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ABSTRACT

The integration of kinetic effects in fluid models is important for global simulations of Earth’s magnetosphere. The use of the two-fluid ten-
moment model, which includes the pressure tensor for both species, has had some success in simulating Ganymede and Mercury with a sim-
ple closure model. We discuss a heat flux closure which accounts for some limitations of the earlier work while remaining computationally
tractable. Comparisons with kinetic simulations for magnetic reconnection and lower-hybrid drift instabilities show good agreement with
kinetic results and improvements on previous closure models.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012067

I. INTRODUCTION

The modeling of large-scale collisionless plasma environments
such as magnetospheres is a challenging problem, as it requires the
coupling of global features to small-scale physics. Most global models
of Earth’s magnetosphere use Magnetohydrodynamics (MHD), which
treats the plasma as a single conducting fluid.1–3 While these models
can simulate the large spatial and temporal scales involved, they are
missing the small-scale kinetic physics.

There are many approaches to adding physical effects beyond
MHD in simulation models, such as the inclusion of pressure anisot-
ropy,4,5 the Hall-current term,6,7 the use of hybrid codes with kinetic
ions and fluid electrons,8–11 and embedding kinetic boxes within
larger-scale fluid simulations.12,13

In this paper, we consider the multi-fluid moment model, in
which moments of the kinetic equation up to the pressure tensor are
evolved. This has been used in local studies of reconnection and insta-
bilities14–21 as well as global simulations of Ganymede,22 Mercury,23

and Uranus.24 While these studies have had some success in terms of
both theoretical results and observational comparisons, the issue of
closure (in this case, the form of the heat flux) still remains, both in
terms of physical modeling and computational cost. In contrast to ear-
lier studies, which have used a nonlocal Landau-fluid-like closure,18

which is costly, or a local relaxation to isotropy,16,17 which has limita-
tions, to approximate kinetic effects, we employ an effective thermal

conductivity. This is similar to the approaches used in Refs. 21 and 25,
and we perform comparisons with both kinetic simulations and other
closure approximations.

The scope of this paper is confined to two test problems which
have been studied extensively using two-fluid and kinetic models. We
first study magnetic reconnection using the island coalescence geome-
try. While this is an idealized setup, the merging of flux tubes is an
important process for particle acceleration and energy transfer in space
and astrophysical plasmas.26–28 Previous kinetic studies of coalescence
have shown that the normalized reconnection rate is affected by the
system-size,29,30 a result which cannot be reproduced by Hall-MHD
because of the importance of ion physics. How well the ten-moment
model reproduces these kinetic results depends on the closure used—
in Refs. 17 and 18, the importance of the ion pressure tensor could
only be recovered at small system sizes, while Ref. 21 found good
agreement up to large system sizes. We find that we are able to repro-
duce the kinetic system-size scaling29 as well the structure of the ion
diffusion region in guide-field reconnection.

We then study the lower-hybrid drift instability (LHDI), which is
driven by diamagnetic currents in inhomogeneous plasmas.31 This
instability is found at the edge of current sheets in both simulations
and observations.32–34 In the magnetosphere, the LHDI may drive
turbulence during magnetopause reconnection,35,36 and can quicken
the onset of reconnection in regimes relevant to magnetotail
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reconnection.37,38 Prior studies of the LHDI using the ten-moment
model show that it is important to retain the ion kinetic effects using
the nonlocal closure,19,20 and we find the heat flux closure in this work
is able to reproduce the growth of the LHDI in a current sheet.

This paper is organized as follows: in Sec. II, we discuss the ten-
moment equations used in this paper and various closures. Section III
describes a study of reconnection using the island coalescence geome-
try and simulations of the LHDI are discussed in Sec. IV. We summa-
rize the results in Sec. V.

II. FLUID MODEL

The ten-moment equations are derived by taking moments of
the kinetic equation

@n
@t
þ @

@xj
ðnujÞ ¼ 0;

m
@

@t
ðnuiÞ þ

@Pij

@xj
¼ nqðEj þ �ijkujBkÞ;

@Pij

@t
þ
@Qijk

@xk
¼ nqu iEj½ � þ

q
m
�½iklPkj�Bl;

(1)

where Pij and Qijk are the second and third moments of the distribu-
tion function

Pij � m
Ð

vivjfd3v;

Qijk � m
Ð

vivjvkfd3v;
(2)

and the square brackets denote a sum over permutations of the
indices (e.g., u½iEj� ¼ uiEj þ ujEi). The third moment tensor
Qijk can be written in terms of the heat flux tensor qijk
� m

Ð
ðvi � uiÞðvj � ujÞ ðvk � ukÞfd3v

Qijk ¼ qijk þ u½iPjk� � 2mnuiujuk: (3)

In earlier work, the closure of the equations in the collisionless
limit used a three-dimensional extension of the Hammett–Perkins clo-
sure,18 which can be expressed as follows for both electrons and ions:39

qijkðxÞ ¼ nðxÞq̂ijkðxÞ; (4)

where q̂ijk in Fourier space is ~qijk and is calculated as

~qijk ¼ �i
vt
jkj vk½i

~T jk�: (5)

Here, ~T jk is the Fourier transform of the deviation of the local temper-
ature tensor from the mean. The 1=jkj scaling makes this a non-local
closure when expressed in real space40,41 and provides a 1 to 3 pole
Pad�e approximation of various components of the dielectric tensor.
The coefficient v ¼

ffiffiffiffiffiffiffiffiffiffi
4=9p

p
is the best fit value for the diagonal qiii

component and reduces to the closure in Refs. 39 and 40 in the 1-D
limit. This is an unmagnetized closure (especially relevant to ions in
this geometry in which there is no guide field) which approximates lin-
ear phase mixing, allowing the wavenumber-dependent damping of
spurious short-wavelength oscillations which are present in higher
moment fluid models.40,42

The evaluation of the nonlocal closure is computationally expen-
sive due to the need to take the Fourier transform, which scales as
OðN logNÞ and requires global communications in parallel systems,
at every time step. This makes it unsuitable for large scale simulations.

Although our previous work used the nonlocal method with improve-
ments in the results,18 the computational cost was much greater than
when using the simpler closure of Refs. 16 and 17, which relaxes the
pressure tensor to local isotropy.

In this work, we use an approximation similar to that of Sharma
et al.,25 which replaces the nonlocal heat flux with a local heat flux by
picking a characteristic wavenumber in Eq. (5). This is equivalent to
using a thermal conductivity and was used in studies of fluid simula-
tions of the magnetorotational instability.25 The resulting expression is

qijk ¼ �
vt
jksj

v@½iTjk�; (6)

where ks is a constant or spatially varying parameter for each species.
In comparison to Refs. 16, 17, 43, and 44 in which @iqijk is replaced by
a relaxation term proportional to ðPij � 1

3 traceðPÞdijÞ, this provides a
local approximation to the heat flux rather than just an isotropization.

Heuristically, the closure is obtained by replacing the jkj in the
denominator of Eq. (5) by a constant (or spatially dependent) k0, while
the model of Refs. 16 and 17 replaces all the ks with a constant.
Equation (6) is similar to the gradient-driven closure used in Ref. 21,
though they use the approximation @mqijm / r2ðPij � pdijÞ, where p
is the local isotropic pressure. The main differences are the explicit
form of the heat-flux tensor, and the use of temperature gradients
rather than gradients of the deviation from isotropy. Our approxima-
tion is closer to that of Ref. 25 extended to multiple dimensions. We
also note that @mqijm is not traceless and there is no explicit relaxation
to isotropy in the closure used here, unlike earlier models which use
the isotropization as an approximation,16,21 or a heuristic isotropiza-
tion term to account for electron-scale instabilities.43,44

The moment equations coupled to Maxwell’s equations are
implemented in the finite-volume module of Gkeyll, which uses a
high-resolution wave propagation method for the hyperbolic part of
the equations and a local implicit method for the source terms.14,45,46

The parabolic source term is evolved using a supertime-stepping
method.47

III. RECONNECTION
A. Simulation set-up

We perform two-fluid ten-moment simulations of the island coa-
lescence problem to study the effect of the closure described above.
The initial conditions are a Fadeev equilibrium,48 described by

Ay ¼ �kB0 ln coshðz=kÞ þ � cos ðx=kÞ½ �;
n ¼ n0ð1� �2Þ= coshðz=kÞ þ � cos ðx=kÞ½ �2 þ nb:

(7)

Here, B0 is the x-component of the magnetic field upstream of the
layer, � controls the island size, and k is the half width of the current
sheet. We use the same physical parameters as described in previous
studies,17,29,30 with � ¼ 0:4, which corresponds to an island half-width
of approximately 1:2k, and background density nb ¼ 0:2n0. The sim-
ulations are translationally symmetric in the y direction and the system
size is Lx � Lz ¼ 4pk� 2pk, with periodic boundary conditions in
the x direction. Conducting walls for fields and reflecting walls for
fluid quantities (and particles in the comparison kinetic simulations)
are used in the z direction. For k=di ¼ 5, we use 640� 320 cells, and
maintain the same grid-spacing for larger systems. We use mass ratio
mi=me ¼ 25, electron thermal speed vt;e=c ¼ 0:35, and Ti ¼ Te ¼ T ,
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and the value of T is set by the upstream equilibrium condition b¼ 1.
The ratio of electron plasma frequency to gyrofrequency is xpe=Xce

¼ 2. A 10% initial perturbation in the magnetic field is applied to initi-
ate merging in the center of the domain. The closure parameter for
each species is set as k0;s ¼ 1=ds, where ds is the species inertial length.
The reference kinetic results in this study were performed using
VPIC49 and PSC.50

In this geometry, the initial islands are unstable to the coalescence
instability51 and approach each other, causing a reconnecting current
sheet to form in the center of the domain. The peak reconnection rate
is reached around t¼ tA, one global Alfvèn time of the system. We
define the reconnection rate as ER ¼ ð1=B0V 0AÞ@w=@t in the same
manner as Refs. 17, 29, and 30, where B0 and V 0A are calculated using
the maximum in-plane magnetic field between the centers of the two
islands at t¼ 0. The flux within an island w is defined as the difference
between Ay at the X- and O-points.

B. Reconnection rate

We first compare the reconnection rates using the ten-moment
model to the results of kinetic simulations with varying system size
and guide fields. The results are shown in Fig. 1, which compares the
average reconnection rates (over 1:5tA) found in a Hall-MHD, two-
fluid, and kinetic models. The use of the average rate rather than the
peak rate is because reconnection in this system does not reach a
steady-state. Similar comparisons have been performed in Refs. 17, 18,
and 29. As mentioned earlier, the kinetic simulations showed a reduc-
tion of reconnection rate with system size. This was attributed to ion
kinetic effects,29 and was only reproduced in smaller systems when
using the local and nonlocal ten-moment closures,17,18 though the
work of Ref. 21 did reproduce the kinetic scaling. When using the clo-
sure in Eq. (5), we obtain good agreement between the kinetic and
ten-moment results at larger systems as well.

With the addition of a guide field, reconnection rates in kinetic
simulations tend to return to Hall-MHD like values as the guide
field increases.52 This was attributed to a combination of a narrower

ion-diffusion region and a reduction in the effects of the non-
gyrotropic ion pressure tensor. As shown in Fig. 2, the maximum rate
increases with the guide field up to Bg=B0 ¼ 1, before decreasing at a
higher guide field, consistent with the rates obtained in kinetic simula-
tions and fluid simulations using the local closure. As noted in Ref. 52,
this behavior differs from the expectations of guide-field reconnection
in symmetric current sheets, in which the reconnnection rate decreases
for larger Bg. A similar trend is observed for the average reconnection
rates.

C. Ion pressure tensor

In the fully kinetic and hybrid studies of island coalescence,29,52 it
was shown that for comparable Ti and Te, a broad (2–3 di) ion diffu-
sion region develops. Within this region, the non-ideal electric field is
balanced by the divergence of the ion pressure tensor, in contrast to
Hall MHD, where the ion inertia and resistivity balance the electric
field in a narrower diffusion region. This was accompanied by ion
anisotropy and agyrotropy, and the reduced reconnection rates were
thus attributed to ion kinetic effects.

When using the ten-moment model, it was shown17,18 that in
small systems (di=L ¼ 5), the wider ion diffusion region could be
reproduced by modifying the free parameter in the ion pressure relax-
ation or by using the nonlocal closure. In Fig. 3, we present the decom-
position of the ion momentum equation in the out-of-plane direction
for simulations with k=di ¼ 5 and varying guide field. Using the
temperature-gradient driven closure, when Bg¼ 0, the spatial extent of
the non-ideal electric field shows that the wider ion diffusion region is
still observed, and the ion pressure tensor is responsible for balancing
the electric field. As Bg increases, the diffusion region becomes
narrower, and the relative contribution of the inertial term becomes
larger. These results are consistent with the earlier kinetic studies.29,52

The importance of the ion pressure tensor is also highlighted by
using another common metric, the agyrotropy A1, which measures
the deviation of the distribution function from cylindrical symmetry.53

This quantity is shown in Fig. 4. In Ref. 18, it was shown that the non-
local closure was able to reproduce the features of the ion agyrotropy
found in kinetic simulations, while the model using local relaxation
had qualitative discrepancies. In Fig. 4, we compare the structure of
the ion agyrotropy in the fluid and kinetic simulations. When using
the temperature-gradient driven closure, the features of the ion agyro-
tropy in the reconnection region are reproduced, with enhancement

FIG. 1. Variation of average reconnection rates with system size for Bg¼ 0 using
kinetic, Hall-MHD, and ten-moment models with local, nonlocal, and gradient-driven
closures. The line shows the ðk=diÞ�0:8 scaling found in Ref. 29.

FIG. 2. Variation of maximum reconnection rates with guide field for k=di ¼ 5
using the gradient-driven closure. The local and kinetic rates are from Ref. 52.
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both upstream and downstream. This was previously only possible
when using the nonlocal closure.18 In contrast, the structure of the
agyrotropy when using the local relaxation is qualitatively different,
with little enhancement downstream and two distinct regions
upstream.

D. Electron pressure tensor

A weakness of the ten-moment closures used in Refs. 17 and 18
is the description of the electron dynamics. While the off diagonal
components are sufficiently large to balance the reconnection electric
field at the x-point in agreement with kinetic simulations,16 the larger
scale structure of the electron anisotropy is not reproduced. This is
because the electrons are isotropized too strongly. When using the
local isotropization, the relaxation rate of approximately vt;e=de is fast
compared to the time scales of the system, while the closure used in
Ref. 18 effectively allows too much heat-flux across field lines. As elec-
tron pressure anisotropy (pk=p?) is important for setting the structure
of reconnection regions,54,55 it is important for the electron model to
allow anisotropy to develop.

Figure 5 shows the electron pressure anisotropy from the Bg ¼ 0;
k=di ¼ 5 simulation using the various models. In the kinetic simulation,
pk is larger than p? in the region outside the two merging islands, but
smaller than p? in the reconnection outflow. Electron anisotropy also
develops outside the main island. As mentioned earlier, the electron pres-
sure is almost isotropic when using local relaxation, aside from a small
region around the x-point. The nonlocal closure shows some anisotropy
but the values do not approach those found in the kinetic simulation.

There are still discrepancies between the fluid and kinetic model.
There is no clear boundary between the main island and the outside
regions at larger jzj, and there is no large pk=p? along the z¼ 0 line as
can be seen in the kinetic simulations. The agreement can be improved
by treating diffusion parallel and perpendicular to the magnetic field
differently, as will be discussed in Sec. V.

IV. LOWER-HYBRID DRIFT INSTABILITY

In thin current sheets with density gradients, the lower-hybrid
drift instability (LHDI) can be excited. This is an instability driven by

FIG. 3. Decomposition of the ion momentum equation showing the varying thick-
ness and relative contributions of the ion inertia and pressure tensor at different val-
ues of the guide field. The Bg¼ 2 case used higher spatial resolution to resolve the
electron gyroradius. This affected the peak value of r � P but not the maximum
reconnection rate.

FIG. 4. Comparison of ion agyrotropy between kinetic and various ten-moment clo-
sures for k=di ¼ 5 and Bg¼ 0.

FIG. 5. Comparison of electron anisotropy between kinetic and various ten-moment
closures.
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the diamagnetic current with a broad range of wavenumbers
ðme=miÞ1=4 < kqe < 1 with frequency x � Xlh �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
XceXci
p

.31,56 The
fluctuations are located at the edge of the current sheet, where the den-
sity gradient is the strongest, and have been observed in space, experi-
ments, and simulations.32,33,57

We have shown previously in eigenmode calculations and simu-
lations that the ten-moment model is able to capture the LHDI in the
regime where the ion kinetic response is important when using a non-
local heat-flux closure, while using the local relaxation of the pressure
tensor led to parameter-dependent results.19 In particular, using the
same relaxation parameters as in reconnection simulations led to
greatly reduced growth rates.

Here, we repeat the simulations performed in Ref. 19 to show the
development of the LHDI using the gradient-driven closure. The
initial conditions are a Harris sheet in the y-z plane, with L ¼ qi; vt;e
¼ 0:06c; mi=me ¼ 36; Ti=Te ¼ 10 with Ly � Lz ¼ 6:4L� 12:8L.
The simulations are given an initial perturbation with mode number
8, which corresponds to kyqe � 0:41. For these parameters, the kinetic
ion response is important. We use both ks ¼ 1=ds, which is used in
reconnection simulations, and ks¼ ky to show the effect of varying the
effective conductivity parameter. The results are compared to the
Vlasov–Maxwell simulations in Ref. 19.

The structure of the electric field Ey at tXci ¼ 6 is shown in
Fig. 6, in which we compare the ten-moment results to the kinetic
results of Ref. 19. The LHDI is excited in both fluid simulations away
from the center of the current sheet, as expected for the electrostatic
LHDI.58 The measured growth rate with ks¼ ky is 0:86Xci, while
with ks ¼ 1=ds, the growth rate is 1:33Xci. In the kinetic simulations
of Ref. 19, the growth rate was 1:1Xci, consistent with the growth rate
from linear theory31 in the most unstable region around z=L ¼ 1:6.
For comparison, the growth rate when using the local closure (with
k0;i ¼ ky; k0;e ¼ 0 as in Ref. 19) is 0:34Xci, and the maximum Ey is an
order of magnitude smaller at this time slice.

For the ks¼ ky case, in which the free parameter is tuned to
match the wavenumber of the excited mode, the structure of the LHDI

electric field is consistent with the kinetic result, and the slower growth
rate is similar to that obtained when using the nonlocal closure19

(0:86Xci vs 0:84Xci). When ks ¼ 1=ds, the growth rate is faster, the
mode structure has multiple peaks, and the LHDI electric field is
stronger (we have reduced Ey by a factor of two in Fig. 6). Because of
the faster growth rate, it is likely that other harmonics58 have been
excited and contribute to the electric field. We have confirmed this by
looking at the electric field structure at earlier times, at which the
mode structure is similar to the kinetic result.

These results show that it is possible to simulate both reconnec-
tion and the LHDI using the same parameters (ks � 1=ds), which was
not possible with the local relaxation of the pressure tensor.19,20 The
role of the LHDI during the reconnection process is beyond the scope
of this paper and will be the subject of future work. In kinetic simula-
tions, it has been shown that the LHDI can increase the tearing mode
growth rate prior to reconnection,37,59 or lead to particle mixing36 and
cause apparent anomalous resistivity and viscosity.35 It will thus be
important to determine if the different growth rates obtained using the
fluid model affect the physics of the reconnecting current sheet.

V. DISCUSSION

The use of a temperature-gradient-driven closure with the two-
fluid ten-moment model shows marked improvements over previous
approximations.17,18 For reconnection in the island coalescence geom-
etry, the reconnection rate shows a strong scaling with system size in
agreement with kinetic simulations29 and a different implementation
of the gradient-driven closure.21 In the case of guide-field reconnec-
tion, the variation of the reconnection rate is consistent with fully
kinetic and hybrid studies,52 as is the structure of the ion diffusion
region. We have also been able to simulate the lower-hybrid drift
instability in a current sheet with the ten-moment model, which was
previously only possible when using a nonlocal closure or tuning the
model parameters carefully.19

To date, the only large-scale simulations performed using the
ten-moment model have used local relaxation of the pressure
tensor,20,22,23 with some success in comparison to observations. The
closure used in this paper, while having larger computational costs,
shows better agreement with kinetic simulations, particularly for the
reconnection and instability physics being investigated.20,22,23 An
underlying reason behind the improvement is that the new closure
can be understood as a relaxation of temperature to uniformity at a
rate proportional to k2=jk0j (in Fourier space) compared to a relaxa-
tion to isotropy with a fixed rate. This causes a lower relaxation rate at
long wavelengths and a faster rate at short wavelengths, though the
form differs from the jkjvt of Ref. 39 and there is a free parameter. It is
interesting to note that the use of the closure in this paper gives better
agreement with kinetic results than the full nonlocal version used in
Ref. 18. This is because the implementation [Eq. (5)] is unmagnetized.
The consequences of this can be seen in the better description of ion
physics than electron physics as shown in Sec. IIID since qi > qe, and
the discrepancies at larger system sizes, where qi becomes smaller
compared to the system size. The effective k2=jk0j scaling of the new
closure reduces the contribution of longer wavelength perturbations to
the heat flux, which is a better physical description. Further improve-
ments to the model may include the modification of Eq. (6) so that the
parallel and perpendicular heat-fluxes are treated separately. This will

FIG. 6. Structure of Ey in simulations of the LHDI at tXci ¼ 6. Ey is normalized to
B0vA0. The electric field is reduced by a factor of two in the middle plot so the col-
ors are not washed out as the growth rate is faster using the model with
ks ¼ 1=ds.
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allow the perpendicular heat flux to be reduced in regions where the
magnetic field is strong.
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APPENDIX A: ROLE OF THE HEAT FLUX IN
SYMMETRIC RECONNECTION

It was shown in Ref. 15 that the ten-moment model requires
some kind of heat flux at the X-point to support reconnection in
two dimensions. This has implications for the types of models that
can be employed to capture reconnection. We reproduce the argu-
ment here in order to highlight the importance of the heat flux in
higher-moment models and show that the naive addition of addi-
tional moments does not necessarily lead to better results.

Consider the equation for Pxx of either species at the X-point,
where x is the outflow direction and z is the inflow direction,

@Pxx
@t
þr � uPxxð Þ þ 2 Pxx@xux þ Pxz@zuxð Þ þ r � q

¼ 2q
m

BzPxy � ByPxzð Þ: (A1)

In the steady state, consider the above equation along x¼ 0. By
symmetry, ux ¼ By ¼ Bz ¼ 0, x gradients of Pxx and z gradients of
ux are zero. We find

uz@zPxx þ Pxxr � uþ 2Pxx@xux þr � q ¼ 0: (A2)

We can use the continuity equation to relate ux and uz. Along
the z axis, we find

@xux þ @zuz ¼
1
n
uz@zn: (A3)

Close to z¼ 0, we write uz ¼ Cz2mþ1 þ Oðz2mþ2Þ; n ¼ n0 þ Dz2l

þOðz2lþ1Þ due to the symmetry of the reconnection region (l 	 1;
m 	 0). Then from the continuity equation, the lowest order term
on the RHS is z2lþ2m, while @zuz ¼ ð2mþ 1ÞCz2m þ Oðz2mþ1Þ.
Thus, @xux must be �ð2mþ 1ÞCz2m to leading order.

Substituting this back into the pressure equation (A2), we get

z@zPxx ¼ 2ð2mþ 1ÞPxx þ
1

Cz2m
r � q: (A4)

If r � q ¼ 0, the differential equation has the solution

P ¼ P0z
2ð2mþ1Þ; (A5)

but this is zero at the origin, which is unphysical. This is illustrated
in Fig. 7, which shows the electron pressure and out-of-plane
momentum qvy in a ten-moment simulation of reconnection using
the parameters of Ref. 60. The relaxation constant is zero for both
species, while the geometry of the reconnection region is forming,
the pressure at the center is becoming small, and the current sheet
is unphysically split into four. Thus, there must be a heat flux or
some collisional term to ensure a physical pressure at the X-point
and allow reconnection to take place.
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