A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students
Loading...
Links to Files
Author/Creator ORCID
Date
2014-02-04
Type of Work
Department
Program
Citation of Original Publication
Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K, DeJong RJ, Dennehy JJ, Denver DR, Dunbar D, Elgin SCR, Findley AM, Gissendanner CR, Golebiewska UP, Guild N, Hartzog GA, Grillo WH, Hollowell GP, Hughes LE, Johnson A, King RA, Lewis LO, Li W, Rosenzweig F, Rubin MR, Saha MS, Sandoz J, Shaffer CD, Taylor B, Temple L, Vazquez E, Ware VC, Barker LP, Bradley KW, Jacobs-Sera D, Pope WH, Russell DA, Cresawn SG, Lopatto D, Bailey CP, Hatfull GF. 2014. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. mBio 5(1):e01051-13. doi:10.1128/mBio.01051-13.
Rights
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
Subjects
Abstract
Engaging large numbers of undergraduates in authentic scientific discovery is desirable but difficult to achieve. We
have developed a general model in which faculty and teaching assistants from diverse academic institutions are trained to teach a
research course for first-year undergraduate students focused on bacteriophage discovery and genomics. The course is situated
within a broader scientific context aimed at understanding viral diversity, such that faculty and students are collaborators with
established researchers in the field. The Howard Hughes Medical Institute (HHMI) Science Education Alliance Phage Hunters
Advancing Genomics and Evolutionary Science (SEA-PHAGES) course has been widely implemented and has been taken by over
4,800 students at 73 institutions. We show here that this alliance-sourced model not only substantially advances the field of
phage genomics but also stimulates students’ interest in science, positively influences academic achievement, and enhances persistence
in science, technology, engineering, and mathematics (STEM) disciplines. Broad application of this model by integrating
other research areas with large numbers of early-career undergraduate students has the potential to be transformative in science
education and research training.