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Supporting Information

Charge Trapping and Exciton Dynamics in Large-area CVD Grown
MoS:>

Paul D. Cunningham,* Kathleen M. McCreary,! Aubrey T. Hanbicki,! Marc Currie,! Berend T.
Jonker,! and L. Michael Hayden?t

Modeling of transient absorption spectra

The TA spectrum is modeled as changes in the ground state absorption amplitude,
line-width, and center wavelength as described in the main text. It is counter intuitive that
a shift in the TA spectrum does not necessarily imply that the absorption spectrum has
shifted. Instead, spectral shifts of the absorption features cause an oscillatory TA spectrum
that changes sign depending on the direction of the shift, Figure S1.
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Figure S1. Modeled change in transmission curves show how the TA spectrum would look
for changes in the absorption (a) center wavelengths, (b) line-widths, and (c) amplitudes.
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The 0th spectral moments of the A and B features,
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are simply the average change in transmission across the wavelength region of interest. We

find that the 0t spectral moments of the A and B features match the temporal dependence

of the line-width broadening, Figure S2, indicating that line-width broadening dominates

the TA spectra. Interestingly, the difference between these spectral moments matches the
measured red shift dynamics.
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Figure S2. A comparison between the transient absorption fit results in Figure 2d and the
Oth spectral moments of the A (red, solid line) and B (blue, solid line) features. The
difference between these two spectral moments (black) is also shown.

The observed spectra clearly show a larger change in transmission in the vicinity of
the B feature than for the A feature. If interpreted as arising from bleaching alone, such a
spectrum would imply that more B excitons are excited, i.e. that holes are in the lower
energy spin-orbit split valance band. However the fit parameters show greater occupancy
of the A states. This is because broadening and the red-shift of the B feature lead to
increased absorption that overlaps with the A feature. This increased absorption means
that the change in transmission will be negative. This overlapping negative contribution
from the B exciton caused the A feature to appear lower in amplitude, Figure S3.
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Figure S3. The modeled change in transmission (black) can be separated into contributions

from the A (red) and B (blue) excitons.

Fluence dependence of the transient absorption spectra

The transient absorption spectra shows an apparent red-shift with increasing fluence.
Applying our model to fluence-dependent TA spectra resulting from 387 nm excitation
reveals that both the line-width broadening and the red-shift increases to produce this
apparent shift, Figure S4. Though counterintuitive, this is not unexpected since a red-shift
in the absorption does not produce a red-shift in the TA spectrum but instead produces an
oscillatory spectrum, whose sign and amplitude depend on the direction and magnitude of
the spectral shift.
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Figure S4. The modeled change in line-width, center wavelength, and amplitude as a

function of fluence for 387 nm excitation of monolayer MoS;.
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Excitation photon energy dependence of the transient absorption spectra

The transient absorption spectra are essentially independent of excitation wavelength. A
comparison between TA spectra for 387 nm, 532 nm, and 775 nm excitation wavelengths
all show qualitatively the same behavior, Figure S5. Choosing specific probe wavelengths,
we see that neither the slow, Figure 4d, nor the fast, Figure S6, component varies with
excitation wavelength.
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Figure S5. Transient absorption spectra measured as a function of delay for monolayer
MoS: photo-excited at (a) 387 nm, (b) 532 nm, and (c) 775 nm.
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Figure S6. The excited state dynamics of monolayer MoSz measured at a probe wavelength
of 610 nm for excitation wavelengths of 480 nm, 532 nm, 660 nm, and 775 nm.
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Substrate and film thickness dependence

The photoconductivity and excited state dynamics were measured for MoS; films on three
different substrates: TOPAS® polymer, sapphire, and fused-silica, Figure S7. These
substrates were selected for their low absorption at THz frequencies. Silicon could not be
used as a substrate because the photoconductivity response would dwarf that observed in
MoS;. We see no significant change in the dynamics among these different substrates. It is
also worth mentioning that the decay observed in the photoconductivity and the sub-
picosecond decay component of the excited state dynamics both appear to be largely
unaffected by film thickness, Figure S8. This is unexpected and these results seem
inconsistent with either a surface or interface trapping mechanism.
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Figure S7. The (a) photoconductivity dynamics and (b) excited state dynamics of
monolayer MoS; probed at 480 nm on TOPAS® polymer (red circles), sapphire (blue
squares), and fused silica (black x). The sapphire was single-side polished and could not be
used for transmission experiments at optical wavelengths due to scattering losses.
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Figure S8. The excited state dynamics probed at 610 nm for mono- (red circles) and mult-
ilayer (black squares) MoS;.

Temperature dependence

We mounted MoS:; films in a closed-cycle liquid helium cooled optical cryostat outfitted
with TOPAS® polymer windows. The photoconductivity was measured at room
temperature and at 15K via TRTS. No significant change in the dynamics was observed,
Figure S9.
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Figure S9. Photoconductivity dynamics in monolayer MoS; measured via TRTS at 300K and
15K.

Comparison of different sample preparation techniques

To evaluate the quality of our CVD grown MoS; monolayer films, photoluminescence (PL)
was measured for the three different sample preparation methods in Figure S10: a
mechanically exfoliated monolayer, CVD growth using MoCls as a precursor, and CVD
growth using MoOsz as a precursor. CVD growth of monolayer MoS; using MoCls as a
precursor results in uniform large area polycrystalline films with grain sizes of
approximately 10 nm.? 10 The high density of grain boundaries or defects present in the
film leads to the lowest luminescence intensity and largest full-width at half-maximum
(FWHM). By comparison, the luminescence in Figure 1c was recorded at higher excitation
intensity and with a longer integration time. Exfoliated flakes of MoS; are typically 1 pm in
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size and presumed to be single crystalline. However, bulk MoS; is known to contain C and O
impurities,” which may contribute to the only modest improvement in luminescence
intensity and narrowing of FWHM. CVD growth using MoO3 as a precursor results in less
uniform films consisting of large equilateral triangle grains of order 10 pm.? These films
exhibit a dramatic enhancement in luminescence intensity and narrower FWHM. This
comparison suggests that defect densities and grain boundary densities are correlated.
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Figure S10. Photoluminescence from monolayer MoS; films prepared via (a) mechanical

exfoliation, (b) CVD growth using MoCls precursor, and (c) CVD growth using MoO3
precursor.
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