Broadband Brewster transmission through 2D metallic gratings

Author/Creator ORCID

Date

2012-11-07

Department

Program

Citation of Original Publication

Le, Khai Q.; et al.; Broadband Brewster transmission through 2D metallic gratings; Journal of Applied Physics 112, 094317 (2012); https://aip.scitation.org/doi/10.1063/1.4764334

Rights

This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons license, for uses protected by Copyright Law, contact the copyright holder or the author.
Public Domain Mark 1.0
This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.

Subjects

Abstract

Recently, we have introduced a mechanism to achieve ultrabroadband light funnelling and total transmission through 1D narrow metallic gratings at a specific incidence angle, the so-called plasmonic Brewster angle. This phenomenon is based on impedance matching between the guided modes supported by ultranarrow linear slits and transverse-magnetic waves at oblique incidence. In this paper, we demonstrate that such phenomenon, representing the equivalent of Brewster transmission for plasmonic screens, can also occur in 2D metallic gratings of various structural forms and shapes, and that it may be made insensitive to the azimuthal, or polarization, angle φ. This finding may have relevant implications to realize large funneling, absorption and squeezing of light in perforated metallic screens.