Thermal Crosstalk Measurements and Simulations for an X-ray Microcalorimeter Array

Author/Creator ORCID

Date

2020-01-18

Department

Program

Citation of Original Publication

Miniussi, A.R., Adams, J.S., Bandler, S.R. et al. Thermal Crosstalk Measurements and Simulations for an X-ray Microcalorimeter Array. J Low Temp Phys (2020). https://doi.org/10.1007/s10909-019-02312-5

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

Subjects

Abstract

Arrays of high-density microcalorimeters require careful heat sinking in order to minimize the thermal crosstalk between nearby pixels. For the array of microcalorimeters developed for the Athena X-ray Integral Field Unit instrument, which has more than 3000 pixels on a 275 µm pitch, it is essential to address this problem in order to meet the energy-resolution requirements. The instrument’s energy-resolution budget requires that the impact of the thermal crosstalk on the energy resolution be a contribution that, added in quadrature to other energy-resolution contributions, is less than 0.2 eV. This value results in a derived requirement that the ratio between the amplitude of the crosstalk signal to an X-ray pulse (for example at 6 keV) is less than 1 × 10−3 (for the first neighbor), less than 4 × 10−4 (for the diagonal neighbor) and less than 8 × 10−5 (for the second nearest neighbor). We have measured the thermal crosstalk levels between pixels in various geometries and configurations. The results show a crosstalk ratio which is at least a factor of 4 lower than the derived requirement. We also developed a finite element (FEM) 2D thermal model to predict the thermal behavior of large-scale arrays. This model successfully simulates the measured data in terms of pulse amplitude and time constants.