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ABSTRACT

Nearly one-third of the sources listed in the Third Fermi Large Area Telescope (LAT) catalog (3FGL) remain
unassociated. It is possible that predicted and even unanticipated gamma-ray source classes are present in these
data waiting to be discovered. Taking advantage of the excellent spectral capabilities achieved by the Fermi LAT,
we use machine-learning classifiers (Random Forest and XGBoost) to pinpoint potentially novel source classes in
the unassociated 3FGL sample outside the Galactic plane. Here we report a total of 34 high-confidence Galactic
candidates at  b 5∣ ∣ . The currently favored standard astrophysical interpretations for these objects are pulsars or
low-luminosity globular clusters hosting millisecond pulsars (MSPs). Yet these objects could also be interpreted as
dark matter annihilation taking place in ultra-faint dwarf galaxies or dark matter subhalos. Unfortunately, Fermi
LAT spectra are not sufficient to break degeneracies between the different scenarios. Careful visual inspection of
archival optical images reveals no obvious evidence for low-luminosity globular clusters or ultra-faint dwarf
galaxies inside the 95% error ellipses. If these are pulsars, this would bring the total number of MSPs at  b 5∣ ∣ to
106, down to an energy flux ≈4.0 × 10−12 erg cm−2 s−1 between 100MeV and 100 GeV. We find this number to
be in excellent agreement with predictions from a new population synthesis of MSPs that predicts 100–126 high-
latitude 3FGL MSPs depending on the choice of high-energy emission model. If, however, these are dark matter
substructures, we can place upper limits on the number of Galactic subhalos surviving today and on dark matter
annihilation cross sections. These limits are beginning to approach the canonical thermal relic cross section for
dark matter particle masses below ∼100 GeV in the bottom quark (bb̄) annihilation channel.
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1. INTRODUCTION

There is compelling evidence for the existence of dark matter
in the universe. In 1933, Zwicky (1933) had collected enough
data to postulate the presence of more mass than what could be
inferred from visible galaxies. Over the past 80 years,
additional observations ranging from the rotation curves of
spiral galaxies (Rubin et al. 1978) to large-scale structures (Ade
et al. 2014; Betoule et al. 2014) seem to point in the same
direction. One outstanding prediction of cosmological simula-
tions using cold dark matter particles is that the Milky Way
halo should be heavily populated with thousands of smaller
dark matter subhalos as a result of the hierarchical assembly
process (Klypin et al. 1999; Moore et al. 1999; Springel et al.
2008). Dark matter subhalos would include any dark matter
configuration, from those hosting the largest known dwarf
spheroidal galaxies in the Milky Way to the lightest predicted
dark matter substructures with masses around 10−4 Me (Ricotti
& Gould 2009; Scott & Sivertsson 2009). Conceptually in this
scenario, the bulk of the subhalo population is made up by
small-scale dark matter substructures with limited or null star
formation, which would be almost impossible to detect in
existing optical surveys.

Should dark matter subhalos without major star formation
episodes exist in large numbers, one of the only ways to detect

them might be by tracking gamma-rays from dark matter
annihilation. The all-sky coverage and unprecedented sensitiv-
ity of the Large Area Telescope (LAT) on board NASAʼs
Fermi satellite is enabling the most effective search for
potential dark matter subhalos to date. The obvious place to
look for subhalo candidates is among the 3033 sources detected
and characterized in the Third Fermi-LAT catalog (3FGL;
Acero et al. 2015), in particular, among the 1010 sources listed
as unassociated with counterparts of known gamma-ray-
producing source classes. It is plausible that after years of
observations, Fermi has already detected dark matter subhalos.
The challenge now is to locate them (E. Charles et al. 2016, in
preparation).
Previous attempts to pinpoint dark matter subhalos have

systematically searched for unassociated sources with spectra
that are consistent with dark matter annihilation (Buckley &
Hooper 2010; Nieto et al. 2011; Ackermann et al. 2012a;
Belikov et al. 2012; Zechlin & Horns 2012; Berlin &
Hooper 2014; Bertoni et al. 2015, 2016). Machine-learning
classification targeting dark matter subhalos has also been
performed using k-means clustering in the First Fermi LAT
Catalog (1FGL; Mirabal et al. 2010) and Random Forest in the
Second Fermi LAT Catalog (2FGL; Mirabal et al. 2012). Here
we present an application of machine-learning classifiers that
aims to chart all Galactic sources outside the plane in the
3FGL. By specifically isolating 3FGL objects at high latitude,
we hope to reduce the search space for dark matter subhalos
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and unknown source classes as much as possible. The paper is
organized as follows. In Section 2 we introduce the spectral
prescription for locating Galactic objects outside the plane in
the 3FGL. In Section 3 we introduce machine-learning
classifiers. Section 4 covers training sample and variable
selection. In Sections 5 and 6 we discuss cross validation and
prediction results. In Section 7, we discuss possible interpreta-
tions of the results including a visual search for ultra-faint
dwarf galaxy and globular cluster counterparts, as well as direct
comparison with statistics from pulsar population synthesis
models. We also place constraints on the annihilation cross
section by comparing the number of potential subhalos to
predictions from cosmological simulations. Finally, in Section 8
we present our conclusions and outlook.

2. SPECTRAL PRESCRIPTION FOR THE GALACTIC
POPULATION OUTSIDE THE PLANE

At high Galactic latitude, the totality of known Galactic
gamma-ray emitters correspond to pulsars or globular clusters
hosting millisecond pulsars (MSPs; Acero et al. 2015). Two
additional undiscovered gamma-ray-producing source classes
have been postulated to exist: dark matter subhalos (Bergström
et al. 1999) and dwarf galaxies (Lake 1990). Dark matter
annihilation is expected to dominate the gamma-ray signal
from both known Galactic dwarf galaxies and from dark matter
subhalos. If two dark matter particles annihilate through typical
Standard Model channels, the decay and hadronization of these
particles would create a gamma-ray spectrum that extends up to
the rest mass of the dark matter particle with a sharp cutoff
(Bergström et al. 1998; Fornengo et al. 2004). The gamma-ray
spectrum is given by
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where sá ñv is the thermally averaged annihilation cross section,

mχ is the dark matter particle mass, and gdN

dE
is the gamma-ray

yield per annihilation and depends on the particle physics
model under consideration (Sjostrand et al. 2006).

The second part of the equation, or the so-called astro-
physical factor J(ΔΩ), corresponds to the integration of the
dark matter density squared ρ2(l, Ω) along the line of sight l
over a solid angle ΔΩ. The nearest and/or most massive dark
matter subhalos would be easiest to detect even if they host no
stars.

Figure 1 shows the predicted gamma-ray spectrum for the
annihilation of 30 GeV dark matter particles into bottom quark
(bb̄) pairs. The spectral shape from dark matter annihilation
would be quite recognizable. Unfortunately, a dark matter
annihilation spectrum around a few GeV would not be unique.
Most known gamma-ray pulsars display nearly identical
spectra with sharp exponential cutoffs (Baltz et al. 2007; Abdo
et al. 2013). To illustrate this point, we have overlaid in
Figure 1 a typical MSP spectrum drawn from the Second Fermi
LAT Pulsar Catalog (2FPC; Abdo et al. 2013).

This pulsar-dark matter spectral degeneracy has driven a
lively debate about the origin of excess GeV emission at the
Galactic center (Goodenough & Hooper 2009; Hooper &
Linden 2011; Abazajian & Kaplinghat 2012; Gordon & Macias
2013; Mirabal 2013; Carlson & Profumo 2014; Yuan & Zhang
2014; Brandt & Kocsis 2015; Calore et al. 2015; Petrović et al.
2015; Ajello et al. 2016; Bartels et al. 2016; Daylan et al. 2016;

Lee et al. 2016; O’Leary et al. 2016); however, the spectral
degeneracy permeates to other astrophysical settings beyond
the Galactic center. Indeed, because of this gamma-ray
degeneracy, one cannot expect to distinguish spectrally
between pulsars, low-luminosity globular clusters hosting
MSPs, ultra-faint dwarf galaxies, and dark matter subhalos.
By contrast, none of the known extragalactic sources have

exponentially curved LAT spectra, except for the Large
Magellanic Cloud pulsar (Ackermann et al. 2015b). Variability
is also a far more likely characteristic of extragalactic objects
than of Galactic objects at high latitude. One can turn the
spectral degeneracy between some Galactic classes and the
marked contrast with extragalactic objects into assets by using
known pulsar and globular cluster gamma-ray spectra to help
hunt down undiscovered dark matter subhalos and ultra-faint
dwarf galaxies in the 3FGL with machine-learning classifiers.
We describe such search strategy next.

3. MACHINE-LEARNING CLASSIFIERS

By machine-learning classifier, we denote any algorithm
with the ability to perform accurate predictions, after having
trained on the properties of a well known training set of data.
For most of this work, we will concentrate on supervised
machine-learning classifiers or sets of models that can input a
list of variables of a data set and output a prediction model that
best describes the relationship between the variables and
known classes. For an overview of popular machine-learning
classifiers, we refer the reader to Hastie et al. (2001). Among
the plethora of available machine-learning classifiers, we have
settled on two highly accurate variants of classification trees,
i.e., Random Forest and XGBoost (Fernandez-Delgado et al.
2014; Chen & Guestrin 2016).

Figure 1. Spectral shape from dark matter annihilation (blue line) of a 30 GeV
particle into bottom quark (bb̄) pairs (Fornengo et al. 2004). Other Standard
Model annihilation channels are expected to produce similar spectra. Also
shown is a representative MSP spectrum (black dashed line) from the 2FPC
(Abdo et al. 2013).
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3.1. Random Forest

Random Forest is an ensemble learning method that grows a
large forest of randomized classification trees and aggregates
their predictions made from a list of input variables
(Breiman 2001). Individual classification trees are constructed
by randomly sampling k variables from n input variables at
each node (Quinlan 1993). The forest selects a random sample
with replacement from the original training set using bagging
(bootstrap aggregating). Any data left out of the bootstrap
sample helps to measure the internal accuracy directly in the
form of an out-of-bag estimates. To classify an object, each tree
in the forest issues a prediction. The predictions from all trees
for the same object are then collected and a class is determined
through a majority decision. Aside from being easy to use,
Random Forest provides outstanding performance and the
ability to track proximity matrices. We adopted the Random
Forest set of routines, which implements the original Random
Forest for classification and regression to the R language (Liaw
& Wiener 2002). The final model is based on 1000 trees, with a
total of p variables sampled at each split, where p is the final
number of variables.

3.2. XGBoost

The eXtreme Gradient Boosting XGBoost7 is a modified
version of gradient boosting (Friedman 2001). The fundamental
difference with Random Forest is that XGBoost uses boosting to
reweigh the training set sequentially (Quinlan 1993). In contrast
to bagging, boosting uses all instances at each repetition but
issues a weight for each instance in the training set. These
evolving weights adjust the learners to focus on different
instances at each pass. One of the key problems in tree classifiers
is how to find the best split at each node. To expedite this
decision, XGBoost finds the best solution over all the possible
splits according to percentiles of variable distribution (Chen &
Guestrin 2016). In all experiments, we boost trees with a learning
rate η = 0.5 and a maximum number of iterations set to 5.

4. TRAINING SAMPLE AND VARIABLE SELECTION

In order to construct a base training set for the Galactic
population outside the plane, we use 143 3FGL pulsars
identified by pulsations (PSRs), 15 3FGL globular clusters
(GLCs), and 24 3FGL pulsars with no pulsation yet seen in
LAT (PSRs). The extragalactic set includes 1745 sources from
all active galactic nucleus (AGN) classes in the 3FGL. It
contains three non-blazar active galaxies (AGN), 573 blazar
candidates of uncertain type (BCU), 660 BL Lacs (BLL), 484
flat-spectrum radio quasars (FSRQ), 5 narrow-line Seyferts 1
(NLSY1), 15 radio galaxies (RDG), 3 soft spectrum radio
quasars (SSRQ), 1 compact steep spectrum quasar (CSS), and 1
Seyfert galaxy (SEY). The entire data set is divided into a
training set (a random sample of two-thirds of the total) and a
testing set (remaining one-third of the total).

Variable selection is essential to machine-learning classifiers.
Starting from a set of parameters or variables, the algorithm
must be able to classify an object into one of a set of distinct
classes. For any classification problem, there are certain
variables that best capture a specific class of objects. The
advantage of using machine-learning classifiers is that the
algorithms can explore the entire variable space at once.

Initially we started with a total of 35 3FGL variables, excluding
positional, uncertainty, and descriptive variables. In view of the
inherent difficulties in sampling gamma-ray spectra for any
given object, we augmented this original variable set with eight
additional derived variables defined by hardness ratios
HRij =

-

+

Flux Flux

Flux Flux
i j

i j
and flux ratios FRij = Fluxi/Fluxj between

consecutive i, j bands for 0.1–0.3 GeV (Band 1), 0.3–1 GeV
(Band 2), 1–3 GeV (Band 3), 3–10 GeV (Band 4), and
10–100 GeV (Band 5).
Figure 2 shows the out-of-bag error as a function of the

number of variables used. The out-of-bag estimates tend to
asymptote to a minimum at n  8. The value shown for n = 2
corresponds to the optimal scenario when using only Sig-
nif_Curve and Variability_Index as variables. For
each classifier, we also quantify feature importance to pinpoint
the features that best discriminate between classes. Table 1
ranks variable importance (from most to least important) in
terms of the improvement achieved from each variable or Gain
for all splits and trees for the XGboost model. For comparison,
Table 2 ranks the overall percentage decrease in accuracy rate
averaged over all trees or Mean Decrease Accuracy measured
by Random Forest (Liaw & Wiener 2002). As can be seen, the
variable rankings are not identical but there is commonality on
the top variables. The differences are an indication of the
distinct paths the classifiers follow to achieve a successful

Figure 2. Out-of-bag estimates as a function of the number of variables used by
the classifier.

Table 1
3FGL Variable Importance According to Gain in XGBoost

Variable Gain

Signif_Curve 0.47
Variability_Index 0.26
FR45 0.10
Spectral_Index 0.08
FR12 0.03
FR23 0.03
Pivot_Energy 0.02
FR34 0.01

7 https://github.com/dmlc/xgboost
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prediction. After exploring different variable combinations, we
find that the variables that most clearly differentiate Galactic
and extragalactic populations include Signif_Curve, Var-
iability_Index, and Spectral_Index. We also
include flux ratios and hardness ratios for five energy bands
in our final models.

5. CROSS VALIDATION

During initial tests, we quickly found out that Random
Forest suffered from the fact that the training set was highly
imbalanced, i.e., 90% extragalactic versus 10% Galactic
trainees. As constructed, Random Forest tends to build
classification trees dominated by the majority class. To
alleviate this problem, we artificially increased the training
set using over-sampling as implemented in the Synthetic
Minority Over-sampling Technique (SMOTE; Chawla et al.
2012). SMOTE creates a much larger synthetic minority class
by replicating the existing sample using five nearest neighbors.
With the SMOTE approach we were able to achieve a test set
error rate of 2.8% for Random Forest. Class imbalanced was
not a problem for XGBoost and the training was done with the
original training and testing samples, reaching a test set error
rate of 3.3%.

Figure 3 shows the receiver operating characteristic curves
for both classifiers (Hastie et al. 2001). At various threshold
values, we plot the true positive rate (the fraction of correctly
identified) versus the false positive rate (the fraction of
candidates incorrectly classified). As shown, Random Forest
slightly outperforms XGBoost, but only after taking into
account the class imbalance. A perfect classifier would have a
true positive rate equal to one.

A complementary measure of accuracy can be accomplished
by applying Random Forest and XGBoost retroactively to
unassociated sources listed in the 1FGL and 2FGL. Since a
number of Fermi discoveries have been made since those early
catalogs were first released, we can now directly measure how
many high-latitude Galactic candidates selected using machine-
learning classifiers have been confirmed either as pulsars or
globular clusters. Out of 22 Galactic candidates above 10σ
significance picked by the classifiers in the 1FGL, 18 have been
confirmed as pulsars to date. This implies that the accuracy
achieved by the classifiers exceeds 80% at that significance
level. In Figure 4 we show the number of 3FGL Galactic
candidates at  b 20∣ ∣ as a function of flux. For comparison,
1FGL and 2FGL candidates using the same machine-learning
classifiers are also shown. We can clearly see the tremendous
progress in pulsar discoveries since the release of the 1FGL
based on 11 months of Fermi LAT data.

6. PREDICTION RESULTS

Next we applied the classifier models to the entire 3FGL
unassociated sample. In order to focus on sources outside the
Galactic plane, we excluded unassociated 3FGL sources within
5° of the plane. This cut leaves us with a starting list of 675
unassociated objects from a total of 1010. Since we are only
interested in high-quality predictions, we further impose the

Table 2
3FGL Variable Importance According to Mean Decrease Accuracy

in Random Forest

Variable Mean Decrease Accuracy

Variability_Index 0.58
FR45 0.40
Signif_Curve 0.40
Pivot_Energy 0.33
HR45 0.30
Spectral_Index 0.26
HR23 0.24
FR23 0.22

Figure 3. Receiver operating characteristic (ROC) curves for Random Forest
(black line) and XGBoost (red line). The closer the curve to the upper left
corner, the better the performance. The 45° dashed line marks the region where
true positive and false positive rates are equal.

Figure 4. Number of potential 3FGL Galactic candidates at  b 20∣ ∣ (black).
Also shown are 1FGL (blue) and 2FGL (red) candidates using the same
machine-learning approach. F1000 represents the photon flux for the
1–100 GeV energy range.
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condition that in order to retain a Galactic candidate, both
classifiers must agree (probability PGalactic � 0.5 that the object
is Galactic in both classifiers). Finally, we only report
predictions for 3FGL objects with a detection signifi-
cance �10σ.

Based on these criteria, we find a total of 34 high-latitude
Galactic candidates with energy flux4.0× 10−12 erg cm−2 s−1

between 100MeV and 100 GeV at  b 5∣ ∣ . Table 3 lists these
candidates. To check for consistency, we compared our list of
candidates with results from spectral fitting of 3FGL
unassociated sources (Bertoni et al. 2015), as well as with
pulsar predictions using a combination of Random Forest and
Logistic Regression (Saz Parkinson et al. 2016). The list of
Galactic candidates at high Galactic latitude is in good
agreement with both of these works.

7. INTERPRETATIONS

Armed with these 34 potential high-latitude Galactic objects,
we can now place the results in context of known and
hypothesized gamma-ray source classes.

7.1. Globular Clusters/Dwarf Galaxies: Optical Search

One possibility is that some of these newly discovered
objects are either low-luminosity globular clusters (Koposov
et al. 2007; Minniti et al. 2011) or ultra-faint dwarf galaxies. In
order to examine this possibility, we have visually inspected
Digitized Sky Survey (DSS) and Sloan Digital Sky Survey
(SDSS) images (Ahn et al. 2014). We confined our visual
inspection to the area enclosed within the 3FGL 95%
uncertainty ellipses of the 34 candidates. Our search mainly
focused on visually diffused and extended objects in the
optical, but none were found at least 1 mag above the DSS
optical limit. It is important to note that the visual approach is
limited to objects that can easily standout in the images but it is
severely hampered when trying to reach ultra-faint dwarf
galaxies as the ones detected by SDSS (Willman et al. 2005)
and DES (Bechtol et al. 2015).
For six optical fields with reliable multi-band SDSS

photometry (3FGL J0318.1+0252, 3FGL J1120.6+0713,
3FGL J1225.9+2953, 3FGL J1625.1–0021, 3FGL
J2103.7–1113, 3FGL J2212.5+0703), we systematically
searched for unusual concentrations of RR Lyrae. RR Lyrae

Table 3
Machine-learning Galactic Candidates among 3FGL Unassociated Sources at  b 5∣ ∣

Source Name l b PGalactic(RF) PGalactic(XGBoost) ID or Assoc.
(°) (°)

3FGL J0212.1+5320 134.93 −7.65 1.00 1.00 L
3FGL J0238.0+5237 138.85 −6.92 0.94 0.85 L
3FGL J0312.1–0921 191.51 −52.36 0.95 0.94 L
3FGL J0318.1+0252 178.45 −43.64 1.00 1.00 L
3FGL J0336.1+7500 133.11 15.50 0.98 1.00 L
3FGL J0523.3–2528 228.20 −29.83 0.89 1.00 L
3FGL J0545.6+6019 152.4964 15.7493 0.67 0.89 L
3FGL J0758.6–1451 233.9599 7.5619 0.90 0.83 L
3FGL J0802.3–5610 269.9308 −13.1755 0.72 0.90 L
3FGL J0838.8–2829 250.6050 7.8008 0.97 1.00 L
3FGL J0933.9–6232 282.2351 −7.8937 1.00 1.00 L
3FGL J0953.7–1510 251.9380 29.6055 0.96 0.98 L
3FGL J0954.8–3948 269.8445 11.4575 0.61 0.52 L
3FGL J1035.7–6720 290.3908 −7.8284 1.00 1.00 psr (Camilo et al. 2015)
3FGL J1119.9–2204 276.4696 36.0588 0.97 1.00 L
3FGL J1120.6+0713 251.5322 60.6852 0.85 0.73 L
3FGL J1225.9+2953 185.1521 83.7648 0.94 1.00 L
3FGL J1539.2–3324 338.7592 17.5342 0.90 1.00 L
3FGL J1544.6–1125 356.2111 32.9844 0.63 0.73 psr (Bogdanov & Halpern 2015)
3FGL J1557.0–4225 335.6413 8.3622 0.50 0.57 L
3FGL J1624.2–4041 340.5718 6.1421 1.00 1.00 PSR (Einstein@Homea)
3FGL J1625.1–0021 13.8808 31.8378 1.00 1.00 L
3FGL J1653.6–0158 16.6181 24.9246 0.98 1.00 L
3FGL J1702.8–5656 332.3978 −9.2447 0.62 0.84 L
3FGL J1744.1–7619 317.1046 −22.4711 0.99 1.00 psr (Camilo et al. 2015)
3FGL J1753.6–4447 347.0854 −9.4164 0.98 0.99 L
3FGL J1946.4–5403 343.8883 −29.5630 1.00 0.99 PSR (P. Ray et al. 2016, in

preparation)
3FGL J2039.6–5618 341.2312 −37.1551 0.98 1.00 L
3FGL J2103.7–1113 37.8579 −34.4231 0.93 0.87 L
3FGL J2112.5–3044 14.8984 −42.4487 0.99 0.99 L
3FGL J2117.6+3725 82.7982 −8.2737 0.81 0.90 L
3FGL J2133.0–6433 328.7390 −41.2683 0.93 1.00 L
3FGL J2212.5+0703 68.7429 −38.5650 0.92 0.99 L
3FGL J2233.1+6542 109.3427 6.5614 0.74 0.95 L

Note.
a http://www.einsteinathome.org/.
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stars are excellent distance indicators, as well as superb tracers
of stellar substructures away from the Galactic plane (Mateo
et al. 1993; Alcock et al. 1997). In order to pinpoint RR Lyrae
star candidates within the 3FGL 95% uncertainty ellipses, we
adopted a simple SDSS color cut scheme based on Equations
(1)–(4) derived by Sesar et al. (2010).

We find no anomalous excess of RR Lyrae stars in any of the
six fields with significance greater than 5σ. It is quite possible
that fainter stellar structures with very few members could be
present below the optical detection limits (Willman et al. 2005;
Bechtol et al. 2015).

7.2. Pulsars: Comparison with Population Synthesis Models

Given the ultra-fast pace of pulsar discoveries with Fermi, it
is not surprising that at least five of the Galactic candidates
identified here have been already confirmed as pulsars since the
3FGL release (see Table 3). In the 3FGL there are 89 pulsars
listed at  b 5∣ ∣ with energy flux larger than
2.3 × 10−12 erg cm−2 s−1 between 100MeV and 100 GeV.
Of the 89 known high-latitude gamma-ray pulsars, 77 are
MSPs with spin period P (s) and spin-down rate Ṗ satisfying

Plog10
˙ + 19.5 + 2.5 log10 P < 0 (Acero et al. 2015). An

addition of 34 pulsars would bring the total number of Fermi-
LAT-detected pulsars at high latitude to 123.

In order to compare this number to theoretical predictions
from pulsar simulations, we performed a new population
synthesis of MSPs (Gonthier 2016; Gonthier et al. 2016; P. L.
Gonthier et al. 2016, in preparation) in a similar fashion as in
the study of Story et al. (2007). However, we have used
improved pulsar spin-down formalism, empirical gamma-ray
luminosity, and beam geometries of the high-energy emission
models of the high-altitude Slot Gap (two pole caustic, TPC;
Muslimov & Harding 2003, 2004) of the Outer Gap (OG;
Cheng et al. 2000; Zhang et al. 2007) and of the pair-starved
polar cap (PSPC; Muslimov & Harding 2004, 2009).

In addition to the radio beam geometry used in Story et al.
(2007), we implemented a radio-aligned model (ALTPC) in
which the radio emission has the same geometry as the high-
energy TPC model. The characteristics of 13 radio surveys
provided the detection thresholds for simulated radio pulsars,
and the Fermi point source threshold map in the 2FPC was
scaled for various observing periods to determine the detection
of simulated gamma-ray pulsars.

The models predict that Fermi LAT should detect anywhere
from 100 to 126 MSPs in four years with an energy flux larger
than 2.3 × 10−12 erg cm−2 s−1 at  b 5∣ ∣ (Table 4). Assuming
that 85% of the 34 Galactic candidates are MSPs, as is
observed in the 3FGL catalog at high Galactic latitude, then the

total number of 3FGL MSPs at  b 5∣ ∣ would be ≈106 (see
Table 4). Therefore, the simulated pulsar population is in
excellent agreement with the projected number of 3FGL MSP
detections. In fact, depending on the pulsar emission model
there is some wiggle room (≈4–20) for additional 3FGL MSP
discoveries at high Galactic latitude. Below 10σ and above 4σ
significance, the machine-learning classifiers find an additional
33 Galactic candidates that could easily cover this difference.
The locations of the 34 high-significance Galactic candidates
and known 3FGL pulsars at  b 5∣ ∣ are shown in Figure 5.

7.3. Dark Matter Subhalos: Comparison with Aquarius and
Via Lactea II Numerical Simulations

Taking advantage of the predictions in Bertoni et al. (2015),
we can also directly compare the number of Galactic candidates
at  b 20∣ ∣ to the expected number of nearby subhalos
detectable by Fermi LAT after four years of observations.
Because our classifiers rely on the 3FGL variables, we are only
sensitive to dark matter annihilation in the 100 MeV–300 GeV
energy range. It is important to note that no significantly
exponentially curved candidates at energies 300 GeV have
been found in any of the hard Fermi-LAT source catalogs
(Ackermann et al. 2016). As in the original approach outlined
in Berlin & Hooper (2014), the subhalo predictions in Bertoni
et al. (2015) rely on the distribution of hundreds of thousands
of subhalos that were simulated in six ultra-highly resolved
Milky-Way-sized halos as part of the Aquarius Project
(Springel et al. 2008).
Bertoni et al. (2015) calculated the number of detectable

Aquarius subhalos as a function of Fermi LAT flux and
Galactic latitude. Recently, Schoonenberg et al. (2016) used
results of the Via Lactea II simulation (Diemand et al. 2007)
scaled to the Planck 2015 cosmological parameters and found a
slightly smaller number of detectable subhalos, but still
consistent with the Aquarius results considering the range of
assumptions involved. For our comparison of high-latitude
candidates with dark matter predictions, we removed recently
detected pulsars from Table 3. This brings down the number of

 b 20∣ ∣ subhalo candidates from 17 to 14.
Figure 6 shows the upper limits on sá ñv for dark matter

masses mχ between 30 GeV and 10 TeV annihilating into a
bottom quark (bb̄) final states based on the detection of 14
potential subhalo candidates at  b 20∣ ∣ . Note that these limits
would only be slightly better if one includes the role of halo
substructure to boost the subhalo annihilation flux (Moliné
et al. 2016; Sánchez-Conde & Prada 2014). More precisely,
following Moliné et al. (2016), we estimate at most a factor
∼10% stronger limits when boosting the annihilation signal in
the mass range 104–107 Me. For comparison, we also show
constraints if eventually no dark matter subhalos turn up in the
3FGL from the Aquarius (Bertoni et al. 2015) and Via Lactea II
simulations (Schoonenberg et al. 2016), respectively. While the
current limit is not constraining enough to rule out the
canonical thermal relic cross section at energies below
100 GeV (Steigman et al. 2012), the curve is starting to
approach competitive values. Indeed, further associations of
some of these candidates with conventional astrophysical
sources may only lead to more stringent limits.
As noted by Bertoni et al. (2015), there are significant

uncertainties in the number of predicted dark matter subhalos
that could shift these dark matter limits by a factor of a few.
The point remains that Fermi LAT might have detected several

Table 4
Summary of Population Synthesis of MSPs at  b 5∣ ∣

Catalog Period

Detected MSPs +
(Galactic

Candidates)a Simulated

TPC OG AITPC PSPC

3FGL 4 years 77 + (29) 110 126 104 100
5 years L 122 138 117 110
10 years L 160 173 167 145

Note.
a Number listed in parentheses corresponds to 85% of Galactic candidates, as
in the observed percentage of MSPs in the 3FGL pulsar list at high Galactic
latitude.
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dark matter subhalos by now, even under the most pessimistic
assumptions. The absence of an overwhelming number of
subhalo candidates provides complementary verification of
more robust annihilating dark matter limits inferred from dwarf
galaxies (Ackermann et al. 2015a; Geringer-Sameth et al.
2015) and the Galactic center (Abazajian & Kaplinghat 2012;
Gordon & Macias 2013; Calore et al. 2015; Daylan et al. 2016).

8. CONCLUSIONS AND OUTLOOK

We find that the set of variables provided in the Fermi LAT
catalogs have the ability to effectively predict gamma-ray
source classes in the 3FGL data set. After careful examination
of various Galactic demographics, we find that the 34
additional high-latitude Galactic candidates predicted using
machine-learning classifiers can be accommodated by existing

pulsar population synthesis models without the need to
introduce undiscovered globular clusters, dark matter subhalos,
or gamma-ray-emitting ultra-faint dwarf galaxies. On the other
hand, if these objects were produced by annihilating dark
matter, the upper limits on the annihilation cross section are
starting to approach values at or below the canonical thermal
cross section for energies 100 GeV.
The discovery of radio and gamma-ray pulsations will be

crucial to address the spectral degeneracy between dark matter
annihilation and pulsar emission. However, blind searches will
face greater obstacles in noisy MSPs and fainter gamma-ray
sources as Fermi continues operations. Table 4 shows projected
discoveries of MSPs for 10 years of Fermi LAT data taking.
The most promising follow up strategy to break these
degeneracies will rest on our ability to detect pulsations going
from the brightest to the faintest Galactic candidates. Some of
these searches for the most elusive gamma-ray pulsars are
being conducted by the distributed volunteer computing
sources, Einstein@Home (Pletsch et al. 2013). New discoveries
will require even larger computing resources and new search
strategies.
Optical, ultraviolet, and X-ray searches for binary objects with

temporal variability could also enhance the chances for finding
millisecond pulsars (Romani & Shaw 2011; Bogdanov &
Halpern 2015). Incidentally, the addition of new MSPs will also
bring us closer to the detection of nanohertz gravitational waves
based on pulsar-timing arrays (Taylor et al. 2016). Should
additional high-latitude Galactic candidates be confirmed as
pulsars, new swaths of annihilation cross sections will be
disfavored by direct comparison with statistics from cosmolo-
gical numerical simulations of Milky-Way-like galaxies. There-
fore, subhalo searches represent a powerful complementary
method to existing probes of dark matter annihilation.
Clearly, there ought to be dedicated multiwavelength

campaigns to map the error ellipses of high-latitude Galactic
candidates for which no radio/gamma-ray pulsations are
found. Finally, the improvements in position and photon flux
afforded by Pass 8 analysis (Atwood et al. 2013) should further
enhance machine-learning predictions in the future Fermi LAT
Fourth Source Catalog (4FGL).
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NASA Postdoctoral Program at the Goddard Space Flight

Figure 5. Galactic distribution of 34 high-latitude Galactic candidates (red circles) superimposed on a smoothed Fermi LAT all-sky map for energies E � 1 GeV
based on events collected during the period 2008 August 4–2015 August 4 (Credit: Fermi LAT Collaboration). High-latitude 3FGL pulsars (blue crosses) are also
plotted for comparison.

Figure 6. Upper limits on the dark matter annihilation cross section for the bb̄
channel assuming 14 subhalo candidates at  b 20∣ ∣ (black solid line). The
dashed red line is an upper limit derived from the Via Lactea II simulation
when zero 3FGL subhalos are adopted (Schoonenberg et al. 2016). The blue
line corresponds to the constraint for zero 3FGL subhalo candidates using the
Aquarius simulation instead (Bertoni et al. 2015). The horizontal dotted line
marks the canonical thermal relic cross section (Steigman et al. 2012).
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