Asian and Trans‐Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis

Author/Creator ORCID

Date

2019-12-06

Department

Program

Citation of Original Publication

Kim, Dongchul; Chin, Mian; Yu, Hongbin; Pan, Xiaohua; Bian, Huisheng; Tan, Qian; Kahn, Ralph A.; Tsigaridis, Kostas; Bauer, Susanne E.; Takemura, Toshihiko; Pozzoli, Luca; Bellouin, Nicolas; Schulz, Michael; Asian and Trans‐Pacific Dust: A Multimodel and Multiremote Sensing Observation Analysis; Journal of GeophysicalResearch: Atmospheres,124,13,534-559 (2019); https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JD030822

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

Abstract

Dust is one of the dominant aerosol types over Asia and the North Pacific Ocean, but quantitative estimation of dust distribution and its contribution to the total regional aerosol load from observations is challenging due to the presence of significant anthropogenic and natural aerosols and the frequent influence of clouds over the region. This study presents the dust aerosol distributions over Asia and the North Pacific using simulations from five global models that participated in the AeroCom phase II model experiments, and from multiple satellite remote sensing and ground‐based measurements of total aerosol optical depth and dust optical depth. We examine various aspects of aerosol and dust presence in our study domain: (1) the horizontal distribution, (2) the longitudinal gradient during trans‐Pacific transport, (3) seasonal variations, (4) vertical profiles, and (5) model‐simulated dust life cycles. This study reveals that dust optical depth model diversity is driven mostly by diversity in the dust source strength, followed by residence time and mass extinction efficiency.