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Abstract Landslides can have significant and pervasive impacts to life and property around

the world. Several attempts have been made to predict the geographic distribution of

landslide activity at continental and global scales. These efforts shared common traits such

as resolution, modeling approach, and explanatory variables. The lessons learned from prior

research have been applied to build a new global susceptibility map from existing and

previously unavailable data. Data on slope, faults, geology, forest loss, and road networks

were combined using a heuristic fuzzy approach. The map was evaluated with a Global

Landslide Catalog developed at the National Aeronautics and Space Administration, as well

as several local landslide inventories. Comparisons to similar susceptibility maps suggest

that the subjective methods commonly used at this scale are, for the most part, reproducible.

However, comparisons of landslide susceptibility across spatial scales must take into

account the susceptibility of the local subset relative to the larger study area. The new global

landslide susceptibility map is intended for use in disaster planning, situational awareness,

and for incorporation into global decision support systems.

Keywords Landslide � Landslide susceptibility � Remote sensing � GIS � Fuzzy logic

1 Introduction

Landslides cause thousands of fatalities annually (Petley 2012; Kirschbaum et al. 2015b;

Haque et al. 2016), as well as substantial property damage. The true risk may be higher than

that observed in recent landslide catalogs due to the fact that most casualties are caused by
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rare catastrophic events (Petley et al. 2005). The first step in characterizing the potential

impact of landslides (defined in this paper as any mass movements, including shallow debris

flows, rock falls, and deep-seated rotational slides) is to identify where these events have

occurred in the past. An ideal landslide inventory would provide both spatial and temporal

information on all previous landslides over a certain domain. However, most inventories are

limited to a short time period that may not fully reflect the probability of catastrophic

landslides. In addition, many landslides go unreported. Therefore, it is helpful to consider not

only the historical record of landslide occurrences, but also account for general principles of

slope stability when predicting the spatial patterns of future landslide events.

Small-scale (defined in this paper as less than 1:1,000,000 scale) landslide susceptibility

maps suffer from four main problems: (1) the lack of comprehensive and unbiased land-

slide inventories; (2) the coarse resolution or absence of data inputs; (3) regional differ-

ences in the importance of causative factors; and (4) the dearth of expertise on landscape

processes across a vast region. This work addresses several of these limitations through a

heuristic approach to represent relative landslide susceptibility at the global scale.

There have been several projects to represent susceptibility at continental or global

scales (Table 1). The landslide overview map of the conterminous USA (Radbruch-Hall

et al. 1982) was produced prior to the widespread use of digital elevation models (DEM),

an input seen in nearly all later research. The European and Indian maps (BMTPC and

CDMM 2003; Günther et al. 2014) represent collective efforts in which multiple local

datasets were assembled into a continental view of landslide susceptibility. In contrast,

China and the Caribbean region were analyzed as single units (Liu et al. 2013; Kirschbaum

et al. 2015a). No variable or method was adopted by all authors. The general trend over

time is toward ‘‘objective’’ and away from ‘‘subjective’’ methods. Despite covering vast

areas, all but one of the maps were developed with reference to a relatively small landslide

inventory for validation. Given this challenge, it is not surprising that most methodologies

rely on heuristic methods. Slope and geological classification were used most often, while

land cover and seismicity were each used in half the studies. Classification and ranking of

slope data was fairly consistent among the studies. This work adopts the standard of

practice in previous research at continental and global scales and applies it to previously

unavailable datasets with a flexible fuzzy method. The resulting landslide susceptibility

map forms one component of a global decision support system that identifies landslide

potential in nearly real time, in concert with satellite-based precipitation estimates.

2 Data

In previous studies (Table 1), slope, geology, land cover, and tectonic features were used most

frequently to developmost of the small-scale landslide susceptibilitymaps. The same variables

were considered in the current work, but with different data sources (Table 2). Information on

roads was also incorporated due to the association between roads and increased landslide rates

(Larsen and Parks 1997; Petley et al. 2007; Kirschbaum et al. 2015b). Global or nearly global

data is available for all of these variables, often without charge.

2.1 Topography

There are relatively few sources of topographic information with global coverage. One of

the best is the Shuttle Radar Topography Mission (SRTM). This dataset was initially
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released at a 3 arc seconds (approximately 30 m) resolution (Rabus et al. 2003), but has

been released recently at a resolution of 1 arc seconds (approximately 30 m) and is

available from 60� North to 56� South. Unfortunately, the Middle East was not available at

this resolution at the time of writing. SRTM data contain substantial voids. Several

attempts to address this problem have been made, including the SRTM 90 m Digital

Elevation Database v4.1 (Jarvis et al. 2008), Global Land Survey Digital Elevation Model

(USGS 2008) and HydroSHEDS (Lehner et al. 2008). While many of the SRTM void-

filling techniques produce reasonably accurate elevations in flat areas, slope and other

elevation derivatives can be severely affected—especially in mountainous terrain. Each

product was evaluated by calculating slope over test areas in the Himalayas and the Sahara

(where SRTM voids are common). The best global DEM for the purpose of calculating

slope in complex topography was found to be Viewfinder Panoramas (de Ferranti 2014a).

This is attributed to the use of several sources of topographic information in addition to

SRTM, which are described below.

In order to better represent the size and shape of complex topographic features, de

Ferranti (2014a) reviewed multiple series of topographic maps, as well as data from

SRTM, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (Hi-

rano et al. 2003), the Ice, Cloud, and land Elevation Satellite (Schutz et al. 2005), and

the RADARSAT Antarctic Mapping Project (Jezek 2002). Landsat imagery was also

consulted. Then these data sources were combined in a manner designed to draw on the

advantages of each (de Ferranti 2014b). Typically, SRTM DEM 1-degree tiles with

3 arc seconds resolution formed the basis for the map. Voids in each tile were filled by

the most accurate alternative source. The first step in filling voids was to calculate

topographic contours from the SRTM DEM. Next, the contours were connected across

the no-data regions by referencing topographic maps, including spot heights. Then the

map was searched for artifacts, which were corrected by hand. Finally, the contours

were converted back to a raster DEM. In some cases, voids were filled directly with

Table 2 Global landslide susceptibility map was created by combining information from four principal
sources of information for five explanatory variables: slope, distance to fault, geological classification,
presence of roads, and forest loss

Data type Data set Resolution/
accuracy

Explanatory
variable

Extent Source and details

Elevation Viewfinder
panoramas
digital
elevation
data

3 arc seconds
(*90 m)

Slope 84�N–
72�S

de Ferranti (2014a) derived
from 3 arc seconds SRTM
DEM and several other
sources.

Faults and
geologic
regions

Geological
map of the
world, 3rd
edition

1:50,000,000 Distance to fault
zones and
geological
classification

Global Bouysse (2009)

Roads Openstreetmap Variable Presence of
roads

Global OpenStreetMap contributors
(2015) Data represents
OSM on June 4th, 2015

Forest
cover

Global forest
change
2000–2013

30 m/99.6% Forest loss 80�N–
60�S

Hansen et al. (2013)
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data from the ASTER Global DEM (GDEM) and then checked for artifacts. In Europe,

most elevations are based on topographic maps or more precise sources, rather than

SRTM data. Unfortunately, the tile-based contouring process seems to have introduced

errors along some tile edges. The specific reason for this behavior is unclear, and the

global effect is relatively minor, but it should be noted. Nevertheless, this process

produces a global DEM with far better representation of SRTM no-data regions than

other free elevation datasets.

DEM tiles from Viewfinder Panoramas were converted to slope with R’s raster

package (Hijmans 2015), and then slopes were aggregated to the output resolution by

selecting the maximum slope value from the collection of pixels. Maximum slope was

chosen to represent the most extreme conditions within each pixel and to ensure that

the map identifies all possibly susceptible areas within the cell. Finally, all tiles were

merged into a single map. This slope map resembles the global slope dataset for

estimation of landslide occurrence resulting from earthquakes (Verdin et al. 2007), but

with the advantage of increased accuracy at high elevations. In addition, the new slope

map improved the representation of coastal terrain, which should aid decision-making

in the British Isles and other locations where coastal bluff collapse is a major hazard

(Fig. 1). However, comparison of the slope datasets revealed less than one degree of

difference for most locations.

Fig. 1 Coastline of the Irish Sea and Scottish Highlands as modeled by a the maximum values from the
30 arc seconds global slope dataset for estimation of landslide occurrence resulting from earthquakes, b the
maximum slopes aggregated from the Viewfinder Panoramas DEM, c to determine the relationship between
these layers, the global slope dataset was subtracted from the new slope map. Purple indicates higher slopes
in the new dataset. Brown indicates locations where the global slope dataset is steeper. Slope values are
nearly identical (off-white) in most locations. The primary difference is the inclusion of many coastal pixels
in the newer map. This probably results from the application of a restrictive land mask to elevation data prior
to production of the global slope dataset. Since many landslides in the UK and around the world occur at
coastal bluffs, inclusion of these pixels may help to balance the concerns of interior and maritime regions

Nat Hazards (2017) 87:145–164 149

123



2.2 Geology

Many previous susceptibility mapping efforts include soil and/or rock types as explanatory

variables, since each material has a unique strength, permeability, and stress history.

Unfortunately, most geotechnical properties are not available on a global basis. In order to

represent this factor, the Geological Map of the World (GMW) (Bouysse 2009) was

simplified into the five categories described by Nadim et al. (2006) and converted to a

raster file with a resolution of 30 arc seconds (Table 3). The rating was rescaled between 0

and 1 for consistency with other model inputs. The rationale for these ratings was that

younger rocks tend to be less consolidated than older rocks, and for any given age,

sedimentary rocks tend to be weaker than Igneous and Metamorphic rocks. Nadim et al.

also pointed out that even though lava rocks may be strong, volcanic deposits are often

made of interbedded weak materials. In addition, chemical weathering and alteration often

have a strong effect on volcanic materials, leaving landslide-prone soils and rocks (Frolova

et al. 2015; Reid et al. 2001).

2.3 Seismicity

Seismicity increases landslide hazard by destabilizing the soil and debris on slopes,

introducing additional fracturing that can allow water to penetrate and more rapidly

influence the subsurface, and creating steeper or more marginal slopes as a result of

seismic shaking and co-seismically triggered landslides (Keefer 1994; Okamoto et al.

2013). In addition, tectonically active areas may be prone to increased erosion, due to

jointing, graben formation, volcanism, stresses (Scheidegger and Ai 1986), and uplift

(Larsen and Montgomery 2012). To describe these effects, vector representations of major

faults were obtained from the GMW. The distance to these faults was calculated to create a

proxy for tectonic activity.

Table 3 Lithological classification

Material, age Rating (Nadim et al. 2006) Rescaled rating

Water bodies Null 0.1

Greenland ice cap Unknown 0.1

Extrusive volcanic rocks, Archean–Paleozoic 1 0.2

Endogenous rocks, Archean–Paleozoic 1 0.2

Old sedimentary rocks, Archean–Paleozoic 2 0.4

Extrusive volcanic rocks, Paleozoic–Mesozoic 2 0.4

Endogenous rocks, Paleozoic–Mesozoic 2 0.4

Sedimentary rocks, Paleozoic–Mesozoic 3 0.6

Extrusive volcanic rocks, Mesozoic 3 0.6

Endogenous rocks, Mesozoic–Cenozoic 3 0.6

Sedimentary rocks, Paleozoic–Mesozoic 4 0.8

Extrusive volcanic rocks, Mesozoic–Cenozoic 4 0.8

Extrusive volcanic rocks, Cenozoic 5 1.0
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2.4 Forest loss

Land use is commonly used to explain patterns in landslide susceptibility (Korup and

Stolle 2014). However, the association between specific land cover classes and the

probability of landslides is challenging to characterize globally. While ontological

difficulties may be avoided by use of a single global dataset, some error is likely

introduced by grouping disparate biota into a relatively small number of classes. More

importantly, there has not been clear consensus from the research community as to

how to weight these classes. Most studies assign high susceptibility to urban areas and

low susceptibility to forested areas, which might reflect the impact of anthropogenic

disturbances on slope stability but could also reflect a bias toward urban areas in

landslide inventories. The relationship between landslide initiation and land cover

classes is more ambiguous. Empirically fitted weights would seem to obviate a

research review, but biases in landslide inventories can generate incorrect associations

between specific land cover classes (Steger et al. 2016b), as well as support a false

sense of confidence in the resulting model (Steger et al. 2016a). Finally, it should be

noted that land cover is a constantly changing variable (van Westen et al. 2008). The

changes caused by fires, urbanization, etc. are likely to have more predictive power

than the static land cover class itself. For these reasons, land use/land cover was

eschewed in favor of forest loss.

Vegetation contributes to slope stability by binding soil particles together and

enhancing evaporation (Sidle et al. 1985, 2006; Haigh et al. 1995). In a few cases,

vegetation may increase hazard, but most slopes are strengthened by the presence of

vegetation and weakened by its loss. To represent this variable, a Landsat-based global

map of forest loss from 2000 to 2013 was evaluated (Hansen et al. 2013). The 30-m

forest loss pixels were aggregated to a resolution of 30-arc seconds by treating the

binary output pixel as ‘‘forest loss’’ if it contained any 30-m forest loss pixel. The

resulting map represents forest cover change due to many causes, including timber

harvesting, fire, and storms.

2.5 Roads

Roads may increase the frequency of mass wasting events (Haigh et al. 1989; Larsen and

Parks 1997). Particularly in developing countries, roads built into and along steep

mountain terrain often serve to destabilize the slope (similar to a river cut at a slope’s toe),

which can increase the frequency of landslides. After visual comparisons with VMAP

Level 0 [NIMA (National Imagery and Mapping Agency) 1993] and gROADS (CIESIN

and ITOS 2013), the vector dataset OpenStreetMap (OSM) (OpenStreetMap contributors

2015) was selected to represent this factor, due its more comprehensive and accurate

coverage. This roadway network was converted to a raster layer at a resolution of 30 arc

seconds. Larsen and Parks (1997) observed that landslide scars were far more common

within 85 m of roads. While rates remained slightly elevated at greater distances, the

effects beyond 100 m from the road were less pronounced. Researchers working at the

local scale typically classify distance to road by tens or hundreds of meters when mapping

landslide susceptibility (Ayalew and Yamagishi 2005; Weirich and Blesius 2007; Dahal

et al. 2008; Regmi et al. 2013; Bhatt et al. 2013; Rubel and Ahmed 2013). With a pixel size

of approximately 1 square kilometer, the current susceptibility map cannot model the

effect of road construction with the same specificity as local studies. Thus, the raster
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representation of road-related hazards was simplified to the presence or absence of a

highway in any given pixel.

2.6 Landslide inventories

Landslide inventories from several different events, geographic regions, and method-

ologies were obtained for validation of the global landslide susceptibility map

(Table 4). Of these, only the Global Landslide Catalog (GLC; Kirschbaum et al. 2015b)

covers the entire study area. The GLC was compiled from media reports, online dis-

aster databases, and other sources when available, with an emphasis on rainfall-trig-

gered landslides. The database has reports from 2007 to the present. In order to reduce

the effects of spatial error on validation statistics, 1194 rainfall-triggered landslides

with a spatial accuracy of 1 km or better were selected from a total of 6790 events in

the complete GLC. The remaining points could be useful for evaluating products with a

coarser resolution, such as landslide susceptibility by state, province or country, but

were not used for this analysis. Other inventories were selected to represent different

geographic areas and compilation methodologies (Table 4). Some inventories are quite

large (Guzzetti et al. 1994; DOGAMI 2015), some cover a long time period (Devoli

et al. 2007a; Gerencia de Geologı́a 2012), and some are relatively unbiased but cor-

respond to a single event or observation period (Bucknam et al. 2001; ICIMOD 2010).

In every case, the local inventory contains more landslides per square kilometer than

the GLC, which indicates substantial underreporting at the global scale. Reporting

biases and uncertainty in this catalog have been described in Kirschbaum et al.

(2010, 2015b).

Table 4 Landslide inventories used for validation of the landslide susceptibility map

Data set Number of points/
polygons

Geographic
extent

Source

Landslides triggered by Hurricane Mitch 11,555 landslide
initiation points

Eastern
Guatemala

Bucknam et al.
(2001)

Historical landslides in Nicaragua 19,565 points Nicaragua Devoli et al.
(2007b, a)

Landslide inventory of El Salvador 129 points El Salvador Gerencia de
Geologı́a
(2012)

Landslide maps of Utah 2120 polygons Utah, USA Elliott and Harty
(2010)

Statewide landslide information database for
Oregon, release 3.0 (SLIDO-3.0)

12,095 points Oregon, USA DOGAMI (2015)

AVI 12,224 points Italy Guzzetti et al.
(1994)

Badakhshan province inventory 609 polygons Badakhshan,
Afghanistan

Zhang et al.
(2015)

Koshi inventories 3407 polygons Koshi river
basin

ICIMOD
(1992, 2010)

GLC 1194 points Global Kirschbaum et al.
(2015b)
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3 Methods

A heuristic fuzzy approach has been taken at the continental (Kirschbaum et al. 2015a),

regional (Ahmed et al. 2014), and local scales (Champati ray et al. 2007), but it has not

been previously applied at the global scale. Fuzzy landslide models offer some advantages,

which include the ability to combine similar datasets in a nested sequence prior to the final

combination, the ability to use both continuous and discrete inputs, and widespread inte-

gration into GIS software. A disadvantage is that the output is a ‘‘possibility,’’ which is not

strictly comparable to the probabilities generated by classical statistics. The heuristic fuzzy

approach also enforces transparency, because all of the transformation functions are

defined in advance. Unlike some machine-learning models, the hypothesis represented by

the fuzzy overlay model must comport with prior knowledge, not just fit the data. This

advantage is particularly important for landslide inventories that are known to have sig-

nificant spatial biases.

Applying fuzzy logic within a GIS requires two distinct steps (Bonham-Carter

1994). In the first step, a fuzzy membership function is assigned for each variable. This

function serves to transform the values of the explanatory variable to a range between

zero and one. The transformation should reflect the relationship between the variable

and landslide susceptibility. For example, slope was assigned the ‘‘large’’ function

available in ArcGIS 10.2 (ESRI 2013) to represent the fact that susceptibility grows

quickly between 10� and 30� slopes. The second step in fuzzy overlay is to combine the

fuzzy membership values with a fuzzy operator such as ‘‘fuzzy and’’ or ‘‘fuzzy or.’’ In

this study, all variables other than slope were combined with the fuzzy gamma

operator:

Fig. 2 Fuzzy overlay model combined data on bedrock, faults, forests, and roads with fuzzy gamma
operator, where c = 0.9. Then slope was introduced with a product function to ensure that no flat ground
was identified as highly susceptible. Ovals indicate data, while rectangles with the hammer symbol indicate
tools from ArcGIS 10.2 Spatial Analyst
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l ¼ 1�
Yn

i¼1

ð1� liÞ
 !c

�
Yn

i¼1

li

 !1�c

ð1Þ

where l is the possibility that a pixel is susceptible to landslides, n is the number of

variables to be combined, li is the possibility that a landslide will occur given the value of

the variable i, and c is the parameter that controls whether l is closer to the largest or

smallest li. In order to determine an appropriate value of gamma, it was varied between 0

to 1 at intervals of 0.1. Each version of the global map was assessed, as described below.

Finally, slope was introduced through a product function to ensure that no flat terrain

would be given high susceptibility values (Fig. 2). The use of slope gradient as a critical

predictor means that the landslide susceptibility map should provide more information on

mass movements that require a minimum gradient, such as rock falls and debris flows, than

on low-angle movements such as lateral spreads.

In order to aid interpretation of the global landslide susceptibility map, the susceptibility

values output by the fuzzy overlay model were classified into five categories: very low,

low, moderate, high, and very high. The classes were divided at the following fuzzy

susceptibility values: 0.11, 0.49, 0.671, and 0.75. This classification scheme was designed

so that each category was twice as large as the next highest, e.g., the very low category

contains roughly twice as many pixels as the low category. The decreasing category sizes

should enable the user to focus efforts upon the most susceptible areas. While much of the

world is somewhat susceptible, only 3% is very highly susceptible. Hazards in this rela-

tively small area may be studied or remediated with greater intensity. Figure 3 shows the

proportion of GLC locations in each susceptibility category.

Receiver operating characteristic (ROC) curves are commonly used to evaluate the

performance of binary classifiers, i.e., tests that divide inputs into two outcomes (Zweig

and Campbell 1993). Since landslide inventories are rarely complete, some locations are

likely to contain unreported landslides. This is especially true for the current study area,

where landslides have been recorded in less than 1% of the map’s pixels. Thus, ROC
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Fig. 3 Distribution of susceptibility for the locations recorded in the GLC (red) and for other areas (blue).
The classes were divided at the following fuzzy susceptibility values: 0.11, 0.49, 0.67, 0.75
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analysis will give only a rough guide to map performance, and other aspects of a landslide

susceptibility map should also be considered. ROC curves were created for each of the

landslide inventories described in Table 4 by calculating the number of historical land-

slides predicted by each possible susceptibility threshold (true positive rate) and the

number of pixels above each susceptibility threshold (false positive rate).

A preliminary ROC analysis indicated that low gamma values generated a susceptibility

map with a better fit to the GLC. However, inspection of the resulting maps showed that

the low-gamma maps were dominated by the linear inputs, faults and roads. In contrast, the

high-gamma maps identified broad regions of hazardous terrain. This discrepancy between

quantitative and qualitative results can be explained by the fact that many events reported

in the GLC are associated with road closures, leading to a false level of confidence in low-

gamma maps that emphasize this feature. Because no single factor (other than slope, which

was overlaid separately) is necessary for a landslide to occur, gamma was assigned a value

of 0.9, which is consistent with the high values published in several previous studies

(Tangestani 2004; Champati ray et al. 2007; Srivastava et al. 2010; Pradhan 2011; dos

Santos Alvalá et al. 2013; Ahmed et al. 2014).

4 Results

The landslide susceptibility map is intended to enhance situational awareness with a

consistent global picture of mass movements. The map covers the Earth’s land surface

from 56 South to 72 North latitude (Fig. 4). Each continent evaluated has susceptible

areas, but the major mountain chains (Himalayan Arc, Andes, Alps, and Pacific Rim)

dominate the map.

In order to assess the map’s performance, area under the ROC curve (AUC) was

calculated for each landslide inventory. Both classified (5 susceptibility categories) and

unclassified (continuous susceptibility values) maps were analyzed to identify any loss of

information from classification of the model output into discrete bins (Table 5). Uncer-

tainty from spatial error in the inventories was not analyzed, but only GLC points with an

estimated accuracy better than 1 km were used. The AUC for the GLC was 0.82, which

indicates a relatively successful classification of terrain (Hosmer and Lemeshow 2005;

Beguerı́a 2006). Local performance of the global susceptibility map ranged from very good

(Nicaragua) to poor (Badakhshan) (Table 5). Local landslide inventories are typically

produced for landslide hotspots. In the context of a global map, the entire study area may

Fig. 4 Global susceptibility map developed using a fuzzy overlay model
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be highly susceptible. As a result, a global classification may place nearly all pixels in one

category, giving the appearance of randomness in the ROC. AUC values calculated for the

classified map were no more than 0.03 lower than for the unclassified fuzzy product, which

suggests that the classification process preserved most of the available information.

5 Comparison with previous small-scale maps

The new global landslide susceptibility map resembles previous publications, both in

methods and results. Landslide hotspots were identified by Nadim et al. (2006) in many of

the same locations that the current study finds highly or very highly susceptible. However,

the new map identifies a much larger portion of the world’s surface as highly susceptible

than was shown as highly hazardous in the map of landslide and avalanche hotspots. The

difference is probably due to the use of a classification system that relies upon ‘‘approx-

imate annual frequency’’ in the prior work. The current study identifies some additional

large areas as hotspots, including the Appalachian Mountains in the eastern United States,

eastern Brazil, and Madagascar, which were previously classified as ‘‘negligible to very

low’’. This difference is important because many landslides, including fatal ones, have

occurred in places like West Virginia, Minas Gerais, and Orissa. The new map also has

much in common with the previous global landslide susceptibility map by Hong et al.

(2007), including large hotspots in the Andes, Himalaya, and eastern Brazil. The most

notable differences are the relatively low susceptibility ratings assigned to Indonesia, the

Philippines, and New Zealand by the earlier map. The distribution of categories differs

between the maps, with more pixels rated moderately susceptible in the map by Hong

et al., and more pixels rated very low in the newer map. The significance of this is that very

few areas can be excluded from future analysis on the basis of the older map, whereas the

new global map can be used to exclude a majority of the Earth’s land surface from more

detailed study. The spatial distribution of fatal landslides (Petley 2012) mostly confirms the

patterns seen in all three global maps. Highly rated areas with few fatal landslides, such as

the Southern Andes and the Canadian Rockies, tend to be sparsely populated, resulting in

fewer reported fatalities.

The landslide susceptibility map of Central America and the Caribbean region

(Kirschbaum et al. 2015a) should be very similar to the global map, despite slight dif-

ferences in methods and data inputs. Since the maps were produced at the same resolution

Table 5 Performance of the
global susceptibility map was
analyzed with eight local land-
slide inventories

Performance appears to depend
upon the specific events recorded
in each inventory, not upon the
size, terrain, or climate of the
study area

Inventory AUC

Study area Unclassified Classified

Global 0.85 0.82

Badakhshan, Afghanistan 0.61 0.59

El Salvador 0.7 0.69

Eastern Guatemala 0.7 0.69

Italy 0.66 0.65

Koshi Basin, Nepal–India–China 0.84 0.82

Nicaragua 0.85 0.83

Oregon, USA 0.75 0.74

Utah, USA 0.82 0.81
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(30 arc seconds) and with the same number of categories (five), quantitative comparisons

were not difficult. First, the susceptibility classes were assigned a numerical value from 1

(very low) to 5 (very high). Then the map of the Caribbean was subtracted from the global

map. The global susceptibility ratings were equal to or greater than the prior ratings in

almost all locations (Fig. 5). This is attributed to the fact that Central America is a

landslide hotspot (Nadim et al. 2006; Petley 2012; Kirschbaum et al. 2015b). While any

given location within the region may be relatively less susceptible than other Central

American locations, it may be relatively more susceptible than the Earth as a whole. This

tendency was also seen in the susceptibility maps associated with the local inventories

described above (Table 4). The handful of locations where the Caribbean map indicates

higher susceptibility are probably due to the use of an older slope database (Verdin et al.

2007).

The new global map can also be compared to the landslide hazard maps of Indonesia

(Cepeda 2010), which have four hazard classes. The hazard map for precipitation-triggered

landslides shows the highest hazard in southwestern Sulawesi and western Sumatra, with

the lowest hazard in eastern Sumatra and southern Borneo. The hazard map for earthquake-

triggered landslides shows the highest hazard in western Sumatra, Morotai, and the

mountains of Papua, with the lowest hazard in eastern Sumatra and Borneo. Although it

has been subdivided into seismic and meteorological components, this is roughly the same

pattern seen in its predecessor, the global map of landslide hotspots (Nadim et al. 2006).

The new global map identifies the same locations as highly hazardous, but extends the high

and very high classes over much of Indonesia, including eastern Sulawesi and many

smaller islands (Fig. 6). Interestingly, both maps portray Java as less hazardous than its

neighbors, despite the preponderance of reported landslides. This is probably due to

population biases in the landslide inventories, but it might indicate the influence of

anthropogenic terrain modification on landslide rates.

Comparison with the European map (Günther et al. 2014) revealed large regional dif-

ferences (Fig. 7). In particular, the European map shows higher susceptibility in Italy,

Ireland, and the United Kingdom, while the global map shows higher susceptibility in

Iberia and the Carpathians. The global map shows higher overall susceptibility, which

would be expected if Europe were more prone to landslides than the Earth as a whole.

Using the European map as a benchmark, the deviation by class is very low: 80%, low:

Fig. 5 Relationship between the global landslide susceptibility map and the maps of Europe and the
Caribbean. The global map often classified terrain as one category higher than the Caribbean map, but the
majority of sites were identical in both maps. Less than 1% of the study area was classified higher by the
Caribbean map. The global map exhibited a lower rate of agreement with the European map. In this case, the
distribution of higher and lower values was more even. In both cases, the number of large differences
between global and regional susceptibility classes was quite small
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-56%, moderate: -28%, high: 57%, very high: -17% (Fig. 5). It is interesting to note that

although the methods for defining susceptibility classes were quite different, the overall

distribution of European land among classes resembles the global map as a whole. The

same is not true of landslides (Fig. 3); the better validation of the European susceptibility

model can be attributed to the use of better lithological data, larger and more spatially

precise landslide inventories, and a more homogeneous study area. Nevertheless, the

European map largely confirms the output of the global susceptibility model. Less than

0.2% of the map showed a difference of 4 classes (e.g., a complete inversion from very low

to very high), less than 2% of the map showed a difference of 3 or more classes, and less

than 11% of the map showed a difference of 2 or more classes. In other words, there was no

difference in 45% of the pixels, and the maps differed by a single class in another 45% of

the pixels.

This comparison suggests that maps produced with different methods, data, and scope

may show largely similar results. However, maps focused on specific landslide hotspots are

not directly comparable to broader overviews unless a single, rigorous classification

method was applied to both maps.

6 Discussion

While comparison with previous small-scale maps revealed strong similarities, this global

landslide susceptibility map improves upon prior maps in four important ways. First,

several new or updated datasets have been released in the last decade. In the current

Fig. 6 Fuzzy landslide susceptibility in Indonesia
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context, the most important of these is a DEM made with high-quality SRTM void-filling

techniques. Second, the use of a conservative method for aggregating 90-m slope values

means that all major topographic features were considered by this analysis. Third, the use

of fuzzy overlay preserves the full information content of continuous variables like slope

gradient. Fourth, the simple classification scheme will be familiar to users of other

Fig. 7 New global landslide susceptibility map and the European map (Günther et al. 2014) were assigned
integer values from 1 (very low susceptibility) to 5 (very high). The European map was then subtracted from
the global map, so positive values indicate areas where the global map has higher susceptibility and negative
indicates where the European map is higher. Numerous differences between the global and European
landslide susceptibility maps can be seen. The European map exceeds the global map over large portions of
Great Britain and Ireland (brown). The global map shows higher landslide susceptibility in most of Portugal
and Spain (purple)
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susceptibility maps, but the uneven pixel distribution should draw the user’s attention to

the most critical sites.

Nevertheless, several features of the new map may limit its use. First, the resolution of

the map is approximately 1 km, and terrain varies significantly within many pixels. The

choice to aggregate slope by computing the maximum value means that some pixels may

contain a very small area of steep terrain, while the remainder is not susceptible to

landslides. Second, the use of biased and incomplete landslide inventories to evaluate the

susceptibility map makes the results more difficult to interpret. Although this susceptibility

model (Fig. 2) was not fitted empirically, landslide inventories informed the prior research

on which it was based. Third, the Geological Map of the World is only appropriate for use

over very large areas. At local and national scales, more detailed information is often

available, but varies in quality, format, and cost. Fourth, this map models all mass

movements with the same treatment. The real world is more complex, and factors which

drive rock toppling in Canada are not the same as those which can cause debris flows in

New Guinea. Fifth, this map does not provide an explicit hazard level in the form of an

annual probability of slope failure. Therefore, it is very likely that landslides will occur at

some date in all of the very highly susceptible locations, but the size, frequency, and timing

of those events are not known. These limitations suggest that the global susceptibility map

is best used for a few purposes: situational awareness of global landslide hotspots and

potential occurrence, the development of global decision support systems, and prioritiza-

tion of future landslide research. It is not appropriate for decisions about infrastructure

design, building code legislation, or local land-use planning.

Excerpts from this landslide susceptibility map have already been used during the

period leading up to potential disasters. In one such instance, the approach of Hurricane

Madeline toward the Hawaiian Islands triggered a request for information on the potential

for landslides. Although the global map is not tailored specifically to this location, it was

still the most relevant and detailed dataset available to decision makers. This map has also

been applied as one component of a global landslide nowcast system (Kirschbaum and

Stanley 2016). The nowcasts are issued at two levels, high-hazard and moderate-hazard,

which correspond to different classes of the global susceptibility map. After considering

susceptibility, a 7-day antecedent rainfall index is compared to historical precipitation

levels to identify hazardous locations in nearly real time. While this system focuses upon

rain, other landslide triggers, such as melting snow or recent seismicity, could be con-

sidered in similar models.

7 Conclusions

This research assessed landslide susceptibility at a resolution of approximately 1 km with

nearly global coverage. The map was evaluated with one Global Landslide Catalog and

several local to regional landslide inventories. The geographic distribution of landslide

susceptibility is very similar to that in previous small-scale maps, with the most dangerous

terrain located around the Pacific Rim and along the Himalayan Mountains. Other hot spots

can be found in Europe, Africa, and the Americas. While this map benefited from several

excellent and free datasets, further improvements to thematic data, particularly in soil

mapping of mountain regions and landslide cataloging, would improve the results of any

future work. The global susceptibility map might be improved by incorporation of any

future in situ and satellite-based datasets with improved resolution, accuracy, or
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completeness. The map may be useful for long-term risk assessment and disaster response

planning, as well as in the development of real-time hazard models.
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Devoli G, Strauch W, Chávez G, Høeg K (2007b) A landslide database for Nicaragua: a tool for landslide-
hazard management. Landslides 4:163–176. doi:10.1007/s10346-006-0074-8

DOGAMI (Oregon Department of Geology and Mineral Industries) (2015) SLIDO: statewide landslide
information layer for Oregon. http://www.oregongeology.org/sub/slido/data.htm. Accessed 11 Oct
2015

dos Santos Alvalá RC, Camarinha PIM, Canavesi V (2013) Landslide susceptibility mapping in the coastal
region in the State of São Paulo, Brazil. In: American Geophysical Union, Spring Meeting

Nat Hazards (2017) 87:145–164 161

123

http://dx.doi.org/10.5721/EuJRS20144721
http://dx.doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.1016/j.geomorph.2005.07.018
http://dx.doi.org/10.12691/aees-1-2-1
http://dx.doi.org/10.12691/aees-1-2-1
http://pubs.usgs.gov/mf/1999/2329/
http://pubs.usgs.gov/mf/1999/2329/
http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1
http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1
http://dx.doi.org/10.1007/s10346-006-0068-6
http://dx.doi.org/10.1016/j.geomorph.2008.05.041
http://dx.doi.org/10.1016/j.geomorph.2008.05.041
http://www.viewfinderpanoramas.org/dem3.html
http://viewfinderpanoramas.org/voidfill.html
http://dx.doi.org/10.1007/s10346-006-0048-x
http://dx.doi.org/10.1007/s10346-006-0074-8
http://www.oregongeology.org/sub/slido/data.htm


Elliott AH, Harty KM (2010) Landslide maps of Utah. Utah Geological Survey Map 246DM:14. 46 plates.
1:100,000 scale. DVD

ESRI (2013) ArcGIS Desktop, version 10.2. Environmental Systems Research Institute, Redlands,
California

Frolova JV, Gvozdeva IP, Kuznetsov NP (2015) Effects of Hydrothermal Alterations on Physical and
Mechanical Properties of Rocks in the Geysers Valley (Kamchatka Peninsula) in Connection with
Landslide Development. In: Proceedings World Geothermal Congress 2015, pp 1–6

Gerencia de Geologı́a (2012) Landslide inventory of El Salvador. Ministerio de Medio Ambiente y Recursos
Naturales, El Salvador

Günther A, Van Den Eeckhaut M, Malet J-P et al (2014) Climate-physiographically differentiated Pan-
European landslide susceptibility assessment using spatial multi-criteria evaluation and transnational
landslide information. Geomorphology 224:69–85. doi:10.1016/j.geomorph.2014.07.011

Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI project: a bibliographical and archive inventory of
landslides and floods in Italy. Environ Manag 18:623–633. doi:10.1007/BF02400865

Haigh MJ, Rawat JS, Bartarya SK (1989) Environmental indicators of landslide activity along the Kilbury
road, Nainital, Kumaun lesser Himalaya. Mt Res Dev 9:25–33

Haigh MJ, Rawat JS, Rawat MS et al (1995) Interactions between forest and landslide activity along new
highways in the Kumaun Himalaya. For Ecol Manag 78:173–189

Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover
change. Science 342:850–853. doi:10.1126/science.1244693

Haque U, Blum P, da Silva PF et al (2016) Fatal landslides in Europe. Landslides. doi:10.1007/s10346-016-
0689-3

Hijmans RJ (2015) Raster: geographic data analysis and modeling. R package version 2.4-15. https://CRAN.
R-project.org/package=raster

Hirano A, Welch R, Lang H (2003) Mapping from ASTER stereo image data: DEM validation and accuracy
assessment. ISPRS J Photogramm Remote Sens 57:356–370. doi:10.1016/S0924-2716(02)00164-8

Hong Y, Adler RF, Huffman G (2007) Use of satellite remote sensing data in the mapping of global
landslide susceptibility. Nat Hazards 43:245–256. doi:10.1007/s11069-006-9104-z

Hosmer DW, Lemeshow S (2005) Assessing the fit of the model. In: Applied logistic regression, 2nd edn.
Wiley, Inc., Hoboken, NJ, USA, pp 143–202

ICIMOD (International Centre for Integrated Mountain Development) (1992) Landslides in Koshi River
Basin of 1990. http://rds.icimod.org/Home/DataDetail?metadataId=23175&searchlist=True. Accessed
7 Jan 2015

ICIMOD (International Centre for Integrated Mountain Development) (2010) Landslides in Koshi River
Basin of 2010. http://rds.icimod.org/Home/DataDetail?metadataId=23176&searchlist=True. Accessed
7 Jan 2015

Jarvis A, Reuter H, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 4. Available from
the CGIAR-CSI SRTM 90 m Database

Jezek KC (2002) RADARSAT-1 Antarctic mapping project: change-detection and surface velocity cam-
paign. Ann Glaciol 34:263–268. doi:10.3189/172756402781818030

Keefer DK (1994) The importance of earthquake-induced landslides to long-term slope erosion and slope-
failure hazards in seismically active regions. Geomorphology 10:265–284. doi:10.1016/0169-
555X(94)90021-3

Kirschbaum DB, Adler RF, Hong Y et al (2010) A global landslide catalog for hazard applications: method,
results, and limitations. Nat Hazards 52:561–575. doi:10.1007/s11069-009-9401-4

Kirschbaum D, Stanley T (2016) A satellite-based global landslide hazard assessment model for situational
awareness. In: Geological society of america abstracts with programs, vol 48. doi:10.1130/abs/
2016AM-279271

Kirschbaum DB, Stanley T, Yatheendradas S (2015a) Modeling landslide susceptibility over large regions
with fuzzy overlay. Landslides. doi:10.1007/s10346-015-0577-2

Kirschbaum DB, Stanley T, Zhou Y (2015b) Spatial and temporal analysis of a global landslide catalog.
Geomorphology 249:4–15. doi:10.1016/j.geomorph.2015.03.016

Korup O, Stolle A (2014) Landslide prediction from machine learning. Geol Today 30:26–33. doi:10.1111/
gto.12034

Larsen IJ, Montgomery DR (2012) Landslide erosion coupled to tectonics and river incision. Nat Geosci
5:468–473. doi:10.1038/ngeo1479

Larsen MC, Parks JE (1997) How wide is a road? The association of roads and mass-wasting in a forested
montane environment. Earth Surf Process Landf 22:835–848. doi:10.1002/(SICI)1096-
9837(199709)22:9\835:AID-ESP782[3.0.CO;2-C

162 Nat Hazards (2017) 87:145–164

123

http://dx.doi.org/10.1016/j.geomorph.2014.07.011
http://dx.doi.org/10.1007/BF02400865
http://dx.doi.org/10.1126/science.1244693
http://dx.doi.org/10.1007/s10346-016-0689-3
http://dx.doi.org/10.1007/s10346-016-0689-3
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
http://dx.doi.org/10.1016/S0924-2716(02)00164-8
http://dx.doi.org/10.1007/s11069-006-9104-z
http://rds.icimod.org/Home/DataDetail?metadataId=23175&searchlist=True
http://rds.icimod.org/Home/DataDetail?metadataId=23176&searchlist=True
http://dx.doi.org/10.3189/172756402781818030
http://dx.doi.org/10.1016/0169-555X(94)90021-3
http://dx.doi.org/10.1016/0169-555X(94)90021-3
http://dx.doi.org/10.1007/s11069-009-9401-4
http://dx.doi.org/10.1130/abs/2016AM-279271
http://dx.doi.org/10.1130/abs/2016AM-279271
http://dx.doi.org/10.1007/s10346-015-0577-2
http://dx.doi.org/10.1016/j.geomorph.2015.03.016
http://dx.doi.org/10.1111/gto.12034
http://dx.doi.org/10.1111/gto.12034
http://dx.doi.org/10.1038/ngeo1479
http://dx.doi.org/10.1002/(SICI)1096-9837(199709)22:9%3c835:AID-ESP782%3e3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1096-9837(199709)22:9%3c835:AID-ESP782%3e3.0.CO;2-C


Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. EOS
Trans Am Geophys Union 89:93. doi:10.1029/2008EO100001

Liu C, Li W, Wu H et al (2013) Susceptibility evaluation and mapping of China’s landslides based on multi-
source data. Nat Hazards 69:1477–1495. doi:10.1007/s11069-013-0759-y

Nadim F, Kjekstad O, Peduzzi P et al (2006) Global landslide and avalanche hotspots. Landslides
3:159–173. doi:10.1007/s10346-006-0036-1

NIMA (National Imagery and Mapping Agency) (1993) Vector map (VMap) level 0. http://earth-info.nga.
mil/publications/vmap0.html. Accessed 1 Jan 2014

Okamoto T, Sakurai M, Tsuchiya S (2013) Secondary hazards associated with coseismic landslide. In: Ugai
K, Yagi H, Wakai A (eds) Earthquake-induced landslides. Springer, Berlin, pp 77–82

OpenStreetMap contributors (2015) OpenStreetMap. http://osm-x-tractor.org/Data.aspx. Accessed 7 Jun
2015

Petley DN (2012) Global patterns of loss of life from landslides. Geology 40:927–930. doi:10.1130/G33217.
1

Petley DN, Dunning SA, Rosser NJ (2005) The analysis of global landslide risk through the creation of a
database of worldwide landslide fatalities. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide
risk management. CRC Press, Boca Raton, p 776

Petley DN, Hearn GJ, Hart A et al (2007) Trends in landslide occurrence in Nepal. Nat Hazards 43:23–44.
doi:10.1007/s11069-006-9100-3

Pradhan B (2011) Use of GIS-based fuzzy logic relations and its cross application to produce landslide
susceptibility maps in three test areas in Malaysia. Environ Earth Sci 63:329–349. doi:10.1007/s12665-
010-0705-1

Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission—a new class of digital
elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57:241–262.
doi:10.1016/S0924-2716(02)00124-7

Radbruch-Hall DH, Colton RB, Davies WE et al (1982) Landslide overview map of the conterminous
United States. U.S Government Printing Office, Washington

Regmi AD, Devkota KC, Yoshida K et al (2013) Application of frequency ratio, statistical index, and
weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal
Himalaya. Arab J Geosci 7:725–742. doi:10.1007/s12517-012-0807-z

Reid ME, Sisson TW, Brien DL (2001) Volcano collapse promoted by hydrothermal alteration and edifice
shape, Mount Rainier, Washington. Geology 29:779. doi:10.1130/0091-7613(2001)029\0779:
VCPBHA[2.0.CO;2

Rubel Y, Ahmed B (2013) Understanding the issues involved in urban landslide vulnerability in Chittagong
metropolitan area. Association of American Geographers (AAG), Bangladesh

Scheidegger AE, Ai NS (1986) Tectonic processes and geomorphological design. Tectonophysics
126:285–300. doi:10.1016/0040-1951(86)90234-9

Schutz BE, Zwally HJ, Shuman CA et al (2005) Overview of the ICESat mission. Geophys Res Lett
32:L21S01. doi:10.1029/2005GL024009

Sidle RC, Pearce AJ, O’Loughlin CL (1985) Effects of land management on soil mass movement. In: Sidle
RC, Pearce AJ, O’Loughlin CL (eds) Hillslope stability and land use. American Geophysical Union,
Washington, pp 73–88

Sidle RC, Ziegler AD, Negishi JN et al (2006) Erosion processes in steep terrain—truths, myths, and
uncertainties related to forest management in Southeast Asia. For Ecol Manag 224:199–225. doi:10.
1016/j.foreco.2005.12.019

Srivastava V, Srivastava HB, Lakhera RC (2010) Fuzzy gamma based geomatic modelling for landslide
hazard susceptibility in a part of Tons river valley, northwest Himalaya, India. Geomat Nat Hazards
Risk 1:225–242. doi:10.1080/19475705.2010.490103

Steger S, Brenning A, Bell R et al (2016a) Exploring discrepancies between quantitative validation results
and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology 262:8–23.
doi:10.1016/j.geomorph.2016.03.015

Steger S, Brenning A, Bell R, Glade T (2016b) The impact of systematically incomplete and positionally
inaccurate landslide inventories on statistical landslide susceptibility models. In: EGU general
assembly conference abstracts 18:6666

Tangestani MH (2004) Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kakan
catchment area, southwest Iran. Aust J Earth Sci 51:439–450. doi:10.1111/j.1400-0952.2004.01068.x

USGS (United States Geological Survey) (2008) Global land survey digital elevation model. Global Land
Cover Facility, University of Maryland, College Park, Maryland. http://glcf.umd.edu/data/glsdem/

van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and
vulnerability assessment: an overview. Eng Geol 102:112–131. doi:10.1016/j.enggeo.2008.03.010

Nat Hazards (2017) 87:145–164 163

123

http://dx.doi.org/10.1029/2008EO100001
http://dx.doi.org/10.1007/s11069-013-0759-y
http://dx.doi.org/10.1007/s10346-006-0036-1
http://earth-info.nga.mil/publications/vmap0.html
http://earth-info.nga.mil/publications/vmap0.html
http://osm-x-tractor.org/Data.aspx
http://dx.doi.org/10.1130/G33217.1
http://dx.doi.org/10.1130/G33217.1
http://dx.doi.org/10.1007/s11069-006-9100-3
http://dx.doi.org/10.1007/s12665-010-0705-1
http://dx.doi.org/10.1007/s12665-010-0705-1
http://dx.doi.org/10.1016/S0924-2716(02)00124-7
http://dx.doi.org/10.1007/s12517-012-0807-z
http://dx.doi.org/10.1130/0091-7613(2001)029%3c0779:VCPBHA%3e2.0.CO;2
http://dx.doi.org/10.1130/0091-7613(2001)029%3c0779:VCPBHA%3e2.0.CO;2
http://dx.doi.org/10.1016/0040-1951(86)90234-9
http://dx.doi.org/10.1029/2005GL024009
http://dx.doi.org/10.1016/j.foreco.2005.12.019
http://dx.doi.org/10.1016/j.foreco.2005.12.019
http://dx.doi.org/10.1080/19475705.2010.490103
http://dx.doi.org/10.1016/j.geomorph.2016.03.015
http://dx.doi.org/10.1111/j.1400-0952.2004.01068.x
http://glcf.umd.edu/data/glsdem/
http://dx.doi.org/10.1016/j.enggeo.2008.03.010


Verdin KL, Godt JW, Funk C et al (2007) Development of a global slope dataset for estimation of landslide
occurrence resulting from earthquakes: U.S. Geological Survey, Colorado. Open-File Report
2007–1188:25

Weirich F, Blesius L (2007) Comparison of satellite and air photo based landslide susceptibility maps.
Geomorphology 87:352–364. doi:10.1016/j.geomorph.2006.10.003

Zhang J, Gurung DR, Liu R et al (2015) Abe Barek landslide and landslide susceptibility assessment in
Badakhshan Province, Afghanistan. Landslides 12:597–609. doi:10.1007/s10346-015-0558-5

Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation
tool in clinical medicine. Clin Chem 39:561–577

164 Nat Hazards (2017) 87:145–164

123

http://dx.doi.org/10.1016/j.geomorph.2006.10.003
http://dx.doi.org/10.1007/s10346-015-0558-5

	Public Domain.pdf
	s11069-017-2757-y
	A heuristic approach to global landslide susceptibility mapping
	Abstract
	Introduction
	Data
	Topography
	Geology
	Seismicity
	Forest loss
	Roads
	Landslide inventories

	Methods
	Results
	Comparison with previous small-scale maps
	Discussion
	Conclusions
	Acknowledgements
	References





