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Iterative Random Training Sampling Convolutional
Neural Network for Hyperspectral

Image Classification
Chein-I Chang , Life Fellow, IEEE, Chia-Chen Liang, and Peter Fuming Hu

Abstract— Convolutional neural network (CNN) has received
considerable interest in hyperspectral image classification (HSIC)
lately due to its excellent spectral–spatial feature extraction
capability. To improve CNN, many approaches have been directed
at exploring the infrastructure of its network by introduc-
ing different paradigms. This article takes a rather different
approach by developing an iterative CNN that extends a CNN
by including a feedback system to repeatedly process the same
CNN in an iterative manner. Its idea is to take advantage of
a recently developed iterative training sampling spectral–spatial
classification (IRTS-SSC) that allows CNN to update its spatial
information of classification maps through a feedback spatial fil-
tering system via IRTS. The resulting CNN is called iterative
random training sampling CNN (IRTS-CNN) with several unique
features. First, IRTS-CNN combines CNN and IRTS-SSC into
one paradigm, an architecture that has never been investigated
in the past. Second, it implements a series of spatial filters to
capture spatial information of classified data samples and further
feeds this information back via an iterative process to expand the
current input data cube for the next iteration. Third, it utilizes
the expanded data cube to randomly reselect training samples
and then to reimplement CNN iteratively. Last but not least,
IRTS-CNN provides a general framework that can implement
any arbitrary CNN as an initial classifier to improve its perfor-
mance through an iterative process. Extensive experiments are
conducted to demonstrate that IRTS-CNN indeed significantly
improves CNN, specifically when only a small size of limited
training samples is used.

Index Terms— Convolutional neural network (CNN), iterative
random training sampling CNN (IRTS-CNN), random training
sampling (RTS).

Manuscript received 11 March 2023; revised 5 May 2023 and 12 May
2023; accepted 21 May 2023. Date of publication 26 May 2023; date of
current version 12 June 2023. This work was supported in part by the National
Science and Technology Council (NSTC) under Grant 111-2634-F-006-012.
(Corresponding author: Chia-Chen Liang.)

Chein-I Chang is with the Center for Hyperspectral Imaging in Remote
Sensing (CHIRS), Information and Technology College, Dalian Maritime
University, Dalian 116026, China, also with the Remote Sensing Signal and
Image Processing Laboratory, Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore, MD 21250 USA, also with
the Department of Electrical Engineering, National Cheng Kung University,
Tainan 70101, Taiwan, and also with the Department of Computer Science and
Information Management, Providence University, Taichung 02912, Taiwan
(e-mail: cchang@umbc.edu).

Chia-Chen Liang is with the Remote Sensing Signal and Image Pro-
cessing Laboratory, Department of Computer Science and Electrical Engi-
neering, University of Maryland, Baltimore, MD 21250 USA (e-mail:
lcjane212@gmail.com).

Peter Fuming Hu is with the Department of Anesthesia, University of
Maryland School of Medicine, R. A. Cowley Shock Trauma Center, Shock
Trauma Anesthesia Organized Research Center, Baltimore, MD 21201 USA
(e-mail: phu@som.umaryland.edu)

Digital Object Identifier 10.1109/TGRS.2023.3280205

NOMENCLATURE

AA Average accuracy.
AC Average classification.
APR Average precision rate.
A2S2K-ResNet Attention-based adaptive spectral–spatial

kernel improved residual network.
AUC Area under an ROC curve.
BS BKG suppressibility.
BSS Band subset selection.
CNN Convolutional neural network.
EPF Edge-preserving filter.
FSKNet Faster selective kernel mechanism

network.
HSIC Hyperspectral image classification.
HybridSN Hybrid spectral convolutional neural

network.
IEPF Iterative edge-preserving filter.
IRTS Iterative random training sampling.
MAP Maximum a posteriori.
OA Overall accuracy.
OC Overall classification.
OPR Overall precision rate.
ROC Receiver operating characteristic.
RTS Random training sampling.
SF Spatial filter.
SFCMap Spatial filtered classification map.
SSC Spectral–spatial classification.
TI Tanimoto index.
SQ-RDFBBS Sequential RDF band subset selection.
VD Virtual dimensionality.

I. INTRODUCTION

HSIC has been studied extensively in hyperspectral imag-
ing. Many approaches have been reported in the past.

Among them, SSC and CNN are of particular interest.
A hyperspectral imaging sensor is called “hyperspectral”

because it utilizes hundreds of contiguous spectral bands to
extract rich spectral information to uncover unknown and
subtle material substances, such as subpixel targets and mixed
data samples. Accordingly, it is critical to capture such spectral
properties and characteristics in the first place before they
are compromised by follow-up data processing. Consequently,
spectral processing is generally used as an important initial
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process to preserve crucial spectral features for this purpose.
This is particularly true for hyperspectral data compression
where spectral information is very likely to be sacrificed and
lost by spatial compression [1]. This same issue may be also
encountered in HSIC. That is, the useful and crucial spectral
information for classification may be lost if spatial processing
is prior to spectral processing. To address this issue effectively,
SSC has emerged as a promising technique in HSIC, which
implements a spectral classifier to extract spectral information
followed by SFs to capture spatial information [2], [3], [4] and
is proved to be very effective in HSIC. One of the most widely
used SSC methods is the EPF-based method developed in [5],
which has been shown to outperform many existing HSIC
methods with the spectral classifier and SFs specified by sup-
port vector machine (SVM) to perform spectral classification
followed by EPF to capture spatial information from classi-
fied data samples. EPF-based methods were later improved
by including iterative feedback loops in EPF methods to
derive IEPF methods [6]. Furthermore, IEPF was extended
to a general framework of the SSC network by making it a
close feedback network, called the spectral–spatial feedback
close network system (SSFCNS) [7] with IEPF included as
its special case. Most recently, a new concept of RTS was
developed as IRTS-SSC [8] to improve IEPF by allowing SSC
to randomly reselect training samples in each new iteration
during the entire iterative process.

As an alternative to SSC, CNN has been also shown to
yield great performance in many applications in the visual
information processing field, such as facial recogni-
tion [9], [10], human motion recognition [11], skin lesions
classification [12], and image classification [13], [14].
In addition, significant progress has been also made by deep
learning for HSIC in recent years [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35].

Generally speaking, a traditional CNN-based classifica-
tion model mainly consists of three types of layers, tak-
ing a hyperspectral image (HSI) as the input layer, con-
volution sublayers and pooling sublayers implemented as
hidden layers, and fully connected layers as the out-
put layer, which produces the final classification maps.
It can be implemented as 2D- or 3D-CNN depending upon
its inputs. The CNN-based HSI classification model used
in [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34], and [35] is a
3D-CNN that has 3D image patches implemented as inputs
with the labels are determined by the center pixel of the
patch. In the convolutional sublayer, different filter kernels
are applied to input samples and generate 3D volumes of
feature maps. Since the number of feature maps becomes
very large as the number of hidden layers increases, the
computational burden also becomes excessively high layer
by layer. To resolve this issue, pooling sublayers are applied
to reduce the dimensions of the feature maps produced in
the convolution sublayers. Once the images are reduced to
a manageable level, a fully connected layer is implemented as
the last layer for final classification. In general, the number of
outputs in this layer is specified by the number of classes.

Despite that CNN can automatically learn high-level fea-
tures using a more complex model, it usually takes up too
much memory space in a computer and requires high-power
computers for computing. Meanwhile, it also accompanies
some disadvantages and complexity of the used models with
high memory storage requirements for computers. In addition,
due to the complicated network structure and availability of
limited training samples, such deep learning models might be
suboptimal or provide unstable performance [36].

To address the abovementioned issues, this article presents
a new general architecture of a CNN shown in Fig. 1,
to be called IRTS-CNN where CNN can be implemented
as either 2D or 3D. Similar to the SSFCNS developed by
Zhong et al. [7], it includes feedback loops to make CNN a
close network system as opposed to CNN, which is an open
feed-forward system. Most importantly, IRTS-CNN imple-
ments an RTS strategy in each iteration to randomly reselect
a new set of training samples for CNN to be used for the
next iteration. It extends the traditional CNN in many aspects.
In particular, four key elements are used to design IRTS-
CNN. One is its use of SFs to capture spatial information
from the CNN-classified maps to yield soft-decision CNN
classification maps, referred to as SFCmaps. A second ele-
ment is to feed SFCMaps back to the current input data
cube to create a new expanded data cube to be used for
the reimplementation of CNN again. A third one is to use
RTS to randomly reselect training samples from the newly
augmented data cube to retrain CNN. Finally, an automatic
stopping rule is particularly designed to terminate IRTS-CNN.
All of these elements are new and cannot be found in the
traditional CNN.

In order to facilitate understanding of IRTS-CNN, a simple
and generic 3D-CNN model is used for experiments to illus-
trate its concept and utility. However, a more complex CNN
with sophisticated structures can be also used to implement
IRTS-CNN. Nevertheless, experimental results show that, even
for such a simple 3D-CNN, it not only can have a great
performance as a complex model did [17], [30], [33] but
also can be computed in lower computational complexity.
To substantiate the advantages of IRTS-CNN three image
scenes, Purdue’s Indian Pines, Salinas, and the University of
Pavia were used for experiments. Specifically, the Purdue data
have imbalanced class issues, and the University of Pavia
has complicated background (BKG) issues. In addition, two
new soft-decision detection measures developed from the 3D
ROC curves in [37] are rederived as soft-decision classification
measures, called AC and class-weighted classification (CWC).
These two measures along with the traditional hard-decision
classification measures, OA, and AA were used together to
conduct an in-depth performance analysis.

Several contributions are summarized as follows.
1) Since IRTS-CNN is designed as a general framework,

the CNN used in IRTS-CNN is generic. Accordingly,
IRTS-CNN is applicable to any arbitrary CNN, including
2D- and 3D-CNNs along with more complicated CNN
models, which will be illustrated in Section VII, and
more complicated CNN models as demonstrated in
Section VIII.
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Fig. 1. Graphic diagram of implementing IRTS-3D-CNN.

2) Any CNN can be used to be implemented as an initial
condition of IRTS-CNN. As a result, if a CNN performs
very well and cannot be further improved by IRTS-CNN,
then no feedback is necessary. In this case, IRTS-CNN
will be terminated after the first iteration. Consequently,
once IRTS-CNN is activated, its performance in clas-
sification is always as good as or better than its initial
condition.

3) Finally, it culminates in an extensive experiment-based
comprehensive study to conduct a comparative analysis
among machine learning-based SSC and most recently
developed deep learning-based classification techniques
that provide evidence of the superior performance of
IRTS-CNN resulting from using RTS. In particular,
several new soft-decision-based classification measures
derived from 3D ROC curves are also introduced to
conduct quantitative analysis.

The remainder of this article is organized as follows.
Section II briefly reviews related work on CNN. Section III
derives IRTS-CNN and describes a method proposed by
Song et al. [38] for training sample class size selection.
Section IV includes three image datasets to be used for exper-
iments. Section VI develops classification measures to be used
for performance evaluation. Section VII conducts experiments
on a comparative analysis among machine learning-based SSC
methods and discusses the experimental results. Section VIII
further conducts experiments on a comparative analysis among
three recently developed deep learning-based methods. Finally,
in Section IX, the experimental results summarize novelties
derived from this article and discussions.

II. RELATED WORKS

This section briefly reviews the current existing CNN
reported in the recent literature. Many CNN-HSIC techniques
have shown promising performance for HSI classification in
the past decade. For instance, Fang et al. [15] proposed a
network using dense convolutional networks with a spectral-
wise attention mechanism to enhance the distinguishability of

spectral features. Paoletti et al. [16] developed a deep pyrami-
dal residual network to improve the spectral–spatial features
uncovered by the convolutional filters where the residual-based
approach in DPRN gradually increased the feature map dimen-
sions in all convolutional layers and then grouped them in
pyramidal bottleneck residual blocks. Roy et al. [17] proposed
an HybridSN that is a spectral–spatial 3D-CNN followed by
spatial 2D-CNN. Zhu et al. [18] used deformable convo-
lutional sampling locations with size and shape adaptively
adjusted according to HSI’s complex spatial contexts to create
a deformable HSI classification network. Yu et al. [19] derived
a simplified 2D-3D-CNN that was based on the cooperation
between 2D CNN and simplified 3D convolution layers.
Sun et al. [20] further proposed a spectral–spatial attention
network to capture discriminative spectral–spatial features
form attention areas of an HSI image cube where an attention
module was used to suppress the effects of interfering pixels.

Moreover, spectral–spatial feature-based CNNs have also
been extended to extract multiscale features. Pooja et al. [21]
proposed a CNN-based method along with multiscale and
dilated convolutions with residual connection concepts.
He et al. [22] introduced a handcrafted feature extraction
method according to multiscale covariance maps for CNN.
Wan et al. [23] developed a multiscale dynamic graph convo-
lutional network, which used dynamic graphs to encode the
intrinsic similarities among the image regions, and introduced
multiple graphs with different neighborhood scales to fully
exploit the multiscale information. Gong et al. [24] introduced
a CNN with multiscale convolution and diversified metrics to
obtain discriminative features for HSIC. Xu et al. [25] pro-
posed a multiscale spectral–spatial CNN for HSIs to integrate
multiple receptive fields fused features with multiscale spa-
tial features at different levels. Furthermore, Wang et al. [26]
proposed an alternately updated spectral–spatial convolution
network with a recurrent feedback structure to learn refined
spectral and spatial features, which is different from IRTS-
3D-CNN that actually expands the input HSI cubes using the
fed-back SFCMaps from the previous iterations.
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Fig. 2. 3D-CNN-based HSI classification framework. The first step is sample extraction, where s × s × (L + M × j) sized sample is extracted from a
neighborhood window centered around the target pixel. Once samples are extracted from HSI, they are put through the 3D-CNN to extract deep spectral–spatial
features and calculate classification probabilities.

In addition to feature extraction, two main issues are
also obstacles to achieve high accuracy. One is the imbal-
anced class issue incurred by HSI classification, such as
Zhu et al. [27] proposed a spectral–spatial dependent global
learning (SSDGL) framework based on global convolutional
long short-term memory and global joint attention mecha-
nism. The other is the limited use of training samples. For
example, Chen et al. [28] proposed a network based on a
sparse representation with the quantum genetic algorithm and
CNN to represent the image as a linear combination of base
atoms in the dictionary so that the quantum genetic algorithm
could sparsely decompose the image to generate the sparse
representation of the image. Cao et al. [29] looked into a
compressed CNN with the knowledge distillation method,
which generated a large number of virtual samples to record
the classification boundary information of a teacher network,
and then used these samples to guide the training of a stu-
dent network. Roy et al. [30] used selective 3D convolutional
kernels with 3D residual building blocks and an efficient
feature recalibration mechanism to design an A2S2K-ResNet.
Furthermore, Roy et al. [31] also derived a model to automat-
ically generate more samples from minority classes via their
existing samples during training. Gao et al. [32] designed a
deep model based on an induction network for small sample
classification but required a metatraining strategy to improve
the classification accuracy with a few labeled samples, which
resulted in excessive execution time.

Due to the high computational complexity, Li and
Zhang [33] combined 3D-CNN and 2D-CNN conversion
modules with a selective kernel mechanism to reduce the
computational complexity, called FSKNet. Morales et al. [34]
later applied a novel band selection method to CNN to reduce
redundant bands. Wang et al. [35] developed a supervised
deep learning framework, called end-to-end cubic CNN, which
applied principal component analysis (PCA) and 1-D convolu-
tion to remove the redundant information from HSI where the
3D convolution not only extracted but also fused the spatial
and spatial–spectral features from different dimensions.

III. IRTS-CNN

A. 3D-CNN for HSIC

Fig. 2 shows the framework of a general 3D-CNN-based
HSIC classifier considered to be generic. Technically speaking,

any CNN described above can be used in this framework
of structure. However, in order to simplify the presentation,
a simple architecture of 3D-CNN shown in Fig. 2 is used for
IRTS-3D-CNN in Fig. 1 to provide a better illustration.

At the beginning of the input layer, an HSI is divided
into small overlapping 3D neighboring patches as a sample
centered around a pixel (x, y), which covers the s×s window,
and the label of each sample is decided by the centered pixel
of the patches. Let the original HSI cube be denoted by
� ∈ ℜm×n×L , where m is the width, n is the height, and
L is the number of bands. Thus, in the kth iteration, the band
number of the input HSI cube is presented as (L + M × k),
where M is the number of classes, and the size of the 3D patch
Px,y is s × s × (L + M × k), where s and (L + M × k) are
the spatial size and the number of spectral bands, respectively.
Once 3D samples are extracted from HSI, they are fed into the
CNN model to obtain the probabilistic classification results.

In 3D-CNN, a 3D patch is convolved with a kernel of
3 × 3 × 2 size with padding in the first convolution layer.
Thus, the size of the output is s × s and its band number is
((L − 1)+ M × k) × 2. After applying batch normalization
and the rectified linear unit (ReLU) function, its output is sent
to the max pooling with a 2 × 2 size kernel with padding
of stride = 1. The output of max pooling is a cube of size
s×s×[((L − 1)+ M × k)× 2]. Then, the second convolution
layer is applied using a 2 × 2 × 2 size kernel and padding.
The output after batch normalization and ReLu function is a
cube of size s × s × [((L − 2)+ M × k)× 8]. After a series
of convolutional and pooling layers, a fully connected layer
combines the output values of the last convolution layer into
a high-level feature vector with its number of outputs nodes
equal to the number of classes M where its output values
are used to calculate the probabilistic classification results via
softmax by

p j =
ex j∑M
j=1 ex j

, j = 1, 2, . . . , M. (1)

The final classification of pixel at (x, y), p(x,y) can be pre-
dicted by

classp(x,y)
= arg j=1,2,...,M maxp j . (2)
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B. IRTS

As an alternative to deep learning model-based approaches,
iterative SSC (ISSC) has also shown great promise in
HSIC [7], [8], [9]. It is simple to implement and does not
require a model to describe the architecture of a classifier.
More recently, ISSC has been also shown to be very com-
petitive with many existing HSIC methods in [8], [39], [40],
and [41]. Its key idea consists of three elements. One is
to include a set of SFs to capture spatial information of
classified data samples. Then, a second one is to feed the
spatial-filtered classification maps back to augment the current
data cube to a new expanded data cube that can be used
for the next round of HSIC. A third one is to introduce an
RTS strategy to resample the expanded dataset iteratively.
There are two crucial benefits resulting from ISSC, which
cannot be accomplished by feed-forward deep learning model-
based approaches. The most important one is the data cube
augmented by each iteration, which contains more spatial
information about classification maps than that obtained by its
previous iterations. The second one is the use of RTS, which is
able to randomly reselect data samples that were not selected
by previous iterations. As a result, the worst scenario is that
the training data samples reselected at all iterations are at the
same locations, referred to as fixed training sampling, while
the best scenario is that the training data samples reselected
at all iterations are different. In the latter case, RTS may
run through all the possible ground-truth data samples as
long as the iterative process is continued indefinitely. Detailed
implementations can be found in Section III-C.

C. IRTS-CNN

Basically, the IRTS-CNN presented in this section combines
CNN with IRTS into a single network that jointly implements
CNN as a feed-forward network system and IRTS as a feed-
backward system. Such a feed-forward/feed-backward system
is first ever proposed and has never been investigated for HSIC
in the past.

Since the proposed IRTS-CNN works for 2D- and 3D-
CNNs, CNN is used to simplify notations throughout this
article. Fig. 1 shows a graphic diagram of implementing the
IRTS-CNN algorithm; each stage of IRTS-CNN is described
as follows.

1) Initial Condition: The original image cube denoted
by an HSI is considered the original input data �(0).
The training sample number for each class n j will be
determined by the rule suggested in [38]. Then, at the
kth iteration, the training samples will be produced by a
randomly selected training sample set, denoted by S(k).

2) First Stage: The initial randomly selected training sam-
ple set S(0) is used to initialize CNN. The initial
CNN-classified map C-MAP(0)

CNN is produced by imple-
menting CNN on �(0).

3) Second Stage: CNN-classified binary maps are generated
for each class from the CNN-classified map and will be
used as the input of guided filters to generate the soft
probability maps.

4) Third Stage: The soft probability maps produced in the
second stage are fed back and combined �(0) to create
a new image cube �(1) as new input data for CNN for
the next round iteration.

5) Final Stage: The entire process from the first stage to
the third stage will be repeated over and over again until
a stopping rule is satisfied.

An algorithm to implement IRTS-CNN step by step in detail
is provided in Algorithm 1.

IRTS-CNN
1) Initial condition: Let �(0)

= {HSI} and a training sample
number of the m-th class denoted be n j where M is number
of classes and m = 1, w, . . . , M . An initial randomly selected
training sample set, S(0), generated according to nm . Set k = 1.

2) 1st stage:
Implement CNN on �(0) and S(0) to produce an initial clas-
sification map C-MAP(0)

CNN, i.e., Mbinary probability maps
{B(0)

CNN,m}
M
m=1, Specifically, the value of pixel at (x, y) in the

m-th binary map is defined as follows:

B(0)

CNN,m(x, y) =

{
1, if pixel at (x, y) ∈ class m
0, otherwise.

(3)

3) 2nd stage:
• At the k-th iteration, use (3) to generate M binary proba-

bility maps {B(k)

CNN,m}
M
m=1,i.e.,

B(k)

CNN,m(x, y) =

{
1, if pixel at (x, y) ∈ class m
0, otherwise.

(4)

• Apply an SF to generate soft probability maps {S(k)

SF,m}
M
m=1

found by (1) for 1 ≤ m ≤ M .
4) 3rd stage:

• Generate a new data cube

�(k)
= �(k−1)

∪
{

S(k)

SF,1

}
∪ · · · ∪

{
S(k)

SF,M

}
. (5)

• Randomly select a new set of training samples, S(k)

and implement CNN on �(k) and S(k) to produce the
CNN-classification map C-MAP(k)

CNN, i.e., {B(k)

CNN,m}
M
m=1.

• Check if {B(k)

CNN,m}
M
m=1 satisfies a stopping rule, then go to

step 5. Otherwise, let k ← k + 1, go to stage 2.
5) The algorithm is terminated and C-MAP(k)

CNN, i.e., {B(k)

CNN,m}
M
m=1

is the final classification maps.

Figs. 3 and 4 depict flow charts of implementing the initial
condition, zeroth iteration, i.e., k = 0 and the kth iteration
of IRTS-CNN, respectively. As can be seen from Fig. 3, the
traditional CNN is implemented in the zeroth iteration as an
initial condition of IRTS-CNN.

D. Training Sample Number Decision for IRTS-CNN

Most training sample selection methods determine the num-
ber of training samples based on the sample ratio (SR) for each
class. However, these will lead to poor performance caused
by the small number of training samples selection for small
classes. In order to overcome this issue, Kang [38] suggested
a method, referred to as Kang’s method, to determine the
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Fig. 3. Block diagram of implementing IRTS-CNN with initial condition and iterations. (a) Zeroth iteration (k = 0) implemented in IRTS-CNN. (b) kth
iteration with k ≥ 1 implemented in IRTS-CNN.

Fig. 4. Purdue’s data and its ground truth with 16 classes. (a) Band 186 (2162.56 nm). (b) Ground-truth map. (c) Classes by colors.

training sample size for each of the classes. Most recently,
Zhong et al. [42] and Song et al. [43] used class features to
develop a new concept, called class significance that can be
used to allocate training size for each class. Such training
sample class size allocation guarantees that small classes will
have enough training samples to be used for classification.
Since Kang’s method is simple to implement, for the purpose
of illustration, it was used in this article to determine the
number of training samples that need to be selected in each
class. For those who are interested in this method, we refer
details to Kang’s website [38]. Nevertheless, the works in [42]
and [43] can be used to replace Kang’s method for a general
purpose.

E. Stopping Rule for IRTS-CNN

The stopping rule to be used for ICNN is based on a dis-
crepancy between the two classification binary maps generated
at the kth and (k − 1)st iterations, which can be calculated by

TI(k)
=

M∑
m=1

p(Cm)TI(k)
m (6)

where TI(k)
m = (|B(k)

CNN,m ∩ B(k−1)
CNN,m |/|B

(k)
CNN,m ∪ B(k−1)

CNN,m |) with
the TI defined in [44], and B(k)

CNN,m and B(k−1)
CNN,m are the kth and

(k−1)st binary maps for class m in two consecutive iterations.
TI represents a ratio of the size of the intersection to the size
of the union between two classification results. The range of
TI is between 0 and 1. It is also known as intersection over
union (IOU) in objection detection. A larger TI value indicates
a higher overlap between B(k)

CNN,m and B(k−1)
CNN,m . When the TI of

the kth iteration is greater than a prescribed threshold ε, the
iterative process will be terminated.

Finally, in order for readers who are interested in repeat-
ing IRTS-CNN, we have uploaded its source codes to the
following our lab website provided in the following link
https://wiki.umbc.edu/display/rssipl/10.+Download.

IV. CLASSIFICATION MEASURES TO BE USED FOR
PERFORMANCE EVALUATION

There are two types of classification measures introduced
in this section: hard-decision measures [45] and soft-decision
measures.
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A. Hard-Decision Classification Measures

Let nmm be the number of signal samples in the mth class
correctly classified into the mth class Ĉm ; n jm be the number
of data samples in the mth class Cm but actually classified
into the j th class, Ĉ j ; M be the number of classes; Cm be
the set of data samples in the mth class, by ground truth;
nm =

∑M
j=1 n jm be the number of data samples in Cm ; and N

be the total number of data samples, N =
∑M

m=1 nm .
In traditional HSIC, the popular performance measurements

are class accuracy (A) and OA, given by

pA(Cm) = accuracy of the mth class =
nmm∑M
j=1 n jm

=
nmm

nm

(7)

PCWA =

M∑
m=1

p(Cm)pA(Cm) (8)

where p(Ci ) is the significant probability of data samples in
the mth class, Cm , such as SR, which can be considered as
weight of the mth class, Cm

POA =
1
N

M∑
m=1

nmm =

M∑
m=1

nm

N
pA(Cm) (9)

which shows that POA utilizes SRs as weights to average the
accuracy of each class. In addition, we can consider all classes
to be equally likely by letting (nm/N ) = (1/M) to further
define PAA as AA by the number of classes, M , expressed as

PAA =
1
M

M∑
m=1

nmm

nm
=

1
M

M∑
m=1

pA(Cm). (10)

Another measure is the precision rate (PR) given by

pPR(Cm) = precission rate of Cm =
n̂mm

n̂m
(11)

where n̂m =
∑M

j=1 n̂mj is the total number of data samples
that are classified into the mth class and n̂mj is the number of
data samples classified into the mth class but supposed to be
in the j th class. Thus, the APR, PAPR, in correspondence to
PAA in (10) is defined by

PAPR =
1
M

M∑
m=1

pPR
(
Ĉm

)
. (12)

Since nmm is identical to n̂mm and N̂ =
∑M

i=1 n̂i is equal to
N =

∑M
i=1 ni . As a result, an OPR, POPR, can be also defined

as AC, the counterpart of POA in (9), by

PCWPR =

M∑
m=1

p
(
Ĉm

)
PPR

(
Ĉm

)
(13)

where p(Ĉm) is the significant probability of classified data
samples in the mth class, Ĉm

POPR =

M∑
i=1

(
n̂i

N̂

)
PPR

(
Ĉ i

)
=

M∑
i=1

(ni

N

)
PA(Ci ) = POA (14)

which implies that POPR is essentially the same POA, provided
that BKG class samples are not included for classification.

It should be noted that PR is also known as the user’s
accuracy as opposed to OA, which is also known as the
producer’s accuracy. It is proposed to address the BKG issue,
while many existing classification methods have removed all
unlabeled data samples as BKG from classification. PR is the
one that can include all data samples for evaluation.

B. Soft-Decision Classification Measures

In addition to the above classification measures, several
3D ROC curve-based soft-decision classification measures
recently developed in [37] are also used for performance
evaluation. ROC analysis is originally used as an evaluation
tool for target detection but recently has been used for HSIC by
interpreting target detection probability, PD as class accuracy,
pA(Cm) in (7) with a specific class, Cm to be classified as
a target of interest and false alarm probability, and PF as a
misclassification error resulting from a BKG data sample being
classified into Cm . As a result, by interpreting a target to be
detected as a specific class, Cm , to be classified, the concept of
PPR in (11) is actually derived from PF . The plot of a 2D ROC
curve of PD versus PF can be translated to a plot of points
[PA(Cm), PF (Cm)] by using PF (Cm) as a parameter ranging
from 0 to 1, and the AUC is generally used to evaluate the
effectiveness of a classifier in classifying data samples into Cm .

According to the Neyman–Pearson (NP) detection the-
ory [46], an NP detector is found by maximizing PD subject
to the constraint PF ≤ β. In this case, PD cannot be calculated
directly by PF . It must first find the threshold τ that calculates
PF with PF = β. This found τ is then used to calculate PD .
Thus, a point of (PD , PF ) on the 2D ROC curve is a point
indeed calculated by the same τ . As a result, neither PD nor PF

can stand alone as a detection measure. This may explain why
the 2D ROC curve has not been used for classification. In order
to resolve this issue, a 3D ROC was first proposed in [47]
and later in [48] for hyperspectral subpixel target detection
by considering the threshold τ as an independent parameter,
and PD and PF are functions of τ . Thus, a 3D ROC curve
is actually a function of (PD , PF , τ). As a consequence,
a 3D ROC curve can generate three 2D ROC curves of
(PD , PF ), (PD , τ), and (PF , τ), where the 2D ROC curve of
(PD , PF ) is exactly the same as the commonly used 2D ROC
curve in detection theory. For each of such 2D ROC curves,
their AUC values can be calculated as AUC(D,F), AUC(D,τ ),
and AUC(F,τ ) corresponding to 2D ROC curves of (PD , PF ),
(PD , τ), and (PF , τ), respectively. Specifically, AUC(D,τ ) can
be interpreted to measure pA(Cm) in (7) where the threshold
τ is used to binarize a soft-decision classifier to classify a data
sample into Cm , such as MAP used by EPF-based methods.

By taking advantage of the AUC(D,F), AUC(D,τ ), and
AUC(F,τ ) derived from a 3D ROC curve, several soft-decision
classification measures can be further designed.

1) Class Classifiability Measure: Since the AUC of the
2D ROC curve of (PD , PF ), AUC(D,F), and AUC of 2D
ROC curves of (PD , τ), AUC(D,τ ) indicate how effective a
detector is and how high the detection probability of a detector
can achieve, respectively, AUC(D,F) and AUC(D,τ ) can be
translated to measure the effectiveness of a classifier in class
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accuracy and the classifiability of a classifier, respectively.
In this case, for each class Cm , we can define the class
classifiability (CC) of a classifier as AUCCC(Cm) by

0 ≤ AUCCC(Cm) = AUC(D,F)(Cm)+AUC(D,τ )(Cm) ≤ 2 (15)

to measure both the effectiveness and CC of a classifier to
classify data samples into Cm .

2) BKG Suppressibility: On the other hand, since the AUC
of the 2D ROC curve of (PF , τ), AUC(F,τ ), represents the
probability of BKG samples classified by a classifier into a
specific class, Cm , the smaller the value of AUC(F,τ ), the better
the classifier. In this case, to factor AUC(F,τ ) in classification
performance, we define BKG as data samples of no interest.
For example, if the class of interest is Cm , then the data
samples in all other classes, {C j } j ̸=m in BKG class will be
considered as BKG. In this case, a BKG suppressibility (BS)
measure for each class, Cm , AUCBS(Cm), can be defined by

−1 ≤ AUCBS(Cm) = AUC(D,F)(Cm)− AUC(F,τ )(Cm) ≤ 1.

(16)

3) Joint Target Detectability With BKG: In the definitions
of CC and BS, AUC(D,F) is used to measure the effectiveness
of a classifier when PD and PF use the same threshold τ

for their joint performance. In order to deal with CC and
BS simultaneously, we need to consider CC and BS working
together with the threshold τ as an independent parameter.
Since PF is caused by the probability of misclassifying BKG
samples into Cm , this error probability should be subtracted
from PD as class accuracy PA. Thus, to take care of this effect,
a measure, called CC in BKG (CC-BS) by factoring PF into
PD , is further defined as AUCCC−BS(Cm) by

−1 ≤ AUCCC-BS(Cm) = AUC(D,τ )(Cm)− AUC(F,τ )(Cm) ≤ 1.

(17)

C. Overall Classification Measures

It should be noted that the classification measures described
above are defined for a specific class, Cm . To define the
OC accuracy of a classifier over all classes, two ways can
be done in a similar manner that PAA is defined in (10)
by averaging and POA in (9) by class weights. Accordingly,
two new classification measures slightly different from those
defined in [49] can be also defined.

One is AC to evaluate the average performance of a classi-
fier by

AC = AAUC(D,F) + AAUC(D,τ ) − AAUC(F,τ )

+ PAA + PAPR (18)

with AAUC(D,F), AAUC(D,τ ), and AAUC(F,τ ) defined by

AAUC(D,F) =
1
M

M∑
m=1

AUC(D,F)(Cm) (19)

AAUC(D,τ ) =
1
M

M∑
m=1

AUC(D,τ )(Cm) (20)

AAUC(F,τ) =
1
M

M∑
m=1

AUC(F,τ)(Cm). (21)

The other is CWC by class weights, {p(Cm)}Mm=1, to evaluate
the weighted classification performance of a classifier by

CWC = CWAUC(D,F) + CWAUC(D,τ )

− CWAUC(F,τ ) + PCWA + PCWPR (22)

with CWAUC(D,F), CWAUC(D,τ ), and CWAUC(F,τ ) defined by

CWAUC(D,F) =

M∑
m=1

p(Cm)AUC(D,F)(Cm) (23)

CWAUC(D,τ ) =

M∑
m=1

p(Cm)AUC(D,τ )(Cm) (24)

CWAUC(F,τ) =

M∑
m=1

p(Cm)AUC(F,τ)(Cm). (25)

Thus, when p(Cm) = nm/n is specified by SR, CWC is
reduced to OC similar to OA in (9).

V. IMAGES TO BE USED FOR EXPERIMENTS

In this section, three real HSIs were used for experiments
to conduct comparative analyses among IEPF, IRTS-EPF, and
IRTS-3D-CNN where 3D-CNN is implemented according to
Fig. 2.

A. Purdue Indiana Indian Pines

The first one is the Purdue Indiana Indian Pines test site with
an aerial view shown in Fig. 4(a) along with its ground truth of
17 class maps in Fig. 4(b) and their class labels in Fig. 4(c).
Table I tabulates the number of data samples in each class
where there are four small classes with less than 100 samples,
classes 9, 7, 1, and 16, and three classes with more than
1000 samples, classes, 2, 11, and 14. Thus, this scene clearly
has an imbalanced class issue in classification. It is an airborne
visible/infrared imaging spectrometer (AVIRIS) image scene
and has a size of 145 × 145 × 200 pixel vectors with water
absorption bands (bands: 104–108, 150–163, and 200). Thus,
a total of 220 bands were used for experiments. It should be
noted that, in many reports, 200 bands were used by excluding
water absorption bands, such as in [5].

B. Salinas

The second image dataset is Salinas shown in Fig. 5(a),
which is also an AVIRIS scene. It was collected over Salinas
Valley, California, USA, with a spatial resolution of 3.7 m
per pixel with a spectral resolution of 10 nm. It has a size of
512 × 217 × 224 with 20 water absorption bands, 108–112,
154–167, and 224. Thus, a total of 224 bands were used for
experiments. Fig. 5(b) and (c) shows the color composite of
the Salinas image along with the corresponding ground-truth
class labels. Unlike the Purdue data, the Salinas scene does not
have an issue in imbalanced classes. According to the ground
truth tabulated in Table II, the smallest class is class 13 with
916 data samples.
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TABLE I
CLASS LABELS OF PURDUE’S DATA

TABLE II
CLASS LABELS OF CLASSES IN SALINAS

Fig. 5. Salinas and its ground truth with 16 classes. (a) Salinas scene.
(b) Ground-truth image. (c) Classes by colors.

C. University of Pavia

The third HSI data is the University of Pavia image shown
in Fig. 6, which is an urban area surrounding the University
of Pavia, Italy. It was recorded by the ROSIS-03 satellite
sensor over an urban area surrounding the University of Pavia,
Italy. It is of size 610 × 340 × 115 with a spatial resolution
of 1.3 m per pixel and a spectral coverage ranging from
0.43 to 0.86 µm with a spectral resolution of 4 nm (12 most
noisy channels were removed before experiments). Fig. 6(b)
provides its ground-truth map of nine classes along with color
class labels in Fig. 6(c). Table III also tabulates the number of
data samples in parentheses collected for each class. Like the
Salinas scene, this scene also has very large classes with only
one small class with less than 1000 data samples, class 9 with
947 samples. However, this scene has a more complicated
BKG than the other two studied scenes, as already shown
in [49], where the PR of this scene was much lower than the
other two scenes.

VI. TEST CLASSIFIERS AND CLASSIFICATION MEASURES

In order to evaluate IRTS-3D-CNN, comprehensive experi-
mental study and analysis are conducted for comparison.

Fig. 6. University of Pavia and its ground truth with nine classes.
(a) University of Pavia scene. (b) Ground-truth map. (c) Classes by colors.

A. Classifications for Comparison

Two types of classification were compared.
1) Machine Learning-Based SSC: First, we need to select

a set of test classifiers for comparison. Many classifiers have
been developed and reported in the literature, among which
SSC has emerged as one of the most promising classification
techniques in HSIC. In particular, IEPF-based methods in [6]
and [7] have been shown to outperform EPF, spectral–spatial
composite kernel (CK) SVM-based methods developed in [50],
and the SVM-MRF method proposed in [51]. Since IEPF
used a fixed training sample set through all iterations, its
performance was further improved by IRTS-EPF in [8], which
implements RTS to reselect training samples randomly at each
iteration. Accordingly, IEPF and IRTS-EPF were selected for
comparison. Moreover, despite that there were four versions of
SVM-EPF-based methods developed in [5], their performances
were relatively the same where EPF-G-g seemed to perform a
little bit better. In this case, EPF-G-g was particularly selected
to implement IEPF and IRTS-EPF, denoted by IEPF-G-g and
IRTS-EPF-G-g, respectively.

2) Deep Learning-Based Classification: Deep learning net-
works have been studied extensively in recent years. Numerous
works have been reported in the literature. It is impossible
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TABLE III
CLASS LABELS OF THE UNIVERSITY OF PAVIA

TABLE IV
TRAINING SAMPLE SIZES FOR PURDUE DATA, SALINAS, AND U. OF PAVIA

to compare them all in one article. In this article, we have
selected three most recently developed state-of-the-art 3D-
CNNs for a comparative analysis in the same manner that
it was performed for SSC. The first one is the HybridSN
developed in [17], which used 3D convolution layers to capture
joint spatial–spectral features and then applied 2D convolution
layers to capture spatial features to further reduce compu-
tational complexity. The second one is an A2S2K-ResNet
derived in [30], which combined 3D residual building blocks
and an efficient feature recalibration mechanism to improve
the classification results. The third one is FSKNet in [33],
which proposed a network with a selective kernel mechanism
to adjust the receptive field size of each neuron. All of these
networks have shown their superior performance over many
exiting learning-based HSIC techniques and are available on
their websites. Those people who are interested in repeating
their experiments can find details in their websites.1,2,3

B. Training Sample Class Size Allocation

One of the major issues in HSIC is how to deal with
imbalanced issue, such as the Purdue dataset. When a class
sample size is too small, such as class 9 with 20 data samples
and class 7 with data 28 samples in the Purdue dataset
according to Table I, using a small SR such as 0.5% of data
samples to select training samples may end up with no or
too few data samples that can be selected as training samples.
To resolve this issue, Kang’s method [38] was used to allocate
the training size for each class tabulated in Table IV where
the SR is selected as 10%, 5%, and 1% of the total number
of data samples for the Purdue data.

1HybridSN: https://github.com/gokriznastic/HybridSN
2A2S2K-ResNet: https://github.com/suvojit-0× 55aa/A2S2K-ResNet
3FSKNet: https://github.com/leeguandong/fsknet-for-hsi

Since Salinas and U. of Pavia are considered relatively
large scenes, 1%, 0.5%, and 0.1% of the total number of
data samples were randomly selected as training samples.
The number of training samples for each class determined by
Kang’s method is also tabulated in Table IV.

C. Classification Performance

The classification performance was evaluated by hard-
decision classification measures, PA in (7), POA in (9),
PAA in (10), PAPR in (12), and POPR in (14) described in
Section IV-A, and soft classification measures, AAUC(D,F)

in (19), AAUC(D,τ ) in (20), AAUC(F,τ ) in (21), AC in (18),
CWAUC(D,F) in (23), CWAUC(D,τ ) in (24), CWAUC(F,τ )

in (25), and CWC in (22) described in Section IV-C.

VII. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Purdue Indiana Indian Pines

By randomly selecting training samples for each class
according to its class size allocated in Table IV, Tables V–VII
tabulate PA, POA, PAA, PPR, POPR, and PAPR produced
by IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN
using 10%, 5%, and 1% of data samples as training samples
where the experiments were run ten times to obtain their
means and standard deviations included in parentheses. When
SR = 10% is large, IRTS-EPF-G-g performed slightly better
than IRTS-3D-CNN, as shown in Table V, in terms of tra-
ditional hard-decision classification measures, PA, POA, and
PAA. However, as SR is gradually reduced from 10% to 5%
and 1%, IRTS began to show its competitivity in Table VIII
and eventually took over IRTS-EPF, as shown in Table IX,
when SR = 1% was used. Also, in all cases, 3D-CNN without
IRTS produced far worse performance than the other three
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TABLE V
PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY IEPF-G-G, IRTS-EPF-G-G, 3D-CNN,

AND IRTS-3D-CNN BY USING 10% TRAINING SAMPLES FOR PURDUE DATA

TABLE VI
PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY IEPF-G-G, IRTS-EPF-G-G, 3D-CNN,

AND IRTS-3D-CNN BY USING 5% TRAINING SAMPLES FOR PURDUE DATA

classifiers. Moreover, when BKG is factored into classification,
IEPF and IRTS-EPF performed much better than IRTS-3D-
CNN in the sense of PPR, POPR, and PAPR. This is mainly
because BKG is an unlabeled data sample and cannot be
learned from training samples using 3D-CNN.

In addition to traditional hard-decision classification
measures, we also used soft-decision classification mea-
sures to calculate AAUC(D,F), AAUC(D,τ ), AAUC(F,τ ), AC,
CWAUC(D,F), CWAUC(D,τ ), CWAUC(F,τ ), and CWC, respec-
tively. Their results are tabulated in Tables VIII and IX to
further show that IRTS-3D-CNN and IRTS-EPF generally
produced the best and second best performances with the worst
performance produced by 3D-CNN, respectively.

However, as noted above, since BKG is unknown and
cannot be learned from training samples using 3D-CNN, BKG
suppression specified by AAUC(F,τ ) resulting from IRTS-3D-
CNN was worse than IRTS-EPF and IEPF, as expected in
Tables VIII and IX. This indicated that IEPF and IRTS-EPF
had much better BS than 3D-CNN and IRTS-3D-CNN because
the smaller the AAUC(F,τ ) value, the better the BKG to be
suppressed. This fact was also reflected in PR. Nevertheless,
when the number of selected training samples is small such as
1%, IRTS-3D-CNN began to show its superiority to IRTS-EPF.
Overall speaking, the best performance was still IRTS-EPF
with IRTS-3D-CNN as the second best. Both of these two
classifiers used RTS to resample training data at each of the
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TABLE VII
PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY IEPF-G-G, IRTS-EPF-G-G, 3D-CNN,

AND IRTS-3D-CNN BY USING 1% TRAINING SAMPLES FOR PURDUE DATA

TABLE VIII
AC FOR IEPF, IRTS-EPF, 3D-CNN, AND IRTS-3D-CNN IN TERMS OF 3D ROC ANALYSIS, PAA , POA , AND POPR FOR PURDUE DATA

Fig. 7. Classification maps of IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN for the Purdue data using 10% of training samples. (a) Without BKG.
(b) With BKG.

new iterations. Unfortunately, 3D-CNN came with a much
worst performance due to its inability in learning training
samples without an iterative process.

In order to provide a visual inspection of test methods,
Figs. 7–9 show their classification maps without/with BKG for
the Purdue data using 10%–5% and 1% of training samples,

respectively. By looking at classes 10 and 11, IRTS-EPF-
G-g and IRTS-3D-CNN performed the best without BKG
using 10% and 1% training samples, respectively. In particular,
IRTS-3D-CNN began to show its superior performance when
the training sample size decreased. However, when BKG is
factored in, 3D-CNN without an iterative process performed

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on June 13,2023 at 17:31:20 UTC from IEEE Xplore.  Restrictions apply. 



CHANG et al.: IRTS-CNN FOR HSIC 5513526

TABLE IX
CWC FOR IEPF, IRTS-EPF, 3D-CNN, AND IRTS-3D-CNN IN TERMS OF 3D ROC ANALYSIS, PAA , POA , AND POPR FOR PURDUE DATA

Fig. 8. Classification maps of IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN for the Purdue data using 5% of training samples. (a) Without BKG.
(b) With BKG.

Fig. 9. Classification maps of IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN for the Purdue data using 1% of training samples. (a) Without BKG.
(b) With BKG.

the worst, but its IRTS-3D-CNN significantly improved and
performed even better than IEPF-G-g and IRTS-EPF-G-g.

B. Salinas

Unlike the Purdue data, Salinas has a large number of data
samples. In this case, we selected small training sizes with
1%, 0.5%, and 0.1% of total data samples as training samples,
respectively, according to the training class sizes allocated in
Table IV by Kang’s method. Tables X–XII tabulate PA, POA,
PAA, PPR, POPR, and PAPR produced by IEPF-G-g, IRTS-
EPF, 3D-CNN, and IRTS-3D-CNN where the results were
calculated by tenfold experiments with standard deviations
included in parentheses. Interestingly, IRTS-EPF was shown to
be the best classifier, while 3D-CNN was the worst classifier
because IRTS-3D-CNN did not perform well for class 8 and
class 15. Since class 8 is the largest class, its accuracy has
a strong impact on POA of IRTS-3D-CNN. However, like the
Purdue experiments, when SR was reduced to 0.1%, IRTS-
3D-CNN began to show its superior performance over IEPF,
as shown in Table XII.

Tables XIII and XIV also tabulate AC and CWC,
respectively. As expected, using a large number of training
samples, IRTS-EPF had the best performance followed by
IEPF, while IRTS-3D-CNN had the worst performance. These
results demonstrated that IRTS-3D-CNN lost its competitivity
to IRTS-EPF-G-g when the number of training samples was
large.

In order to provide a visual inspection of test methods,
Figs. 10–12 show their classification maps without/with BKG
for the Salinas data using 1%, 0.5%, and 0.1% of training
samples, respectively. If we looked at classes 8 and 15,
IRTS-EPF-G-g performed the best, and 3D-CNN was the
worst with/without BKG in all cases. However, 3D-CNN was
significantly improved after it was implemented as IRTS-3D-
CNN and performed comparably to IRTS-EPF-G-g.

C. University of Pavia

Following similar experiments conducted for Salinas,
Table XV–XVII tabulate PA, POA, PAA, PPR, POPR, and
PAPR produced by IEPF-G-g, IRTS-EPF, 3D-CNN, and
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TABLE X
PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY IEPF-G-G, 3D-CNN, AND IRTS-3D-CNN BY USING 1% TRAINING SAMPLES FOR SALINAS

TABLE XI
PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY IEPF-G-G, 3D-CNN, AND IRTS-3D-CNN BY USING 0.5% TRAINING SAMPLES FOR SALINAS

IRTS-3D-CNN with randomly selecting SR = 1%, 0.5%,
and 0.1% of data samples as training samples according
to Table IV, respectively. Since this dataset also contains a
large number of data samples, the results were similar to
those obtained for Salinas where the best performance was
IRTS-EPF and IEPF followed by IRTS-3D-CNN with 3D-
CNN being the worst when SR was over 1%. However, as SR
was decreased below 1%, IRTS-3D-CNN began to outperform
IRTS-EPF and IEPF, and became the best classifier, which
showed significantly better improvement as SR = 0.1%.
These results also demonstrated that IRTS-3D-CNN has
tremendous advantages over IRTS-EPF and IEPF when SR
became very small.

Tables XVIII and XIX also tabulate AC and CWC, respec-
tively. Once again, IRTS-3D-CNN had the highest values when

SR was smaller than 1%. In other words, when SR became
small, the classifiers using RTS demonstrated their superiority
to the classifiers without using RTS. Specifically, as SR was
reduced from 0.5% to 0.1%, the performance of EPF dropped
more rapidly than CNN methods.

In order to provide a visual inspection of test methods,
Figs. 13–15 show their classification maps without/with BKG
for the U. of Pavia data using 1%, 0.5%, and 0.1% of training
samples, respectively. As pointed out in its data description,
U. of Pavia has very complicated BKG as evidenced by
comparing the classification maps with and without BKG in
Figs. 13–15 where the classification maps with BKG showed
that most of the data samples were mixed with BKG, which
led to very poor PR of less than 25%, which was nearly twice
worse than the PR results produced by two other datasets,
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TABLE XII
PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY IEPF-G-G, 3D-CNN, AND IRTS-3D-CNN BY USING 0.1% TRAINING SAMPLES FOR SALINAS

TABLE XIII
AC FOR IEPF, IRTS-EPF, 3D-CNN, AND IRTS-3D-CNN IN TERMS OF 3D ROC ANALYSIS, PAA , POA , AND POPR FOR SALINAS

Fig. 10. Classification maps of IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN for Salinas using 1% of training samples. (a) Without BKG.
(b) With BKG.
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TABLE XIV
CWC FOR IEPF, IRTS-EPF, 3D-CNN, AND IRTS-3D-CNN IN TERMS OF 3D ROC ANALYSIS, PAA , POA , AND POPR FOR SALINAS

Fig. 11. Classification maps of IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN for Salinas using 0.5% of training samples. (a) Without BKG.
(b) With BKG.

Fig. 12. Classification maps of IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN for Salinas using 0.1% of training samples. (a) Without BKG.
(b) With BKG.

even though IRTS was implemented. If we looked at particular
classes 2 at the bottom of the scene and 6, IRTS-EPF-G-g and
IRTS-3D-CNN performed the best and nearly the same when a
1% training sample size was used. However, when the sample
size was reduced to 0.5% and 0.1%, IRTS-3D-CNN began to

perform better than IRTS-EPF-G-g, specifically for the case
of class 6 using a 0.1% training sample size.

Interestingly, the BKG issue of the U. of Pavia has been
overlooked in HSIC in the past. Very little has been reported
on how to deal with the BKG of U. of Pavia. As a matter
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TABLE XV
PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY IEPF-G-G, 3D-CNN, AND IRTS-3D-CNN USING 1% TRAINING SAMPLES FOR U. OF PAVIA

TABLE XVI
PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY IEPF-G-G, 3D-CNN, AND IRTS-3D-CNN BY USING 0.5% TRAINING SAMPLES FOR U. OF PAVIA

TABLE XVII
PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY IEPF-G-G, 3D-CNN, AND IRTS-3D-CNN BY USING 0.1% TRAINING SAMPLES FOR U. OF PAVIA

of fact, when we removed its BKG, U. of Pavia could almost
achieve as high as 97% of OA and AA of 98% when the
training sample size was greater than 0.5%. Also, for this par-
ticular dataset, IRTS-3D-CNN nearly outperformed all other
methods.

D. Discussions

All the experiments conducted in this article demonstrated
four important facts. One is that IRTS is always able to
improve any classifier without using IRTS as shown by
experiments where IRTS-IEPF-G-g and IRTS-3D-CNN always

improved their corresponding counterparts without using
IRTS. Second, when the training sample pool is sufficiently
enough, such as 10%, 5% of the Purdue data, 1%, 0.5% of
Salinas, and 1% of Pavia, IRTS-IEPF-G-g generally performed
better than IRTS-3D-CNN. In this case, SSC can generally
do better than deep learning-based classification. However,
when the training sample pool is reduced to 1% of the Purdue
data, 0.1% of Salinas, and 0.5%, 0.1% of Pavia, IRTS-3D-
CNN begins to show its compatibility and superiority over
IRTS-IEPF-G-g due to its deep learning capability. This is
because IEPF-G-g is a statistical classifier, which requires
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TABLE XVIII
AC FOR IEPF, IRTS-EPF, 3D-CNN, AND IRTS-3D-CNN IN TERMS OF 3D ROC ANALYSIS, PAA , POA , AND POPR FOR U. OF PAVIA

TABLE XIX
CWC CALCULATED BY (20) FOR IEPF, IRTS-EPF, 3D-CNN, AND IRTS-3D-CNN IN

TERMS OF 3D ROC ANALYSIS, PAA , POA , AND POPR FOR U. OF PAVIA

a sufficient number of training samples to make up reliable
statistics, while a deep learning-based classifier takes its
learning capability in depth to learn unlabeled data samples
from a very limited number of training samples. The third
one is that, when the BKG is complicated such as U. of Pavia,
IRTS-3D-CNN also proves its superior adaptability to dealing
with BKG. Finally, it should be noted that Figs. 7–15 showed
that there was salt and pepper noise present in only the
classification maps produced by 3D-CNN with/without BKG.
This was resulting from the use of small patch sizes and
limited training samples used. As a result, 3D-CNN may not
be able to capture all the relevant features of the images.
Interestingly, as also shown in Figs. 7–15, IRTS-3D-CNN
alleviated and removed such an effect. This phenomenon could
be identified by the quantitative results of Tables IV–XIX. The
visual inspection demonstrated that the salt and pepper issue
can be effectively addressed by coupling the IRTS-feedback
loop with the 3D-CNN model, even with small patch sizes
and limited training samples. All these findings make sense;

specifically, IRTS-3D-CNN has shown its great potential when
a very limited number of data samples are only available and
can be used for training.

E. Time Complexity Analysis

Python and TensorFlow libraries were used to run exper-
iments. All experimental results are generated on a desktop
with an Intel Core i7-9700, 16-GB memory, and an NVIDIA
GeForce RTX 2070. Table XX shows the averaged running
time along with the averaged iteration and the threshold of TI
for all tested algorithms tabulated in Table XXI.

According to Table XX, IRTS-3D-CNN required longer
running time than other algorithms due to the fact that the
training process used RTS was relatively complicated com-
pared to EPF without using RTS. As also noted, the time
required by IEPF and IRTS-EPF increased significantly as the
training sample size was increased. However, one interesting
finding was that the computing time of IRTS-3D-CNN was
not necessarily proportional to the size of training size. It was
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Fig. 13. Classification maps of IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN for U. of Pavia using 1% of training samples. (a) Without BKG.
(b) With BKG.

Fig. 14. Classification maps of IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN for U. of Pavia using 0.5% of training samples. (a) Without BKG.
(b) With BKG.

Fig. 15. Classification maps of IEPF-G-g, IRTS-EPF-G-g, 3D-CNN, and IRTS-3D-CNN for U. of Pavia using 0.1% of training samples. (a) Without BKG.
(b) With BKG.

actually determined by the number of iterations. For example,
the averaged running time required by IRTS-3D-CNN using
SR = 10%, 5%, and 1% were 2484.7, 1591.7, and 2448.4 s,
respectively. For different SRs, the number of iterations inside
the CNN training process was always fixed. Therefore, the run-
ning time of IRTS-3D-CNN was mainly caused by RTS. That
is, the averaged iteration numbers for IRTS-3D-CNN using
SR = 10%, 5%, and 1% were 8.8, 6.5, and 8.8, respectively.
As a result, the averaged running time for SR = 5% required
less time than that required for SR = 10% and 1%.

VIII. COMPARISON WITH STATE-OF-THE ART 3D-CNNS

In Section VII, IRTS-CNN was compared with the EPF-
derived IEPF-G-g and showed its advantages and general-
ization ability to machine learning-based HSIC techniques.
In this section, we further demonstrate that IRTS-CNN also
shows its better performance and generalization ability to deep

learning-based HSIC techniques over the same used CNN
without using IRTS.

The three most recently developed state-of-the-art 3D-CNNs
described in Section VI-A2 were selected to conduct a com-
parative analysis in the same manner that it was performed
in Section VII since the experiments in Section VII already
showed that CNN had advantages when small numbers of
training samples were used. In this case, 1% of data samples
were randomly selected from all three datasets, Purdue, Sali-
nas, and the University of Pavia, and training samples were
selected according to Kang’s method for experiments. As will
be demonstrated in this section, each of them did show its own
merit in HSIC.

A. Purdue Data

Table XXII tabulates the results of PA, POA, PAA, PPR,
POPR, and PAPR produced by the four test methods, HybridSN,
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TABLE XX
AVERAGED RUNNING TIMES IN SECONDS REQUIRED BY IEPF, IRTS-EPF, AND IRTS-3D-CNN

FOR PURDUE DATA, SALINAS, AND THE UNIVERSITY OF PAVIA

TABLE XXI
AVERAGED ITERATION AND THE THRESHOLD OF TI REQUIRED BY IEPF, IRTS-EPF, AND IRTS-3D-CNN

FOR PURDUE DATA, SALINAS, AND THE UNIVERSITY OF PAVIA

TABLE XXII

PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY HYBRIDSN, A2S2K-RESNET, FSKNET, 3D-CNN, IRTS-HYBRIDSN,
IRTS-A2S2K-RESNET, IRTS-FSKNET, AND IRTS-3D-CNN BY USING 1% TRAINING SAMPLES FOR PURDUE DATA

CI C I C I C I C I C I C I C I

A2S2K-ResNet, FSKNet, and 3D-CNN, and their corre-
sponding counterparts, IRTS-HybridSN, IRTS-A2S2K-ResNet,
IRTS-FSKNet, and IRTS-3D-CNN for comparison, respec-
tively, where the best results are boldfaced. It is obvious that
all the IRTS versions of the four test methods significantly
improved their counterparts without using RTS ranging from
the smallest improvement of A2S2K-ResNet with 6%–7% of

OA and AA to the greatest improvement of 3D-CNN with 44%
of OA and 40% of AA. Most interestingly, 3D-CNN was the
worst but became the best after it was implemented as IRTS-
3D-CNN with POA = 88.45, PAA = 94.34, POPR (BKG) =
43.12, and PAPR (BKG) = 45.87. When BKG was factored in
the classification to calculate POPR (BKG) and PAPR (BKG),
A2S2K-ResNet was the best among all the four test methods
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Fig. 16. Classification maps of HybridSN, A2S2K-ResNet, FSKNet, 3D-CNN, and their IRTS counterparts for the Purdue data using 1% of training samples.
(a) Without BKG. (b) With BKG.

but turned out to be the worst after IRTS is implemented.
This is completely opposite to 3D-CNN. Nevertheless, POPR
(BKG) and PAPR (BKG) for all the test methods were very
low ranging from 21.8% of POPR (BKG) and 21.6% of
PAPR (BKG) produced by 3D-CNN to 33.3% of POPR (BKG)
and 34.3% of PAPR (BKG) produced by A2S2K-ResNet.
Although IRTS did increase their PR results, the improve-
ments were very limited due to unknown BKG. An intrigu-
ing finding was that IRTS did improve the A2S2K-ResNet
performance in classification rates, but the improvement was
small compared to the other three methods. These experi-
ments demonstrated that IRTS did improve 3D-CNN greatly
and significantly but did not help A2S2K-ResNet as much
as expected.

In order to visually inspect the classification results of the
Purdue data produced by the four test methods, HybridSN,
A2S2K-ResNet, FSKNet, and 3D-CNN along with their corre-
sponding counterparts, IRTS-HybridSN, IRTS-A2S2K-ResNet,
IRTS-FSKNet, and IRTS-3D-CNN, Fig. 16 shows their clas-
sification maps for a comparative study where IRTS ver-
sions performed significantly better than their counterparts
without using IRTS. In particular, the salt and pepper noise
had a severe effect on the classification maps produced
by 3D-CNN. IRTS-3D-CNN indeed resolved this issue and
removed all the salt and pepper noise. In addition, classi-
fication results including BKG were much worse than that
without BKG.

B. Salinas

Table XXIII tabulates the results of PA, POA, PAA, PPR,
POPR, and PAPR produced by the four test methods, HybridSN,
A2S2K-ResNet, FSKNet, and 3D-CNN, and their corre-
sponding counterparts, IRTS-HybridSN, IRTS-A2S2K-ResNet,
IRTS-FSKNet, and IRTS-3D-CNN for comparison, respec-
tively, where the best results are boldfaced and were produced
by HybridSN among all the four test methods with POA =

97.33 and PAA = 98.65, which were improved to POA =

99.01 and PAA = 99.47 after IRTS was implemented. On the
other hand, the worst results were produced by FSKNet POA =

84.66 and PAA = 93.71, which were improved to POA =

90.87 and PAA = 95.89 after IRTS was implemented. As for

PR, the rates were greatly improved compared to that of the
Purdue data but were still low. IRTS did improve a little bit
but not much.

In analogy with Fig. 16, Fig. 17 also shows the classi-
fication results of Salinas produced by the four test meth-
ods, HybridSN, A2S2K-ResNet, FSKNet, and 3D-CNN along
with their corresponding counterparts, IRTS-HybridSN, IRTS-
A2S2K-ResNet, IRTS-FSKNet, and IRTS-3D-CNN for visual
inspection where, once again, IRTS versions performed signif-
icantly better than their counterparts without using IRTS. Also,
the effect of the salt and pepper noise present in the classi-
fication maps produced by 3D-CNN was removed by IRTS-
3D-CNN. Similarly, the classification results including BKG
were much worse than that without BKG. In particular, when
BKG is included for classification, class 9 was completely
lost.

C. U. Of Pavia

Table XXIV tabulates the results of PA, POA, PAA, PPR,
POPR, and PAPR produced by the four test methods, HybridSN,
A2S2K-ResNet, FSKNet, and 3D-CNN, and their corre-
sponding counterparts, IRTS-HybridSN, IRTS-A2S2K-ResNet,
IRTS-FSKNet, and IRTS-3D-CNN for comparison, respec-
tively, where the best results are boldfaced and were produced
by 3D-CNNs and A2S2K-ResNet with POA = 95.62 and
PAA = 95.84 among the four test methods. Interestingly,
after IRTS was implemented, the best one turned out to be
IRTS-FSKNet with POA = 99.43 and PAA = 99.34. Due to the
very complicated BKG, the PR rates for all the test methods
were extremely low ranging from 19.25% to 19.72%. Even
though IRTS was implemented, their rate did not go up much
from 20% to 22%.

Similar to Figs. 16 and 17, Fig. 18 shows the classifi-
cation results of Salinas produced by the four test meth-
ods, HybridSN, A2S2K-ResNet, FSKNet, and 3D-CNN along
with their corresponding counterparts, IRTS-HybridSN, IRTS-
A2S2K-ResNet, IRTS-FSKNet, and IRTS-3D-CNN for visual
inspection where IRTS versions seemed to perform similarly
compared to their counterparts without using IRTS except the
classification map produced by 3D-CNN whose class 6 and
class 2 were corrected by IRTS-by 3D-CNN. Nevertheless,
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TABLE XXIII

PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED HYBRIDSN, A2S2K-RESNET, FSKNET, 3D-CNN, IRTS-HYBRIDSN,
IRTS-A2S2K-RESNET, IRTS-FSKNET, AND IRTS-3D-CNN BY USING 1% TRAINING SAMPLES FOR SALINAS

Fig. 17. Classification maps of HybridSN, A2S2K-ResNet, FSKNet, 3D-CNN, and their IRTS counterparts for Salinas using 1% of training samples.
(a) Without BKG. (b) With BKG.

the quantitative results in Table XXIV did show that FSKNet
and 3D-CNN could be tremendously improved using IRTS by
6% and 12%, respectively. Interestingly, the salt and pepper

noise issue in the classification map produced by 3D-CNN
was not as severe as that encountered in the Purdue data and
Salinas.
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TABLE XXIV

PA , POA , PAA , PPR , POPR , AND PAPR PRODUCED BY HYBRIDSN, A2S2K-RESNET, FSKNET, 3D-CNN, IRTS-HYBRIDSN,
IRTS-A2S2K-RESNET, IRTS-FSKNET, AND IRTS-3D-CNN BY USING 1% TRAINING SAMPLES FOR U. OF PAVIA

Fig. 18. Classification maps of HybridSN, A2S2K-ResNet, FSKNet, 3D-CNN, and their IRTS counterparts for U. of Pavia using 1% of training samples.
(a) Without BKG. (b) With BKG.

D. Discussions
The above experiments provided evidence that the three

datasets did have their own merits. Conclusions drawn from
one dataset are not necessarily applied to another. Several
interesting observations are worth being noted.

1) The best classifiers for the Purdue data, Salinas, and U.
of Pavia were A2S2K-ResNet, HybridSN, and FSKNet,
respectively. However, after IRTS was implemented,
the best classifiers became IRTS-3D-CNN, HybridSN,
and FSKNet, respectively. Nevertheless, IRTS-3D-CNN
performed reasonably well compared to the best IRTS
classifiers with only slight differences.

2) Despite the fact that IRTS-classifiers require very high
computing times compared to those without using IRTS,

the payoff is worthwhile. This is because the perfor-
mance of including IRTS can be significantly improved
at the expense of high computational complexity, specifi-
cally, IRTS-3D-CNN. In addition, if we take the network
structure into account, then IRTS-3D-CNN is probably
most preferable because it is easy to implement with
simple architecture.

3) Among the three datasets, Salinas was the easiest one
because it does not have an imbalance class issue as
the Purdue data does and nor BKG issue as U. of Pavia
does.

4) IRTS has shown to be very effective in improving 3D-
CNN, specifically, the Purdue data. Despite the fact
that 3D-CNN has a very simple network architecture,
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TABLE XXV
ARCHITECTURE OF MODELS

TABLE XXVI
POA , PAA , POPR , AND PAPR PRODUCED BY 3D-CNN, 3D-CNN-D, AND IRTS-3D-CNN BY USING 1% TRAINING

SAMPLES FOR PURDUE DATA, SALINAS, AND U. OF PAVIA

its IRTS version is able to manage to achieve very
high accuracy and performs very comparably to more
complicated deep learning classifiers, such as A2S2K-
ResNet, HybridSN, and FSKNet. This indicated that
IRTS-3D-CNN not only proved to be effective but also
showed its great potential in adaptability to any network.

5) Last but not least, according to Figs. 7–18, the clas-
sification maps produced by IRTS-3D-CNN with BKG
included showed that IRTS-3D-CNN was able to smooth
the irregularities between classes and their boundaries.
Such a fact suggested that IRTS-3D-CNN can be con-
sidered a segmentation technique, which can partition
an entire image into a finite number of homogeneous
regions. This intriguing finding provides a further inves-
tigation into how to take advantage of IRTS-3D-CNN in
image segmentation in addition to its capability in HSIC
presented in this article.

IX. COMPLEXITY COMPARISON BETWEEN
CNN AND IRTS-CNN

It should be noted that there is no requirement that the
step size of the spectral and spatial dimensions in 3D-CNN
can be the same or different. In our experiments, the step
size of 3D-CNN for both spectral and spatial dimensions was
set to 1. There are two reasons for this choice. The first
one is that using a small step size can capture more detailed
information in the input data. As a tradeoff, a small step size
may require more convolution operations to be performed and,
thus, increase the complexity of the algorithm. The second
reason is that our IRTS structure can not only reduce the
complexity but also improve the performance by feeding back
the new and additional spatial classification information to the
model. To validate our assertion, this section shows that, even
with the small setting of step size in the spectral and spatial

domains, the complexity of the algorithm can be significantly
reduced by coupling 3D-CNN with IRTS while also improving
the classification accuracy.

In this section, we evaluated the effectiveness of our pro-
posed IRTS structure in reducing the complexity of 3D-CNN
models while maintaining high accuracy in HSIC. We con-
ducted experiments with two 3D-CNN models: a simple 3D-
CNN, as shown in Fig. 2, and a deeper 3D-CNN model,
referred to as 3D-CNN-D, as shown in Table XXV. The input
hyperspectral data were preprocessed by PCA to reduce the
number of spectral bands to 30, 15, and 15 for the Purdue,
Salinas, and U. of Pavia datasets, respectively.

The parameter settings and performance results are pre-
sented in Table XXVI. For both 3D-CNN and IRTS-3D-CNN,
we used a patch size of 5 and trained the models for 250 steps
for all three HSIs. In contrast, for 3D-CNN-D, we used a
larger patch size of 15, 21, and 19 and trained the models for
1000 steps for Purdue, Salinas, and U. of Pavia, respectively.
Our results show that the IRTS-3D-CNN model outperformed
the 3D-CNN-D model in terms of accuracy and execution
time.

We found that a larger patch size can provide more spatial
information to improve classification accuracy, but it can
also increase model complexity. On the other hand, smaller
patch sizes can reduce complexity but may result in lower
classification accuracy. Our IRTS structure allows us to use
smaller patch sizes and fewer training steps while achieving
high classification accuracy by feeding back both spectral and
spatial information to the model.

X. CONCLUSION

This article presents a general framework, which incorpo-
rates RTS into CNN for an iterative CNN network, called
IRTS-CNN. It includes iterative feedback loops to make a
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CNN a close network system while taking advantage of RTS to
randomly reselect training samples in every new iteration, so as
to improve CNN in classification performance. It is specifically
effective when a limited number of training samples are used.
There are several novelties.

1) Unlike CNN that is a feed-forward network system,
IRTS-CNN is designed as a feedback network system.
As a result, IRTS actually combines the advantages of
both feed-forward and feed-backward information, so as
to improve classification performance.

2) IRTS-CNN implements an iterative process to expand
and augment the current data cube so that RTS can
resample training samples from a new expanded data
cube generated by each iteration. Such newly generated
sets of resampled training samples contain more spa-
tial classification information iteration by iteration that
increases the classification ability of CNN.

3) IRTS-CNN includes an iterative process via feedback
loops to make an open feed-forward CNN a close
network system.

4) IRTS-CNN also implements an automatic stopping rule
to terminate the iterative process.

5) As a result of using RTS, IRTS-CNN is capable of
improving CNN, specifically, when only a limited num-
ber of training samples are available. This is because
RTS allows CNN to resample training samples randomly
via an iterative process, in which case some of the data
samples that were not sampled at previous iterations
may be sampled in a later iteration. Moreover, these new
training samples are reselected from new expanded data
cubes that include more crucial spatial classification that
can increase classification accuracy for the next round
iteration.

6) Finally, IRTS-CNN provides a new look at CNN. For
example, a similar concept of using an iterative process
to capture spatial information from anomaly detection
maps has been recently investigated in [52]. Another
example is to incorporate IRTS into semisupervised
HSIC to improve classification performance, such as
active learning in [41].
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