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ABSTRACT

Quasi-periodic (QP) solutions of a damped nonlinear QP Mathieu equation with cu-

bic nonlinearity are investigated by using the incremental harmonic balance (IHB) method

with two time scales. The damped nonlinear QP Mathieu equation contains two incommen-

surable harmonic excitation frequencies, one is a small frequency while the other nearly

equals to twice the linear natural frequency. It is found that Fourier spectra of QP solutions

of the equation consist of uniformly spaced sidebands due to cubic nonlinearity. The IHB

method with two time scales, which relates to the two excitation frequencies, is adopted

to trace solution curves of the equation in an automatical way and find all frequencies of

solutions and their corresponding amplitudes. Effects of parametric excitation are studied

in detail. Based on approximation of QP solutions by periodic solutions with a large period,
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Floquet theory is used to study the stability of QP solutions. Three types of QP solutions

can be obtained from the IHB method, which agree very well with results from numerical

integration. However, the perturbation method using the double-step method of multiple

scales (MMS) obtains only one type of QP solutions since the ratio of the small frequency

to the linear natural frequency of the first reduced-modulation equation is nearly 1 in the

second perturbation procedure, while the other two types of QP solutions from the IHB

method do not need the ratio. Furthermore, the results from the double-step MMS are

different from those from numerical integration and the IHB method.

Keywords: quasi-periodic Mathieu equation, double-step method of multiple scales, incre-

mental harmonic balance method with two time scales, sideband

1 INTRODUCTION

Consider Mathieu equation governed by the equation with periodically varying coefficients

ẍ+ (δ + ε cos t)x = 0, (1)

where an overdot denotes differentiation with respect to time t, and δ and ε are constant parame-

ters. Mathieu equation appears in two ways in nonlinear vibration problems: (i) in systems in which

there is parametric excitation, and (ii) in stability analysis of steady-state periodic solutions of non-

linear systems [1]. Examples of such Mathieu equation occur in many physics and engineering

fields [2], such as resonant inertial sensors [3], parametric resonances in microelectromechanical

systems [4], a vertically driven pendulum [5] and a physical pendulum [6], and a wind turbine blade

[7, 8].

The vast literature on Mathieu equation and its applications up to 2018 has been reviewed by

Kovacic et al. [9]. Several extensions of Mathieu equation from Eq. (1) have been considered in it.

Esmailzadeh and Nakhaie-jazar [10] used Schauder’s fixed-point theorem to provide the condition
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region to obtain periodic response of Mathieu-Duffing equation

ẍ+ (δ + ε cos t)x+ ξx3 = 0, (2)

where ξ is a coefficient of the cubic nonlinear term. Ng and Rand [11] used a perturbation method,

which is second-order averaging, to analyze bifurcations of Mathieu-Duffing equation. Kovacic

and Cveticanin [12] applied the perturbation method by using the method of strained parameters

to obtain transition curves of Mathieu-Duffing equation with strong cubic nonlinearity. Zounes and

Rand [13] investigated transition curves of the quasi-periodic (QP) Mathieu equation

ẍ+ (δ + ε (cos t+ cosωt))x = 0, (3)

where ω is an irrational excitation frequency. Rand et al. [14] and Rand and Morrison [15] further

studied transition curves of the equation with 2:2:1 and 2:1:1 resonances near the point δ = 0.25,

ω = 1 and δ = 0.25, ω = 0.5, respectively. The 2:2:1 and 2:1:1 resonances are related to the natural

frequency of an unforced equation and the two parametric excitation frequencies. For instance,

near the point of the natural frequency of 0.5 and the two parametric excitation frequencies of 1.0,

the three frequencies have nearly the ratio of 2:2:1; the 2:2:1 resonance can then occur. Sofroniou

and Bishop [16] demonstrated periodic and QP routes to chaos of the QP Mathieu equation under

given parameter conditions. Belhaq et al. [17, 18] developed a new perturbation method by using

the double-step method of multiple scales (MMS) to analysis the damped nonlinear QP Mathieu

equation

ẍ+ cẋ+
(
ω̃2
0 + α cos (2ωt) + β cos (2ωdt)

)
x+ ξx3 = 0, (4)

where c is the coefficient of damping, ω̃0 is the linear natural frequency, ω is the parametric exci-
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tation frequency near ω̃0, ωd is a small excitation frequency, and α and β are parametric excita-

tion magnitudes. The damped nonlinear QP Mathieu equation contains two harmonic excitation

freuqencies - the parametric excitation frequency ω and small excitation frequency ωd, which are

incommensurable. Zounes and Rand [19] used Lie transform with elliptic functions to investigate

the global behavior of the undamped equation of Eq. (4). The same equation with 2:2:1 resonance

was studied by Abouhazim et al. [20] using the double-step MMS. There are many studies on the

dynamics of parametrically excited systems subject to multiple frequency excitations, such as tran-

sition to turbulence in fluid mechanics [21], quasi-periodic oscillations of a tower under turbulent

wind flow [22], and response of a basilar membrane to two tone stimuli [23]. Another example

mentioned in [24] is the dynamics of a ship; parametric excitation occurs when a ship sails in lon-

gitudinal waves. By assuming the vertical force due to sea waves as a periodic force, the equation

of motion becomes Mathieu equation. However, sea waves are not periodic in nature; instead,

they contain incommensurate frequencies. All these problems require a theoretical framework to

understand their responses; unfortunately there is not an effective analytical method for analyzing

nonlinear QP Mathieu equations. This motivates one to provide a semi-analytical method to obtain

accurate solutions of the damped nonlinear QP Mathieu equation.

Recently, some authors of this work presented an incremental harmonic balance (IHB) method

with two time scales [25] that was used to analyze QP motions of multiple-degree-of-freedom

(DOF) nonlinear systems with internal resonances, and later extended it to calculate QP motions

of a Van der Pol-Mathieu equation in [26], where the IHB method with two time scales was used

to find all frequencies of responses and their corresponding amplitudes. As an extension of the

previous work, the IHB method with two time scales is employed here to obtain all QP solutions

of the damped nonlinear QP Mathieu equation in Eq. (4). While the double-step MMS [18] has

an advantage to provide analytical results, it is only applicable to obtain QP solutions of Eq. (4)

whose Fourier spectra include a few frequency components and a weakly nonlinear equation

such as Eq. (4) with small parameters. Also, the double-step MMS obtains only one type of QP

solutions of Eq. (4) that actually has three types of QP solutions as discussed in Sec. 4. The

aim of this work is to obtain all QP solutions of the damped nonlinear QP Mathieu equation by
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using the IHB method with two time scales, whose some solutions cannot be obtained from the

double-step MMS. The corresponding Fourier spectra are calculated, which greatly facilitates the

understanding of the behavior of the damped nonlinear QP Mathieu equation.

2 BRIEF DESCRIPTION OF THE DOUBLE-STEP MMS FOR QP SOLUTIONS

For comparison purposes, the double-step MMS, presented in [17, 18, 27] for obtaining ap-

proximate QP solutions of various systems is briefly discussed first. The idea of the double-step

MMS, which consists of two procedural perturbation steps, is to introduce two small parameters

ε and µ with 0 < ε � µ � 1 to transform the original QP oscillator to an autonomous system by

performing two reductions [17]. In the first reduced system, let c̃ = ε2˜̃c, α = εα̃, β = µβ̃, β̃ = ε2
˜̃
β,

ωd = εω̃d, and ξ = ε2ξ̃ so that the equation of the system has the form with a small parameter ε.

Then x can be expanded in powers of ε as a function of multiple independent variables Tm = εmt

with m = 0, 1, 2, · · · , n. Using the MMS, one can obtain the first reduced-modulation equations

of amplitude a and phase γ in the polar form with a small parameter µ and the expression of the

excitation frequency ω near the linear natural frequency ω̃0. In the second reduced system, intro-

duce the variable changes u = a cos γ and v = −a sin γ to transform the equations of amplitude

a and phase γ to the equivalent Cartesian form so that u and v are expanded in powers of µ as

a function of multiple independent variables Tm = µmt with m = 0, 1, 2, · · · , n. Then, using the

MMS again, one can obtain the solutions of u and v and the expression of the excitation frequency

ωd near the linear natural frequency ω̃10 of the first reduced-modulation equations. Combining the

two MMS procedures yields the QP solution in the form

x (t) =
4∑

j2=−4
A1,j2 cos (ωt+ j2ωdt+ ϕ1,j2)

+
4∑

j2=−4
A2,j2 cos (3ωt+ j2ωdt+ ϕ3,j2) .

(5)

where A1,j2 and A2,j2 are amplitudes. The detailed procedure of the double-step MMS is docu-

mented in [17, 18, 27].
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It is noted that all frequencies in the QP solution in Eq. (5) are linear combinations of the

two incommensurate excitation frequencies ω and ωd with ω � ωd. The schematic diagram of

Fourier spectrum of a QP solution from the double-step MMS is shown in Fig. 1, which has two

sidebands surrounding the two frequencies ω and 3ω that are referred to as carrier frequencies.

It has two discrete spectral lines at the carrier frequencies ω and 3ω , which are surrounded by

uniformly spaced sidebands. Each of the two sidebands is spaced ωd apart and consists of eight

frequencies excluding the carrier frequencies.

0 dd

dd

dd

d

d

d

d

d

d

d

d

d d

A
m
pl
itu

de
s

Frequency

Fig. 1: Schematic diagram of the spectrum of a QP solution from the double-step MMS.

3 FORMULATION OF THE IHB METHOD WITH TWO TIME SCALES FOR QP SOLUTIONS

A general characteristic of quasi-periodic solutions whose Fourier spectra consist of uniformly

spaced sidebands surrounding carrier frequencies was previously observed by Kreider and Nayfeh

[28] from experimental investigation and was theoreitcally explained by some authors of this work

[29]. Therefore, spectra of QP solutions contain the two excitation frequencies ω and ωd, where ωd

is the equal distance or its half between every two adjacent frequencies in sidebands as discussed

in Sec. 4, and all frequencies of response are linear combinations of the two excitation frequencies.

Following previous development by some authors of this work [25], one introduces two new time
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variables defined as

τ1 = ωt, τ2 = ωdt (6)

within the hyper-time domain 0 ≤ τ1, τ2 ≤ 2π. Then x (t) can be rewritten as a function of τ1 and

τ2:

x (t) = x (ωt, ωdt) = x (τ1, τ2) (7)

Assume the following operator relations:

Θ =
d

dt
= ω

∂

∂τ1
+ ωd

∂

τ2
,

Θ2 =
d2

d2t
= ω2 ∂

2

∂τ21
+ 2ωωd

∂2

∂τ1∂τ2
+ ω2

d

∂2

∂τ22
. (8)

Substituting Eqs. (6) and (8) into Eq. (4) yields

Θ2x+ cΘx+
(
ω̃2
0 + α cos (2τ1) + β cos (2τ2)

)
x+ γx3 = 0, (9)

The first step of the IHB method with two time scales is Newton-Raphson iterative procedure.

Let (x0, ω0, α0, ωd0, β0) denote a guessed solution firstly; small increments are added to the

guessed solution (x0, ω0, α0, ωd0, β0) to obtain a neighboring solution:

x =x0 + ∆x, ω = ω0 + ∆ω, α = α0 + ∆α,

ωd =ωd0 + ∆ωd, β = β0 + ∆β. (10)
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Substituting Eq. (10) into Eq. (9) and neglecting small increments of higher orders, one can obtain

the linearized incremental equation

Θ2
0∆x+ cΘ0∆x+

(
ω̃2
0 + α0 cos (2τ1) + β0 cos (2τ2)

)
∆x

+ 3ξx20∆x

=R−
[
2

(
ω0
∂2x0
∂τ21

+ ωd0
∂2x0
∂τ1∂τ2

)
+ c

∂x0
∂τ1

]
∆ω

−
[
2

(
ωd0

∂2x0
∂τ22

+ ω0
∂2x0
∂τ1∂τ2

)
+ c

∂x0
∂τ2

]
∆ωd

− x0 cos (2τ1) ∆α− x0 cos (2τ2) ∆β,

(11)

where

Θ0 = ω0
∂

∂τ1
+ ωd0

∂

τ2
,

Θ2
0 = ω2

0

∂2

∂τ21
+ 2ω0ωd0

∂2

∂τ1∂τ2
+ ω2

d0

∂2

∂τ22
, (12)

and

R = −
(
Θ2

0x0 + cΘ0x0 +
(
ω̃2
0 + α0 cos (2τ1)

+β0 cos (2τ2))x0 + ξx30
) (13)

is a correction term that would vanish if the current solution were exact.

The second step of the IHB method with two time scales is the Galerkin procedure. Under the

effect of the nonlinear term between the two harmonic excitations, QP solutions of the damped

nonlinear QP Mathieu equation can be obtained by expanding the displacement x0(τ1, τ2) in mul-

tiple Fourier series with finite terms in the hyper-time domain 0 < τ1, τ2 < 2π with τ1 = ωt and
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τ2 = ωdt and using the Galerkin procedure. One assumes

x0 =
2∑

j1=1

Nm∑
j2=−Nm

aj1,j2 cos ((2j1 − 1) τ1 + j2τ2)

+

2∑
j1=1

Nm∑
j2=−Nm

bj1,j2 sin ((2j1 − 1) τ1 + j2τ2) ,

(14)

where 2Nm is the harmonic term numbers in a sideband, and aj1,j2 and bj1,j2 are Fourier coeffi-

cients. Spectra of QP solutions consist of sidebands, uniformly spaced with a distance of ωd or

2ωd, around the carrier frequencies ω and 3ω. Then all the frequency components of QP solutions

of the damped nonlinear QP Mathieu equation can be expressed as ω, ω ± ωd, ω ± 2ωd, · · · , ω ±

m1ωd, 3ω, 3ω ± ωd, 3ω ± 2ωd, · · · , 3ω ±m2ωd, where m1 ≤ Nm and m2 ≤ Nm. Equation (14) can

then be taken in the form

x0 =

m1∑
j2=−m1

a1,j2 cos (τ1 + j2τ2) +

m2∑
j2=−m2

a2,j2 cos (3τ1 + j2τ2)

+

m1∑
j2=−m1

b1,j2 sin (τ1 + j2τ2) +

m2∑
j2=−m2

b2,j2 sin (3τ1 + j2τ2)

=CsA,

(15)

where

Cs =

[
C1 C2 S1 S2

]
,

A =

[
AT

1 AT
2 BT

1 BT
2

]T
, (16)
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in which

Ci =

[
cos ((2i− 1) τ1 −miτ2) · · · cos ((2i− 1) τ1)

· · · cos ((2i− 1) τ1 +miτ2)

]
,

Si =

[
sin ((2i− 1) τ1 −miτ2) · · · sin ((2i− 1) τ1)

· · · sin ((2i− 1) τ1 +miτ2)

]
,

Ai =

[
ai,−mi · · · a(2i−1),0 · · · a(2i−1),mi

]T
Bi =

[
bi,−mi · · · b(2i−1),0 · · · b(2i−1),mi

]T
, i = 1, 2. (17)

The increment ∆x is expressed in the form

∆x = Cs∆A, (18)

where ∆A =

[
∆AT

1 ∆AT
2 ∆BT

1 ∆BT
2

]T
. Substituting Eqs. (15) and (18) into Eq. (11) and applying

Galerkin procedure to balance the harmonic terms yield

∫ 2π

0

∫ 2π

0
δ (∆x)

{
Θ2

0∆x+ cΘ0∆x+
[
ω̃2
0 + α0 cos (2τ1)

+β0 cos (2τ2)] ∆x+ 3ξx20∆x
}
dτ1dτ2

=

∫ 2π

0

∫ 2π

0
δ (∆x)

{
R−

[
2

(
ω0
∂2x0
∂τ21

+ ωd0
∂2x0
∂τ1∂τ2

)
+ c

∂x0
∂τ1

]
∆ω

−
[
2

(
ωd0

∂2x0
∂τ22

+ ω0
∂2x0
∂τ1∂τ2

)
+ c

∂x0
∂τ2

]
∆ωd

−x0 cos (2τ1) ∆α− x0 cos (2τ2) ∆β} dτ1dτ2.

(19)
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One can easily obtain a linear matrix in the form

KA∆A = R−Rω∆ω −Rωd∆ωd −Rα∆α−Rβ∆β, (20)

where

KA = M + C + K + Kα + Kβ + 3K3,

R = − [M + C + K + Kα + Kβ + K3]A,

Rω = [2Mω + Cω]A, Rωd = [2Mωd + Cωd ]A,

Rα =

∫ 2π

0

∫ 2π

0
cos (2τ1)C

T
sCsAdτ1dτ2,

Rβ =

∫ 2π

0

∫ 2π

0
cos (2τ2)C

T
sCsAdτ1dτ2, (21)

in which

M =

∫ 2π

0

∫ 2π

0
CT
s Θ2

0Csdτ1dτ2, C =

∫ 2π

0

∫ 2π

0
cCT

s Θ0Csdτ1dτ2,

K =

∫ 2π

0

∫ 2π

0
ω̃2
0C

T
sCsdτ1dτ2, Kα =

∫ 2π

0

∫ 2π

0
α0 cos 2τ1C

T
sCsdτ1dτ2,

Kβ =

∫ 2π

0

∫ 2π

0
β0 cos 2τ2C

T
sCsdτ1dτ2, K3 =

∫ 2π

0

∫ 2π

0
ξCT

sCsACsACsdτ1dτ2,

Mω =

∫ 2π

0

∫ 2π

0
CT
s

(
ω0

∂2

∂τ21
+ ωd0

∂2

∂τ1∂τ2

)
Csdτ1dτ2,

Mωd =

∫ 2π

0

∫ 2π

0
CT
s

(
ω0

∂2

∂τ1∂τ2
+ ωd0

∂2

∂τ22

)
Csdτ1dτ2,

Cω =

∫ 2π

0

∫ 2π

0
cos (2τ1)C

T
sCsdτ1dτ2, Cωd =

∫ 2π

0

∫ 2π

0
cos (2τ2)C

T
sCsdτ1dτ2, (22)

KA is the tangent matrix, R is the corrective vector, and Rω, Rωd , Rα, and Rβ are vectors due

to unit changes of ∆ω, ∆ωd, ∆α, and ∆β, respectively. The number of incremental unknowns
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(∆A,∆ω,∆ωd,∆α,∆β) is greater than the number of equations in Eq. (20). If one wants to per-

form frequency response studies for a given excitation frequency ωd and given constant parametric

excitation magnitudes α and β, i.e., ωd, α, and β are fixed as constants, which implies ∆ωd = 0,

∆α = 0, and ∆β = 0, respectively, then Eq. (20) is reduced to

KA∆A = R−Rω∆ω. (23)

The solution process starts from a proper known solution that can be a small amplitude solution,

the iteration process is subsequently carried out with an updated correction vector R each time

until the residue norm |R| is smaller than a permissible error for convergence, and the solution

diagram of frequency response can then be easily traced by an increment ∆ω or an increment of

one component of A. If one wants to perform parametric studies for, say β, for given excitation

frequencies ω and ωd and other constant parametric excitation magnitude α, i.e., ω, ωd, and α are

fixed as constants, which implies ∆ω = 0, ∆ωd = 0, and ∆α = 0, respectively, then Eq. (20) is

reduced to

KA∆A = R−Rβ∆β. (24)

In this case, the solution diagram of the parametric excitation magnitude β can be easily traced by

an increment ∆β or an increment of one component of A.

3.1 Stability of QP solutions

Floquet theory extended to stability analysis of QP solutions in [30], which is based on approx-

imation of QP solutions by periodic solutions, can be applied to study the stability of QP solutions

in this work. One introduces a fundamental frequency defined as

ω̃ = min{|mω + nωd| |m,n ∈ Z} (25)
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where ω̃ is infinitely small, i.e., it is essentially 0, since the ratio of the two parametric excitation

frequencies is incommensurable. However, when one approximates the ratio as a rational value,

the fundamental frequency ω̃ is a small value and nonzero. One can then assume

p1 =
ω

ω̃
, p2 =

ωd
ω̃
, p1, p2 ∈ N . (26)

With approximation of the frequencies in Eq. (26), the displacement x0 (τ1, τ2) in the multiple

Fourier series in the form of Eq. (15) can be transferred to Fourier series in the form

x0 =

m1∑
j2=−m1

a1,j2 cos (p1 + j2p2) τ +

m2∑
j2=−m2

a2,j2 cos (3p1 + j2p2) τ

+

m1∑
j2=−m1

b1,j2 sin (p1 + j2p2) τ +

m2∑
j2=−m2

b2,j2 sin (3p1 + j2p2) τ,

(27)

where τ = ω̃t. Then the stability of the periodic solution x0 with a fundamental frequency ω̃ can be

investigated by superposing a small perturbation ∆x = s (t) eλt on the known x0:

x = x0 + ∆x = x0 + s (t) eλt, (28)

where s (t) = C̃sŨ, in which

C̃s = [cos (p1 −m1p2) ω̃t · · · cos p1ω̃t · · · cos (p1 +m1p2) ω̃t

cos (3p1 −m1p2) ω̃t · · · cos 3p1ω̃t · · · cos (3p1 +m1p2) ω̃t

sin (p1 −m1p2) ω̃t · · · sin p1ω̃t · · · sin (p1 +m1p2) ω̃t

sin (3p1 −m1p2) ω̃t · · · sin 3p1ω̃t · · · sin (3p1 +m1p2) ω̃t]

(29)
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and Ũ is a nonzero vector of initial values, is a periodic term and eλt is a decay term. Substituting

Eq. (28) into Eq. (4), neglecting all the terms containing increment products, and noting that x0

satisfies Eq. (4) yield

∆ẍ+ c∆ẋ+
[
ω̃2
0 + α cos (2p1ω̃t) + β cos (2p2ω̃t) + 3ξx20

]
∆x = 0. (30)

Differentiating ∆x with respect to time yields

∆ẋ = ω̃C̃sŨe
λt + λC̃sŨe

λt,

∆ẍ = ω̃2C̃sŨe
λt + 2λω̃C̃sŨe

λt + λ2C̃sŨe
λt. (31)

Substituting Eqs. (31) and (15) into Eq. (30) yields

(
λ2C̃s + 2λω̃C̃s + ω̃2C̃s + ω̃2

0 + α cos (2p1ω̃t)

+β cos (2p2ω̃t) + 3ξC̃sÃC̃sÃ
)
Ũ = 0.

(32)

Using Galerkin procedure as shown in Sec. 3 to balance the harmonic terms yields

(
λ2M̃ + λC̃ + K̃

)
Ũ = 0, (33)
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where

M̃ =

∫ 2π

0
C̃T
s C̃sdτ, C̃ =

∫ 2π

0
2C̃T

s C̃
′
sdτ,

K̃ =

∫ 2π

0
C̃T
s

(
C̃′′s + ω̃2

0 + α cos (2p1τ)

+β cos (2p2τ) + 3ξC̃sAC̃sA
)
dτ. (34)

The eigenvalue equation of Eq. (33) can be reformulated as

B1ψk = λkB2ψk, (35)

where ψk is the kth eigenvector associated with the eigenvalue λk that represents Floquet expo-

nents, and

B1 =

 0 I

−K̃ 0

 , B2 =

 I 0

C̃ M̃

 . (36)

According to Floquet theory, the stability criteria for QP solutions are related to Floquet exponents

λk that are the two eigenvalues with the smallest imaginary part in modulus [31, 30], with a neg-

ative real part indicating a stable solution as the perturbation ∆x decays with time, and a positive

real part indicating an unstable solution.

4 NUMERICAL RESULTS AND DISCUSSION

QP solutions of the damped nonlinear QP Mathieu equation are investigated in this section.

Parameters of the equation are similar to those in [18], with c = 0.001, ω̃2
0 = 1.1, α = 0.08,

ω = 1.2075, ωd =
√

3/20, and γ = 0.5. To illustrate the power of the IHB method with two

time scales, parametric excitation responses are investigated in detail here and the results are
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compared with those from the double-step MMS as described in [17, 18] and numerical integration

(NI) using the fourth-order Runge-Kutta (RK) method in the time domain and the fast Fourier

transform to convert responses in the time domain to the frequency domain.

In the QP solution process of the IHB method with two time scales, the integer multiple j1 of

the first time scale τ1 is taken as j1 = 1, 3. It is found that there exist three types of QP solutions

related to integer multiples j2 of the second time scale τ2 = ωdt, i.e., type I: j2 = ±j, type II:

j2 = ±2j, and type III: j2 = ± (2j + 1), where j = 0, 1, 2, 3, · · · . Equation (15) can then be written

as

x0 =

m1∑
j2=−m1

A1,j2 cos (τ1 + j2τ2 + ϕ1,j2)

+

m2∑
j2=−m2

A2,j2 cos (3τ1 + j2τ2 + ϕ3,j2) ,

(37)

where

Ai,j2 =
√
a2i,j2 + b2i,j2 , ϕi,j2 = atan2 (−bi,j2 , ai,j2) , i = 1, 3, (38)

in which (m1,m2) are natural numbers, even positive integers, and odd positive integers for type

I, type II, and type III, respectively. In other words, spectra of QP solutions in type I contain the

carrier frequencies (ω, 3ω) with uniformly spaced distance ωd apart in sidebands; spectra of QP

solutions in type II contain the carrier frequencies (ω, 3ω) with uniformly spaced distance 2ωd apart

in sidebands; and spectra of QP solutions in type III do not contain the frequencies (ω, 3ω) with

uniformly spaced distance 2ωd apart in sidebands. A noticeable and interesting feature of the

damped nonlinear QP Mathieu equation, namely the presence of co-existing three types of QP

solutions, is studied by using the IHB method with two time scales, while only type I QP solutions,

but not type II or type III QP solutions, are obtained from the double-step MMS as discussed in

Sec. 2.
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4.1 Type I: spectra of QP solutions that contain the carrier frequencies (ω, 3ω) with uni-

formly spaced distance ωd apart in sidebands

The multiple Fourier series of Eq. (37) is used to continue the QP solution with uniformly

spaced distance ωd apart in sidebands and m1 = m2 = 6 so that with total harmonic terms

retained ñc = ñs = 2m1 + 2m2 + 2 = 26. Figure 2 shows solution diagrams of the damped

nonlinear QP Mathieu equation with ω = 1.2075, ωd =
√

3/20, c = 0.001, ω̃0 = 1.1, α = 0.08, and

ξ = 0.5 from the three methods, i.e., the IHB method with two time scales, NI, and the double-

step MMS, where amplitudes A1,0, A1,1, A1,−1, A1,2, and A1,−2 defined in Eq. (37) correspond to

the harmonic terms cos (τ1 + ϕ1,0), cos (τ1 + τ2 + ϕ1,1), cos (τ1 − τ2 + ϕ1,−1), cos (τ1 + 2τ2 + ϕ1,2),

and cos (τ1 − 2τ2 + ϕ1,−2), respectively. The solutions of high-order harmonic terms are not shown

here. It can be seen from Fig. 2 that the results from the IHB method with two time scales are

nearly identical to those from NI for the whole range of the parametric excitation magnitude β,

while the results from the double-step MMS show noticeable differences from the results from NI.

Presented in Fig. 2 are the QP response curves that exhibit two symmetric parts, where the

parametric excitation magnitude |β| ranges from 0.03436 to 0.10481 for the QP solutions from

the IHB method with two time scales and NI and from 0.03436 to 0.10481 for the QP solutions

from the double-step MMS. Amplitude A1,0 corresponding to frequency ω in Fig. 2a is greater than

other amplitudes in Figs. 2b-2e, i.e., the response is 2:1 resonance with parametric excitation

frequency 2ω. In Figs. 2b and 2c, amplitudes A1,1 and A1,−1 start from zero when |β| = 0.03436

and terminate at zero when |β| = 0.10481 with peak points at |β| = 0.06781 and |β| = 0.07233,

for the QP solutions from the IHB method with two time scales and NI. In other words, amplitudes

A1,1 and A1,−1 along with A1,±(2j+1), where j = 1, 2, 3, · · · , disappear when |β| is out of the region

[0.03436, 0.10481], and amplitude A1,0 along with A1,±2j shifts to their corresponding amplitudes

in the type II solution, as shown in Sec. 4.2, via two points at |β| = 0.03436 and |β| = 0.10481.

This means that the two points at |β| = 0.03436 and |β| = 0.10481 are bifurcation points of the QP

solution of the damped nonlinear QP Mathieu equation.

Presented in Fig. 3a are time histories with the parametric excitation magnitude β = 0.04

calculated by the three methods, i.e., the IHB method with two time scales, NI, and the double-
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step MMS. The QP response is constructed by using NI with initial conditions x0 (0) = 0.35527 and

ẋ0 (0) = −0.85703, which are obtained from the IHB method with two time scales at t = 0. The

QP solution has two or more incommensurate frequencies, and since they are close to each other,

the response exhibits a beating phenomenon as shown in Fig. 3a. Figure 3b shows the detailed

response zone highlighted in Fig. 3a. To construct Poincaré section, one can rewrite Eq. (4) in the

form of the four-dimensional system



ẋ1 = x2

ẋ2 = −cx2 −
(
ω̃2
0 + α sin 2θ1 + β cos 2θ2

)
x− γx3

θ̇1 = ω1

θ̇2 = ω2

, (39)

where θ1 = ω1t (mod 2π) and θ2 = ω2t (mod 2π). One can then obtain the global sections

Σ = {(x1, x2, θ1, θ2) ∈ R1 ×R1 × S1 × S1|θ1 = θ10} (40)

from the three methods shown in Fig. 3c, where Rn refers to an n-dimensional Euclidean space,

θ1 and θ2 belong to the space S, and θ10 ∈ [0, 2π) is a constant. The discrete points fall on

the three closed curves corresponding to QP orbits. It can be seen from Fig. 3 that the result

from the IHB method with two time scales agrees very well with that from NI, whereas the result

from the double-step MMS shows noticeable deviations. In Fig. 3d, the corresponding spectra

near the carrier frequency ω = 1.2075, which is one of the basic frequencies, obtained from the

three methods are shown, and there is a dominant peak at the carrier frequency ω = 1.2075 with

uniformly spaced sidebands surrounding it with the distance ωd =
√

3/20, which is the other basic

frequency, between every two adjacent frequencies. Table 1 shows amplitudes of some harmonic
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terms from the three methods as shown in Fig. 3d. It can also be seen from the table that the

result from the IHB method with two time scales agrees very well with that from NI, whereas the

result from the double-step MMS shows noticeable deviations.

Table 1: Values of amplitudes in Fig. 3d from the three methods, i.e., NI, the IHB method with two
time scales, and the double-step MMS

Amplitude NI IHB MMS

A1,−2 0.04359 0.04312 0.04567

A1,−1 0.02247 0.02209 0.12750

A1,0 0.86955 0.86964 0.77317

A1,1 0.04148 0.04048 0.29750

A1,2 0.05667 0.05622 0.05758

It should be noted that the accuracy of the IHB method with two time scales is related to

harmonic numbers. The curves of β ∼ A1,0 obtained from the IHB method with two time scales

are shown in Fig. 4a with different harmonic numbers ñ = 4m1 + 4m2 + 4 in Eq. (37), and the

detailed solution curve zone highlighted there is shown in Fig. 4b. It can be seen that when the

parametric excitation magnitude β is small, i.e., 0.03436 ≤ β < 0.08, the curves of β ∼ A1,0 with

different harmonic numbers are indistinguishable from each other; however, when the parametric

excitation magnitude β becomes large, i.e., 0.08 < β ≤ 0.10481, more harmonic numbers are

required, i.e., ñ = 60 harmonic terms with m1 = m2 = 7, as shown in Fig. 4b, to yield a sufficiently

accurate result. The CPU (AMD Ryzen 5 3500U (2.1GHz)) calculation time of an iteration with

60 harmonic terms is 0.16 s, which indicates the high efficiency of the IHB method with two time

scale. Figure 5 shows Poincaré sections of the QP solution of the damped nonlinear QP Mathieu

equation from NI and the IHB method with two time scales for different harmonic numbers when

β = 0.04 and β = 0.1033. It can also be seen that when the parametric excitation magnitude β is

small, ñ = 36 harmonic terms with m1 = m2 = 4 yields a sufficiently accurate result, as shown in

Fig. 5a. The QP solution from the IHB method with two time scales turns out to be sensitive to the

harmonic number, as shown in Fig. 5b.
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4.2 Type II: spectra of the QP solutions that contain the carrier frequencies (ω, 3ω) with

uniformly spaced distance 2ωd apart in sidebands

Spectra of the QP solutions in this case contain the carrier frequency (ω, 3ω) with uniformly

spaced distance 2ωd apart in sidebands; Eq. (37) can then be written as

x0 =A1,0 cos (τ1 + ϕ1,0) +A1,±2 cos (τ1 ± 2τ2 + ϕ1,±2)

+A1,±4 cos (τ1 ± 4τ2 + ϕ1,±4) + · · ·

+A2,0 cos (3τ1 + ϕ3,0) +A2,±2 cos (3τ1 ± 2τ2 + ϕ3,±2)

+A2,±4 cos (3τ1 ± 4τ2 + ϕ3,±4) + · · · ,

(41)

Figure 6 shows the QP solution curves of amplitudes A1,0, A1,2, and A1,−2 corresponding to the

harmonic terms cos (τ1 + ϕ1,0), cos (τ1 + 2τ2 + ϕ1,2), and cos (τ1 − 2τ2 + ϕ1,−2), respectively, ver-

sus the parametric excitation magnitude β of the damped nonlinear QP Mathieu equation with

ω = 1.2075, ωd =
√

3/20, c = 0.001, ω̃0 = 1.1, α = 0.08, and ξ = 0.5. The curves from the IHB

method with two time scales have three closed parts. The green short dot lines represent type I

QP response curves. It can be seen that the results from the IHB method with two time scales

agree very well with those from NI. It is of interest to note that the response curves can shift be-

tween the type I solutions and type II solutions via the two bifurcation points at |β| = 0.03436 and

|β| = 0.10481.

Figure 7 shows time histories, Poincaré sections, and spectra of the QP solution of the damped

nonlinear QP Mathieu equation with ω = 1.2075, ωd =
√

3/20, c = 0.001, ω̃0 = 1.1, α = 0.08, and

ξ = 0.5 at the parametric excitation magnitude β = 0.6 calculated by the IHB method with two time

scales and NI. The QP response is constructed by using NI with initial conditions x0 (0) = −0.63025

and ẋ0 (0) = −0.49874, which are obtained from the IHB method with two time scales at t = 0.

There is a dominant peak at the carrier frequency ω = 1.2075 with uniformly spaced sidebands

surrounding it with the distance 2ωd =
√

3/10 between every two adjacent frequencies, as shown

in Fig. 7c.
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4.3 Type III: spectra of the QP solutions that do not have the frequencies (ω, 3ω) with

uniformly spaced distance 2ωd apart in sidebands

Spectra of the QP solutions in this case do not have the frequencies (ω, 3ω) with uniformly

spaced distance 2ωd apart in sidebands; Eq. (37) can then be written as

x0 =A1,±1 cos (τ1 ± τ2 + ϕ1,±1) +A1,±3 cos (τ1 ± 3τ2 + ϕ1,±3)

+A1,±5 cos (τ1 ± 5τ2 + ϕ1,±5) + · · ·+A2,±1 cos (3τ1 ± τ2 + ϕ3,±1)

+A2,±3 cos (3τ1 ± 3τ2 + ϕ3,±3) +A2,±5 cos (3τ1 ± 5τ2 + ϕ3,±5) + · · · ,

(42)

Figure 8 shows the QP response curves of amplitudes A1,−1, A1,1, and A1,3 corresponding to the

harmonic terms cos (τ1 − τ2 + ϕ1,−1), cos (τ1 + τ2 + ϕ1,1), and cos (τ1 + 3τ2 + ϕ1,3), respectively,

versus the parametric excitation magnitude β of the damped nonlinear QP Mathieu equation with

ω = 1.2075, ωd =
√

3/20, c = 0.001, ω̃0 = 1.1, α = 0.08, and ξ = 0.5. The curves from the IHB

method with two time scales have two closed parts. It can be seen that the results from the IHB

method with two time scales agree very well with those from NI.

Figure 9 shows time histories, Poincaré sections, and spectra of the QP response of the

damped nonlinear QP Mathieu equation with ω = 1.2075, ωd =
√

3/20, c = 0.001, ω̃0 = 1.1,

α = 0.08, and ξ = 0.5 at the parametric excitation magnitude β = 0.6 calculated by the IHB method

with two time scales and NI. The QP response is constructed by using NI with initial conditions

x0 (0) = 0.01751 and ẋ0 (0) = −0.67404, which are obtained from the IHB method with two time

scales at t = 0. There is a dominant peak at the frequency ω − ωd = 1.1209 with uniformly spaced

sidebands surrounding it with the distance 2ωd =
√

3/10 between every two adjacent frequencies,

as shown in Fig. 9c.

Note that NI is used to check the stability of QP solutions to verify that Floquet theory can

be applied to conduct stability analysis of the damped nonlinear QP Mathieu equation based on

approximation of QP solutions by periodic solutions with a large period. Time histories of quasi-

periodic solutions obtained are shown in Figs. 3a, 7a, and 9a, respectively, which verify the stable

solutions obtained from the IHB method with two time scales by using NI. The unstable solutions
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obtained from the IHB method with two time scales exist in types II and III quasi-periodic solutions.

NI can also be used to verify those unstable solutions. Figure 10 shows time histories of the

quasi-periodic response at the parametric excitation magnitude β = 0.4 constructed by using NI

with initial conditions x0(0) = −0.6638 and ẋ0(0) = 0.0344, which are obtained from the IHB method

with two time scales at t = 0. It is interesting to find that the response of the damped nonlinear

QP Mathieu equation jumps to the stable response of the type III solution after a finite time with

starting from the unstable type II solution obtained from the IHB method with two time scales. The

stability of all quasi-periodic solutions is checked a posteriori by using NI.

5 CONCLUSIONS

The IHB method with two time scales is an efficient, straightforward, and reliable method for

treating the damped nonlinear QP Mathieu equation whose spectra contain sidebands, uniformly

spaced with the distance ωd or 2ωd apart, around the carrier frequencies ω and 3ω. Three types of

QP solutions are obtained by using the present method. Based on approximation of QP solutions

by periodic solutions with a large period, Floquet theory is applied to conduct stability analysis

of the damped nonlinear QP Mathieu equation and accurately determine the bifurcation points.

The accuracy of the present method is higher than that of the double-step MMS for the first type

of QP solutions. The IHB method with two time scales can also be used to obtain the other two

types of QP solutions, while the double-step MMS cannot be used to obtain these solutions. All

the results from the IHB method with two time scales agree very well with those from NI using the

fourth-order RK method even for moderately large values of the parametric excitation magnitude

β for the second and third types of QP solutions, which verifies that spectra of QP solutions of the

damped nonlinear QP Mathieu equation contain uniformly spaced sidebands.
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Fig. 2: Amplitudes of type I QP solutions of the damped nonlinear QP Mathieu equation versus the
parametric excitation magnitude β with ω = 1.2075, ωd =

√
3/20, c = 0.001, ω̃0 = 1.1, α = 0.08, and

ξ = 0.5 from the three methods, i.e., the IHB method with two time scales, NI, and the double-step
MMS: (a) β ∼ A1,0, (b) β ∼ A1,1, (c) β ∼ A1,−1, (d) β ∼ A1,2, and (e) β ∼ A1,−2.
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Fig. 3: IHB method with two time scales, NI, and the double-step MMS for type I QP solutions of
the damped nonlinear QP Mathieu equation with ω = 1.2075, ωd =

√
3/20, c = 0.001, ω̃0 = 1.1,

α = 0.08, and ξ = 0.5 at the parametric excitation magnitude β = 0.04: (a) time histories, (b)
enlargement of a zone highlighted in (a), (c) Poincaré sections of the QP solutions, and (d) Fourier
spectra.
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Fig. 4: QP responses of the damped nonlinear QP Mathieu equation with ω = 1.2075, ωd =
√

3/20,
c = 0.001, ω̃0 = 1.1, α = 0.08, and ξ = 0.5: (a) β ∼ A1,0, and (b) enlargement of a zone highlighted
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Fig. 5: Poincaré sections of the QP responses of the damped nonlinear QP Mathieu equation with
ω = 1.2075, ωd =

√
3/20, c = 0.001, ω̃0 = 1.1, α = 0.08, and ξ = 0.5 from NI and the IHB method

with two time scales with different numbers of harmonic terms: (a) β = 0.04, and (b) β = 0.1033.
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Fig. 6: Amplitudes of type II QP solutions versus the parametric excitation magnitude β of the
damped nonlinear QP Mathieu equation with ω = 1.2075, ωd =

√
3/20, c = 0.001, ω̃0 = 1.1,

α = 0.08, and ξ = 0.5 from the IHB method with two time scales and NI; the QP solutions shown
in green short dot lines are type I solutions: (a) β ∼ A1,0, (b) β ∼ A1,2, and (c) β ∼ A1,−2.
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Fig. 7: IHB method with two time scales and NI for type II QP solutions of the damped nonlinear
QP Mathieu equation with ω = 1.2075, ωd =

√
3/20, c = 0.001, ω̃0 = 1.1, α = 0.08, and ξ = 0.5

at the parametric excitation magnitude β = 0.6: (a) time histories, (b) Poincaré sections of the QP
solutions, and (c) Fourier spectra.
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Fig. 8: Amplitudes of type III QP solutions versus the parametric excitation magnitude β of the
damped nonlinear QP Mathieu equation with ω = 1.2075, ωd =

√
3/20, c = 0.001, ω̃0 = 1.1,

α = 0.08, and ξ = 0.5 from the IHB method with two time scales and NI: (a) β ∼ A1,−1, (b)
β ∼ A1,1, and (c) β ∼ A1,−3.
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Fig. 9: The IHB method with two time scales and NI for type III QP solutions of the damped
nonlinear QP Mathieu equation with ω = 1.2075, ωd =

√
3/20, c = 0.001, ω̃0 = 1.1, α = 0.08, and

ξ = 0.5 at the parametric excitation magnitude β = 0.6: (a) time histories, (b) Poincaré sections of
the QP solutions, and (c) Fourier spectra.
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Fig. 10: Time histories of the damped nonlinear QP Mathieu equation with ω = 1.2075, ωd =√
3/20, c = 0.001, ω̃0 = 1.1, α = 0.08, and ξ = 0.5 at the parametric excitation magnitude β = 0.4.
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