor, G. Burkard, and J. R. Petta, Science 359, 439
(2018).

[9] X. Xue, T. F. Watson, J. Helsen, D. R. Ward, D. E. Sav-
age, M. G. Lagally, S. N. Coppersmith, M. A. Eriksson,
S. Wehner, and L. M. K. Vandersypen, Phys. Rev. X 9,
021011 (2019).

[10] W. Huang, C. H. Yang, K. W. Chan, T. Tanttu,
B. Hensen, R. C. C. Leon, M. A. Fogarty, J. C. C. Hwang,
F. E. Hudson, K. M. Itoh, A. Morello, A. Laucht, and
A. S. Dzurak, Nature 569, 532 (2019).

[11] N. V. Abrosimov, D. G. Aref’ev, P. Becker, H. Bet-
tin, A. D. Bulanov, M. F. Churbanov, S. V. Filimonov,
V. A. Gavva, O. N. Godisov, A. V. Gusev, T. V.
Kotereva, D. Nietzold, M. Peters, A. M. Potapov, H.-J.
Pohl, A. Pramann, H. Riemann, P.-T. Scheel, R. Stosch,
S. Wundrack, and S. Zakel, Metrologia 54, 599 (2017).

[12] D. Culcer, X. Hu, and S. Das Sarma, Appl. Phys. Lett.
95, 073102 (2009).

[13] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R.
Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda,
Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha, Nat.
Nanotechnol. 13, 102 (2018).
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