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1. Supplementary Figures

Supplementary Fig S.1. Partial correlations of
neurophysiological (T) scores controlled for age,
gender and parental socioeconomic status.
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Supplementary Fig S.2. Evaluating the optimal number of principal components used in the HCPC
algorithm on the neuropsychological measures dataset. Minimum BIC and MDL values were used as
model selection criteria. The optimal model was selected based on the minimum BIC and MDL. Top: BIC
and MDL a function of the number of principal components. Five principal components was the most
appropriate number of principal components, as indicated by the BIC and MDL values. The selected
number of principal components explained a large part of the dataset, as supported by the value of the
cumulative variance explained, 89 (%), when the number of PCs Npck

= 5. (A) BIC. (B) MDL. (C)
Percentage of variance explained for a chosen number of principal components.
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Supplementary Fig S.3. Evaluation of the goodness of the clustering solution as a function of the num-
ber of clusters. The goodness of fit is accessed using the elbow criterion of the cluster validity indexes
that maximize between-cluster distances and minimize within-cluster distances. Mean values of cluster
validity indices are shown along with a 95% confidence interval (CI). Three cluster quality metrics show
an inflection point when the number of clusters Nck = 2. Cluster stability is evaluated using the Jaccard
similarity index via a nonparametric bootstrap resampling technique of subject neuropsychological mea-
sures with n = 1000 repetitions. The reproducibility of the clusters was established with a high degree
of cluster similarity for the Jaccard index J = 0.9 at Nck = 2. Thus, the empirically obtained cluster
similarity measure suggests that the clusters derived from the original data reflect the properties of the
subject neuropsychological measures dataset. The cluster validity indexes and cluster stability metrics
provide strong evidence that the optimal number of clusters for a given neurophysiological dataset is two.
(a) Dunn index. (b) Calinski-Harabasz index. (c) Separation index. (d) Jaccard similarity index.
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Supplementary Fig S.4. Main effect of the subject group (HP vs. LP, N = 170) on the subject head
motion is summarized in the boxplots. The boxplots summarize the distribution of the mean values of the
head motion during the scan. The tops of the whisker lines indicate the 25th and 75th percentile values.
The mean values are plotted in blue. The error bars represent the standard error of the mean. Post hoc
analyses with two-tailed t-tests (FDR corrected, p < 0.05) indicate that the mean value of of the head
motion of the HP group was not significantly different than for LP group with p > 0.05.
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Supplementary Fig S.5. Distribution of mean FIT values of the CP decomposition for MEG data by
stimulus condition as a function of tensor rank. Mean and standard error are shown. Shaded areas around
each line depict the standard error of the mean. Dotted line denotes the selected tensor rank used in the
CP model. Details are listed in Supplementary Table S.2.
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Supplementary Fig S.6. Tensor decomposition results of sensor-level MEG data for target stimuli.
Temporal and spatial patterns from the components of the CP model. Top: The topographic maps
(gradiometers view) show the density of spatial patterns that correspond to prominent time peaks denoted
with red and blue arrows. Bottom: ERF component with signal traces from all individual MEG sensors
averaged across subject ERF components. The shaded areas around each line depict the standard error
of the mean. The average stimulus-related ERF timecourse is shown in yellow, and the average ERF
(average across sensors) component is plotted in cyan. (a)-(b) Occipital 130-150 ms component in the
VIS and AV conditions. (c) Right temporal 280-300 ms component in the AUD and AUD conditions.
(e)-(i) Late central 350-430 ms component in the VIS, AUD, and AV conditions.
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Supplementary Fig S.7. ERF components topographic maps over time are shown. (a)-(b) Occipi-
tal/M150 component. (c)-(d) R.Temporal/M300a component. (e)-(i) L.Central/M400 component.
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Supplementary Fig S.8. Sensitivity analysis of the ERF components generated with different group
imaging methods. Estimation of the R.Temporal/M300a component for the AUD condition by the CP
decomposition and SnPM methods.The group-level T-maps between HP and LP groups for the CP and
SnPM methods are shown. The T-maps (nonparametric permutation two-tailed t-test with a maximum
t-statistics) are thresholded at p < 0.05. Siginificant sensors are overlayed on T-map are shown in yellow.
(a) CP AUD M300 component. (b) SnPM AUD M300 component. The significant time interval of group
differences (275-320 ms) is depicted in the shaded area. (e) Left: CP AUD M300a T-map. Right: SnPM
AUD M300a T-map.



Springer Nature 2021 LATEX template

10 TABLE OF CONTENT

Supplementary Fig S.9. Sensitivity analysis of the ERF components generated with different group
imaging methods. Top row: Estimation of the R.Temporal/M300a component for the AV condition by
the CP decomposition and SnPM methods. Bottom row: The group-level T-maps between HP and LP
groups for the CP and SnPM methods are shown. The T-maps (nonparametric permutation two-tailed
t-test with a maximum t-statistics) are thresholded at p < 0.05. The yellow circles on scalp maps show
the location of significant sensors. (a) CP AV M300 component. (b) SnPM AV M300 component. The
significant time interval of group differences (275-320 ms) is depicted in the shaded area. (e) Left: CP AV
M300a T-map. Right: SnPM AV M300a T-map.
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Supplementary Fig S.10. Sensitivity analysis of the ERF components generated with different group
imaging methods. Estimation of the L.Central/M400 component for the VIS condition by the CP decom-
position and SnPM methods. The group-level T-maps between HP and LP groups for the CP and
SnPM methods are shown. The T-maps (nonparametric permutation two-tailed t-test with a maximum
t-statistics) are thresholded at p < 0.05. The yellow circles on scalp maps show the location of significant
sensors. (a) CP VIS M400 component. (b) SnPM VIS M400 component. The significant time interval
of group differences (400-433 ms) is depicted in the shaded area. (e) Left: CP VIS M400 T-map. Right:
SnPM VIS M400 T-map.
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Supplementary Fig S.11. Sensitivity analysis of the ERF components generated with different group
imaging methods. Estimation of the L.Central/M400 component for the AUD condition by the CP
decomposition and SnPM methods. The group-level T-maps between HP and LP groups for the CP and
SnPM methods are shown. The T-maps (nonparametric permutation two-tailed t-test with a maximum
t-statistics) are thresholded at p < 0.05. The yellow circles on scalp maps show the location of significant
sensors. (a) CP AUD M400 component. (b) SnPM AUD M400 component. The significant time interval
of group differences (320-450 ms) is depicted in the shaded area. (e) Left: CP AUD M400 T-map. Right:
SnPM AUD M400 T-map.
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Supplementary Fig S.12. Sensitivity analysis of the ERF components generated with different group
imaging methods. Estimation of the L.Central/M400 component for the AV condition by the CP decom-
position and SnPM methods. The group-level T-maps between HP and LP groups for the CP and
SnPM methods are shown. The T-maps (nonparametric permutation two-tailed t-test with a maximum
t-statistics) are thresholded at p < 0.05. The yellow circles on scalp maps show the location of signifi-
cant sensors. (a) CP AV M400 component. (b) SnPM AV M400 component. The significant time interval
of group differences (275-330 ms) is depicted in the shaded area. (e) Left: CP AV M400 T-map. Right:
SnPM AV M400 T-map.
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Supplementary Fig S.13. Sensitivity analysis of the ERF components generated with different group
imaging methods. Top row: Estimation of the Occipital/M150 component for the AV condition by the CP
decomposition and SnPM methods. Bottom row: The group-level T-maps between HP and LP groups for
the CP and SnPM methods are shown. The T-maps (nonparametric permutation two-tailed t-test with a
maximum t-statistics) are thresholded at p < 0.05. The AV M150 component did not discriminate betwee
subject subgroups. No significant spatiotemporal regions were identified. (a) CP AV M150 component.
(b) SnPM AV M150 component. (c) Left: CP AV M150 T-map. Right: SnPM AV M150 T-map.
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Supplementary Table S.1. Comparison of participants demographics and neu-
ropsychological (T) scores by group

HP (n = 89) LP (n = 81) t(167)/χ̃2 p value

Gender (M/F) ratiob 43M (48%), 46F 42M (51%), 39F 0.00 0.99d

Age (years)c 11.92 (1.72) 11.92 (1.84) 0.03 0.97d

Parental SESc 44.69 (11.53) 45.56 (9.85) 0.517 0.30d

FSIQc 120.58 (11.27) 102.16 (11.98) 9.16 < 0.0001d

PICVOCABc 60.28 (12.06) 50.03 (7.17) 5.99 < 0.0001d

ORRENGc 60.46 (11.11) 48.63 (8.92) 6.79 < 0.0001d

LSWMc 57.46 (10.16) 47.71 (7.64) 6.27 < 0.0001d

PSMc 57.54 (11.86) 49.58 (9.05) 4.36 < 0.0001d

DCCSc 56.79 (12.53) 47.3 (9.31) 4.96 < 0.0001d

FICAc 49.06 (10.57) 42.23 (6.24) 4.55 < 0.0001d

HYPERACTIVITYc 47.24 (6.79) 51.63 (11.35) -2.17 0.031d

INATTENTIONc 51.03 (9.68) 51.9 (9.43) 0.52 0.59d

a Summaries are mean (SD) for continuous variables, n(%) for categorical variables.
b Pearson chi-square χ̃2 test.
c Independent samples two-tailed t-test.
d p values (FDR corrected, p < 0.05).

Supplementary Table S.2. Mean
and standard deviation of the FIT for
the CP model by stimulus condition
and tensor rank, R

FITa

Stimuli condition

R
VIS AUD AV

M (SD) M (SD) M (SD)

1 0.967 (0.01) 0.931 (0.01) 0.095 (0.01)
2 0.932b(0.01) 0.909b(0.01) 0.927 (0.02)
3 0.919 (0.01) 0.892 (0.01) 0.907b(0.01)
4 0.906 (0.01) 0.876 (0.01) 0.894 (0.01)
5 0.895 (0.01) 0.861 (0.01) 0.882 (0.01)
6 0.885 (0.01) 0.849 (0.01) 0.870 (0.01)
7 0.876 (0.01) 0.838 (0.01) 0.861 (0.01)
8 0.867 (0.01) 0.829 (0.02) 0.849 (0.03)
9 0.858 (0.02) 0.810 (0.03) 0.840 (0.05)
10 0.850 (0.02) 0.810 (0.03) 0.832 (0.05)
a The plots corresponding to this table can be seen
in Supplementary Fig. S.5.
b The FIT value corresponds to the chosen tensor
rank R of the final CP model fit for each stimulus
condition (VIS, AUD or AV).
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Supplementary Table S.3. Comparison of the extracted MEG ERF components with the original ERF datasets using repeated measures correlation
analysis

Component VIS AUD AV

r(224399) R2 95% CI p value r(224399) R2 95% p value r(224399) R2 95% p value

Occipital/M150 0.588 0.34 [0.58, 0.58] <0.001a - - - 0.419 0.22 [0.41, 0.42] <0.001a

Right Temporal/M300a - - - - 0.677 0.49 [0.66, 0.68] <0.0001 0.395 0.28 [0.39, 0.40] <0.001a

Late Central/M400 0.625 0.38 [0.62, 0.63] <0.001a 0.519 0.27 [0.51, 0.52] <0.001a 0.492 0.24 [0.49, 0.51] <0.001a

a p values (FDR corrected, p < 0.05).

Supplementary Table S.4. Comparison of ERF timecourse group amplitudes by subject subgroup extracted by statistical nonparametric mapping (SnPM) method

Component AUD VIS AV

HP (n = 89) LP (n = 81) t(165) p value HP (n = 89) LP (n = 81) t(165) p value HP (n = 89) LP (n = 81) t(165) p value

M(SD) M(SD) M(SD)

Occipital/M150 - - - - 95.5(64.4)) 35.0(44.9) 6.32 < 0.001a 1150(1745) −780(1835) 0.175 0.851a

Right Temporal/M300a 115(80) 85.3(64.1) 2.31 0.022a - - - - 74.2(98.6) 39.0(95.9) 2.09 0.038a

Late Central/M400 -55.2(45.8) -24.7(47.6) -3.76 0.002a -7.06(47.5) -38.3 (58) -3.41 0.001a -32.7(51.6) 49.2(55.0) -1.81 0.07a

a p values (FDR corrected, p < 0.05) from post hoc two-tailed t-tests adjusted for age, gender, and parental SES.
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Supplementary Table S.5. CP ERF
components orthogonality analysis

Condition

Component 1 Component 2 VIS AUD AV

⟨Component 1,Component 2⟩a ⟨Component 1,Component 2⟩a ⟨Component 1,Component 2⟩a

M150 M300a - - 0.095
M300a M400 - 0.068 0.101
M150 M400 0.079 - 0.112

a ⟨·, ·⟩ inner product of the arguments

Supplementary Table S.6. CP ERF
components correlations

Condition

Component 1 Component 2 VIS AUD AV

r p r p r p

M150 M300a - - 0.004 0.958a

M300a M400 - 0.008 0.917a 0.001 0.989a

M150 M400 0.007 0.927a - 0.006 0.938a

a p values (FDR corrected, p < 0.05).
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3. Supplementary Methods

3.1. Clustering Analysis of
Neurophysiological Dataset

To assess the potential interrelatedness of the
observed event-related-field (ERF) patterns with
the neurophysiological (T) scores across subjects,
we performed a clustering analysis using selected
variables that are representative of major cogni-
tive domains. Before conducting clustering analy-
sis, covariates of no interest, namely, age, parental
socioeconomic (SES), and gender, were regressed
out from the original neurophysiological dataset.
The neurophysiological dataset contains multiple
continuous variables that are highly correlated
(see Supplementary Fig. S.1). Principal compo-
nent analysis (PCA) can reduce the dimensions of
data into a few continuous variables, thereby max-
imizing the variance explained. Thus, we employed
a hierarchical clustering on principal components
(HCPC) approach (Argüelles, Benavides, & Fer-
nández, 2014; Husson, Josse, & Pagès, 2010), com-
bining three standard techniques (PCA, hierarchi-
cal clustering, and K-means algorithm) to achieve
an improved clustering solution. Fig. 5 of the
main text shows a schematic view of the HCPC
method. All neurophysiological (T) scores were
standardized prior to the application of the HCPC
algorithm using z-score formula to account for dif-
ferent scales. First, we applied the PCA algorithm
to the neurophysiological dataset, represented as a
subject score matrix P ∈ RK×L,K = 170, L = 9,
to reduce the dataset into fewer dimensions, i.e.,
principal components (PCs), which were uncor-
related. We used Bayesian information criterion
(BIC) (Schwarz, 1978) and minimum description
length (MDL) (Rissanen, 1978) as model selection
criteria for the number of PCs retained (Npck

).
We selected five PCs based on the minimum BIC
and MDL values as a function of the number of
PCs. The selected number of PCs was supported
by the value of the cumulative variance explained
89(%) when Npck

= 5 (see Fig. S.3). We computed
a distance matrix D ∈ RK×K of these PCs, which
uses a dissimilarity measure such as distance cor-
relation (Székely, Rizzo, & Bakirov, 2007). Next,
we applied hierarchical clustering using Ward’s D2
Murtagh and Legendre (2014) method on the dis-
tance matrix D to select the clusters based on

the height of the hierarchical tree and the clus-
ter significance. Significant clusters were selected
based on the approximately unbiased (AU) prob-
ability (Efron, Halloran, & Holmes, 1996) p-values
with p < 0.05. As a choice of the pairwise dis-
tance between the nodes of the tree, we used
Ward’s D2 criterion (Murtagh & Legendre, 2014)
because, like PCA, it is based on multidimen-
sional variance minimization. We evaluated the
goodness of fit of the clustering solution using
the elbow criterion of the cluster validity indexes
that maximize between-cluster distances and min-
imize within-cluster distances, such as the Dunn
Index (DI) Dunn (1974), Calinski-Harabasz index
(CH) (Caliński & Harabasz, 1974), and separa-
tion index (SI) Qiu and Joe (2006). As shown in
Supplementary Fig. S.3a–c, three cluster valida-
tion metrics (DI, CH and SI) have an inflection
point when the number of clusters Nck = 2.
Cluster stability was evaluated using the Jaccard
similarity index (J) (Jaccard, 1912) and a non-
parametric bootstrap resampling technique with
nonoverlapping split-half samples of subject scores
and n = 1000 repetitions. The reproducibility of
the clusters was established with a high degree of
cluster similarity for the Jaccard index J = 0.9
at Nck = 2 (see Supplementary Fig. S.3d). Thus,
the cluster compactness metrics and cluster sta-
bility measure provided strong evidence that for
a given neurophysiological dataset, the optimal
number of clusters is two (see Supplementary Fig.
S.3). We obtained the final clustering solution by
applying the K-means algorithm to the hierarchi-
cal clustering output generated using Ward’s D2
method.

3.2. Repeated Measures Correlation
Analysis between ERF
components and ERF time
courses

We conducted repeated measures correlation
analysis (Bakdash & Marusich, 2017) between
the original subject’s ERF waveforms and the
extracted subject’s ERF components for each
stimuli condition to determine the common associ-
ations between the original data and the extracted
components shared among the subject’s datasets.
As described by (Bakdash & Marusich, 2017),
repeated measures correlation takes into account
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nonindependence among observations by statis-
tically adjusting for intersubject variability and
thereby provides a higher statistical power than
that of the simple average correlation. We used
two paired measures (original amplitude as the
dependent variable and component amplitude as
the independent variable) in the analysis, and
the nonparametric bootstrap resampling tech-
nique was used to obtain 95% confidence intervals
with n = 1000 repetitions. We observed significant
correlations between all ERF components and the
original data from each condition (Supplemen-
tary Table S.3; p < 0.001). Supplementary Table
S.3 shows the common associations according to
repeated measures correlation analyses.

The ERF components accounted for 72%, 76%,
and 74% of the variance in the VIS, AUD and AV
conditions, respectively.
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